]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/ppc/fasttrap_isa.c
xnu-1228.15.4.tar.gz
[apple/xnu.git] / bsd / dev / ppc / fasttrap_isa.c
1 /*
2 * Copyright (c) 2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /*
30 * CDDL HEADER START
31 *
32 * The contents of this file are subject to the terms of the
33 * Common Development and Distribution License (the "License").
34 * You may not use this file except in compliance with the License.
35 *
36 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
37 * or http://www.opensolaris.org/os/licensing.
38 * See the License for the specific language governing permissions
39 * and limitations under the License.
40 *
41 * When distributing Covered Code, include this CDDL HEADER in each
42 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
43 * If applicable, add the following below this CDDL HEADER, with the
44 * fields enclosed by brackets "[]" replaced with your own identifying
45 * information: Portions Copyright [yyyy] [name of copyright owner]
46 *
47 * CDDL HEADER END
48 */
49
50 /*
51 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
52 * Use is subject to license terms.
53 */
54
55 /*
56 * #pragma ident "@(#)fasttrap_isa.c 1.23 06/09/19 SMI"
57 */
58
59 #ifdef KERNEL
60 #ifndef _KERNEL
61 #define _KERNEL /* Solaris vs. Darwin */
62 #endif
63 #endif
64
65 #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
66 #include <sys/fasttrap_isa.h>
67 #include <sys/fasttrap_impl.h>
68 #include <sys/dtrace.h>
69 #include <sys/dtrace_impl.h>
70 #include <sys/dtrace_ptss.h>
71 #include <kern/debug.h>
72 #include <ppc/decodePPC.h>
73 #include <kern/task.h>
74 #include <mach/vm_param.h>
75 #include <mach/mach_vm.h>
76 #include <mach/task.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
79 extern dtrace_id_t dtrace_probeid_error;
80
81 #define proc_t struct proc
82
83 static int32_t branchtaken(int32_t bo, int32_t bi, ppc_saved_state_t *sv);
84 static int32_t dtrace_decode_ppc(uint32_t inst);
85 int patchInst(task_t task, addr64_t vaddr, uint32_t inst);
86 kern_return_t dtrace_user_probe(ppc_saved_state_t *sv);
87
88 /*
89 * Lossless User-Land Tracing on PPC
90 * ---------------------------------
91 *
92 * PPC uses a different technique to emulate user-land instruction replaces by a probe
93 * trap than x86.
94 *
95 * Like x86, it will emulate all forms of branch instructions. We will not attempt
96 * to emulate any instruction that we know will cause an interruption or exception
97 * (system call, trap, privileged instruction, instruction that uses a privileged
98 * register).
99 *
100 * NOTE: I am thinking that we should punish tight loopers, e.g., branch-to-dot.
101 * Depending upon clock resolution and how fast we can process these guys, it is
102 * possible that its quantum will never decrease. Maybe we could just manually
103 * end the guy's quantum and let the next guy go...
104 *
105 * When fasttrap_tracepoint_init is called, we fetch the instruction and decode it.
106 * If we don't recognize it or find it is a "banned" instruction, we return -1,
107 * telling our caller to forget it. Otherwise we save the instruction image and
108 * enough of the decode to quickly handle it at probe time. We cram it into
109 * the fasttrap_machtp_t structure.
110 *
111 * When the probe hits, we verify that the PC is still a probe point and if not,
112 * we bail. Otherwise we have a bit more to do.
113 *
114 * If DTFTP_ENTRY is set, we have an entry probe and need to call dtrace_probe.
115 *
116 * If DTFTP_IS_ENABLED is set, all we need to do is to return a 1.
117 *
118 * If ftp_argmap is NULL, we call dtrace_probe
119 *
120 * Otherwise, we figure out what the arguments are and pass them to dtrace_probe
121 *
122 * Next, we need to set up to emulate the probed instruction and here is where we are
123 * the most different than the x86 code.
124 *
125 * Like x86, we first check to see if the instruction is any form of branch. If so,
126 * we emulate it completely within the kernel and are done.
127 *
128 * If it is anything else, we build a code stream within the kernel to execute the
129 * instruction. Note that this is very different from x86 which build the code in
130 * userland.
131 *
132 * The generated stream needs to be executed within the kernel's code space but with
133 * the user address space and registers. Because PPC allows different translation modes
134 * for instruction fetch and data fetch, this is not too difficult.
135 *
136 * There are two kinds streams needed: execute and continue, and execute and return,
137 * which are used for entry/offset and exit probes respectivily.
138 *
139 * The probe code will copy the instruction image into the current user savearea (which
140 * also contains the complete user state register context). A flag that requests either
141 * execute/continue or execute/return is also set in the savearea.
142 *
143 * We now exit the dtrace code and the marked context makes its way back to the point
144 * where it will be dispatched on the processor.
145 *
146 * The exception return code will start to restore the user context, including registers
147 * and address space. However, before dispatching the user, it will notice that the
148 * emulate flags are set. At this point the code will build a code stream
149 * in an area in the per_proc that consists of
150 * the original instruction followed by a trap instruction. It will set the new MSR (in
151 * SRR1) to have address translation enable for data, translation disabled for instruction
152 * fetches, interruptions disabled, and supervisor state.
153 *
154 * The new PC and MSR are loaded via a RFID and the generated stream is executed. If a
155 * synchronous fault occurs, it is either handled (PTE miss, FPU or vector unavailable),
156 * emulated (alignment or denorm), or passed on to the user.
157 *
158 * Assuming the emulated instruction completes, the trap will execute. When that happens,
159 * low-level trap handler will check its flags. If the trap corresponds to an
160 * execute/continue stream, the trap handler will adjust the PC and complete the
161 * transition into user space.
162 *
163 * If the trap corresponds to an execute/return stream, the handler will generate
164 * a T_DTRACE_RET exception and let the trap handler pass it along to dtrace_user_probe.
165 *
166 */
167
168
169 static uint64_t
170 fasttrap_anarg(ppc_saved_state_t *sv, int function_entry, int argno)
171 {
172 #pragma unused(function_entry)
173 uint32_t farg;
174 uint64_t value;
175
176 /* The first 8 arguments (argno 0-7) are in registers */
177 if (argno < 8) {
178 value = (&sv->save_r3)[argno];
179 } else {
180 if (sv->save_srr1 & 0x8000000000000000ULL) {
181 /* 64-bit */
182 /* Grab argument >= 8 from stack */
183 fasttrap_fuword64_noerr(sv->save_r1 + 48 + ((argno)* sizeof(uint64_t)), &value);
184 } else {
185 /* 32-bit */
186 /* Grab argument >= 8 from stack */
187 fasttrap_fuword32_noerr(sv->save_r1 + 24 + ((argno) * sizeof(uint32_t)), &farg);
188 value = (uint64_t)farg;
189 }
190 }
191
192 return (value);
193 }
194
195 /*ARGSUSED*/
196 int
197 fasttrap_tracepoint_init(proc_t *p, fasttrap_tracepoint_t *tp, user_addr_t pc,
198 fasttrap_probe_type_t type)
199 {
200 #pragma unused(type)
201
202 uint32_t instr, testr1, testr2, testr3;
203 user_addr_t targpc;
204 int32_t target, optype;
205
206 /*
207 * Read the instruction at the given address out of the process's
208 * address space. We don't have to worry about a debugger
209 * changing this instruction before we overwrite it with our trap
210 * instruction since P_PR_LOCK is set. Since instructions can span
211 * pages, we potentially read the instruction in two parts. If the
212 * second part fails, we just zero out that part of the instruction.
213 */
214 /*
215 * APPLE NOTE: Of course, we do not have a P_PR_LOCK, so this is racey...
216 */
217
218 if (uread(p, &instr, 4, pc) != 0) return (-1); /* Grab instruction, return suddenly if read fails... */
219
220 optype = dtrace_decode_ppc(instr); /* See if we have an instruction we can probe */
221
222 tp->ftt_instr = instr; /* Save the instruction image */
223 testr1 = tp->ftt_bo = (uint8_t)((instr >> (31 - 10)) & 0x1F); /* Extract branch options */
224 testr2 = tp->ftt_bi = (uint8_t)((instr >> (31 - 15)) & 0x1F); /* Extract condition register bit */
225 testr3 = (instr >> (31 - 20)) & 0x1F; /* Get that last register */
226 tp->ftt_flgs = (uint8_t)(instr & 3); /* Set the absolute address and link flags */
227
228 switch(optype) { /* Do instruction specific decode */
229
230 case diCMN: /* Common instruction */
231 tp->ftt_type = ftmtCommon; /* Mark as common instruction */
232 break;
233
234 case diINV: /* Invalid */
235 case diTRP: /* Trap */
236 case diSC: /* System Call */
237 case diRFI: /* Return from interrupt */
238 case diPRV: /* Priviliged instruction */
239 return (-1); /* We will not emulate these... */
240 break;
241
242 case diB: /* Branch */
243 tp->ftt_type = ftmtB; /* Mark as branch instruction */
244 target = instr & 0x03FFFFFC; /* Extract address or offset */
245 if(target & 0x02000000) target |= 0xFC000000; /* Sign extend */
246 tp->ftt_trgt = target; /* Trim back down and save */
247
248 targpc = (user_addr_t)((int64_t)target); /* Generate a target address, hopefully we sign extend... */
249 if(!(tp->ftt_flgs & ftmtAbs)) { /* Are we dealing with an offset here? */
250 targpc = targpc + pc; /* Apply offset to get target address */
251 }
252
253 if(targpc == pc) return -1; /* Branching to self is a sin and is forbidden... */
254 break;
255
256 case diBC: /* Branch conditional */
257 tp->ftt_type = ftmtBC; /* Mark as branch conditional */
258 target = instr & 0x0000FFFC; /* Extract address or offset */
259 if(target & 0x00008000) target |= 0xFFFF0000; /* Sign extend */
260 tp->ftt_trgt = target; /* Trim back down and save */
261
262 targpc = (user_addr_t)((int64_t)target); /* Generate a target address, hopefully we sign extend... */
263 if(!(tp->ftt_flgs & ftmtAbs)) { /* Are we dealing with an offset here? */
264 targpc = targpc + pc; /* Apply offset to get target address */
265 }
266
267 if(targpc == pc) return -1; /* Branching to self is a sin and is forbidden... */
268 break;
269
270 case diBLR: /* Branch conditional to link register */
271 tp->ftt_type = ftmtBLR; /* Mark as branch conditional to link register */
272 break;
273
274 case diBCTR: /* Branch conditional to count register */
275 tp->ftt_type = ftmtBCTR; /* Mark as branch conditional to count register */
276 break;
277
278 case diOR: /* OR */
279 if((instr >> 26) == 24) { /* Is this the ORI nop? */
280 if((testr1 == testr2) && ((instr & 0x0000FFFF) == 0)) tp->ftt_type = ftmtNOP; /* Remember if this is a NOP instruction */
281 else tp->ftt_type = ftmtCommon; /* Otherwise it is a common ORI instruction */
282 }
283 else if((testr1 == testr2) && (testr1 == testr3)) tp->ftt_type = ftmtNOP; /* If all three registers are the same, this is a NOP */
284 else tp->ftt_type = ftmtCommon; /* Otherwise it is a common OR instruction */
285
286 break;
287
288 default:
289 panic("fasttrap_tracepoint_init: invalid branch decode, inst = %08X, optype = %d\n", instr, optype);
290 break;
291
292 }
293
294 return (0);
295 }
296
297 int
298 fasttrap_tracepoint_install(proc_t *p, fasttrap_tracepoint_t *tp)
299 {
300 return patchInst(p->task, tp->ftt_pc, FASTTRAP_INSTR); /* Patch the instruction and flush it */
301 }
302
303 extern void dbgTrace(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t);
304
305 int
306 fasttrap_tracepoint_remove(proc_t *p, fasttrap_tracepoint_t *tp)
307 {
308 uint32_t instr;
309
310 /*
311 * Distinguish between read or write failures and a changed
312 * instruction.
313 */
314 if (uread(p, &instr, 4, tp->ftt_pc) != 0) return (0); /* Get the instruction, but exit if not mapped */
315
316 // dbgTrace(0x99999999, (uint32_t)tp->ftt_pc, tp->ftt_instr, instr, 0); /* (TRACE/DEBUG) */
317
318 if (instr != FASTTRAP_INSTR) return (0); /* Did someone change it? If so, just leave */
319
320 return patchInst(p->task, tp->ftt_pc, tp->ftt_instr); /* Patch the old instruction back in and flush it */
321 }
322
323 static void
324 fasttrap_return_common(ppc_saved_state_t *sv, user_addr_t pc, pid_t pid, user_addr_t new_pc)
325 {
326
327 fasttrap_tracepoint_t *tp;
328 fasttrap_bucket_t *bucket;
329 fasttrap_id_t *id;
330 lck_mtx_t *pid_mtx;
331
332 pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
333 lck_mtx_lock(pid_mtx);
334 bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, pc)];
335
336 for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
337 if (pid == tp->ftt_pid && pc == tp->ftt_pc &&
338 !tp->ftt_proc->ftpc_defunct)
339 break;
340 }
341
342 /*
343 * Don't sweat it if we can't find the tracepoint again. Unlike
344 * when we're in fasttrap_pid_probe(), finding the tracepoint here
345 * is not essential to the correct execution of the process.
346 */
347 if (tp == NULL) {
348 lck_mtx_unlock(pid_mtx);
349 return;
350 }
351
352 for (id = tp->ftt_retids; id != NULL; id = id->fti_next) {
353 /*
354 * If there's a branch that could act as a return site, we
355 * need to trace it, and check here if the program counter is
356 * external to the function.
357 */
358 if((new_pc - id->fti_probe->ftp_faddr) < id->fti_probe->ftp_fsize) /* Is target within the function? */
359 continue; /* Yeah, skip this one... */
360
361 DTRACE_CPUFLAG_SET(CPU_DTRACE_USTACK_FP);
362 if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
363 dtrace_probe(dtrace_probeid_error, 0 /* state */,
364 id->fti_probe->ftp_id, 1 /* ndx */, -1 /* offset */,
365 DTRACEFLT_UPRIV);
366 } else {
367 dtrace_probe(id->fti_probe->ftp_id,
368 pc - id->fti_probe->ftp_faddr,
369 sv->save_r3, sv->save_r4, 0, 0);
370 }
371 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_USTACK_FP);
372 }
373
374 lck_mtx_unlock(pid_mtx);
375 }
376
377 static void
378 fasttrap_usdt_args(fasttrap_probe_t *probe, ppc_saved_state_t *sv, int argc,
379 uint64_t *argv)
380 {
381 int i, x, cap = MIN(argc, probe->ftp_nargs);
382 uint32_t farg;
383
384 for (i = 0; i < cap; i++) {
385 x = probe->ftp_argmap[i];
386
387 if (x <= 8) { /* Is this argument in a register? */
388 argv[i] = (&sv->save_r0)[x];
389 } else {
390 if(sv->save_srr1 & 0x8000000000000000ULL) { /* Are we running in 64-bit? */
391 fasttrap_fuword64_noerr(sv->save_r1 + 48 + (x * sizeof(uint64_t)), &argv[i]); /* Grab argument > 8 from stack */
392 }
393 else {
394 fasttrap_fuword32_noerr(sv->save_r1 + 24 + (x * sizeof(uint32_t)), &farg); /* Grab argument > 8 from stack */
395 argv[i] = (uint64_t)farg; /* Convert to 64-bit */
396 }
397 }
398 }
399
400 for (; i < argc; i++) {
401 argv[i] = 0;
402 }
403 }
404
405 int
406 fasttrap_pid_probe(ppc_saved_state_t *sv)
407 {
408 proc_t *p = current_proc();
409 fasttrap_bucket_t *bucket;
410 lck_mtx_t *pid_mtx;
411 fasttrap_tracepoint_t *tp, tp_local;
412 pid_t pid;
413 dtrace_icookie_t cookie;
414 uint_t is_enabled = 0;
415 user_addr_t new_pc = 0;
416 user_addr_t pc;
417 user_addr_t addrmask;
418
419 pc = sv->save_srr0; /* Remember the PC for later */
420 if(sv->save_srr1 & 0x8000000000000000ULL) addrmask = 0xFFFFFFFFFFFFFFFFULL; /* Set 64-bit addressing if enabled */
421 else addrmask = 0x00000000FFFFFFFFULL; /* Otherwise set 32-bit */
422
423 uthread_t uthread = (uthread_t)get_bsdthread_info(current_thread());
424
425 /*
426 * Clear all user tracing flags.
427 */
428 uthread->t_dtrace_ft = 0;
429
430 /*
431 * Treat a child created by a call to vfork(2) as if it were its
432 * parent. We know that there's only one thread of control in such a
433 * process: this one.
434 */
435 /*
436 * APPLE NOTE: Terry says: "You need to hold the process locks (currently: kernel funnel) for this traversal"
437 * FIXME: How do we assert this?
438 */
439 while (p->p_lflag & P_LINVFORK) p = p->p_pptr; /* Search the end */
440
441 pid = p->p_pid;
442 pid_mtx = &cpu_core[CPU->cpu_id].cpuc_pid_lock;
443 lck_mtx_lock(pid_mtx);
444 bucket = &fasttrap_tpoints.fth_table[FASTTRAP_TPOINTS_INDEX(pid, sv->save_srr0)]; /* Get the bucket that corresponds to out PC */
445
446 /*
447 * Lookup the tracepoint that the process just hit.
448 */
449 for (tp = bucket->ftb_data; tp != NULL; tp = tp->ftt_next) {
450 if (pid == tp->ftt_pid && (sv->save_srr0 == tp->ftt_pc) &&
451 !tp->ftt_proc->ftpc_defunct)
452 break;
453 }
454
455 /*
456 * If we couldn't find a matching tracepoint, either a tracepoint has
457 * been inserted without using the pid<pid> ioctl interface (see
458 * fasttrap_ioctl), or somehow we have mislaid this tracepoint.
459 */
460 if (tp == NULL) {
461 lck_mtx_unlock(pid_mtx);
462 return (-1);
463 }
464
465 if (tp->ftt_ids != NULL) {
466 fasttrap_id_t *id;
467
468 for (id = tp->ftt_ids; id != NULL; id = id->fti_next) {
469 fasttrap_probe_t *probe = id->fti_probe;
470
471 if (ISSET(current_proc()->p_lflag, P_LNOATTACH)) {
472 dtrace_probe(dtrace_probeid_error, 0 /* state */,
473 id->fti_probe->ftp_id, 1 /* ndx */, -1 /* offset */,
474 DTRACEFLT_UPRIV);
475 } else if (id->fti_ptype == DTFTP_ENTRY) {
476 /*
477 * We note that this was an entry
478 * probe to help ustack() find the
479 * first caller.
480 */
481 cookie = dtrace_interrupt_disable();
482 DTRACE_CPUFLAG_SET(CPU_DTRACE_USTACK_FP | CPU_DTRACE_ENTRY);
483 dtrace_probe(probe->ftp_id, sv->save_r3, sv->save_r4, /* Call the main probe routine with the first 5 args */
484 sv->save_r5, sv->save_r6, sv->save_r7);
485 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_USTACK_FP | CPU_DTRACE_ENTRY);
486 dtrace_interrupt_enable(cookie);
487
488 } else if (id->fti_ptype == DTFTP_IS_ENABLED) {
489 /*
490 * Note that in this case, we don't
491 * call dtrace_probe() since it's only
492 * an artificial probe meant to change
493 * the flow of control so that it
494 * encounters the true probe.
495 */
496 is_enabled = 1;
497
498 } else if (probe->ftp_argmap == NULL) {
499 DTRACE_CPUFLAG_SET(CPU_DTRACE_USTACK_FP);
500 dtrace_probe(probe->ftp_id, sv->save_r3, sv->save_r4, /* Call the main probe routine with the first 5 args */
501 sv->save_r5, sv->save_r6, sv->save_r7);
502 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_USTACK_FP);
503
504 } else {
505 uint64_t t[5];
506
507 fasttrap_usdt_args(probe, sv, 5, t); /* Grab 5 arguments */
508
509 DTRACE_CPUFLAG_SET(CPU_DTRACE_USTACK_FP);
510 dtrace_probe(probe->ftp_id, t[0], t[1],
511 t[2], t[3], t[4]);
512 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_USTACK_FP);
513 }
514
515 /* APPLE NOTE: Oneshot probes get one and only one chance... */
516 if (probe->ftp_prov->ftp_provider_type == DTFTP_PROVIDER_ONESHOT) {
517 fasttrap_tracepoint_remove(p, tp);
518 }
519 }
520 }
521
522 /*
523 * We're about to do a bunch of work so we cache a local copy of
524 * the tracepoint to emulate the instruction, and then find the
525 * tracepoint again later if we need to light up any return probes.
526 */
527 tp_local = *tp;
528 lck_mtx_unlock(pid_mtx);
529 tp = &tp_local;
530
531 /*
532 * If there's an is-enabled probe connected to this tracepoint it
533 * means that there was a 'xor r3,r3,r3'
534 * instruction that was placed there by DTrace when the binary was
535 * linked. As this probe is, in fact, enabled, we need to stuff 1
536 * into R3. Accordingly, we can bypass all the instruction
537 * emulation logic since we know the inevitable result. It's possible
538 * that a user could construct a scenario where the 'is-enabled'
539 * probe was on some other instruction, but that would be a rather
540 * exotic way to shoot oneself in the foot.
541 */
542 if (is_enabled) {
543 sv->save_r3 = 1; /* Set condition to true */
544 new_pc = (sv->save_srr0 + 4) & addrmask; /* Just fall through to the next instruction */
545 goto done;
546 }
547
548 /*
549 * We emulate certain types of instructions to ensure correctness
550 * (in the case of position dependent instructions) or optimize
551 * common cases. The rest we execute in the kernel, but with
552 * most of the user's context active.
553 */
554 switch (tp->ftt_type) {
555
556 case ftmtNOP: /* NOP */
557 new_pc = (sv->save_srr0 + 4) & addrmask; /* Just fall through to the next instruction */
558 break;
559
560 case ftmtB: /* Plain unconditional branch */
561 new_pc = (user_addr_t)((int64_t)tp->ftt_trgt); /* Assume target is absolute address for the moment */
562 if(!(tp->ftt_flgs & ftmtAbs)) new_pc = (new_pc + sv->save_srr0) & addrmask; /* We don't have absolute address, use as offset from instruction address */
563
564 if(tp->ftt_flgs & ftmtLink) sv->save_lr = (sv->save_srr0 + 4) & addrmask; /* Set the LR to the next instruction if needed */
565 break;
566
567 case ftmtBC: /* Conditional PC relative or absolute branch */
568 new_pc = (user_addr_t)((int64_t)tp->ftt_trgt); /* Assume target is absolute address for the moment */
569 if(!(tp->ftt_flgs & ftmtAbs)) new_pc = new_pc + sv->save_srr0; /* We don't have absolute address, use as offset from instruction address */
570
571 if(tp->ftt_flgs & ftmtLink) sv->save_lr = (sv->save_srr0 + 4) & addrmask; /* Set the LR to the next instruction if needed */
572 if(!branchtaken(tp->ftt_bo, tp->ftt_bi, sv)) new_pc = (sv->save_srr0 + 4) & addrmask; /* If branch was not taken, set PC to next address */
573 break;
574
575 case ftmtBLR: /* Conditional branch to LR */
576 new_pc = sv->save_lr; /* Branch target comes from the LR */
577
578 if(tp->ftt_flgs & ftmtLink) sv->save_lr = (sv->save_srr0 + 4) & addrmask; /* Set the LR to the next instruction if needed */
579 if(!branchtaken(tp->ftt_bo, tp->ftt_bi, sv)) new_pc = (sv->save_srr0 + 4) & addrmask; /* If branch was not taken, set PC to next address */
580 break;
581
582 case ftmtBCTR: /* Conditional branch to CTR */
583 new_pc = sv->save_ctr; /* Branch target comes from the CTR */
584
585 if(tp->ftt_flgs & ftmtLink) sv->save_lr = (sv->save_srr0 + 4) & addrmask; /* Set the LR to the next instruction if needed */
586 if(!branchtaken(tp->ftt_bo, tp->ftt_bi, sv)) new_pc = (sv->save_srr0 + 4) & addrmask; /* If branch was not taken, set PC to next address */
587 break;
588
589 case ftmtCommon: /* Common, non-in-kernel emulated instruction */
590 sv->save_instr[0] = 1; /* We only have one instruction to inject */
591 sv->save_instr[1] = tp->ftt_instr; /* Set the instruction */
592 sv->save_hdr.save_flags = sv->save_hdr.save_flags | SAVinject; /* Tell low-level exception return to inject the instruction */
593 uthread->t_dtrace_step = 1; /* Let it be known that a trace return is imminent */
594 return 0; /* Go and don't dome back until you are done... */
595
596 default:
597 panic("fasttrap_pid_probe: invalid ftt_type = %08X\n", tp->ftt_type); /* Huh, wha happened? */
598 break;
599 }
600
601
602 done:
603
604 /*
605 * If there were no return probes when we first found the tracepoint,
606 * we should feel no obligation to honor any return probes that were
607 * subsequently enabled -- they'll just have to wait until the next
608 * time around.
609 */
610 sv->save_srr0 = new_pc; /* Set the new PC */
611 if (tp->ftt_retids != NULL) fasttrap_return_common(sv, pc, pid, new_pc);
612
613 return (0);
614 }
615
616
617 int
618 fasttrap_return_probe(ppc_saved_state_t *sv)
619 {
620
621 user_addr_t pc, npc;
622
623 proc_t *p = current_proc();
624
625
626 /*
627 * Treat a child created by a call to vfork(2) as if it were its
628 * parent. We know that there's only one thread of control in such a
629 * process: this one.
630 */
631 /*
632 * APPLE NOTE: Terry says: "You need to hold the process locks (currently: kernel funnel) for this traversal"
633 * How do we assert this?
634 */
635 while (p->p_lflag & P_LINVFORK) {
636 p = p->p_pptr;
637 }
638
639 pc = sv->save_srr0; /* Get the PC of the probed instruction */
640 npc = pc + 4; /* Get next PC */
641 if(!(sv->save_srr1 & 0x8000000000000000ULL)) npc &= 0x00000000FFFFFFFF; /* Wrap new PC if running 32-bit */
642 fasttrap_return_common(sv, pc, p->p_pid, npc);
643
644 return (0);
645 }
646
647 uint64_t
648 fasttrap_pid_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
649 int aframes)
650 {
651 #pragma unused(arg, id, parg, aframes)
652 return (fasttrap_anarg((ppc_saved_state_t *)find_user_regs(current_thread()), 1, argno));
653 }
654
655 uint64_t
656 fasttrap_usdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
657 int aframes)
658 {
659 #pragma unused(arg, id, parg, aframes)
660 return (fasttrap_anarg((ppc_saved_state_t *)find_user_regs(current_thread()), 0, argno));
661 }
662
663
664 static int32_t branchtaken(int32_t bo, int32_t bi, ppc_saved_state_t *sv) {
665 int32_t bcond, czero, crmatch;
666 uint64_t ctr;
667
668 if((bo & 0x14) == 0x14) return 1; /* If this is a branch always, exit with true... */
669
670 czero = 0; /* Assume that we have not just decremented the CTR to 0 */
671
672 if(!(bo & 4)) { /* Skip the next bit if we do NOT muck with the CTR */
673 ctr = sv->save_ctr = sv->save_ctr - 1; /* Decrement the CTR */
674 if(!(sv->save_srr1 & 0x8000000000000000ULL)) ctr &= 0x00000000FFFFFFFF; /* Only look at the bottom 32 bits if 32-bit mode */
675 czero = (ctr == 0); /* Remember if we just hit zero */
676 }
677
678 bcond = (bo >> 3); /* If 1, branch if CR flag is 1. If 0, branch if 0 */
679 crmatch = bo >> 4; /* If bo[0] is set, do not check CR flag */
680 crmatch = crmatch | (((sv->save_cr >> (31 - bi)) ^ bcond) ^ 1); /* Low bit is now set if CR flag matches or CR is not checked. Other bits are trash. */
681
682 // dbgTrace(0x77777777, bo, bi, sv->save_cr, ((czero | crmatch) & 1)); /* (TRACE/DEBUG) */
683
684 return ((czero | crmatch) & 1); /* Return 1 if branch taken, 0 if not... */
685 }
686
687 static int32_t dtrace_decode_ppc(uint32_t inst) {
688
689 int32_t curdcd, lastmask, newmask, spr, bit, bito, word;
690 uint16_t xop = 0;
691 dcdtab *dcd;
692
693 curdcd = inst >> 26; /* Isolate major op code to start decode */
694 lastmask = 99; /* Always force a new xop at the start */
695
696 while(1) { /* Loop until we find instruction or fail */
697 dcd = &insts[curdcd]; /* Point to the current decode table entry */
698 if(dcd->dcdFlgs & dcdJump) { /* Should we jump to a new spot in the decode table? */
699 curdcd = dcd->dcdMatch; /* Jump */
700 continue;
701 }
702
703 newmask = dcd->dcdFlgs & dcdMask; /* Isolate the mask index */
704 if(lastmask != newmask) { /* Are we changing masks? */
705 if(!newmask) break; /* If the mask is 0, we match everything and succeed... (note: lastmask can never be 0) */
706 xop = inst & masktab[newmask]; /* Clear all extra bits to make match */
707 lastmask = newmask; /* Remember */
708 }
709
710 if(xop == dcd->dcdMatch) break; /* We found our guy! */
711
712 if(!(dcd->dcdFlgs & dcdStep)) { /* No stepping, we failed */
713 dcd = &dcdfail; /* Point to a failure entry */
714 break; /* Leave... */
715 }
716
717 curdcd = curdcd + 1; /* Step to the next decode entry */
718 }
719
720 if(dcd->dcdType != diSPR) return (int32_t)(dcd->dcdType); /* Return what we found */
721
722 spr = (inst >> (31 - 20)) & 0x3FF; /* Get the source */
723 spr = ((spr << 5) & 0x3E0) | ((spr >> 5) & 0x1F); /* Flip to right order */
724
725 word = spr >> 5; /* Get word index into table */
726 bito = spr & 0x1F; /* Get bit offset into entry */
727 bit = 0x80000000 >> bito; /* Position bit for a test */
728
729 if(!(sprtbl[word] & bit)) return (diINV); /* Bogus SPR so whole instruction is invalid... */
730
731 if(spr & 0x10) return (diPRV); /* This is a priviliged SPR so instruction is priviliged... */
732 return (diCMN); /* Just a common SPR so instruction is the same... */
733 }