2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
64 * Physical Map management code for Intel i386, i486, and i860.
66 * Manages physical address maps.
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
93 #include <mach_ldebug.h>
95 #include <libkern/OSAtomic.h>
97 #include <mach/machine/vm_types.h>
99 #include <mach/boolean.h>
100 #include <kern/thread.h>
101 #include <kern/zalloc.h>
102 #include <kern/queue.h>
103 #include <kern/mach_param.h>
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
139 #include <ddb/db_command.h>
140 #include <ddb/db_output.h>
141 #include <ddb/db_sym.h>
142 #include <ddb/db_print.h>
143 #endif /* MACH_KDB */
145 #include <vm/vm_protos.h>
148 #include <i386/mp_desc.h>
154 #define POSTCODE_DELAY 1
155 #include <i386/postcode.h>
156 #endif /* IWANTTODEBUG */
159 #define DBG(x...) kprintf("DBG: " x)
163 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
164 * in the trampolines for kernel/user boundary TLB coherency.
166 char pmap_cpu_data_assert
[(((offsetof(cpu_data_t
, cpu_tlb_invalid
) - offsetof(cpu_data_t
, cpu_active_cr3
)) == 8) && (offsetof(cpu_data_t
, cpu_active_cr3
) % 64 == 0)) ? 1 : -1];
167 boolean_t pmap_trace
= FALSE
;
169 boolean_t no_shared_cr3
= DEBUG
; /* TRUE for DEBUG by default */
171 int nx_enabled
= 1; /* enable no-execute protection */
172 int allow_data_exec
= VM_ABI_32
; /* 32-bit apps may execute data by default, 64-bit apps may not */
173 int allow_stack_exec
= 0; /* No apps may execute from the stack by default */
175 const boolean_t cpu_64bit
= TRUE
; /* Mais oui! */
177 uint64_t max_preemption_latency_tsc
= 0;
179 pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
181 uint32_t npvhash
= 0;
183 pv_hashed_entry_t pv_hashed_free_list
= PV_HASHED_ENTRY_NULL
;
184 pv_hashed_entry_t pv_hashed_kern_free_list
= PV_HASHED_ENTRY_NULL
;
185 decl_simple_lock_data(,pv_hashed_free_list_lock
)
186 decl_simple_lock_data(,pv_hashed_kern_free_list_lock
)
187 decl_simple_lock_data(,pv_hash_table_lock
)
189 zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry structures */
192 * First and last physical addresses that we maintain any information
193 * for. Initialized to zero so that pmap operations done before
194 * pmap_init won't touch any non-existent structures.
196 boolean_t pmap_initialized
= FALSE
;/* Has pmap_init completed? */
198 static struct vm_object kptobj_object_store
;
199 static struct vm_object kpml4obj_object_store
;
200 static struct vm_object kpdptobj_object_store
;
203 * Array of physical page attribites for managed pages.
204 * One byte per physical page.
206 char *pmap_phys_attributes
;
207 unsigned int last_managed_page
= 0;
210 * Amount of virtual memory mapped by one
211 * page-directory entry.
214 uint64_t pde_mapped_size
= PDE_MAPPED_SIZE
;
216 unsigned pmap_memory_region_count
;
217 unsigned pmap_memory_region_current
;
219 pmap_memory_region_t pmap_memory_regions
[PMAP_MEMORY_REGIONS_SIZE
];
222 * Other useful macros.
224 #define current_pmap() (vm_map_pmap(current_thread()->map))
226 struct pmap kernel_pmap_store
;
229 pd_entry_t high_shared_pde
;
230 pd_entry_t commpage64_pde
;
232 struct zone
*pmap_zone
; /* zone of pmap structures */
234 struct zone
*pmap_anchor_zone
;
235 int pmap_debug
= 0; /* flag for debugging prints */
237 unsigned int inuse_ptepages_count
= 0;
238 long long alloc_ptepages_count
__attribute__((aligned(8))) = 0; /* aligned for atomic access */
239 unsigned int bootstrap_wired_pages
= 0;
240 int pt_fake_zone_index
= -1;
242 extern long NMIPI_acks
;
244 boolean_t kernel_text_ps_4K
= TRUE
;
245 boolean_t wpkernel
= TRUE
;
251 pt_entry_t
*DMAP1
, *DMAP2
;
256 * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain.
257 * properly deals with the anchor.
258 * must be called with the hash locked, does not unlock it
263 * Map memory at initialization. The physical addresses being
264 * mapped are not managed and are never unmapped.
266 * For now, VM is already on, we only need to map the
272 vm_map_offset_t start_addr
,
273 vm_map_offset_t end_addr
,
280 while (start_addr
< end_addr
) {
281 pmap_enter(kernel_pmap
, (vm_map_offset_t
)virt
,
282 (ppnum_t
) i386_btop(start_addr
), prot
, flags
, FALSE
);
290 * Back-door routine for mapping kernel VM at initialization.
291 * Useful for mapping memory outside the range
292 * Sets no-cache, A, D.
293 * Otherwise like pmap_map.
298 vm_map_offset_t start_addr
,
299 vm_map_offset_t end_addr
,
306 vm_offset_t base
= virt
;
307 template = pa_to_pte(start_addr
)
313 if (flags
& (VM_MEM_NOT_CACHEABLE
| VM_WIMG_USE_DEFAULT
)) {
314 template |= INTEL_PTE_NCACHE
;
315 if (!(flags
& (VM_MEM_GUARDED
| VM_WIMG_USE_DEFAULT
)))
316 template |= INTEL_PTE_PTA
;
318 if (prot
& VM_PROT_WRITE
)
319 template |= INTEL_PTE_WRITE
;
321 while (start_addr
< end_addr
) {
323 pte
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)virt
);
324 if (pte
== PT_ENTRY_NULL
) {
325 panic("pmap_map_bd: Invalid kernel address\n");
327 pmap_store_pte(pte
, template);
329 pte_increment_pa(template);
331 start_addr
+= PAGE_SIZE
;
334 PMAP_UPDATE_TLBS(kernel_pmap
, base
, base
+ end_addr
- start_addr
);
338 extern char *first_avail
;
339 extern vm_offset_t virtual_avail
, virtual_end
;
340 extern pmap_paddr_t avail_start
, avail_end
;
341 extern vm_offset_t sHIB
;
342 extern vm_offset_t eHIB
;
343 extern vm_offset_t stext
;
344 extern vm_offset_t etext
;
345 extern vm_offset_t sdata
;
347 extern void *KPTphys
;
353 * Here early in the life of a processor (from cpu_mode_init()).
354 * Ensure global page feature is disabled at this point.
357 set_cr4(get_cr4() &~ CR4_PGE
);
360 * Initialize the per-cpu, TLB-related fields.
362 current_cpu_datap()->cpu_kernel_cr3
= kernel_pmap
->pm_cr3
;
363 current_cpu_datap()->cpu_active_cr3
= kernel_pmap
->pm_cr3
;
364 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
365 current_cpu_datap()->cpu_task_map
= TASK_MAP_64BIT
;
366 pmap_pcid_configure();
372 * Bootstrap the system enough to run with virtual memory.
373 * Map the kernel's code and data, and allocate the system page table.
374 * Called with mapping OFF. Page_size must already be set.
379 __unused vm_offset_t load_start
,
380 __unused boolean_t IA32e
)
382 #if NCOPY_WINDOWS > 0
388 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address
391 * The kernel's pmap is statically allocated so we don't
392 * have to use pmap_create, which is unlikely to work
393 * correctly at this part of the boot sequence.
396 kernel_pmap
= &kernel_pmap_store
;
397 kernel_pmap
->ref_count
= 1;
398 kernel_pmap
->nx_enabled
= FALSE
;
399 kernel_pmap
->pm_task_map
= TASK_MAP_64BIT
;
400 kernel_pmap
->pm_obj
= (vm_object_t
) NULL
;
401 kernel_pmap
->dirbase
= (pd_entry_t
*)((uintptr_t)IdlePTD
);
402 kernel_pmap
->pm_pdpt
= (pd_entry_t
*) ((uintptr_t)IdlePDPT
);
403 kernel_pmap
->pm_pml4
= IdlePML4
;
404 kernel_pmap
->pm_cr3
= (uintptr_t)ID_MAP_VTOP(IdlePML4
);
405 pmap_pcid_initialize_kernel(kernel_pmap
);
409 current_cpu_datap()->cpu_kernel_cr3
= (addr64_t
) kernel_pmap
->pm_cr3
;
412 OSAddAtomic(NKPT
, &inuse_ptepages_count
);
413 OSAddAtomic64(NKPT
, &alloc_ptepages_count
);
414 bootstrap_wired_pages
= NKPT
;
416 virtual_avail
= (vm_offset_t
)(VM_MIN_KERNEL_ADDRESS
) + (vm_offset_t
)first_avail
;
417 virtual_end
= (vm_offset_t
)(VM_MAX_KERNEL_ADDRESS
);
419 #if NCOPY_WINDOWS > 0
421 * Reserve some special page table entries/VA space for temporary
424 #define SYSMAP(c, p, v, n) \
425 v = (c)va; va += ((n)*INTEL_PGBYTES);
429 for (i
=0; i
<PMAP_NWINDOWS
; i
++) {
431 kprintf("trying to do SYSMAP idx %d %p\n", i
,
432 current_cpu_datap());
433 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap
);
434 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap
->mapwindow
);
435 kprintf("two stuff %p %p\n",
436 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
437 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
));
440 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
441 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
),
443 current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
=
444 &(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP_store
);
445 *current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
= 0;
448 /* DMAP user for debugger */
449 SYSMAP(caddr_t
, DMAP1
, DADDR1
, 1);
450 SYSMAP(caddr_t
, DMAP2
, DADDR2
, 1); /* XXX temporary - can remove */
455 if (PE_parse_boot_argn("npvhash", &npvhash
, sizeof (npvhash
))) {
456 if (0 != ((npvhash
+ 1) & npvhash
)) {
457 kprintf("invalid hash %d, must be ((2^N)-1), "
458 "using default %d\n", npvhash
, NPVHASH
);
465 simple_lock_init(&kernel_pmap
->lock
, 0);
466 simple_lock_init(&pv_hashed_free_list_lock
, 0);
467 simple_lock_init(&pv_hashed_kern_free_list_lock
, 0);
468 simple_lock_init(&pv_hash_table_lock
,0);
473 printf("PMAP: PCID enabled\n");
475 boot_args
*args
= (boot_args
*)PE_state
.bootArgs
;
476 if (args
->efiMode
== kBootArgsEfiMode32
) {
477 printf("EFI32: kernel virtual space limited to 4GB\n");
478 virtual_end
= VM_MAX_KERNEL_ADDRESS_EFI32
;
480 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
481 (long)KERNEL_BASE
, (long)virtual_end
);
482 kprintf("Available physical space from 0x%llx to 0x%llx\n",
483 avail_start
, avail_end
);
486 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
487 * in the DEBUG kernel) to force the kernel to switch to its own map
488 * (and cr3) when control is in kernelspace. The kernel's map does not
489 * include (i.e. share) userspace so wild references will cause
490 * a panic. Only copyin and copyout are exempt from this.
492 (void) PE_parse_boot_argn("-no_shared_cr3",
493 &no_shared_cr3
, sizeof (no_shared_cr3
));
495 kprintf("Kernel not sharing user map\n");
498 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace
, sizeof (pmap_trace
))) {
499 kprintf("Kernel traces for pmap operations enabled\n");
501 #endif /* PMAP_TRACES */
509 *startp
= virtual_avail
;
514 * Initialize the pmap module.
515 * Called by vm_init, to initialize any structures that the pmap
516 * system needs to map virtual memory.
524 vm_map_offset_t vaddr
;
528 kernel_pmap
->pm_obj_pml4
= &kpml4obj_object_store
;
529 _vm_object_allocate((vm_object_size_t
)NPML4PGS
, &kpml4obj_object_store
);
531 kernel_pmap
->pm_obj_pdpt
= &kpdptobj_object_store
;
532 _vm_object_allocate((vm_object_size_t
)NPDPTPGS
, &kpdptobj_object_store
);
534 kernel_pmap
->pm_obj
= &kptobj_object_store
;
535 _vm_object_allocate((vm_object_size_t
)NPDEPGS
, &kptobj_object_store
);
538 * Allocate memory for the pv_head_table and its lock bits,
539 * the modify bit array, and the pte_page table.
543 * zero bias all these arrays now instead of off avail_start
544 * so we cover all memory
547 npages
= i386_btop(avail_end
);
548 s
= (vm_size_t
) (sizeof(struct pv_rooted_entry
) * npages
549 + (sizeof (struct pv_hashed_entry_t
*) * (npvhash
+1))
550 + pv_lock_table_size(npages
)
551 + pv_hash_lock_table_size((npvhash
+1))
555 if (kernel_memory_allocate(kernel_map
, &addr
, s
, 0,
556 KMA_KOBJECT
| KMA_PERMANENT
)
560 memset((char *)addr
, 0, s
);
566 if (0 == npvhash
) panic("npvhash not initialized");
570 * Allocate the structures first to preserve word-alignment.
572 pv_head_table
= (pv_rooted_entry_t
) addr
;
573 addr
= (vm_offset_t
) (pv_head_table
+ npages
);
575 pv_hash_table
= (pv_hashed_entry_t
*)addr
;
576 addr
= (vm_offset_t
) (pv_hash_table
+ (npvhash
+ 1));
578 pv_lock_table
= (char *) addr
;
579 addr
= (vm_offset_t
) (pv_lock_table
+ pv_lock_table_size(npages
));
581 pv_hash_lock_table
= (char *) addr
;
582 addr
= (vm_offset_t
) (pv_hash_lock_table
+ pv_hash_lock_table_size((npvhash
+1)));
584 pmap_phys_attributes
= (char *) addr
;
586 ppnum_t last_pn
= i386_btop(avail_end
);
588 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
589 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
590 if (pmptr
->type
!= kEfiConventionalMemory
)
593 for (pn
= pmptr
->base
; pn
<= pmptr
->end
; pn
++) {
595 pmap_phys_attributes
[pn
] |= PHYS_MANAGED
;
597 if (pn
> last_managed_page
)
598 last_managed_page
= pn
;
601 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
602 else if (pn
>= lowest_hi
&& pn
<= highest_hi
)
603 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
608 ppn
= pmap_find_phys(kernel_pmap
, vaddr
);
610 pmap_phys_attributes
[ppn
] |= PHYS_NOENCRYPT
;
616 * Create the zone of physical maps,
617 * and of the physical-to-virtual entries.
619 s
= (vm_size_t
) sizeof(struct pmap
);
620 pmap_zone
= zinit(s
, 400*s
, 4096, "pmap"); /* XXX */
621 zone_change(pmap_zone
, Z_NOENCRYPT
, TRUE
);
623 pmap_anchor_zone
= zinit(PAGE_SIZE
, task_max
, PAGE_SIZE
, "pagetable anchors");
624 zone_change(pmap_anchor_zone
, Z_NOENCRYPT
, TRUE
);
627 /* The anchor is required to be page aligned. Zone debugging adds
628 * padding which may violate that requirement. Disable it
629 * to avoid assumptions.
631 zone_debug_disable(pmap_anchor_zone
);
634 s
= (vm_size_t
) sizeof(struct pv_hashed_entry
);
635 pv_hashed_list_zone
= zinit(s
, 10000*s
/* Expandable zone */,
636 4096 * 3 /* LCM x86_64*/, "pv_list");
637 zone_change(pv_hashed_list_zone
, Z_NOENCRYPT
, TRUE
);
639 /* create pv entries for kernel pages mapped by low level
640 startup code. these have to exist so we can pmap_remove()
641 e.g. kext pages from the middle of our addr space */
643 vaddr
= (vm_map_offset_t
) VM_MIN_KERNEL_ADDRESS
;
644 for (ppn
= VM_MIN_KERNEL_PAGE
; ppn
< i386_btop(avail_start
); ppn
++) {
645 pv_rooted_entry_t pv_e
;
647 pv_e
= pai_to_pvh(ppn
);
650 pv_e
->pmap
= kernel_pmap
;
651 queue_init(&pv_e
->qlink
);
653 pmap_initialized
= TRUE
;
655 max_preemption_latency_tsc
= tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS
, tscFCvtn2t
);
658 * Ensure the kernel's PML4 entry exists for the basement
659 * before this is shared with any user.
661 pmap_expand_pml4(kernel_pmap
, KERNEL_BASEMENT
);
665 * Called once VM is fully initialized so that we can release unused
666 * sections of low memory to the general pool.
667 * Also complete the set-up of identity-mapped sections of the kernel:
668 * 1) write-protect kernel text
669 * 2) map kernel text using large pages if possible
670 * 3) read and write-protect page zero (for K32)
671 * 4) map the global page at the appropriate virtual address.
675 * To effectively map and write-protect all kernel text pages, the text
676 * must be 2M-aligned at the base, and the data section above must also be
677 * 2M-aligned. That is, there's padding below and above. This is achieved
678 * through linker directives. Large pages are used only if this alignment
679 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
684 * sdata: ================== 2Meg
688 * etext: ------------------
696 * stext: ================== 2Meg
700 * eHIB: ------------------
704 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
705 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
706 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
707 * The now unused level-1 PTE pages are also freed.
709 extern uint32_t pmap_reserved_ranges
;
711 pmap_lowmem_finalize(void)
716 /* Check the kernel is linked at the expected base address */
717 if (i386_btop(kvtophys((vm_offset_t
) &IdlePML4
)) !=
718 I386_KERNEL_IMAGE_BASE_PAGE
)
719 panic("pmap_lowmem_finalize() unexpected kernel base address");
722 * Update wired memory statistics for early boot pages
724 PMAP_ZINFO_PALLOC(bootstrap_wired_pages
* PAGE_SIZE
);
727 * Free all pages in pmap regions below the base:
729 * We can't free all the pages to VM that EFI reports available.
730 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
731 * There's also a size miscalculation here: pend is one page less
732 * than it should be but this is not fixed to be backwards
734 * Due to this current EFI limitation, we take only the first
735 * entry in the memory region table. However, the loop is retained
736 * (with the intended termination criteria commented out) in the
737 * hope that some day we can free all low-memory ranges.
740 // pmap_memory_regions[i].end <= I386_KERNEL_IMAGE_BASE_PAGE;
741 i
< 1 && (pmap_reserved_ranges
== 0);
743 vm_offset_t pbase
= (vm_offset_t
)i386_ptob(pmap_memory_regions
[i
].base
);
744 vm_offset_t pend
= (vm_offset_t
)i386_ptob(pmap_memory_regions
[i
].end
);
745 // vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
747 DBG("ml_static_mfree(%p,%p) for pmap region %d\n",
748 (void *) ml_static_ptovirt(pbase
),
749 (void *) (pend
- pbase
), i
);
750 ml_static_mfree(ml_static_ptovirt(pbase
), pend
- pbase
);
754 * If text and data are both 2MB-aligned,
755 * we can map text with large-pages,
756 * unless the -kernel_text_ps_4K boot-arg overrides.
758 if ((stext
& I386_LPGMASK
) == 0 && (sdata
& I386_LPGMASK
) == 0) {
759 kprintf("Kernel text is 2MB aligned");
760 kernel_text_ps_4K
= FALSE
;
761 if (PE_parse_boot_argn("-kernel_text_ps_4K",
763 sizeof (kernel_text_ps_4K
)))
764 kprintf(" but will be mapped with 4K pages\n");
766 kprintf(" and will be mapped with 2M pages\n");
769 (void) PE_parse_boot_argn("wpkernel", &wpkernel
, sizeof (wpkernel
));
771 kprintf("Kernel text %p-%p to be write-protected\n",
772 (void *) stext
, (void *) etext
);
777 * Scan over text if mappings are to be changed:
778 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
779 * - Change to large-pages if possible and not overriden.
781 if (kernel_text_ps_4K
&& wpkernel
) {
783 for (myva
= stext
; myva
< etext
; myva
+= PAGE_SIZE
) {
786 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
788 pmap_store_pte(ptep
, *ptep
& ~INTEL_PTE_RW
);
792 if (!kernel_text_ps_4K
) {
796 * Release zero-filled page padding used for 2M-alignment.
798 DBG("ml_static_mfree(%p,%p) for padding below text\n",
799 (void *) eHIB
, (void *) (stext
- eHIB
));
800 ml_static_mfree(eHIB
, stext
- eHIB
);
801 DBG("ml_static_mfree(%p,%p) for padding above text\n",
802 (void *) etext
, (void *) (sdata
- etext
));
803 ml_static_mfree(etext
, sdata
- etext
);
806 * Coalesce text pages into large pages.
808 for (myva
= stext
; myva
< sdata
; myva
+= I386_LPGBYTES
) {
810 vm_offset_t pte_phys
;
814 pdep
= pmap_pde(kernel_pmap
, (vm_map_offset_t
)myva
);
815 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
816 DBG("myva: %p pdep: %p ptep: %p\n",
817 (void *) myva
, (void *) pdep
, (void *) ptep
);
818 if ((*ptep
& INTEL_PTE_VALID
) == 0)
820 pte_phys
= (vm_offset_t
)(*ptep
& PG_FRAME
);
821 pde
= *pdep
& PTMASK
; /* page attributes from pde */
822 pde
|= INTEL_PTE_PS
; /* make it a 2M entry */
823 pde
|= pte_phys
; /* take page frame from pte */
826 pde
&= ~INTEL_PTE_RW
;
827 DBG("pmap_store_pte(%p,0x%llx)\n",
829 pmap_store_pte(pdep
, pde
);
832 * Free the now-unused level-1 pte.
833 * Note: ptep is a virtual address to the pte in the
834 * recursive map. We can't use this address to free
835 * the page. Instead we need to compute its address
836 * in the Idle PTEs in "low memory".
838 vm_offset_t vm_ptep
= (vm_offset_t
) KPTphys
839 + (pte_phys
>> PTPGSHIFT
);
840 DBG("ml_static_mfree(%p,0x%x) for pte\n",
841 (void *) vm_ptep
, PAGE_SIZE
);
842 ml_static_mfree(vm_ptep
, PAGE_SIZE
);
845 /* Change variable read by sysctl machdep.pmap */
846 pmap_kernel_text_ps
= I386_LPGBYTES
;
849 /* map lowmem global page into fixed addr */
850 pt_entry_t
*pte
= NULL
;
851 if (0 == (pte
= pmap_pte(kernel_pmap
,
852 VM_MIN_KERNEL_LOADED_ADDRESS
+ 0x2000)))
854 /* make sure it is defined on page boundary */
855 assert(0 == ((vm_offset_t
) &lowGlo
& PAGE_MASK
));
856 pmap_store_pte(pte
, kvtophys((vm_offset_t
)&lowGlo
)
870 * this function is only used for debugging fron the vm layer
876 pv_rooted_entry_t pv_h
;
880 assert(pn
!= vm_page_fictitious_addr
);
882 if (!pmap_initialized
)
885 if (pn
== vm_page_guard_addr
)
888 pai
= ppn_to_pai(pn
);
889 if (!IS_MANAGED_PAGE(pai
))
891 pv_h
= pai_to_pvh(pn
);
892 result
= (pv_h
->pmap
== PMAP_NULL
);
899 vm_map_offset_t va_start
,
900 vm_map_offset_t va_end
)
902 vm_map_offset_t offset
;
905 if (pmap
== PMAP_NULL
) {
910 * Check the resident page count
911 * - if it's zero, the pmap is completely empty.
912 * This short-circuit test prevents a virtual address scan which is
913 * painfully slow for 64-bit spaces.
914 * This assumes the count is correct
915 * .. the debug kernel ought to be checking perhaps by page table walk.
917 if (pmap
->stats
.resident_count
== 0)
920 for (offset
= va_start
;
922 offset
+= PAGE_SIZE_64
) {
923 phys_page
= pmap_find_phys(pmap
, offset
);
925 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
926 "page %d at 0x%llx\n",
927 pmap
, va_start
, va_end
, phys_page
, offset
);
937 * Create and return a physical map.
939 * If the size specified for the map
940 * is zero, the map is an actual physical
941 * map, and may be referenced by the
944 * If the size specified is non-zero,
945 * the map will be used in software only, and
946 * is bounded by that size.
958 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
959 (uint32_t) (sz
>>32), (uint32_t) sz
, is_64bit
, 0, 0);
961 size
= (vm_size_t
) sz
;
964 * A software use-only map doesn't even need a map.
971 p
= (pmap_t
) zalloc(pmap_zone
);
973 panic("pmap_create zalloc");
974 /* Zero all fields */
975 bzero(p
, sizeof(*p
));
976 /* init counts now since we'll be bumping some */
977 simple_lock_init(&p
->lock
, 0);
978 p
->stats
.resident_count
= 0;
979 p
->stats
.resident_max
= 0;
980 p
->stats
.wired_count
= 0;
983 p
->pm_shared
= FALSE
;
985 p
->pm_task_map
= is_64bit
? TASK_MAP_64BIT
: TASK_MAP_32BIT
;;
987 pmap_pcid_initialize(p
);
988 p
->pm_pml4
= zalloc(pmap_anchor_zone
);
990 pmap_assert((((uintptr_t)p
->pm_pml4
) & PAGE_MASK
) == 0);
992 memset((char *)p
->pm_pml4
, 0, PAGE_SIZE
);
994 p
->pm_cr3
= (pmap_paddr_t
)kvtophys((vm_offset_t
)p
->pm_pml4
);
996 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
998 p
->pm_obj_pml4
= vm_object_allocate((vm_object_size_t
)(NPML4PGS
));
999 if (NULL
== p
->pm_obj_pml4
)
1000 panic("pmap_create pdpt obj");
1002 p
->pm_obj_pdpt
= vm_object_allocate((vm_object_size_t
)(NPDPTPGS
));
1003 if (NULL
== p
->pm_obj_pdpt
)
1004 panic("pmap_create pdpt obj");
1006 p
->pm_obj
= vm_object_allocate((vm_object_size_t
)(NPDEPGS
));
1007 if (NULL
== p
->pm_obj
)
1008 panic("pmap_create pte obj");
1010 /* All pmaps share the kernel's pml4 */
1011 pml4
= pmap64_pml4(p
, 0ULL);
1012 kpml4
= kernel_pmap
->pm_pml4
;
1013 pml4
[KERNEL_PML4_INDEX
] = kpml4
[KERNEL_PML4_INDEX
];
1014 pml4
[KERNEL_KEXTS_INDEX
] = kpml4
[KERNEL_KEXTS_INDEX
];
1015 pml4
[KERNEL_PHYSMAP_INDEX
] = kpml4
[KERNEL_PHYSMAP_INDEX
];
1017 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1018 p
, is_64bit
, 0, 0, 0);
1024 * Retire the given physical map from service.
1025 * Should only be called if the map contains
1026 * no valid mappings.
1030 pmap_destroy(pmap_t p
)
1037 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_START
,
1044 pmap_assert((current_thread() && (current_thread()->map
)) ? (current_thread()->map
->pmap
!= p
) : TRUE
);
1048 * If some cpu is not using the physical pmap pointer that it
1049 * is supposed to be (see set_dirbase), we might be using the
1050 * pmap that is being destroyed! Make sure we are
1051 * physically on the right pmap:
1053 PMAP_UPDATE_TLBS(p
, 0x0ULL
, 0xFFFFFFFFFFFFF000ULL
);
1054 if (pmap_pcid_ncpus
)
1055 pmap_destroy_pcid_sync(p
);
1061 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1063 pmap_assert(p
== kernel_pmap
);
1064 return; /* still in use */
1068 * Free the memory maps, then the
1071 int inuse_ptepages
= 0;
1073 zfree(pmap_anchor_zone
, p
->pm_pml4
);
1075 inuse_ptepages
+= p
->pm_obj_pml4
->resident_page_count
;
1076 vm_object_deallocate(p
->pm_obj_pml4
);
1078 inuse_ptepages
+= p
->pm_obj_pdpt
->resident_page_count
;
1079 vm_object_deallocate(p
->pm_obj_pdpt
);
1081 inuse_ptepages
+= p
->pm_obj
->resident_page_count
;
1082 vm_object_deallocate(p
->pm_obj
);
1084 OSAddAtomic(-inuse_ptepages
, &inuse_ptepages_count
);
1085 PMAP_ZINFO_PFREE(inuse_ptepages
* PAGE_SIZE
);
1087 zfree(pmap_zone
, p
);
1089 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1094 * Add a reference to the specified pmap.
1098 pmap_reference(pmap_t p
)
1100 if (p
!= PMAP_NULL
) {
1108 * Remove phys addr if mapped in specified map
1112 pmap_remove_some_phys(
1113 __unused pmap_t map
,
1114 __unused ppnum_t pn
)
1117 /* Implement to support working set code */
1123 * Set the physical protection on the
1124 * specified range of this map as requested.
1125 * Will not increase permissions.
1130 vm_map_offset_t sva
,
1131 vm_map_offset_t eva
,
1135 pt_entry_t
*spte
, *epte
;
1136 vm_map_offset_t lva
;
1137 vm_map_offset_t orig_sva
;
1143 if (map
== PMAP_NULL
)
1146 if (prot
== VM_PROT_NONE
) {
1147 pmap_remove(map
, sva
, eva
);
1150 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_START
,
1152 (uint32_t) (sva
>> 32), (uint32_t) sva
,
1153 (uint32_t) (eva
>> 32), (uint32_t) eva
);
1155 if ((prot
& VM_PROT_EXECUTE
) || !nx_enabled
|| !map
->nx_enabled
)
1164 lva
= (sva
+ pde_mapped_size
) & ~(pde_mapped_size
- 1);
1167 pde
= pmap_pde(map
, sva
);
1168 if (pde
&& (*pde
& INTEL_PTE_VALID
)) {
1169 if (*pde
& INTEL_PTE_PS
) {
1172 epte
= spte
+1; /* excluded */
1174 spte
= pmap_pte(map
, (sva
& ~(pde_mapped_size
- 1)));
1175 spte
= &spte
[ptenum(sva
)];
1176 epte
= &spte
[intel_btop(lva
- sva
)];
1179 for (; spte
< epte
; spte
++) {
1180 if (!(*spte
& INTEL_PTE_VALID
))
1183 if (prot
& VM_PROT_WRITE
)
1184 pmap_update_pte(spte
, *spte
,
1185 *spte
| INTEL_PTE_WRITE
);
1187 pmap_update_pte(spte
, *spte
,
1188 *spte
& ~INTEL_PTE_WRITE
);
1191 pmap_update_pte(spte
, *spte
,
1192 *spte
| INTEL_PTE_NX
);
1194 pmap_update_pte(spte
, *spte
,
1195 *spte
& ~INTEL_PTE_NX
);
1203 PMAP_UPDATE_TLBS(map
, orig_sva
, eva
);
1207 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_END
,
1212 /* Map a (possibly) autogenned block */
1221 __unused
unsigned int flags
)
1226 if (attr
& VM_MEM_SUPERPAGE
)
1227 cur_page_size
= SUPERPAGE_SIZE
;
1229 cur_page_size
= PAGE_SIZE
;
1231 for (page
= 0; page
< size
; page
+=cur_page_size
/PAGE_SIZE
) {
1232 pmap_enter(pmap
, va
, pa
, prot
, attr
, TRUE
);
1233 va
+= cur_page_size
;
1234 pa
+=cur_page_size
/PAGE_SIZE
;
1242 vm_map_offset_t vaddr
)
1248 pml4_entry_t
*pml4p
;
1250 DBG("pmap_expand_pml4(%p,%p)\n", map
, (void *)vaddr
);
1253 * Allocate a VM page for the pml4 page
1255 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1259 * put the page into the pmap's obj list so it
1260 * can be found later.
1264 i
= pml4idx(map
, vaddr
);
1271 vm_page_lockspin_queues();
1273 vm_page_unlock_queues();
1275 OSAddAtomic(1, &inuse_ptepages_count
);
1276 OSAddAtomic64(1, &alloc_ptepages_count
);
1277 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1279 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1280 vm_object_lock(map
->pm_obj_pml4
);
1284 * See if someone else expanded us first
1286 if (pmap64_pdpt(map
, vaddr
) != PDPT_ENTRY_NULL
) {
1288 vm_object_unlock(map
->pm_obj_pml4
);
1292 OSAddAtomic(-1, &inuse_ptepages_count
);
1293 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1298 if (0 != vm_page_lookup(map
->pm_obj_pml4
, (vm_object_offset_t
)i
)) {
1299 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1300 map
, map
->pm_obj_pml4
, vaddr
, i
);
1303 vm_page_insert(m
, map
->pm_obj_pml4
, (vm_object_offset_t
)i
);
1304 vm_object_unlock(map
->pm_obj_pml4
);
1307 * Set the page directory entry for this page table.
1309 pml4p
= pmap64_pml4(map
, vaddr
); /* refetch under lock */
1311 pmap_store_pte(pml4p
, pa_to_pte(pa
)
1324 vm_map_offset_t vaddr
)
1330 pdpt_entry_t
*pdptp
;
1332 DBG("pmap_expand_pdpt(%p,%p)\n", map
, (void *)vaddr
);
1334 while ((pdptp
= pmap64_pdpt(map
, vaddr
)) == PDPT_ENTRY_NULL
) {
1335 pmap_expand_pml4(map
, vaddr
);
1339 * Allocate a VM page for the pdpt page
1341 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1345 * put the page into the pmap's obj list so it
1346 * can be found later.
1350 i
= pdptidx(map
, vaddr
);
1357 vm_page_lockspin_queues();
1359 vm_page_unlock_queues();
1361 OSAddAtomic(1, &inuse_ptepages_count
);
1362 OSAddAtomic64(1, &alloc_ptepages_count
);
1363 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1365 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1366 vm_object_lock(map
->pm_obj_pdpt
);
1370 * See if someone else expanded us first
1372 if (pmap64_pde(map
, vaddr
) != PD_ENTRY_NULL
) {
1374 vm_object_unlock(map
->pm_obj_pdpt
);
1378 OSAddAtomic(-1, &inuse_ptepages_count
);
1379 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1384 if (0 != vm_page_lookup(map
->pm_obj_pdpt
, (vm_object_offset_t
)i
)) {
1385 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1386 map
, map
->pm_obj_pdpt
, vaddr
, i
);
1389 vm_page_insert(m
, map
->pm_obj_pdpt
, (vm_object_offset_t
)i
);
1390 vm_object_unlock(map
->pm_obj_pdpt
);
1393 * Set the page directory entry for this page table.
1395 pdptp
= pmap64_pdpt(map
, vaddr
); /* refetch under lock */
1397 pmap_store_pte(pdptp
, pa_to_pte(pa
)
1411 * Routine: pmap_expand
1413 * Expands a pmap to be able to map the specified virtual address.
1415 * Allocates new virtual memory for the P0 or P1 portion of the
1416 * pmap, then re-maps the physical pages that were in the old
1417 * pmap to be in the new pmap.
1419 * Must be called with the pmap system and the pmap unlocked,
1420 * since these must be unlocked to use vm_allocate or vm_deallocate.
1421 * Thus it must be called in a loop that checks whether the map
1422 * has been expanded enough.
1423 * (We won't loop forever, since page tables aren't shrunk.)
1428 vm_map_offset_t vaddr
)
1431 register vm_page_t m
;
1432 register pmap_paddr_t pa
;
1438 * For the kernel, the virtual address must be in or above the basement
1439 * which is for kexts and is in the 512GB immediately below the kernel..
1440 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1442 if (map
== kernel_pmap
&&
1443 !(vaddr
>= KERNEL_BASEMENT
&& vaddr
<= VM_MAX_KERNEL_ADDRESS
))
1444 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr
);
1447 while ((pdp
= pmap64_pde(map
, vaddr
)) == PD_ENTRY_NULL
) {
1448 /* need room for another pde entry */
1449 pmap_expand_pdpt(map
, vaddr
);
1453 * Allocate a VM page for the pde entries.
1455 while ((m
= vm_page_grab()) == VM_PAGE_NULL
)
1459 * put the page into the pmap's obj list so it
1460 * can be found later.
1464 i
= pdeidx(map
, vaddr
);
1471 vm_page_lockspin_queues();
1473 vm_page_unlock_queues();
1475 OSAddAtomic(1, &inuse_ptepages_count
);
1476 OSAddAtomic64(1, &alloc_ptepages_count
);
1477 PMAP_ZINFO_PALLOC(PAGE_SIZE
);
1479 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1480 vm_object_lock(map
->pm_obj
);
1485 * See if someone else expanded us first
1487 if (pmap_pte(map
, vaddr
) != PT_ENTRY_NULL
) {
1489 vm_object_unlock(map
->pm_obj
);
1493 OSAddAtomic(-1, &inuse_ptepages_count
);
1494 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1499 if (0 != vm_page_lookup(map
->pm_obj
, (vm_object_offset_t
)i
)) {
1500 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1501 map
, map
->pm_obj
, vaddr
, i
);
1504 vm_page_insert(m
, map
->pm_obj
, (vm_object_offset_t
)i
);
1505 vm_object_unlock(map
->pm_obj
);
1508 * Set the page directory entry for this page table.
1510 pdp
= pmap_pde(map
, vaddr
);
1511 pmap_store_pte(pdp
, pa_to_pte(pa
)
1521 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1522 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1523 * function allocates all the page tables using memory from the same pool
1524 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1525 * isn't available yet). */
1527 pmap_pre_expand(pmap_t pmap
, vm_map_offset_t vaddr
)
1534 if(pmap64_pdpt(pmap
, vaddr
) == PDPT_ENTRY_NULL
) {
1535 if (!pmap_next_page_hi(&pn
))
1536 panic("pmap_pre_expand");
1540 pte
= pmap64_pml4(pmap
, vaddr
);
1542 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1548 if(pmap64_pde(pmap
, vaddr
) == PD_ENTRY_NULL
) {
1549 if (!pmap_next_page_hi(&pn
))
1550 panic("pmap_pre_expand");
1554 pte
= pmap64_pdpt(pmap
, vaddr
);
1556 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1562 if(pmap_pte(pmap
, vaddr
) == PT_ENTRY_NULL
) {
1563 if (!pmap_next_page_hi(&pn
))
1564 panic("pmap_pre_expand");
1568 pte
= pmap64_pde(pmap
, vaddr
);
1570 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1580 * pmap_sync_page_data_phys(ppnum_t pa)
1582 * Invalidates all of the instruction cache on a physical page and
1583 * pushes any dirty data from the data cache for the same physical page
1584 * Not required in i386.
1587 pmap_sync_page_data_phys(__unused ppnum_t pa
)
1593 * pmap_sync_page_attributes_phys(ppnum_t pa)
1595 * Write back and invalidate all cachelines on a physical page.
1598 pmap_sync_page_attributes_phys(ppnum_t pa
)
1600 cache_flush_page_phys(pa
);
1605 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1611 * Routine: pmap_collect
1613 * Garbage collects the physical map system for
1614 * pages which are no longer used.
1615 * Success need not be guaranteed -- that is, there
1616 * may well be pages which are not referenced, but
1617 * others may be collected.
1619 * Called by the pageout daemon when pages are scarce.
1625 register pt_entry_t
*pdp
, *ptp
;
1632 if (p
== kernel_pmap
)
1636 * Garbage collect map.
1640 for (pdp
= (pt_entry_t
*)p
->dirbase
;
1641 pdp
< (pt_entry_t
*)&p
->dirbase
[(UMAXPTDI
+1)];
1644 if (*pdp
& INTEL_PTE_VALID
) {
1645 if(*pdp
& INTEL_PTE_REF
) {
1646 pmap_store_pte(pdp
, *pdp
& ~INTEL_PTE_REF
);
1650 ptp
= pmap_pte(p
, pdetova(pdp
- (pt_entry_t
*)p
->dirbase
));
1651 eptp
= ptp
+ NPTEPG
;
1654 * If the pte page has any wired mappings, we cannot
1659 register pt_entry_t
*ptep
;
1660 for (ptep
= ptp
; ptep
< eptp
; ptep
++) {
1661 if (iswired(*ptep
)) {
1669 * Remove the virtual addresses mapped by this pte page.
1671 pmap_remove_range(p
,
1672 pdetova(pdp
- (pt_entry_t
*)p
->dirbase
),
1677 * Invalidate the page directory pointer.
1679 pmap_store_pte(pdp
, 0x0);
1684 * And free the pte page itself.
1687 register vm_page_t m
;
1689 vm_object_lock(p
->pm_obj
);
1691 m
= vm_page_lookup(p
->pm_obj
,(vm_object_offset_t
)(pdp
- (pt_entry_t
*)&p
->dirbase
[0]));
1692 if (m
== VM_PAGE_NULL
)
1693 panic("pmap_collect: pte page not in object");
1695 vm_object_unlock(p
->pm_obj
);
1699 OSAddAtomic(-1, &inuse_ptepages_count
);
1700 PMAP_ZINFO_PFREE(PAGE_SIZE
);
1709 PMAP_UPDATE_TLBS(p
, 0x0, 0xFFFFFFFFFFFFF000ULL
);
1718 pmap_copy_page(ppnum_t src
, ppnum_t dst
)
1720 bcopy_phys((addr64_t
)i386_ptob(src
),
1721 (addr64_t
)i386_ptob(dst
),
1727 * Routine: pmap_pageable
1729 * Make the specified pages (by pmap, offset)
1730 * pageable (or not) as requested.
1732 * A page which is not pageable may not take
1733 * a fault; therefore, its page table entry
1734 * must remain valid for the duration.
1736 * This routine is merely advisory; pmap_enter
1737 * will specify that these pages are to be wired
1738 * down (or not) as appropriate.
1742 __unused pmap_t pmap
,
1743 __unused vm_map_offset_t start_addr
,
1744 __unused vm_map_offset_t end_addr
,
1745 __unused boolean_t pageable
)
1748 pmap
++; start_addr
++; end_addr
++; pageable
++;
1754 invalidate_icache(__unused vm_offset_t addr
,
1755 __unused
unsigned cnt
,
1762 flush_dcache(__unused vm_offset_t addr
,
1763 __unused
unsigned count
,
1771 * Constrain DTrace copyin/copyout actions
1773 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
1774 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
1776 kern_return_t
dtrace_copyio_preflight(__unused addr64_t va
)
1778 thread_t thread
= current_thread();
1781 if (current_map() == kernel_map
)
1782 return KERN_FAILURE
;
1783 else if (((ccr3
= get_cr3_base()) != thread
->map
->pmap
->pm_cr3
) && (no_shared_cr3
== FALSE
))
1784 return KERN_FAILURE
;
1785 else if (no_shared_cr3
&& (ccr3
!= kernel_pmap
->pm_cr3
))
1786 return KERN_FAILURE
;
1787 else if (thread
->machine
.specFlags
& CopyIOActive
)
1788 return KERN_FAILURE
;
1790 return KERN_SUCCESS
;
1793 kern_return_t
dtrace_copyio_postflight(__unused addr64_t va
)
1795 return KERN_SUCCESS
;
1797 #endif /* CONFIG_DTRACE */
1799 #include <mach_vm_debug.h>
1801 #include <vm/vm_debug.h>
1804 pmap_list_resident_pages(
1805 __unused pmap_t pmap
,
1806 __unused vm_offset_t
*listp
,
1811 #endif /* MACH_VM_DEBUG */
1815 /* temporary workaround */
1817 coredumpok(__unused vm_map_t map
, __unused vm_offset_t va
)
1822 ptep
= pmap_pte(map
->pmap
, va
);
1825 return ((*ptep
& (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
)) != (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
));
1833 phys_page_exists(ppnum_t pn
)
1835 assert(pn
!= vm_page_fictitious_addr
);
1837 if (!pmap_initialized
)
1840 if (pn
== vm_page_guard_addr
)
1843 if (!IS_MANAGED_PAGE(ppn_to_pai(pn
)))
1852 pmap_switch(pmap_t tpmap
)
1856 s
= splhigh(); /* Make sure interruptions are disabled */
1857 set_dirbase(tpmap
, current_thread());
1863 * disable no-execute capability on
1864 * the specified pmap
1867 pmap_disable_NX(pmap_t pmap
)
1869 pmap
->nx_enabled
= 0;
1873 pt_fake_zone_init(int zone_index
)
1875 pt_fake_zone_index
= zone_index
;
1881 vm_size_t
*cur_size
,
1882 vm_size_t
*max_size
,
1883 vm_size_t
*elem_size
,
1884 vm_size_t
*alloc_size
,
1890 *count
= inuse_ptepages_count
;
1891 *cur_size
= PAGE_SIZE
* inuse_ptepages_count
;
1892 *max_size
= PAGE_SIZE
* (inuse_ptepages_count
+
1893 vm_page_inactive_count
+
1894 vm_page_active_count
+
1895 vm_page_free_count
);
1896 *elem_size
= PAGE_SIZE
;
1897 *alloc_size
= PAGE_SIZE
;
1898 *sum_size
= alloc_ptepages_count
* PAGE_SIZE
;
1906 pmap_cpuset_NMIPI(cpu_set cpu_mask
) {
1907 unsigned int cpu
, cpu_bit
;
1910 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
1911 if (cpu_mask
& cpu_bit
)
1912 cpu_NMI_interrupt(cpu
);
1914 deadline
= mach_absolute_time() + (LockTimeOut
);
1915 while (mach_absolute_time() < deadline
)
1920 * Called with pmap locked, we:
1921 * - scan through per-cpu data to see which other cpus need to flush
1922 * - send an IPI to each non-idle cpu to be flushed
1923 * - wait for all to signal back that they are inactive or we see that
1924 * they are at a safe point (idle).
1925 * - flush the local tlb if active for this pmap
1926 * - return ... the caller will unlock the pmap
1930 pmap_flush_tlbs(pmap_t pmap
, vm_map_offset_t startv
, vm_map_offset_t endv
)
1933 unsigned int cpu_bit
;
1934 cpu_set cpus_to_signal
;
1935 unsigned int my_cpu
= cpu_number();
1936 pmap_paddr_t pmap_cr3
= pmap
->pm_cr3
;
1937 boolean_t flush_self
= FALSE
;
1939 boolean_t pmap_is_shared
= (pmap
->pm_shared
|| (pmap
== kernel_pmap
));
1941 assert((processor_avail_count
< 2) ||
1942 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
1945 * Scan other cpus for matching active or task CR3.
1946 * For idle cpus (with no active map) we mark them invalid but
1947 * don't signal -- they'll check as they go busy.
1951 if (pmap_pcid_ncpus
) {
1952 pmap_pcid_invalidate_all_cpus(pmap
);
1953 __asm__
volatile("mfence":::"memory");
1956 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
1957 if (!cpu_datap(cpu
)->cpu_running
)
1959 uint64_t cpu_active_cr3
= CPU_GET_ACTIVE_CR3(cpu
);
1960 uint64_t cpu_task_cr3
= CPU_GET_TASK_CR3(cpu
);
1962 if ((pmap_cr3
== cpu_task_cr3
) ||
1963 (pmap_cr3
== cpu_active_cr3
) ||
1965 if (cpu
== my_cpu
) {
1969 if (pmap_pcid_ncpus
&& pmap_is_shared
)
1970 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
1972 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
1973 __asm__
volatile("mfence":::"memory");
1976 * We don't need to signal processors which will flush
1977 * lazily at the idle state or kernel boundary.
1978 * For example, if we're invalidating the kernel pmap,
1979 * processors currently in userspace don't need to flush
1980 * their TLBs until the next time they enter the kernel.
1981 * Alterations to the address space of a task active
1982 * on a remote processor result in a signal, to
1983 * account for copy operations. (There may be room
1984 * for optimization in such cases).
1985 * The order of the loads below with respect
1986 * to the store to the "cpu_tlb_invalid" field above
1987 * is important--hence the barrier.
1989 if (CPU_CR3_IS_ACTIVE(cpu
) &&
1990 (pmap_cr3
== CPU_GET_ACTIVE_CR3(cpu
) ||
1992 (pmap_cr3
== CPU_GET_TASK_CR3(cpu
)))) {
1993 cpus_to_signal
|= cpu_bit
;
1994 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
1999 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_START
,
2000 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2003 * Flush local tlb if required.
2004 * Do this now to overlap with other processors responding.
2007 if (pmap_pcid_ncpus
) {
2008 pmap_pcid_validate_cpu(pmap
, my_cpu
);
2018 if (cpus_to_signal
) {
2019 cpu_set cpus_to_respond
= cpus_to_signal
;
2021 deadline
= mach_absolute_time() + LockTimeOut
;
2023 * Wait for those other cpus to acknowledge
2025 while (cpus_to_respond
!= 0) {
2028 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2029 /* Consider checking local/global invalidity
2030 * as appropriate in the PCID case.
2032 if ((cpus_to_respond
& cpu_bit
) != 0) {
2033 if (!cpu_datap(cpu
)->cpu_running
||
2034 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2035 !CPU_CR3_IS_ACTIVE(cpu
)) {
2036 cpus_to_respond
&= ~cpu_bit
;
2040 if (cpus_to_respond
== 0)
2043 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2044 if (machine_timeout_suspended())
2046 pmap_tlb_flush_timeout
= TRUE
;
2047 orig_acks
= NMIPI_acks
;
2048 pmap_cpuset_NMIPI(cpus_to_respond
);
2050 panic("TLB invalidation IPI timeout: "
2051 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2052 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2057 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_END
,
2058 pmap
, cpus_to_signal
, startv
, endv
, 0);
2062 process_pmap_updates(void)
2064 int ccpu
= cpu_number();
2065 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2066 if (pmap_pcid_ncpus
) {
2067 pmap_pcid_validate_current();
2068 if (cpu_datap(ccpu
)->cpu_tlb_invalid_global
) {
2069 cpu_datap(ccpu
)->cpu_tlb_invalid
= FALSE
;
2073 cpu_datap(ccpu
)->cpu_tlb_invalid_local
= FALSE
;
2078 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
2082 __asm__
volatile("mfence");
2086 pmap_update_interrupt(void)
2088 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_START
,
2091 process_pmap_updates();
2093 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_END
,