]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/pthread_synch.c
xnu-1228.15.4.tar.gz
[apple/xnu.git] / bsd / kern / pthread_synch.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995-2005 Apple Computer, Inc. All Rights Reserved */
29 /*
30 * pthread_synch.c
31 */
32
33 #define _PTHREAD_CONDATTR_T
34 #define _PTHREAD_COND_T
35 #define _PTHREAD_MUTEXATTR_T
36 #define _PTHREAD_MUTEX_T
37 #define _PTHREAD_RWLOCKATTR_T
38 #define _PTHREAD_RWLOCK_T
39
40 #undef pthread_mutexattr_t
41 #undef pthread_mutex_t
42 #undef pthread_condattr_t
43 #undef pthread_cond_t
44 #undef pthread_rwlockattr_t
45 #undef pthread_rwlock_t
46
47 #include <sys/param.h>
48 #include <sys/queue.h>
49 #include <sys/resourcevar.h>
50 #include <sys/proc_internal.h>
51 #include <sys/kauth.h>
52 #include <sys/systm.h>
53 #include <sys/timeb.h>
54 #include <sys/times.h>
55 #include <sys/acct.h>
56 #include <sys/kernel.h>
57 #include <sys/wait.h>
58 #include <sys/signalvar.h>
59 #include <sys/syslog.h>
60 #include <sys/stat.h>
61 #include <sys/lock.h>
62 #include <sys/kdebug.h>
63 #include <sys/sysproto.h>
64 #include <sys/pthread_internal.h>
65 #include <sys/vm.h>
66 #include <sys/user.h> /* for coredump */
67
68
69 #include <mach/mach_types.h>
70 #include <mach/vm_prot.h>
71 #include <mach/semaphore.h>
72 #include <mach/sync_policy.h>
73 #include <mach/task.h>
74 #include <kern/kern_types.h>
75 #include <kern/task.h>
76 #include <kern/clock.h>
77 #include <mach/kern_return.h>
78 #include <kern/thread.h>
79 #include <kern/sched_prim.h>
80 #include <kern/kalloc.h>
81 #include <kern/sched_prim.h> /* for thread_exception_return */
82 #include <kern/processor.h>
83 #include <kern/affinity.h>
84 #include <mach/mach_vm.h>
85 #include <mach/mach_param.h>
86 #include <mach/thread_status.h>
87 #include <mach/thread_policy.h>
88 #include <mach/message.h>
89 #include <mach/port.h>
90 #include <vm/vm_protos.h>
91 #include <vm/vm_map.h>` /* for current_map() */
92 #include <mach/thread_act.h> /* for thread_resume */
93 #include <machine/machine_routines.h>
94 #if defined(__i386__)
95 #include <i386/machine_routines.h>
96 #include <i386/eflags.h>
97 #include <i386/psl.h>
98 #include <i386/seg.h>
99 #endif
100
101 #include <libkern/OSAtomic.h>
102
103 #if 0
104 #undef KERNEL_DEBUG
105 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
106 #undef KERNEL_DEBUG1
107 #define KERNEL_DEBUG1 KERNEL_DEBUG_CONSTANT1
108 #endif
109
110
111 #if defined(__ppc__) || defined(__ppc64__)
112 #include <architecture/ppc/cframe.h>
113 #endif
114
115
116 lck_grp_attr_t *pthread_lck_grp_attr;
117 lck_grp_t *pthread_lck_grp;
118 lck_attr_t *pthread_lck_attr;
119 lck_mtx_t * pthread_list_mlock;
120 extern void pthread_init(void);
121
122 extern kern_return_t thread_getstatus(register thread_t act, int flavor,
123 thread_state_t tstate, mach_msg_type_number_t *count);
124 extern kern_return_t thread_setstatus(thread_t thread, int flavor,
125 thread_state_t tstate, mach_msg_type_number_t count);
126 extern void thread_set_cthreadself(thread_t thread, uint64_t pself, int isLP64);
127 extern kern_return_t mach_port_deallocate(ipc_space_t, mach_port_name_t);
128 extern kern_return_t semaphore_signal_internal_trap(mach_port_name_t);
129
130 static int workqueue_additem(struct workqueue *wq, int prio, user_addr_t item);
131 static int workqueue_removeitem(struct workqueue *wq, int prio, user_addr_t item);
132 static void workqueue_run_nextitem(proc_t p, thread_t th);
133 static void wq_runitem(proc_t p, user_addr_t item, thread_t th, struct threadlist *tl,
134 int reuse_thread, int wake_thread, int return_directly);
135 static int setup_wqthread(proc_t p, thread_t th, user_addr_t item, int reuse_thread, struct threadlist *tl);
136 static int workqueue_addnewthread(struct workqueue *wq);
137 static void workqueue_removethread(struct workqueue *wq);
138 static void workqueue_lock(proc_t);
139 static void workqueue_lock_spin(proc_t);
140 static void workqueue_unlock(proc_t);
141
142 #define C_32_STK_ALIGN 16
143 #define C_64_STK_ALIGN 16
144 #define C_64_REDZONE_LEN 128
145 #define TRUNC_DOWN32(a,c) ((((uint32_t)a)-(c)) & ((uint32_t)(-(c))))
146 #define TRUNC_DOWN64(a,c) ((((uint64_t)a)-(c)) & ((uint64_t)(-(c))))
147
148
149 /*
150 * Flags filed passed to bsdthread_create and back in pthread_start
151 31 <---------------------------------> 0
152 _________________________________________
153 | flags(8) | policy(8) | importance(16) |
154 -----------------------------------------
155 */
156 void _pthread_start(pthread_t self, mach_port_t kport, void *(*fun)(void *), void * funarg, size_t stacksize, unsigned int flags);
157
158 #define PTHREAD_START_CUSTOM 0x01000000
159 #define PTHREAD_START_SETSCHED 0x02000000
160 #define PTHREAD_START_DETACHED 0x04000000
161 #define PTHREAD_START_POLICY_BITSHIFT 16
162 #define PTHREAD_START_POLICY_MASK 0xff
163 #define PTHREAD_START_IMPORTANCE_MASK 0xffff
164
165 #define SCHED_OTHER POLICY_TIMESHARE
166 #define SCHED_FIFO POLICY_FIFO
167 #define SCHED_RR POLICY_RR
168
169 void
170 pthread_init(void)
171 {
172
173 pthread_lck_grp_attr = lck_grp_attr_alloc_init();
174 pthread_lck_grp = lck_grp_alloc_init("pthread", pthread_lck_grp_attr);
175
176 /*
177 * allocate the lock attribute for pthread synchronizers
178 */
179 pthread_lck_attr = lck_attr_alloc_init();
180
181 pthread_list_mlock = lck_mtx_alloc_init(pthread_lck_grp, pthread_lck_attr);
182
183 }
184
185 void
186 pthread_list_lock(void)
187 {
188 lck_mtx_lock(pthread_list_mlock);
189 }
190
191 void
192 pthread_list_unlock(void)
193 {
194 lck_mtx_unlock(pthread_list_mlock);
195 }
196
197
198 int
199 __pthread_mutex_destroy(__unused struct proc *p, struct __pthread_mutex_destroy_args *uap, __unused register_t *retval)
200 {
201 int res;
202 int mutexid = uap->mutexid;
203 pthread_mutex_t * mutex;
204 lck_mtx_t * lmtx;
205 lck_mtx_t * lmtx1;
206
207
208 mutex = pthread_id_to_mutex(mutexid);
209 if (mutex == 0)
210 return(EINVAL);
211
212 MTX_LOCK(mutex->lock);
213 if (mutex->sig == _PTHREAD_KERN_MUTEX_SIG)
214 {
215 if (mutex->owner == (thread_t)NULL &&
216 mutex->refcount == 1)
217 {
218 mutex->sig = _PTHREAD_NO_SIG;
219 lmtx = mutex->mutex;
220 lmtx1 = mutex->lock;
221 mutex->mutex = NULL;
222 pthread_id_mutex_remove(mutexid);
223 mutex->refcount --;
224 MTX_UNLOCK(mutex->lock);
225 lck_mtx_free(lmtx, pthread_lck_grp);
226 lck_mtx_free(lmtx1, pthread_lck_grp);
227 kfree((void *)mutex, sizeof(struct _pthread_mutex));
228 return(0);
229 }
230 else
231 res = EBUSY;
232 }
233 else
234 res = EINVAL;
235 MTX_UNLOCK(mutex->lock);
236 pthread_mutex_release(mutex);
237 return (res);
238 }
239
240 /*
241 * Initialize a mutex variable, possibly with additional attributes.
242 */
243 static void
244 pthread_mutex_init_internal(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)
245 {
246 mutex->prioceiling = attr->prioceiling;
247 mutex->protocol = attr->protocol;
248 mutex->type = attr->type;
249 mutex->pshared = attr->pshared;
250 mutex->refcount = 0;
251 mutex->owner = (thread_t)NULL;
252 mutex->owner_proc = current_proc();
253 mutex->sig = _PTHREAD_KERN_MUTEX_SIG;
254 mutex->lock = lck_mtx_alloc_init(pthread_lck_grp, pthread_lck_attr);
255 mutex->mutex = lck_mtx_alloc_init(pthread_lck_grp, pthread_lck_attr);
256 }
257
258 /*
259 * Initialize a mutex variable, possibly with additional attributes.
260 * Public interface - so don't trust the lock - initialize it first.
261 */
262 int
263 __pthread_mutex_init(__unused struct proc *p, struct __pthread_mutex_init_args *uap, __unused register_t *retval)
264 {
265 user_addr_t umutex = uap->mutex;
266 pthread_mutex_t * mutex;
267 user_addr_t uattr = uap->attr;
268 pthread_mutexattr_t attr;
269 unsigned int addr = (unsigned int)((uintptr_t)uap->mutex);
270 int pmutex_sig;
271 int mutexid;
272 int error = 0;
273
274 if ((umutex == 0) || (uattr == 0))
275 return(EINVAL);
276
277 if ((error = copyin(uattr, &attr, sizeof(pthread_mutexattr_t))))
278 return(error);
279
280 if (attr.sig != _PTHREAD_MUTEX_ATTR_SIG)
281 return (EINVAL);
282
283 if ((error = copyin(umutex, &pmutex_sig, sizeof(int))))
284 return(error);
285
286 if (pmutex_sig == _PTHREAD_KERN_MUTEX_SIG)
287 return(EBUSY);
288 mutex = (pthread_mutex_t *)kalloc(sizeof(pthread_mutex_t));
289
290 pthread_mutex_init_internal(mutex, &attr);
291
292
293 addr += 8;
294 mutexid = pthread_id_mutex_add(mutex);
295 if (mutexid) {
296 if ((error = copyout(&mutexid, ((user_addr_t)((uintptr_t)(addr))), 4)))
297 goto cleanup;
298 return(0);
299 } else
300 error = ENOMEM;
301 cleanup:
302 if(mutexid)
303 pthread_id_mutex_remove(mutexid);
304 lck_mtx_free(mutex->lock, pthread_lck_grp);
305 lck_mtx_free(mutex->mutex, pthread_lck_grp);
306 kfree(mutex, sizeof(struct _pthread_mutex));
307 return(error);
308 }
309
310 /*
311 * Lock a mutex.
312 * TODO: Priority inheritance stuff
313 */
314 int
315 __pthread_mutex_lock(struct proc *p, struct __pthread_mutex_lock_args *uap, __unused register_t *retval)
316 {
317 int mutexid = uap->mutexid;
318 pthread_mutex_t * mutex;
319 int error;
320
321 mutex = pthread_id_to_mutex(mutexid);
322 if (mutex == 0)
323 return(EINVAL);
324
325 MTX_LOCK(mutex->lock);
326
327 if (mutex->sig != _PTHREAD_KERN_MUTEX_SIG)
328 {
329 error = EINVAL;
330 goto out;
331 }
332
333 if ((p != mutex->owner_proc) && (mutex->pshared != PTHREAD_PROCESS_SHARED)) {
334 error = EINVAL;
335 goto out;
336 }
337
338 MTX_UNLOCK(mutex->lock);
339
340 lck_mtx_lock(mutex->mutex);
341
342 MTX_LOCK(mutex->lock);
343 mutex->owner = current_thread();
344 error = 0;
345 out:
346 MTX_UNLOCK(mutex->lock);
347 pthread_mutex_release(mutex);
348 return (error);
349 }
350
351 /*
352 * Attempt to lock a mutex, but don't block if this isn't possible.
353 */
354 int
355 __pthread_mutex_trylock(struct proc *p, struct __pthread_mutex_trylock_args *uap, __unused register_t *retval)
356 {
357 int mutexid = uap->mutexid;
358 pthread_mutex_t * mutex;
359 boolean_t state;
360 int error;
361
362 mutex = pthread_id_to_mutex(mutexid);
363 if (mutex == 0)
364 return(EINVAL);
365
366 MTX_LOCK(mutex->lock);
367
368 if (mutex->sig != _PTHREAD_KERN_MUTEX_SIG)
369 {
370 error = EINVAL;
371 goto out;
372 }
373
374 if ((p != mutex->owner_proc) && (mutex->pshared != PTHREAD_PROCESS_SHARED)) {
375 error = EINVAL;
376 goto out;
377 }
378
379 MTX_UNLOCK(mutex->lock);
380
381 state = lck_mtx_try_lock(mutex->mutex);
382 if (state) {
383 MTX_LOCK(mutex->lock);
384 mutex->owner = current_thread();
385 MTX_UNLOCK(mutex->lock);
386 error = 0;
387 } else
388 error = EBUSY;
389
390 pthread_mutex_release(mutex);
391 return (error);
392 out:
393 MTX_UNLOCK(mutex->lock);
394 pthread_mutex_release(mutex);
395 return (error);
396 }
397
398 /*
399 * Unlock a mutex.
400 * TODO: Priority inheritance stuff
401 */
402 int
403 __pthread_mutex_unlock(struct proc *p, struct __pthread_mutex_unlock_args *uap, __unused register_t *retval)
404 {
405 int mutexid = uap->mutexid;
406 pthread_mutex_t * mutex;
407 int error;
408
409 mutex = pthread_id_to_mutex(mutexid);
410 if (mutex == 0)
411 return(EINVAL);
412
413 MTX_LOCK(mutex->lock);
414
415 if (mutex->sig != _PTHREAD_KERN_MUTEX_SIG)
416 {
417 error = EINVAL;
418 goto out;
419 }
420
421 if ((p != mutex->owner_proc) && (mutex->pshared != PTHREAD_PROCESS_SHARED)) {
422 error = EINVAL;
423 goto out;
424 }
425
426 MTX_UNLOCK(mutex->lock);
427
428 lck_mtx_unlock(mutex->mutex);
429
430 MTX_LOCK(mutex->lock);
431 mutex->owner = NULL;
432 error = 0;
433 out:
434 MTX_UNLOCK(mutex->lock);
435 pthread_mutex_release(mutex);
436 return (error);
437 }
438
439
440 int
441 __pthread_cond_init(__unused struct proc *p, struct __pthread_cond_init_args *uap, __unused register_t *retval)
442 {
443 pthread_cond_t * cond;
444 pthread_condattr_t attr;
445 user_addr_t ucond = uap->cond;
446 user_addr_t uattr = uap->attr;
447 unsigned int addr = (unsigned int)((uintptr_t)uap->cond);
448 int condid, error, cond_sig;
449 semaphore_t sem;
450 kern_return_t kret;
451 int value = 0;
452
453 if ((ucond == 0) || (uattr == 0))
454 return(EINVAL);
455
456 if ((error = copyin(uattr, &attr, sizeof(pthread_condattr_t))))
457 return(error);
458
459 if (attr.sig != _PTHREAD_COND_ATTR_SIG)
460 return (EINVAL);
461
462 if ((error = copyin(ucond, &cond_sig, sizeof(int))))
463 return(error);
464
465 if (cond_sig == _PTHREAD_KERN_COND_SIG)
466 return(EBUSY);
467 kret = semaphore_create(kernel_task, &sem, SYNC_POLICY_FIFO, value);
468 if (kret != KERN_SUCCESS)
469 return(ENOMEM);
470
471 cond = (pthread_cond_t *)kalloc(sizeof(pthread_cond_t));
472
473 cond->lock = lck_mtx_alloc_init(pthread_lck_grp, pthread_lck_attr);
474 cond->pshared = attr.pshared;
475 cond->sig = _PTHREAD_KERN_COND_SIG;
476 cond->sigpending = 0;
477 cond->waiters = 0;
478 cond->refcount = 0;
479 cond->mutex = (pthread_mutex_t *)0;
480 cond->owner_proc = current_proc();
481 cond->sem = sem;
482
483 addr += 8;
484 condid = pthread_id_cond_add(cond);
485 if (condid) {
486 if ((error = copyout(&condid, ((user_addr_t)((uintptr_t)(addr))), 4)))
487 goto cleanup;
488 return(0);
489 } else
490 error = ENOMEM;
491 cleanup:
492 if(condid)
493 pthread_id_cond_remove(condid);
494 semaphore_destroy(kernel_task, cond->sem);
495 kfree(cond, sizeof(pthread_cond_t));
496 return(error);
497 }
498
499
500 /*
501 * Destroy a condition variable.
502 */
503 int
504 __pthread_cond_destroy(__unused struct proc *p, struct __pthread_cond_destroy_args *uap, __unused register_t *retval)
505 {
506 pthread_cond_t *cond;
507 int condid = uap->condid;
508 semaphore_t sem;
509 lck_mtx_t * lmtx;
510 int res;
511
512 cond = pthread_id_to_cond(condid);
513 if (cond == 0)
514 return(EINVAL);
515
516 COND_LOCK(cond->lock);
517 if (cond->sig == _PTHREAD_KERN_COND_SIG)
518 {
519 if (cond->refcount == 1)
520 {
521 cond->sig = _PTHREAD_NO_SIG;
522 sem = cond->sem;
523 cond->sem = NULL;
524 lmtx = cond->lock;
525 pthread_id_cond_remove(condid);
526 cond->refcount --;
527 COND_UNLOCK(cond->lock);
528 lck_mtx_free(lmtx, pthread_lck_grp);
529 (void)semaphore_destroy(kernel_task, sem);
530 kfree((void *)cond, sizeof(pthread_cond_t));
531 return(0);
532 }
533 else
534 res = EBUSY;
535 }
536 else
537 res = EINVAL;
538 COND_UNLOCK(cond->lock);
539 pthread_cond_release(cond);
540 return (res);
541 }
542
543
544 /*
545 * Signal a condition variable, waking up all threads waiting for it.
546 */
547 int
548 __pthread_cond_broadcast(__unused struct proc *p, struct __pthread_cond_broadcast_args *uap, __unused register_t *retval)
549 {
550 int condid = uap->condid;
551 pthread_cond_t * cond;
552 int error;
553 kern_return_t kret;
554
555 cond = pthread_id_to_cond(condid);
556 if (cond == 0)
557 return(EINVAL);
558
559 COND_LOCK(cond->lock);
560
561 if (cond->sig != _PTHREAD_KERN_COND_SIG)
562 {
563 error = EINVAL;
564 goto out;
565 }
566
567 if ((p != cond->owner_proc) && (cond->pshared != PTHREAD_PROCESS_SHARED)) {
568 error = EINVAL;
569 goto out;
570 }
571
572 COND_UNLOCK(cond->lock);
573
574 kret = semaphore_signal_all(cond->sem);
575 switch (kret) {
576 case KERN_INVALID_ADDRESS:
577 case KERN_PROTECTION_FAILURE:
578 error = EINVAL;
579 break;
580 case KERN_ABORTED:
581 case KERN_OPERATION_TIMED_OUT:
582 error = EINTR;
583 break;
584 case KERN_SUCCESS:
585 error = 0;
586 break;
587 default:
588 error = EINVAL;
589 break;
590 }
591
592 COND_LOCK(cond->lock);
593 out:
594 COND_UNLOCK(cond->lock);
595 pthread_cond_release(cond);
596 return (error);
597 }
598
599
600 /*
601 * Signal a condition variable, waking only one thread.
602 */
603 int
604 __pthread_cond_signal(__unused struct proc *p, struct __pthread_cond_signal_args *uap, __unused register_t *retval)
605 {
606 int condid = uap->condid;
607 pthread_cond_t * cond;
608 int error;
609 kern_return_t kret;
610
611 cond = pthread_id_to_cond(condid);
612 if (cond == 0)
613 return(EINVAL);
614
615 COND_LOCK(cond->lock);
616
617 if (cond->sig != _PTHREAD_KERN_COND_SIG)
618 {
619 error = EINVAL;
620 goto out;
621 }
622
623 if ((p != cond->owner_proc) && (cond->pshared != PTHREAD_PROCESS_SHARED)) {
624 error = EINVAL;
625 goto out;
626 }
627
628 COND_UNLOCK(cond->lock);
629
630 kret = semaphore_signal(cond->sem);
631 switch (kret) {
632 case KERN_INVALID_ADDRESS:
633 case KERN_PROTECTION_FAILURE:
634 error = EINVAL;
635 break;
636 case KERN_ABORTED:
637 case KERN_OPERATION_TIMED_OUT:
638 error = EINTR;
639 break;
640 case KERN_SUCCESS:
641 error = 0;
642 break;
643 default:
644 error = EINVAL;
645 break;
646 }
647
648 COND_LOCK(cond->lock);
649 out:
650 COND_UNLOCK(cond->lock);
651 pthread_cond_release(cond);
652 return (error);
653 }
654
655
656 int
657 __pthread_cond_wait(__unused struct proc *p, struct __pthread_cond_wait_args *uap, __unused register_t *retval)
658 {
659 int condid = uap->condid;
660 pthread_cond_t * cond;
661 int mutexid = uap->mutexid;
662 pthread_mutex_t * mutex;
663 int error;
664 kern_return_t kret;
665
666 cond = pthread_id_to_cond(condid);
667 if (cond == 0)
668 return(EINVAL);
669
670 mutex = pthread_id_to_mutex(mutexid);
671 if (mutex == 0) {
672 pthread_cond_release(cond);
673 return(EINVAL);
674 }
675 COND_LOCK(cond->lock);
676
677 if (cond->sig != _PTHREAD_KERN_COND_SIG)
678 {
679 error = EINVAL;
680 goto out;
681 }
682
683 if ((p != cond->owner_proc) && (cond->pshared != PTHREAD_PROCESS_SHARED)) {
684 error = EINVAL;
685 goto out;
686 }
687
688 COND_UNLOCK(cond->lock);
689
690 kret = semaphore_wait(cond->sem);
691 switch (kret) {
692 case KERN_INVALID_ADDRESS:
693 case KERN_PROTECTION_FAILURE:
694 error = EACCES;
695 break;
696 case KERN_ABORTED:
697 case KERN_OPERATION_TIMED_OUT:
698 error = EINTR;
699 break;
700 case KERN_SUCCESS:
701 error = 0;
702 break;
703 default:
704 error = EINVAL;
705 break;
706 }
707
708 COND_LOCK(cond->lock);
709 out:
710 COND_UNLOCK(cond->lock);
711 pthread_cond_release(cond);
712 pthread_mutex_release(mutex);
713 return (error);
714 }
715
716 int
717 __pthread_cond_timedwait(__unused struct proc *p, struct __pthread_cond_timedwait_args *uap, __unused register_t *retval)
718 {
719 int condid = uap->condid;
720 pthread_cond_t * cond;
721 int mutexid = uap->mutexid;
722 pthread_mutex_t * mutex;
723 mach_timespec_t absts;
724 int error;
725 kern_return_t kret;
726
727 absts.tv_sec = 0;
728 absts.tv_nsec = 0;
729
730 if (uap->abstime)
731 if ((error = copyin(uap->abstime, &absts, sizeof(mach_timespec_t ))))
732 return(error);
733 cond = pthread_id_to_cond(condid);
734 if (cond == 0)
735 return(EINVAL);
736
737 mutex = pthread_id_to_mutex(mutexid);
738 if (mutex == 0) {
739 pthread_cond_release(cond);
740 return(EINVAL);
741 }
742 COND_LOCK(cond->lock);
743
744 if (cond->sig != _PTHREAD_KERN_COND_SIG)
745 {
746 error = EINVAL;
747 goto out;
748 }
749
750 if ((p != cond->owner_proc) && (cond->pshared != PTHREAD_PROCESS_SHARED)) {
751 error = EINVAL;
752 goto out;
753 }
754
755 COND_UNLOCK(cond->lock);
756
757 kret = semaphore_timedwait(cond->sem, absts);
758 switch (kret) {
759 case KERN_INVALID_ADDRESS:
760 case KERN_PROTECTION_FAILURE:
761 error = EACCES;
762 break;
763 case KERN_ABORTED:
764 case KERN_OPERATION_TIMED_OUT:
765 error = EINTR;
766 break;
767 case KERN_SUCCESS:
768 error = 0;
769 break;
770 default:
771 error = EINVAL;
772 break;
773 }
774
775 COND_LOCK(cond->lock);
776 out:
777 COND_UNLOCK(cond->lock);
778 pthread_cond_release(cond);
779 pthread_mutex_release(mutex);
780 return (error);
781 }
782
783 int
784 bsdthread_create(__unused struct proc *p, struct bsdthread_create_args *uap, user_addr_t *retval)
785 {
786 kern_return_t kret;
787 void * sright;
788 int error = 0;
789 int allocated = 0;
790 mach_vm_offset_t stackaddr;
791 mach_vm_size_t th_allocsize = 0;
792 mach_vm_size_t user_stacksize;
793 mach_vm_size_t th_stacksize;
794 mach_vm_offset_t th_stackaddr;
795 mach_vm_offset_t th_stack;
796 mach_vm_offset_t th_pthread;
797 mach_port_t th_thport;
798 thread_t th;
799 user_addr_t user_func = uap->func;
800 user_addr_t user_funcarg = uap->func_arg;
801 user_addr_t user_stack = uap->stack;
802 user_addr_t user_pthread = uap->pthread;
803 unsigned int flags = (unsigned int)uap->flags;
804 vm_map_t vmap = current_map();
805 task_t ctask = current_task();
806 unsigned int policy, importance;
807
808 int isLP64 = 0;
809
810
811 #if 0
812 KERNEL_DEBUG_CONSTANT(0x9000080 | DBG_FUNC_START, flags, 0, 0, 0, 0);
813 #endif
814
815 isLP64 = IS_64BIT_PROCESS(p);
816
817
818 #if defined(__ppc__)
819 stackaddr = 0xF0000000;
820 #elif defined(__i386__)
821 stackaddr = 0xB0000000;
822 #else
823 #error Need to define a stack address hint for this architecture
824 #endif
825 kret = thread_create(ctask, &th);
826 if (kret != KERN_SUCCESS)
827 return(ENOMEM);
828 thread_reference(th);
829
830 sright = (void *) convert_thread_to_port(th);
831 th_thport = (void *)ipc_port_copyout_send(sright, get_task_ipcspace(ctask));
832
833 if ((flags & PTHREAD_START_CUSTOM) == 0) {
834 th_stacksize = (mach_vm_size_t)user_stack; /* if it is custom them it is stacksize */
835 th_allocsize = th_stacksize + PTH_DEFAULT_GUARDSIZE + p->p_pthsize;
836
837 kret = mach_vm_map(vmap, &stackaddr,
838 th_allocsize,
839 page_size-1,
840 VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE , NULL,
841 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL,
842 VM_INHERIT_DEFAULT);
843 if (kret != KERN_SUCCESS)
844 kret = mach_vm_allocate(vmap,
845 &stackaddr, th_allocsize,
846 VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE);
847 if (kret != KERN_SUCCESS) {
848 error = ENOMEM;
849 goto out;
850 }
851 #if 0
852 KERNEL_DEBUG_CONSTANT(0x9000080 |DBG_FUNC_NONE, th_allocsize, stackaddr, 0, 2, 0);
853 #endif
854 th_stackaddr = stackaddr;
855 allocated = 1;
856 /*
857 * The guard page is at the lowest address
858 * The stack base is the highest address
859 */
860 kret = mach_vm_protect(vmap, stackaddr, PTH_DEFAULT_GUARDSIZE, FALSE, VM_PROT_NONE);
861
862 if (kret != KERN_SUCCESS) {
863 error = ENOMEM;
864 goto out1;
865 }
866 th_stack = (stackaddr + th_stacksize + PTH_DEFAULT_GUARDSIZE);
867 th_pthread = (stackaddr + th_stacksize + PTH_DEFAULT_GUARDSIZE);
868 user_stacksize = th_stacksize;
869 } else {
870 th_stack = user_stack;
871 user_stacksize = user_stack;
872 th_pthread = user_pthread;
873 #if 0
874 KERNEL_DEBUG_CONSTANT(0x9000080 |DBG_FUNC_NONE, 0, 0, 0, 3, 0);
875 #endif
876 }
877
878 #if defined(__ppc__)
879 /*
880 * Set up PowerPC registers...
881 * internally they are always kept as 64 bit and
882 * since the register set is the same between 32 and 64bit modes
883 * we don't need 2 different methods for setting the state
884 */
885 {
886 ppc_thread_state64_t state64;
887 ppc_thread_state64_t *ts64 = &state64;
888
889 ts64->srr0 = (uint64_t)p->p_threadstart;
890 ts64->r1 = (uint64_t)(th_stack - C_ARGSAVE_LEN - C_RED_ZONE);
891 ts64->r3 = (uint64_t)th_pthread;
892 ts64->r4 = (uint64_t)((unsigned int)th_thport);
893 ts64->r5 = (uint64_t)user_func;
894 ts64->r6 = (uint64_t)user_funcarg;
895 ts64->r7 = (uint64_t)user_stacksize;
896 ts64->r8 = (uint64_t)uap->flags;
897
898 thread_set_wq_state64(th, (thread_state_t)ts64);
899
900 thread_set_cthreadself(th, (uint64_t)th_pthread, isLP64);
901 }
902 #elif defined(__i386__)
903 {
904 /*
905 * Set up i386 registers & function call.
906 */
907 if (isLP64 == 0) {
908 x86_thread_state32_t state;
909 x86_thread_state32_t *ts = &state;
910
911 ts->eip = (int)p->p_threadstart;
912 ts->eax = (unsigned int)th_pthread;
913 ts->ebx = (unsigned int)th_thport;
914 ts->ecx = (unsigned int)user_func;
915 ts->edx = (unsigned int)user_funcarg;
916 ts->edi = (unsigned int)user_stacksize;
917 ts->esi = (unsigned int)uap->flags;
918 /*
919 * set stack pointer
920 */
921 ts->esp = (int)((vm_offset_t)(th_stack-C_32_STK_ALIGN));
922
923 thread_set_wq_state32(th, (thread_state_t)ts);
924
925 } else {
926 x86_thread_state64_t state64;
927 x86_thread_state64_t *ts64 = &state64;
928
929 ts64->rip = (uint64_t)p->p_threadstart;
930 ts64->rdi = (uint64_t)th_pthread;
931 ts64->rsi = (uint64_t)((unsigned int)(th_thport));
932 ts64->rdx = (uint64_t)user_func;
933 ts64->rcx = (uint64_t)user_funcarg;
934 ts64->r8 = (uint64_t)user_stacksize;
935 ts64->r9 = (uint64_t)uap->flags;
936 /*
937 * set stack pointer aligned to 16 byte boundary
938 */
939 ts64->rsp = (uint64_t)(th_stack - C_64_REDZONE_LEN);
940
941 thread_set_wq_state64(th, (thread_state_t)ts64);
942 }
943 }
944 #else
945 #error bsdthread_create not defined for this architecture
946 #endif
947 /* Set scheduling parameters if needed */
948 if ((flags & PTHREAD_START_SETSCHED) != 0) {
949 thread_extended_policy_data_t extinfo;
950 thread_precedence_policy_data_t precedinfo;
951
952 importance = (flags & PTHREAD_START_IMPORTANCE_MASK);
953 policy = (flags >> PTHREAD_START_POLICY_BITSHIFT) & PTHREAD_START_POLICY_MASK;
954
955 if (policy == SCHED_OTHER)
956 extinfo.timeshare = 1;
957 else
958 extinfo.timeshare = 0;
959 thread_policy_set(th, THREAD_EXTENDED_POLICY, (thread_policy_t)&extinfo, THREAD_EXTENDED_POLICY_COUNT);
960
961 #define BASEPRI_DEFAULT 31
962 precedinfo.importance = (importance - BASEPRI_DEFAULT);
963 thread_policy_set(th, THREAD_PRECEDENCE_POLICY, (thread_policy_t)&precedinfo, THREAD_PRECEDENCE_POLICY_COUNT);
964 }
965
966 kret = thread_resume(th);
967 if (kret != KERN_SUCCESS) {
968 error = EINVAL;
969 goto out1;
970 }
971 thread_deallocate(th); /* drop the creator reference */
972 #if 0
973 KERNEL_DEBUG_CONSTANT(0x9000080 |DBG_FUNC_END, error, (unsigned int)th_pthread, 0, 0, 0);
974 #endif
975 *retval = th_pthread;
976
977 return(0);
978
979 out1:
980 if (allocated != 0)
981 (void)mach_vm_deallocate(vmap, stackaddr, th_allocsize);
982 out:
983 (void)mach_port_deallocate(get_task_ipcspace(ctask), (mach_port_name_t)th_thport);
984 (void)thread_terminate(th);
985 (void)thread_deallocate(th);
986 return(error);
987 }
988
989 int
990 bsdthread_terminate(__unused struct proc *p, struct bsdthread_terminate_args *uap, __unused register_t *retval)
991 {
992 mach_vm_offset_t freeaddr;
993 mach_vm_size_t freesize;
994 kern_return_t kret;
995 mach_port_name_t kthport = (mach_port_name_t)uap->port;
996 mach_port_name_t sem = (mach_port_name_t)uap->sem;
997
998 freeaddr = (mach_vm_offset_t)uap->stackaddr;
999 freesize = uap->freesize;
1000
1001 #if 0
1002 KERNEL_DEBUG_CONSTANT(0x9000084 |DBG_FUNC_START, (unsigned int)freeaddr, (unsigned int)freesize, (unsigned int)kthport, 0xff, 0);
1003 #endif
1004 if ((freesize != (mach_vm_size_t)0) && (freeaddr != (mach_vm_offset_t)0)) {
1005 kret = mach_vm_deallocate(current_map(), freeaddr, freesize);
1006 if (kret != KERN_SUCCESS) {
1007 return(EINVAL);
1008 }
1009 }
1010
1011 (void) thread_terminate(current_thread());
1012 if (sem != MACH_PORT_NULL) {
1013 kret = semaphore_signal_internal_trap(sem);
1014 if (kret != KERN_SUCCESS) {
1015 return(EINVAL);
1016 }
1017 }
1018
1019 if (kthport != MACH_PORT_NULL)
1020 mach_port_deallocate(get_task_ipcspace(current_task()), kthport);
1021 thread_exception_return();
1022 panic("bsdthread_terminate: still running\n");
1023 #if 0
1024 KERNEL_DEBUG_CONSTANT(0x9000084 |DBG_FUNC_END, 0, 0, 0, 0xff, 0);
1025 #endif
1026 return(0);
1027 }
1028
1029
1030 int
1031 bsdthread_register(struct proc *p, struct bsdthread_register_args *uap, __unused register_t *retval)
1032 {
1033 /* syscall randomizer test can pass bogus values */
1034 if (uap->pthsize > MAX_PTHREAD_SIZE) {
1035 return(EINVAL);
1036 }
1037 p->p_threadstart = uap->threadstart;
1038 p->p_wqthread = uap->wqthread;
1039 p->p_pthsize = uap->pthsize;
1040
1041 return(0);
1042 }
1043
1044
1045
1046
1047 int wq_stalled_window_usecs = WQ_STALLED_WINDOW_USECS;
1048 int wq_reduce_pool_window_usecs = WQ_REDUCE_POOL_WINDOW_USECS;
1049 int wq_max_run_latency_usecs = WQ_MAX_RUN_LATENCY_USECS;
1050 int wq_timer_interval_msecs = WQ_TIMER_INTERVAL_MSECS;
1051
1052
1053 SYSCTL_INT(_kern, OID_AUTO, wq_stalled_window_usecs, CTLFLAG_RW,
1054 &wq_stalled_window_usecs, 0, "");
1055
1056 SYSCTL_INT(_kern, OID_AUTO, wq_reduce_pool_window_usecs, CTLFLAG_RW,
1057 &wq_reduce_pool_window_usecs, 0, "");
1058
1059 SYSCTL_INT(_kern, OID_AUTO, wq_max_run_latency_usecs, CTLFLAG_RW,
1060 &wq_max_run_latency_usecs, 0, "");
1061
1062 SYSCTL_INT(_kern, OID_AUTO, wq_timer_interval_msecs, CTLFLAG_RW,
1063 &wq_timer_interval_msecs, 0, "");
1064
1065
1066
1067
1068 void
1069 workqueue_init_lock(proc_t p)
1070 {
1071 lck_mtx_init(&p->p_wqlock, pthread_lck_grp, pthread_lck_attr);
1072 }
1073
1074 void
1075 workqueue_destroy_lock(proc_t p)
1076 {
1077 lck_mtx_destroy(&p->p_wqlock, pthread_lck_grp);
1078 }
1079
1080 static void
1081 workqueue_lock(proc_t p)
1082 {
1083 lck_mtx_lock(&p->p_wqlock);
1084 }
1085
1086 static void
1087 workqueue_lock_spin(proc_t p)
1088 {
1089 lck_mtx_lock_spin(&p->p_wqlock);
1090 }
1091
1092 static void
1093 workqueue_unlock(proc_t p)
1094 {
1095 lck_mtx_unlock(&p->p_wqlock);
1096 }
1097
1098
1099
1100 static void
1101 workqueue_interval_timer_start(thread_call_t call, int interval_in_ms)
1102 {
1103 uint64_t deadline;
1104
1105 clock_interval_to_deadline(interval_in_ms, 1000 * 1000, &deadline);
1106
1107 thread_call_enter_delayed(call, deadline);
1108 }
1109
1110
1111 static void
1112 workqueue_timer(struct workqueue *wq, __unused int param1)
1113 {
1114 struct timeval tv, dtv;
1115 uint32_t i;
1116 boolean_t added_more_threads = FALSE;
1117 boolean_t reset_maxactive = FALSE;
1118 boolean_t restart_timer = FALSE;
1119
1120 microuptime(&tv);
1121
1122 KERNEL_DEBUG(0xefffd108, (int)wq, 0, 0, 0, 0);
1123
1124 /*
1125 * check to see if the stall frequency was beyond our tolerance
1126 * or we have work on the queue, but haven't scheduled any
1127 * new work within our acceptable time interval because
1128 * there were no idle threads left to schedule
1129 *
1130 * WQ_TIMER_WATCH will only be set if we have 1 or more affinity
1131 * groups that have stalled (no active threads and no idle threads)...
1132 * it will not be set if all affinity groups have at least 1 thread
1133 * that is currently runnable... if all processors have a runnable
1134 * thread, there is no need to add more threads even if we're not
1135 * scheduling new work within our allowed window... it just means
1136 * that the work items are taking a long time to complete.
1137 */
1138 if (wq->wq_flags & (WQ_ADD_TO_POOL | WQ_TIMER_WATCH)) {
1139
1140 if (wq->wq_flags & WQ_ADD_TO_POOL)
1141 added_more_threads = TRUE;
1142 else {
1143 timersub(&tv, &wq->wq_lastran_ts, &dtv);
1144
1145 if (((dtv.tv_sec * 1000000) + dtv.tv_usec) > wq_stalled_window_usecs)
1146 added_more_threads = TRUE;
1147 }
1148 if (added_more_threads == TRUE) {
1149 for (i = 0; i < wq->wq_affinity_max && wq->wq_nthreads < WORKQUEUE_MAXTHREADS; i++) {
1150 (void)workqueue_addnewthread(wq);
1151 }
1152 }
1153 }
1154 timersub(&tv, &wq->wq_reduce_ts, &dtv);
1155
1156 if (((dtv.tv_sec * 1000000) + dtv.tv_usec) > wq_reduce_pool_window_usecs)
1157 reset_maxactive = TRUE;
1158
1159 /*
1160 * if the pool size has grown beyond the minimum number
1161 * of threads needed to keep all of the processors busy, and
1162 * the maximum number of threads scheduled concurrently during
1163 * the last sample period didn't exceed half the current pool
1164 * size, then its time to trim the pool size back
1165 */
1166 if (added_more_threads == FALSE &&
1167 reset_maxactive == TRUE &&
1168 wq->wq_nthreads > wq->wq_affinity_max &&
1169 wq->wq_max_threads_scheduled <= (wq->wq_nthreads / 2)) {
1170 uint32_t nthreads_to_remove;
1171
1172 if ((nthreads_to_remove = (wq->wq_nthreads / 4)) == 0)
1173 nthreads_to_remove = 1;
1174
1175 for (i = 0; i < nthreads_to_remove && wq->wq_nthreads > wq->wq_affinity_max; i++)
1176 workqueue_removethread(wq);
1177 }
1178 workqueue_lock_spin(wq->wq_proc);
1179
1180 if (reset_maxactive == TRUE) {
1181 wq->wq_max_threads_scheduled = 0;
1182 microuptime(&wq->wq_reduce_ts);
1183 }
1184 if (added_more_threads) {
1185 wq->wq_flags &= ~(WQ_ADD_TO_POOL | WQ_TIMER_WATCH);
1186
1187 /*
1188 * since we added more threads, we should be
1189 * able to run some work if its still available
1190 */
1191 workqueue_run_nextitem(wq->wq_proc, THREAD_NULL);
1192 workqueue_lock_spin(wq->wq_proc);
1193 }
1194 if ((wq->wq_nthreads > wq->wq_affinity_max) ||
1195 (wq->wq_flags & WQ_TIMER_WATCH)) {
1196 restart_timer = TRUE;
1197 } else
1198 wq->wq_flags &= ~WQ_TIMER_RUNNING;
1199
1200 workqueue_unlock(wq->wq_proc);
1201
1202 /*
1203 * we needed to knock down the WQ_TIMER_RUNNING flag while behind
1204 * the workqueue lock... however, we don't want to hold the lock
1205 * while restarting the timer and we certainly don't want 2 or more
1206 * instances of the timer... so set a local to indicate the need
1207 * for a restart since the state of wq_flags may change once we
1208 * drop the workqueue lock...
1209 */
1210 if (restart_timer == TRUE)
1211 workqueue_interval_timer_start(wq->wq_timer_call, wq_timer_interval_msecs);
1212 }
1213
1214
1215 static void
1216 workqueue_callback(
1217 int type,
1218 thread_t thread)
1219 {
1220 struct uthread *uth;
1221 struct threadlist *tl;
1222 struct workqueue *wq;
1223
1224 uth = get_bsdthread_info(thread);
1225 tl = uth->uu_threadlist;
1226 wq = tl->th_workq;
1227
1228 switch (type) {
1229
1230 case SCHED_CALL_BLOCK:
1231 {
1232 uint32_t old_activecount;
1233
1234 old_activecount = OSAddAtomic(-1, (SInt32 *)&wq->wq_thactivecount[tl->th_affinity_tag]);
1235
1236 if (old_activecount == 1 && wq->wq_itemcount) {
1237 /*
1238 * we were the last active thread on this affinity set
1239 * and we've got work to do
1240 */
1241 workqueue_lock_spin(wq->wq_proc);
1242 /*
1243 * if this thread is blocking (not parking)
1244 * and the idle list is empty for this affinity group
1245 * we'll count it as a 'stall'
1246 */
1247 if ((tl->th_flags & TH_LIST_RUNNING) &&
1248 TAILQ_EMPTY(&wq->wq_thidlelist[tl->th_affinity_tag]))
1249 wq->wq_stalled_count++;
1250
1251 workqueue_run_nextitem(wq->wq_proc, THREAD_NULL);
1252 /*
1253 * workqueue_run_nextitem will drop the workqueue
1254 * lock before it returns
1255 */
1256 }
1257 KERNEL_DEBUG(0xefffd020, (int)thread, wq->wq_threads_scheduled, tl->th_affinity_tag, 0, 0);
1258 }
1259 break;
1260
1261 case SCHED_CALL_UNBLOCK:
1262 /*
1263 * we cannot take the workqueue_lock here...
1264 * an UNBLOCK can occur from a timer event which
1265 * is run from an interrupt context... if the workqueue_lock
1266 * is already held by this processor, we'll deadlock...
1267 * the thread lock for the thread being UNBLOCKED
1268 * is also held
1269 */
1270 if (tl->th_unparked)
1271 OSAddAtomic(-1, (SInt32 *)&tl->th_unparked);
1272 else
1273 OSAddAtomic(1, (SInt32 *)&wq->wq_thactivecount[tl->th_affinity_tag]);
1274
1275 KERNEL_DEBUG(0xefffd024, (int)thread, wq->wq_threads_scheduled, tl->th_affinity_tag, 0, 0);
1276 break;
1277 }
1278 }
1279
1280 static void
1281 workqueue_removethread(struct workqueue *wq)
1282 {
1283 struct threadlist *tl;
1284 uint32_t i, affinity_tag = 0;
1285
1286 tl = NULL;
1287
1288 workqueue_lock_spin(wq->wq_proc);
1289
1290 for (i = 0; i < wq->wq_affinity_max; i++) {
1291
1292 affinity_tag = wq->wq_nextaffinitytag;
1293
1294 if (affinity_tag == 0)
1295 affinity_tag = wq->wq_affinity_max - 1;
1296 else
1297 affinity_tag--;
1298 wq->wq_nextaffinitytag = affinity_tag;
1299
1300 /*
1301 * look for an idle thread to steal from this affinity group
1302 * but don't grab the only thread associated with it
1303 */
1304 if (!TAILQ_EMPTY(&wq->wq_thidlelist[affinity_tag]) && wq->wq_thcount[affinity_tag] > 1) {
1305 tl = TAILQ_FIRST(&wq->wq_thidlelist[affinity_tag]);
1306 TAILQ_REMOVE(&wq->wq_thidlelist[affinity_tag], tl, th_entry);
1307
1308 wq->wq_nthreads--;
1309 wq->wq_thcount[affinity_tag]--;
1310
1311 break;
1312 }
1313 }
1314 workqueue_unlock(wq->wq_proc);
1315
1316 if (tl != NULL) {
1317 thread_sched_call(tl->th_thread, NULL);
1318
1319 if ( (tl->th_flags & TH_LIST_BLOCKED) )
1320 wakeup(tl);
1321 else {
1322 /*
1323 * thread was created, but never used...
1324 * need to clean up the stack and port ourselves
1325 * since we're not going to spin up through the
1326 * normal exit path triggered from Libc
1327 */
1328 (void)mach_vm_deallocate(wq->wq_map, tl->th_stackaddr, tl->th_allocsize);
1329 (void)mach_port_deallocate(get_task_ipcspace(wq->wq_task), (mach_port_name_t)tl->th_thport);
1330
1331 thread_terminate(tl->th_thread);
1332 }
1333 KERNEL_DEBUG(0xefffd030, (int)tl->th_thread, wq->wq_nthreads, tl->th_flags & TH_LIST_BLOCKED, 0, 0);
1334 /*
1335 * drop our ref on the thread
1336 */
1337 thread_deallocate(tl->th_thread);
1338
1339 kfree(tl, sizeof(struct threadlist));
1340 }
1341 }
1342
1343
1344 static int
1345 workqueue_addnewthread(struct workqueue *wq)
1346 {
1347 struct threadlist *tl;
1348 struct uthread *uth;
1349 kern_return_t kret;
1350 thread_t th;
1351 proc_t p;
1352 void *sright;
1353 mach_vm_offset_t stackaddr;
1354 uint32_t affinity_tag;
1355
1356 p = wq->wq_proc;
1357
1358 kret = thread_create(wq->wq_task, &th);
1359
1360 if (kret != KERN_SUCCESS)
1361 return(EINVAL);
1362
1363 tl = kalloc(sizeof(struct threadlist));
1364 bzero(tl, sizeof(struct threadlist));
1365
1366 #if defined(__ppc__)
1367 stackaddr = 0xF0000000;
1368 #elif defined(__i386__)
1369 stackaddr = 0xB0000000;
1370 #else
1371 #error Need to define a stack address hint for this architecture
1372 #endif
1373 tl->th_allocsize = PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE + p->p_pthsize;
1374
1375 kret = mach_vm_map(wq->wq_map, &stackaddr,
1376 tl->th_allocsize,
1377 page_size-1,
1378 VM_MAKE_TAG(VM_MEMORY_STACK)| VM_FLAGS_ANYWHERE , NULL,
1379 0, FALSE, VM_PROT_DEFAULT, VM_PROT_ALL,
1380 VM_INHERIT_DEFAULT);
1381
1382 if (kret != KERN_SUCCESS) {
1383 kret = mach_vm_allocate(wq->wq_map,
1384 &stackaddr, tl->th_allocsize,
1385 VM_MAKE_TAG(VM_MEMORY_STACK) | VM_FLAGS_ANYWHERE);
1386 }
1387 if (kret == KERN_SUCCESS) {
1388 /*
1389 * The guard page is at the lowest address
1390 * The stack base is the highest address
1391 */
1392 kret = mach_vm_protect(wq->wq_map, stackaddr, PTH_DEFAULT_GUARDSIZE, FALSE, VM_PROT_NONE);
1393
1394 if (kret != KERN_SUCCESS)
1395 (void) mach_vm_deallocate(wq->wq_map, stackaddr, tl->th_allocsize);
1396 }
1397 if (kret != KERN_SUCCESS) {
1398 (void) thread_terminate(th);
1399
1400 kfree(tl, sizeof(struct threadlist));
1401
1402 return(EINVAL);
1403 }
1404 thread_reference(th);
1405
1406 sright = (void *) convert_thread_to_port(th);
1407 tl->th_thport = (void *)ipc_port_copyout_send(sright, get_task_ipcspace(wq->wq_task));
1408
1409 thread_static_param(th, TRUE);
1410
1411 workqueue_lock_spin(p);
1412
1413 affinity_tag = wq->wq_nextaffinitytag;
1414 wq->wq_nextaffinitytag = (affinity_tag + 1) % wq->wq_affinity_max;
1415
1416 workqueue_unlock(p);
1417
1418 tl->th_flags = TH_LIST_INITED | TH_LIST_SUSPENDED;
1419
1420 tl->th_thread = th;
1421 tl->th_workq = wq;
1422 tl->th_stackaddr = stackaddr;
1423 tl->th_affinity_tag = affinity_tag;
1424
1425 #if defined(__ppc__)
1426 //ml_fp_setvalid(FALSE);
1427 thread_set_cthreadself(th, (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE), IS_64BIT_PROCESS(p));
1428 #endif /* __ppc__ */
1429 /*
1430 * affinity tag of 0 means no affinity...
1431 * but we want our tags to be 0 based because they
1432 * are used to index arrays, so...
1433 * keep it 0 based internally and bump by 1 when
1434 * calling out to set it
1435 */
1436 (void)thread_affinity_set(th, affinity_tag + 1);
1437 thread_sched_call(th, workqueue_callback);
1438
1439 uth = get_bsdthread_info(tl->th_thread);
1440 uth->uu_threadlist = (void *)tl;
1441
1442 workqueue_lock_spin(p);
1443
1444 TAILQ_INSERT_TAIL(&wq->wq_thidlelist[tl->th_affinity_tag], tl, th_entry);
1445 wq->wq_nthreads++;
1446 wq->wq_thcount[affinity_tag]++;
1447
1448 KERNEL_DEBUG1(0xefffd014 | DBG_FUNC_START, (int)current_thread(), affinity_tag, wq->wq_nthreads, 0, (int)tl->th_thread);
1449
1450 /*
1451 * work may have come into the queue while
1452 * no threads were available to run... since
1453 * we're adding a new thread, go evaluate the
1454 * current state
1455 */
1456 workqueue_run_nextitem(p, THREAD_NULL);
1457 /*
1458 * workqueue_run_nextitem is responsible for
1459 * dropping the workqueue lock in all cases
1460 */
1461
1462 return(0);
1463 }
1464
1465 int
1466 workq_open(__unused struct proc *p, __unused struct workq_open_args *uap, __unused register_t *retval)
1467 {
1468 struct workqueue * wq;
1469 int size;
1470 char * ptr;
1471 int j;
1472 uint32_t i;
1473 int error = 0;
1474 int num_cpus;
1475 struct workitem * witem;
1476 struct workitemlist *wl;
1477
1478 workqueue_lock(p);
1479
1480 if (p->p_wqptr == NULL) {
1481 num_cpus = ml_get_max_cpus();
1482
1483 size = (sizeof(struct workqueue)) +
1484 (num_cpus * sizeof(int *)) +
1485 (num_cpus * sizeof(TAILQ_HEAD(, threadlist)));
1486
1487 ptr = (char *)kalloc(size);
1488 bzero(ptr, size);
1489
1490 wq = (struct workqueue *)ptr;
1491 wq->wq_flags = WQ_LIST_INITED;
1492 wq->wq_proc = p;
1493 wq->wq_affinity_max = num_cpus;
1494 wq->wq_task = current_task();
1495 wq->wq_map = current_map();
1496
1497 for (i = 0; i < WORKQUEUE_NUMPRIOS; i++) {
1498 wl = (struct workitemlist *)&wq->wq_list[i];
1499 TAILQ_INIT(&wl->wl_itemlist);
1500 TAILQ_INIT(&wl->wl_freelist);
1501
1502 for (j = 0; j < WORKITEM_SIZE; j++) {
1503 witem = &wq->wq_array[(i*WORKITEM_SIZE) + j];
1504 TAILQ_INSERT_TAIL(&wl->wl_freelist, witem, wi_entry);
1505 }
1506 }
1507 wq->wq_thactivecount = (uint32_t *)((char *)ptr + sizeof(struct workqueue));
1508 wq->wq_thcount = (uint32_t *)&wq->wq_thactivecount[wq->wq_affinity_max];
1509 wq->wq_thidlelist = (struct wq_thidlelist *)&wq->wq_thcount[wq->wq_affinity_max];
1510
1511 for (i = 0; i < wq->wq_affinity_max; i++)
1512 TAILQ_INIT(&wq->wq_thidlelist[i]);
1513
1514 TAILQ_INIT(&wq->wq_thrunlist);
1515
1516 p->p_wqptr = (void *)wq;
1517 p->p_wqsize = size;
1518
1519 workqueue_unlock(p);
1520
1521 wq->wq_timer_call = thread_call_allocate((thread_call_func_t)workqueue_timer, (thread_call_param_t)wq);
1522
1523 for (i = 0; i < wq->wq_affinity_max; i++) {
1524 (void)workqueue_addnewthread(wq);
1525 }
1526 /* If unable to create any threads, return error */
1527 if (wq->wq_nthreads == 0)
1528 error = EINVAL;
1529 workqueue_lock_spin(p);
1530
1531 microuptime(&wq->wq_reduce_ts);
1532 microuptime(&wq->wq_lastran_ts);
1533 wq->wq_max_threads_scheduled = 0;
1534 wq->wq_stalled_count = 0;
1535 }
1536 workqueue_unlock(p);
1537
1538 return(error);
1539 }
1540
1541 int
1542 workq_ops(struct proc *p, struct workq_ops_args *uap, __unused register_t *retval)
1543 {
1544 int options = uap->options;
1545 int prio = uap->prio; /* should be used to find the right workqueue */
1546 user_addr_t item = uap->item;
1547 int error = 0;
1548 thread_t th = THREAD_NULL;
1549 struct workqueue *wq;
1550
1551 prio += 2; /* normalize prio -2 to +2 to 0 -4 */
1552
1553 switch (options) {
1554
1555 case WQOPS_QUEUE_ADD: {
1556
1557 KERNEL_DEBUG(0xefffd008 | DBG_FUNC_NONE, (int)item, 0, 0, 0, 0);
1558
1559 if ((prio < 0) || (prio >= 5))
1560 return (EINVAL);
1561
1562 workqueue_lock_spin(p);
1563
1564 if ((wq = (struct workqueue *)p->p_wqptr) == NULL) {
1565 workqueue_unlock(p);
1566 return (EINVAL);
1567 }
1568 error = workqueue_additem(wq, prio, item);
1569
1570 }
1571 break;
1572 case WQOPS_QUEUE_REMOVE: {
1573
1574 if ((prio < 0) || (prio >= 5))
1575 return (EINVAL);
1576
1577 workqueue_lock_spin(p);
1578
1579 if ((wq = (struct workqueue *)p->p_wqptr) == NULL) {
1580 workqueue_unlock(p);
1581 return (EINVAL);
1582 }
1583 error = workqueue_removeitem(wq, prio, item);
1584 }
1585 break;
1586 case WQOPS_THREAD_RETURN: {
1587
1588 th = current_thread();
1589
1590 KERNEL_DEBUG(0xefffd004 | DBG_FUNC_END, 0, 0, 0, 0, 0);
1591
1592 workqueue_lock_spin(p);
1593
1594 if ((wq = (struct workqueue *)p->p_wqptr) == NULL) {
1595 workqueue_unlock(p);
1596 return (EINVAL);
1597 }
1598 }
1599 break;
1600 default:
1601 return (EINVAL);
1602 }
1603 workqueue_run_nextitem(p, th);
1604 /*
1605 * workqueue_run_nextitem is responsible for
1606 * dropping the workqueue lock in all cases
1607 */
1608 return(error);
1609 }
1610
1611 void
1612 workqueue_exit(struct proc *p)
1613 {
1614 struct workqueue * wq;
1615 struct threadlist * tl, *tlist;
1616 uint32_t i;
1617
1618 if (p->p_wqptr != NULL) {
1619
1620 workqueue_lock_spin(p);
1621
1622 wq = (struct workqueue *)p->p_wqptr;
1623 p->p_wqptr = NULL;
1624
1625 workqueue_unlock(p);
1626
1627 if (wq == NULL)
1628 return;
1629
1630 if (wq->wq_flags & WQ_TIMER_RUNNING)
1631 thread_call_cancel(wq->wq_timer_call);
1632 thread_call_free(wq->wq_timer_call);
1633
1634 TAILQ_FOREACH_SAFE(tl, &wq->wq_thrunlist, th_entry, tlist) {
1635 /*
1636 * drop our last ref on the thread
1637 */
1638 thread_sched_call(tl->th_thread, NULL);
1639 thread_deallocate(tl->th_thread);
1640
1641 TAILQ_REMOVE(&wq->wq_thrunlist, tl, th_entry);
1642 kfree(tl, sizeof(struct threadlist));
1643 }
1644 for (i = 0; i < wq->wq_affinity_max; i++) {
1645 TAILQ_FOREACH_SAFE(tl, &wq->wq_thidlelist[i], th_entry, tlist) {
1646 /*
1647 * drop our last ref on the thread
1648 */
1649 thread_sched_call(tl->th_thread, NULL);
1650 thread_deallocate(tl->th_thread);
1651
1652 TAILQ_REMOVE(&wq->wq_thidlelist[i], tl, th_entry);
1653 kfree(tl, sizeof(struct threadlist));
1654 }
1655 }
1656 kfree(wq, p->p_wqsize);
1657 }
1658 }
1659
1660 static int
1661 workqueue_additem(struct workqueue *wq, int prio, user_addr_t item)
1662 {
1663 struct workitem *witem;
1664 struct workitemlist *wl;
1665
1666 wl = (struct workitemlist *)&wq->wq_list[prio];
1667
1668 if (TAILQ_EMPTY(&wl->wl_freelist))
1669 return (ENOMEM);
1670
1671 witem = (struct workitem *)TAILQ_FIRST(&wl->wl_freelist);
1672 TAILQ_REMOVE(&wl->wl_freelist, witem, wi_entry);
1673
1674 witem->wi_item = item;
1675 TAILQ_INSERT_TAIL(&wl->wl_itemlist, witem, wi_entry);
1676
1677 if (wq->wq_itemcount == 0) {
1678 microuptime(&wq->wq_lastran_ts);
1679 wq->wq_stalled_count = 0;
1680 }
1681 wq->wq_itemcount++;
1682
1683 return (0);
1684 }
1685
1686 static int
1687 workqueue_removeitem(struct workqueue *wq, int prio, user_addr_t item)
1688 {
1689 struct workitem *witem;
1690 struct workitemlist *wl;
1691 int error = ESRCH;
1692
1693 wl = (struct workitemlist *)&wq->wq_list[prio];
1694
1695 TAILQ_FOREACH(witem, &wl->wl_itemlist, wi_entry) {
1696 if (witem->wi_item == item) {
1697 TAILQ_REMOVE(&wl->wl_itemlist, witem, wi_entry);
1698 wq->wq_itemcount--;
1699
1700 witem->wi_item = (user_addr_t)0;
1701 TAILQ_INSERT_HEAD(&wl->wl_freelist, witem, wi_entry);
1702
1703 error = 0;
1704 break;
1705 }
1706 }
1707 if (wq->wq_itemcount == 0)
1708 wq->wq_flags &= ~(WQ_ADD_TO_POOL | WQ_TIMER_WATCH);
1709
1710 return (error);
1711 }
1712
1713 /*
1714 * workqueue_run_nextitem:
1715 * called with the workqueue lock held...
1716 * responsible for dropping it in all cases
1717 */
1718 static void
1719 workqueue_run_nextitem(proc_t p, thread_t thread)
1720 {
1721 struct workqueue *wq;
1722 struct workitem *witem = NULL;
1723 user_addr_t item = 0;
1724 thread_t th_to_run = THREAD_NULL;
1725 thread_t th_to_park = THREAD_NULL;
1726 int wake_thread = 0;
1727 int reuse_thread = 1;
1728 uint32_t stalled_affinity_count = 0;
1729 int i;
1730 uint32_t affinity_tag;
1731 struct threadlist *tl = NULL;
1732 struct uthread *uth = NULL;
1733 struct workitemlist *wl;
1734 boolean_t start_timer = FALSE;
1735 struct timeval tv, lat_tv;
1736
1737 wq = (struct workqueue *)p->p_wqptr;
1738
1739 KERNEL_DEBUG(0xefffd000 | DBG_FUNC_START, (int)thread, wq->wq_threads_scheduled, wq->wq_stalled_count, 0, 0);
1740
1741 if (wq->wq_itemcount == 0) {
1742 if ((th_to_park = thread) == THREAD_NULL)
1743 goto out;
1744 goto parkit;
1745 }
1746 if (thread != THREAD_NULL) {
1747 /*
1748 * we're a worker thread from the pool... currently we
1749 * are considered 'active' which means we're counted
1750 * in "wq_thactivecount"
1751 */
1752 uth = get_bsdthread_info(thread);
1753 tl = uth->uu_threadlist;
1754
1755 if (wq->wq_thactivecount[tl->th_affinity_tag] == 1) {
1756 /*
1757 * we're the only active thread associated with our
1758 * affinity group, so pick up some work and keep going
1759 */
1760 th_to_run = thread;
1761 goto pick_up_work;
1762 }
1763 }
1764 for (affinity_tag = 0; affinity_tag < wq->wq_affinity_max; affinity_tag++) {
1765 /*
1766 * look for first affinity group that is currently not active
1767 * and has at least 1 idle thread
1768 */
1769 if (wq->wq_thactivecount[affinity_tag] == 0) {
1770 if (!TAILQ_EMPTY(&wq->wq_thidlelist[affinity_tag]))
1771 break;
1772 stalled_affinity_count++;
1773 }
1774 }
1775 if (thread == THREAD_NULL) {
1776 /*
1777 * we're not one of the 'worker' threads
1778 */
1779 if (affinity_tag >= wq->wq_affinity_max) {
1780 /*
1781 * we've already got at least 1 thread per
1782 * affinity group in the active state... or
1783 * we've got no idle threads to play with
1784 */
1785 if (stalled_affinity_count) {
1786
1787 if ( !(wq->wq_flags & WQ_TIMER_RUNNING) ) {
1788 wq->wq_flags |= WQ_TIMER_RUNNING;
1789 start_timer = TRUE;
1790 }
1791 wq->wq_flags |= WQ_TIMER_WATCH;
1792 }
1793 goto out;
1794 }
1795 } else {
1796 /*
1797 * we're overbooked on the affinity group we're associated with,
1798 * so park this thread
1799 */
1800 th_to_park = thread;
1801
1802 if (affinity_tag >= wq->wq_affinity_max) {
1803 /*
1804 * all the affinity groups have active threads
1805 * running, or there are no idle threads to
1806 * schedule
1807 */
1808 if (stalled_affinity_count) {
1809
1810 if ( !(wq->wq_flags & WQ_TIMER_RUNNING) ) {
1811 wq->wq_flags |= WQ_TIMER_RUNNING;
1812 start_timer = TRUE;
1813 }
1814 wq->wq_flags |= WQ_TIMER_WATCH;
1815 }
1816 goto parkit;
1817 }
1818 /*
1819 * we've got a candidate (affinity group with no currently
1820 * active threads) to start a new thread on...
1821 * we already know there is both work available
1822 * and an idle thread with the correct affinity tag, so
1823 * fall into the code that pulls a new thread and workitem...
1824 * once we've kicked that thread off, we'll park this one
1825 */
1826 }
1827 tl = TAILQ_FIRST(&wq->wq_thidlelist[affinity_tag]);
1828 TAILQ_REMOVE(&wq->wq_thidlelist[affinity_tag], tl, th_entry);
1829
1830 th_to_run = tl->th_thread;
1831 TAILQ_INSERT_TAIL(&wq->wq_thrunlist, tl, th_entry);
1832
1833 if ((tl->th_flags & TH_LIST_SUSPENDED) == TH_LIST_SUSPENDED) {
1834 tl->th_flags &= ~TH_LIST_SUSPENDED;
1835 reuse_thread = 0;
1836 } else if ((tl->th_flags & TH_LIST_BLOCKED) == TH_LIST_BLOCKED) {
1837 tl->th_flags &= ~TH_LIST_BLOCKED;
1838 wake_thread = 1;
1839 }
1840 tl->th_flags |= TH_LIST_RUNNING;
1841
1842 wq->wq_threads_scheduled++;
1843
1844 if (wq->wq_threads_scheduled > wq->wq_max_threads_scheduled)
1845 wq->wq_max_threads_scheduled = wq->wq_threads_scheduled;
1846
1847 pick_up_work:
1848 for (i = 0; i < WORKQUEUE_NUMPRIOS; i++) {
1849 wl = (struct workitemlist *)&wq->wq_list[i];
1850
1851 if (!(TAILQ_EMPTY(&wl->wl_itemlist))) {
1852
1853 witem = TAILQ_FIRST(&wl->wl_itemlist);
1854 TAILQ_REMOVE(&wl->wl_itemlist, witem, wi_entry);
1855 wq->wq_itemcount--;
1856
1857 item = witem->wi_item;
1858 witem->wi_item = (user_addr_t)0;
1859 TAILQ_INSERT_HEAD(&wl->wl_freelist, witem, wi_entry);
1860
1861 break;
1862 }
1863 }
1864 if (witem == NULL)
1865 panic("workq_run_nextitem: NULL witem");
1866
1867 if (thread != th_to_run) {
1868 /*
1869 * we're starting up a thread from a parked/suspended condition
1870 */
1871 OSAddAtomic(1, (SInt32 *)&wq->wq_thactivecount[tl->th_affinity_tag]);
1872 OSAddAtomic(1, (SInt32 *)&tl->th_unparked);
1873 }
1874 if (wq->wq_itemcount == 0)
1875 wq->wq_flags &= ~WQ_TIMER_WATCH;
1876 else {
1877 microuptime(&tv);
1878 /*
1879 * if we had any affinity groups stall (no threads runnable)
1880 * since we last scheduled an item... and
1881 * the elapsed time since we last scheduled an item
1882 * exceeds the latency tolerance...
1883 * we ask the timer thread (which should already be running)
1884 * to add some more threads to the pool
1885 */
1886 if (wq->wq_stalled_count && !(wq->wq_flags & WQ_ADD_TO_POOL)) {
1887 timersub(&tv, &wq->wq_lastran_ts, &lat_tv);
1888
1889 if (((lat_tv.tv_sec * 1000000) + lat_tv.tv_usec) > wq_max_run_latency_usecs)
1890 wq->wq_flags |= WQ_ADD_TO_POOL;
1891
1892 KERNEL_DEBUG(0xefffd10c, wq->wq_stalled_count, lat_tv.tv_sec, lat_tv.tv_usec, wq->wq_flags, 0);
1893 }
1894 wq->wq_lastran_ts = tv;
1895 }
1896 wq->wq_stalled_count = 0;
1897 workqueue_unlock(p);
1898
1899 KERNEL_DEBUG(0xefffd02c, wq->wq_thactivecount[0], wq->wq_thactivecount[1],
1900 wq->wq_thactivecount[2], wq->wq_thactivecount[3], 0);
1901
1902 KERNEL_DEBUG(0xefffd02c, wq->wq_thactivecount[4], wq->wq_thactivecount[5],
1903 wq->wq_thactivecount[6], wq->wq_thactivecount[7], 0);
1904
1905 /*
1906 * if current thread is reused for workitem, does not return via unix_syscall
1907 */
1908 wq_runitem(p, item, th_to_run, tl, reuse_thread, wake_thread, (thread == th_to_run));
1909
1910 if (th_to_park == THREAD_NULL) {
1911
1912 KERNEL_DEBUG(0xefffd000 | DBG_FUNC_END, (int)thread, (int)item, wq->wq_flags, 1, 0);
1913
1914 return;
1915 }
1916 workqueue_lock_spin(p);
1917
1918 parkit:
1919 wq->wq_threads_scheduled--;
1920 /*
1921 * this is a workqueue thread with no more
1922 * work to do... park it for now
1923 */
1924 uth = get_bsdthread_info(th_to_park);
1925 tl = uth->uu_threadlist;
1926 if (tl == 0)
1927 panic("wq thread with no threadlist ");
1928
1929 TAILQ_REMOVE(&wq->wq_thrunlist, tl, th_entry);
1930 tl->th_flags &= ~TH_LIST_RUNNING;
1931
1932 tl->th_flags |= TH_LIST_BLOCKED;
1933 TAILQ_INSERT_HEAD(&wq->wq_thidlelist[tl->th_affinity_tag], tl, th_entry);
1934
1935 assert_wait((caddr_t)tl, (THREAD_INTERRUPTIBLE));
1936
1937 workqueue_unlock(p);
1938
1939 if (start_timer)
1940 workqueue_interval_timer_start(wq->wq_timer_call, wq_timer_interval_msecs);
1941
1942 KERNEL_DEBUG1(0xefffd018 | DBG_FUNC_START, (int)current_thread(), wq->wq_threads_scheduled, 0, 0, (int)th_to_park);
1943
1944 thread_block((thread_continue_t)thread_exception_return);
1945
1946 panic("unexpected return from thread_block");
1947
1948 out:
1949 workqueue_unlock(p);
1950
1951 if (start_timer)
1952 workqueue_interval_timer_start(wq->wq_timer_call, wq_timer_interval_msecs);
1953
1954 KERNEL_DEBUG(0xefffd000 | DBG_FUNC_END, (int)thread, 0, wq->wq_flags, 2, 0);
1955
1956 return;
1957 }
1958
1959 static void
1960 wq_runitem(proc_t p, user_addr_t item, thread_t th, struct threadlist *tl,
1961 int reuse_thread, int wake_thread, int return_directly)
1962 {
1963 int ret = 0;
1964
1965 KERNEL_DEBUG1(0xefffd004 | DBG_FUNC_START, (int)current_thread(), (int)item, wake_thread, tl->th_affinity_tag, (int)th);
1966
1967 ret = setup_wqthread(p, th, item, reuse_thread, tl);
1968
1969 if (ret != 0)
1970 panic("setup_wqthread failed %x\n", ret);
1971
1972 if (return_directly) {
1973 thread_exception_return();
1974
1975 panic("wq_runitem: thread_exception_return returned ...\n");
1976 }
1977 if (wake_thread) {
1978 KERNEL_DEBUG1(0xefffd018 | DBG_FUNC_END, (int)current_thread(), 0, 0, 0, (int)th);
1979
1980 wakeup(tl);
1981 } else {
1982 KERNEL_DEBUG1(0xefffd014 | DBG_FUNC_END, (int)current_thread(), 0, 0, 0, (int)th);
1983
1984 thread_resume(th);
1985 }
1986 }
1987
1988
1989 int
1990 setup_wqthread(proc_t p, thread_t th, user_addr_t item, int reuse_thread, struct threadlist *tl)
1991 {
1992 #if defined(__ppc__)
1993 /*
1994 * Set up PowerPC registers...
1995 * internally they are always kept as 64 bit and
1996 * since the register set is the same between 32 and 64bit modes
1997 * we don't need 2 different methods for setting the state
1998 */
1999 {
2000 ppc_thread_state64_t state64;
2001 ppc_thread_state64_t *ts64 = &state64;
2002
2003 ts64->srr0 = (uint64_t)p->p_wqthread;
2004 ts64->r1 = (uint64_t)((tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE) - C_ARGSAVE_LEN - C_RED_ZONE);
2005 ts64->r3 = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE);
2006 ts64->r4 = (uint64_t)((unsigned int)tl->th_thport);
2007 ts64->r5 = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_GUARDSIZE);
2008 ts64->r6 = (uint64_t)item;
2009 ts64->r7 = (uint64_t)reuse_thread;
2010 ts64->r8 = (uint64_t)0;
2011
2012 thread_set_wq_state64(th, (thread_state_t)ts64);
2013 }
2014 #elif defined(__i386__)
2015 int isLP64 = 0;
2016
2017 isLP64 = IS_64BIT_PROCESS(p);
2018 /*
2019 * Set up i386 registers & function call.
2020 */
2021 if (isLP64 == 0) {
2022 x86_thread_state32_t state;
2023 x86_thread_state32_t *ts = &state;
2024
2025 ts->eip = (int)p->p_wqthread;
2026 ts->eax = (unsigned int)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE);
2027 ts->ebx = (unsigned int)tl->th_thport;
2028 ts->ecx = (unsigned int)(tl->th_stackaddr + PTH_DEFAULT_GUARDSIZE);
2029 ts->edx = (unsigned int)item;
2030 ts->edi = (unsigned int)reuse_thread;
2031 ts->esi = (unsigned int)0;
2032 /*
2033 * set stack pointer
2034 */
2035 ts->esp = (int)((vm_offset_t)((tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE) - C_32_STK_ALIGN));
2036
2037 thread_set_wq_state32(th, (thread_state_t)ts);
2038
2039 } else {
2040 x86_thread_state64_t state64;
2041 x86_thread_state64_t *ts64 = &state64;
2042
2043 ts64->rip = (uint64_t)p->p_wqthread;
2044 ts64->rdi = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE);
2045 ts64->rsi = (uint64_t)((unsigned int)(tl->th_thport));
2046 ts64->rdx = (uint64_t)(tl->th_stackaddr + PTH_DEFAULT_GUARDSIZE);
2047 ts64->rcx = (uint64_t)item;
2048 ts64->r8 = (uint64_t)reuse_thread;
2049 ts64->r9 = (uint64_t)0;
2050
2051 /*
2052 * set stack pointer aligned to 16 byte boundary
2053 */
2054 ts64->rsp = (uint64_t)((tl->th_stackaddr + PTH_DEFAULT_STACKSIZE + PTH_DEFAULT_GUARDSIZE) - C_64_REDZONE_LEN);
2055
2056 thread_set_wq_state64(th, (thread_state_t)ts64);
2057 }
2058 #else
2059 #error setup_wqthread not defined for this architecture
2060 #endif
2061 return(0);
2062 }
2063