]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_subr.c
xnu-1699.24.23.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_subr.c
1 /*
2 * Copyright (c) 2000-2011 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/domain.h>
78 #include <sys/proc.h>
79 #include <sys/kauth.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/protosw.h>
83 #include <sys/random.h>
84 #include <sys/syslog.h>
85 #include <sys/mcache.h>
86 #include <kern/locks.h>
87 #include <kern/zalloc.h>
88
89 #include <net/route.h>
90 #include <net/if.h>
91
92 #define tcp_minmssoverload fring
93 #define _IP_VHL
94 #include <netinet/in.h>
95 #include <netinet/in_systm.h>
96 #include <netinet/ip.h>
97 #include <netinet/ip_icmp.h>
98 #if INET6
99 #include <netinet/ip6.h>
100 #endif
101 #include <netinet/in_pcb.h>
102 #if INET6
103 #include <netinet6/in6_pcb.h>
104 #endif
105 #include <netinet/in_var.h>
106 #include <netinet/ip_var.h>
107 #include <netinet/icmp_var.h>
108 #if INET6
109 #include <netinet6/ip6_var.h>
110 #endif
111 #include <netinet/tcp.h>
112 #include <netinet/tcp_fsm.h>
113 #include <netinet/tcp_seq.h>
114 #include <netinet/tcp_timer.h>
115 #include <netinet/tcp_var.h>
116 #include <netinet/tcp_cc.h>
117 #include <kern/thread_call.h>
118
119 #if INET6
120 #include <netinet6/tcp6_var.h>
121 #endif
122 #include <netinet/tcpip.h>
123 #if TCPDEBUG
124 #include <netinet/tcp_debug.h>
125 #endif
126 #include <netinet6/ip6protosw.h>
127
128 #if IPSEC
129 #include <netinet6/ipsec.h>
130 #if INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #endif /*IPSEC*/
134
135 #undef tcp_minmssoverload
136
137 #if CONFIG_MACF_NET
138 #include <security/mac_framework.h>
139 #endif /* MAC_NET */
140
141 #include <libkern/crypto/md5.h>
142 #include <sys/kdebug.h>
143 #include <mach/sdt.h>
144
145 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
146
147 extern int tcp_lq_overflow;
148
149 /* temporary: for testing */
150 #if IPSEC
151 extern int ipsec_bypass;
152 #endif
153
154 int tcp_mssdflt = TCP_MSS;
155 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
156 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
157
158 #if INET6
159 int tcp_v6mssdflt = TCP6_MSS;
160 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
161 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
162 "Default TCP Maximum Segment Size for IPv6");
163 #endif
164
165 /*
166 * Minimum MSS we accept and use. This prevents DoS attacks where
167 * we are forced to a ridiculous low MSS like 20 and send hundreds
168 * of packets instead of one. The effect scales with the available
169 * bandwidth and quickly saturates the CPU and network interface
170 * with packet generation and sending. Set to zero to disable MINMSS
171 * checking. This setting prevents us from sending too small packets.
172 */
173 int tcp_minmss = TCP_MINMSS;
174 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
175 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
176
177 /*
178 * Number of TCP segments per second we accept from remote host
179 * before we start to calculate average segment size. If average
180 * segment size drops below the minimum TCP MSS we assume a DoS
181 * attack and reset+drop the connection. Care has to be taken not to
182 * set this value too small to not kill interactive type connections
183 * (telnet, SSH) which send many small packets.
184 */
185 #ifdef FIX_WORKAROUND_FOR_3894301
186 __private_extern__ int tcp_minmssoverload = TCP_MINMSSOVERLOAD;
187 #else
188 __private_extern__ int tcp_minmssoverload = 0;
189 #endif
190 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW | CTLFLAG_LOCKED,
191 &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
192 "be under the MINMSS Size");
193
194 static int tcp_do_rfc1323 = 1;
195 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW | CTLFLAG_LOCKED,
196 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
197
198 // Not used
199 static int tcp_do_rfc1644 = 0;
200 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
201 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
202
203 static int do_tcpdrain = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
205 "Enable tcp_drain routine for extra help when low on mbufs");
206
207 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
208 &tcbinfo.ipi_count, 0, "Number of active PCBs");
209
210 static int icmp_may_rst = 1;
211 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
212 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
213
214 static int tcp_strict_rfc1948 = 0;
215 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED,
216 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
217
218 static int tcp_isn_reseed_interval = 0;
219 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW | CTLFLAG_LOCKED,
220 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
221 static int tcp_background_io_enabled = 1;
222 SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_io_enabled, CTLFLAG_RW | CTLFLAG_LOCKED,
223 &tcp_background_io_enabled, 0, "Background IO Enabled");
224
225 int tcp_TCPTV_MIN = 100; /* 100ms minimum RTT */
226 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
227 &tcp_TCPTV_MIN, 0, "min rtt value allowed");
228
229 int tcp_rexmt_slop = TCPTV_REXMTSLOP;
230 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
231 &tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
232
233 __private_extern__ int tcp_use_randomport = 0;
234 SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
235 &tcp_use_randomport, 0, "Randomize TCP port numbers");
236
237 extern struct tcp_cc_algo tcp_cc_newreno;
238 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newreno_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
239 &tcp_cc_newreno.num_sockets, 0, "Number of sockets using newreno");
240
241 extern struct tcp_cc_algo tcp_cc_ledbat;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
243 &tcp_cc_ledbat.num_sockets, 0, "Number of sockets using background transport");
244
245 static void tcp_cleartaocache(void);
246 static void tcp_notify(struct inpcb *, int);
247 static void tcp_cc_init(void);
248
249 struct zone *sack_hole_zone;
250 struct zone *tcp_reass_zone;
251
252 /* The array containing pointers to currently implemented TCP CC algorithms */
253 struct tcp_cc_algo* tcp_cc_algo_list[TCP_CC_ALGO_COUNT];
254
255 extern unsigned int total_mb_cnt;
256 extern unsigned int total_cl_cnt;
257 extern int sbspace_factor;
258 extern int tcp_sockthreshold;
259 extern int slowlink_wsize; /* window correction for slow links */
260 extern int path_mtu_discovery;
261
262
263 /*
264 * Target size of TCP PCB hash tables. Must be a power of two.
265 *
266 * Note that this can be overridden by the kernel environment
267 * variable net.inet.tcp.tcbhashsize
268 */
269 #ifndef TCBHASHSIZE
270 #define TCBHASHSIZE CONFIG_TCBHASHSIZE
271 #endif
272
273 __private_extern__ int tcp_tcbhashsize = TCBHASHSIZE;
274 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
275 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
276
277 /*
278 * This is the actual shape of what we allocate using the zone
279 * allocator. Doing it this way allows us to protect both structures
280 * using the same generation count, and also eliminates the overhead
281 * of allocating tcpcbs separately. By hiding the structure here,
282 * we avoid changing most of the rest of the code (although it needs
283 * to be changed, eventually, for greater efficiency).
284 */
285 #define ALIGNMENT 32
286 struct inp_tp {
287 struct inpcb inp;
288 struct tcpcb tcb __attribute__((aligned(ALIGNMENT)));
289 };
290 #undef ALIGNMENT
291
292 extern struct inpcbhead time_wait_slots[];
293 extern struct tcptimerlist tcp_timer_list;
294
295 int get_inpcb_str_size(void);
296 int get_tcp_str_size(void);
297
298 static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
299
300 static lck_attr_t *tcp_uptime_mtx_attr = NULL; /* mutex attributes */
301 static lck_grp_t *tcp_uptime_mtx_grp = NULL; /* mutex group definition */
302 static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL; /* mutex group attributes */
303
304
305 int get_inpcb_str_size(void)
306 {
307 return sizeof(struct inpcb);
308 }
309
310
311 int get_tcp_str_size(void)
312 {
313 return sizeof(struct tcpcb);
314 }
315
316 int tcp_freeq(struct tcpcb *tp);
317
318 /*
319 * Initialize TCP congestion control algorithms.
320 */
321
322 void
323 tcp_cc_init(void)
324 {
325 bzero(&tcp_cc_algo_list, sizeof(tcp_cc_algo_list));
326 tcp_cc_algo_list[TCP_CC_ALGO_NEWRENO_INDEX] = &tcp_cc_newreno;
327 tcp_cc_algo_list[TCP_CC_ALGO_BACKGROUND_INDEX] = &tcp_cc_ledbat;
328 }
329
330 /*
331 * Tcp initialization
332 */
333 void
334 tcp_init()
335 {
336 vm_size_t str_size;
337 int i;
338 struct inpcbinfo *pcbinfo;
339
340 tcp_ccgen = 1;
341 tcp_cleartaocache();
342
343 tcp_keepinit = TCPTV_KEEP_INIT;
344 tcp_keepidle = TCPTV_KEEP_IDLE;
345 tcp_keepintvl = TCPTV_KEEPINTVL;
346 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
347 tcp_msl = TCPTV_MSL;
348
349 microuptime(&tcp_uptime);
350 read_random(&tcp_now, sizeof(tcp_now));
351 tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
352
353 LIST_INIT(&tcb);
354 tcbinfo.listhead = &tcb;
355 pcbinfo = &tcbinfo;
356 if (!powerof2(tcp_tcbhashsize)) {
357 printf("WARNING: TCB hash size not a power of 2\n");
358 tcp_tcbhashsize = 512; /* safe default */
359 }
360 tcbinfo.hashsize = tcp_tcbhashsize;
361 tcbinfo.hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.hashmask);
362 tcbinfo.porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
363 &tcbinfo.porthashmask);
364 str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
365 tcbinfo.ipi_zone = (void *) zinit(str_size, 120000*str_size, 8192, "tcpcb");
366 zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
367 zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
368
369 str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
370 sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
371 zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
372 zone_change(sack_hole_zone, Z_EXPAND, TRUE);
373
374 tcp_reass_maxseg = nmbclusters / 16;
375 str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
376 tcp_reass_zone = zinit(str_size, (tcp_reass_maxseg + 1) * str_size,
377 0, "tcp_reass_zone");
378 if (tcp_reass_zone == NULL) {
379 panic("%s: failed allocating tcp_reass_zone", __func__);
380 /* NOTREACHED */
381 }
382 zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
383 zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
384
385 #if INET6
386 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
387 #else /* INET6 */
388 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
389 #endif /* INET6 */
390 if (max_protohdr < TCP_MINPROTOHDR)
391 max_protohdr = TCP_MINPROTOHDR;
392 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
393 panic("tcp_init");
394 #undef TCP_MINPROTOHDR
395
396 /*
397 * allocate lock group attribute and group for tcp pcb mutexes
398 */
399 pcbinfo->mtx_grp_attr = lck_grp_attr_alloc_init();
400 pcbinfo->mtx_grp = lck_grp_alloc_init("tcppcb", pcbinfo->mtx_grp_attr);
401
402 /*
403 * allocate the lock attribute for tcp pcb mutexes
404 */
405 pcbinfo->mtx_attr = lck_attr_alloc_init();
406
407 if ((pcbinfo->mtx = lck_rw_alloc_init(pcbinfo->mtx_grp, pcbinfo->mtx_attr)) == NULL) {
408 printf("tcp_init: mutex not alloced!\n");
409 return; /* pretty much dead if this fails... */
410 }
411
412 for (i=0; i < N_TIME_WAIT_SLOTS; i++) {
413 LIST_INIT(&time_wait_slots[i]);
414 }
415
416 bzero(&tcp_timer_list, sizeof(tcp_timer_list));
417 LIST_INIT(&tcp_timer_list.lhead);
418 /*
419 * allocate lock group attribute, group and attribute for the tcp timer list
420 */
421 tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
422 tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
423 tcp_timer_list.mtx_attr = lck_attr_alloc_init();
424 if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
425 panic("failed to allocate memory for tcp_timer_list.mtx\n");
426 };
427 tcp_timer_list.fast_quantum = TCP_FASTTIMER_QUANTUM;
428 tcp_timer_list.slow_quantum = TCP_SLOWTIMER_QUANTUM;
429 if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
430 panic("failed to allocate call entry 1 in tcp_init\n");
431 }
432
433 /*
434 * allocate lock group attribute, group and attribute for tcp_uptime_lock
435 */
436 tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
437 tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
438 tcp_uptime_mtx_attr = lck_attr_alloc_init();
439 tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
440
441 /* Initialize TCP congestion control algorithms list */
442 tcp_cc_init();
443 }
444
445 /*
446 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
447 * tcp_template used to store this data in mbufs, but we now recopy it out
448 * of the tcpcb each time to conserve mbufs.
449 */
450 void
451 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
452 struct tcpcb *tp;
453 void *ip_ptr;
454 void *tcp_ptr;
455 {
456 struct inpcb *inp = tp->t_inpcb;
457 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
458
459 #if INET6
460 if ((inp->inp_vflag & INP_IPV6) != 0) {
461 struct ip6_hdr *ip6;
462
463 ip6 = (struct ip6_hdr *)ip_ptr;
464 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
465 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
466 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
467 (IPV6_VERSION & IPV6_VERSION_MASK);
468 ip6->ip6_nxt = IPPROTO_TCP;
469 ip6->ip6_plen = sizeof(struct tcphdr);
470 ip6->ip6_src = inp->in6p_laddr;
471 ip6->ip6_dst = inp->in6p_faddr;
472 tcp_hdr->th_sum = in6_cksum_phdr(&inp->in6p_laddr,
473 &inp->in6p_faddr, htonl(sizeof(struct tcphdr)),
474 htonl(IPPROTO_TCP));
475 } else
476 #endif
477 {
478 struct ip *ip = (struct ip *) ip_ptr;
479
480 ip->ip_vhl = IP_VHL_BORING;
481 ip->ip_tos = 0;
482 ip->ip_len = 0;
483 ip->ip_id = 0;
484 ip->ip_off = 0;
485 ip->ip_ttl = 0;
486 ip->ip_sum = 0;
487 ip->ip_p = IPPROTO_TCP;
488 ip->ip_src = inp->inp_laddr;
489 ip->ip_dst = inp->inp_faddr;
490 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
491 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
492 }
493
494 tcp_hdr->th_sport = inp->inp_lport;
495 tcp_hdr->th_dport = inp->inp_fport;
496 tcp_hdr->th_seq = 0;
497 tcp_hdr->th_ack = 0;
498 tcp_hdr->th_x2 = 0;
499 tcp_hdr->th_off = 5;
500 tcp_hdr->th_flags = 0;
501 tcp_hdr->th_win = 0;
502 tcp_hdr->th_urp = 0;
503 }
504
505 /*
506 * Create template to be used to send tcp packets on a connection.
507 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
508 * use for this function is in keepalives, which use tcp_respond.
509 */
510 struct tcptemp *
511 tcp_maketemplate(tp)
512 struct tcpcb *tp;
513 {
514 struct mbuf *m;
515 struct tcptemp *n;
516
517 m = m_get(M_DONTWAIT, MT_HEADER);
518 if (m == NULL)
519 return (0);
520 m->m_len = sizeof(struct tcptemp);
521 n = mtod(m, struct tcptemp *);
522
523 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
524 return (n);
525 }
526
527 /*
528 * Send a single message to the TCP at address specified by
529 * the given TCP/IP header. If m == 0, then we make a copy
530 * of the tcpiphdr at ti and send directly to the addressed host.
531 * This is used to force keep alive messages out using the TCP
532 * template for a connection. If flags are given then we send
533 * a message back to the TCP which originated the * segment ti,
534 * and discard the mbuf containing it and any other attached mbufs.
535 *
536 * In any case the ack and sequence number of the transmitted
537 * segment are as specified by the parameters.
538 *
539 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
540 */
541 void
542 tcp_respond(
543 struct tcpcb *tp,
544 void *ipgen,
545 register struct tcphdr *th,
546 register struct mbuf *m,
547 tcp_seq ack,
548 tcp_seq seq,
549 int flags,
550 unsigned int ifscope,
551 unsigned int nocell
552 )
553 {
554 register int tlen;
555 int win = 0;
556 struct route *ro = 0;
557 struct route sro;
558 struct ip *ip;
559 struct tcphdr *nth;
560 #if INET6
561 struct route_in6 *ro6 = 0;
562 struct route_in6 sro6;
563 struct ip6_hdr *ip6;
564 int isipv6;
565 #endif /* INET6 */
566 unsigned int outif;
567
568 #if INET6
569 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
570 ip6 = ipgen;
571 #endif /* INET6 */
572 ip = ipgen;
573
574 if (tp) {
575 if (!(flags & TH_RST)) {
576 win = tcp_sbspace(tp);
577 if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
578 win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
579 }
580 #if INET6
581 if (isipv6)
582 ro6 = &tp->t_inpcb->in6p_route;
583 else
584 #endif /* INET6 */
585 ro = &tp->t_inpcb->inp_route;
586 } else {
587 #if INET6
588 if (isipv6) {
589 ro6 = &sro6;
590 bzero(ro6, sizeof *ro6);
591 } else
592 #endif /* INET6 */
593 {
594 ro = &sro;
595 bzero(ro, sizeof *ro);
596 }
597 }
598 if (m == 0) {
599 m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */
600 if (m == NULL)
601 return;
602 tlen = 0;
603 m->m_data += max_linkhdr;
604 #if INET6
605 if (isipv6) {
606 bcopy((caddr_t)ip6, mtod(m, caddr_t),
607 sizeof(struct ip6_hdr));
608 ip6 = mtod(m, struct ip6_hdr *);
609 nth = (struct tcphdr *)(ip6 + 1);
610 } else
611 #endif /* INET6 */
612 {
613 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
614 ip = mtod(m, struct ip *);
615 nth = (struct tcphdr *)(ip + 1);
616 }
617 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
618 flags = TH_ACK;
619 } else {
620 m_freem(m->m_next);
621 m->m_next = 0;
622 m->m_data = (caddr_t)ipgen;
623 /* m_len is set later */
624 tlen = 0;
625 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
626 #if INET6
627 if (isipv6) {
628 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
629 nth = (struct tcphdr *)(ip6 + 1);
630 } else
631 #endif /* INET6 */
632 {
633 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
634 nth = (struct tcphdr *)(ip + 1);
635 }
636 if (th != nth) {
637 /*
638 * this is usually a case when an extension header
639 * exists between the IPv6 header and the
640 * TCP header.
641 */
642 nth->th_sport = th->th_sport;
643 nth->th_dport = th->th_dport;
644 }
645 xchg(nth->th_dport, nth->th_sport, n_short);
646 #undef xchg
647 }
648 #if INET6
649 if (isipv6) {
650 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
651 tlen));
652 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
653 } else
654 #endif
655 {
656 tlen += sizeof (struct tcpiphdr);
657 ip->ip_len = tlen;
658 ip->ip_ttl = ip_defttl;
659 }
660 m->m_len = tlen;
661 m->m_pkthdr.len = tlen;
662 m->m_pkthdr.rcvif = 0;
663 #if CONFIG_MACF_NET
664 if (tp != NULL && tp->t_inpcb != NULL) {
665 /*
666 * Packet is associated with a socket, so allow the
667 * label of the response to reflect the socket label.
668 */
669 mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
670 } else {
671 /*
672 * Packet is not associated with a socket, so possibly
673 * update the label in place.
674 */
675 mac_netinet_tcp_reply(m);
676 }
677 #endif
678
679 nth->th_seq = htonl(seq);
680 nth->th_ack = htonl(ack);
681 nth->th_x2 = 0;
682 nth->th_off = sizeof (struct tcphdr) >> 2;
683 nth->th_flags = flags;
684 if (tp)
685 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
686 else
687 nth->th_win = htons((u_short)win);
688 nth->th_urp = 0;
689 #if INET6
690 if (isipv6) {
691 nth->th_sum = 0;
692 nth->th_sum = in6_cksum_phdr(&ip6->ip6_src,
693 &ip6->ip6_dst, htons((u_short)(tlen - sizeof(struct ip6_hdr))),
694 htonl(IPPROTO_TCP));
695 m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
696 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
697 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
698 ro6 && ro6->ro_rt ?
699 ro6->ro_rt->rt_ifp :
700 NULL);
701 } else
702 #endif /* INET6 */
703 {
704 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
705 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
706 m->m_pkthdr.csum_flags = CSUM_TCP;
707 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
708 }
709 #if TCPDEBUG
710 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
711 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
712 #endif
713 #if IPSEC
714 if (ipsec_bypass == 0 && ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
715 m_freem(m);
716 return;
717 }
718 #endif
719
720 if (tp != NULL)
721 set_packet_tclass(m, tp->t_inpcb->inp_socket, MBUF_TC_UNSPEC, isipv6);
722
723 #if INET6
724 if (isipv6) {
725 struct ip6_out_args ip6oa = { ifscope, nocell };
726
727 (void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
728 NULL, &ip6oa);
729 if (ro6->ro_rt != NULL) {
730 if (ro6 == &sro6) {
731 rtfree(ro6->ro_rt);
732 ro6->ro_rt = NULL;
733 } else if ((outif = ro6->ro_rt->rt_ifp->if_index) !=
734 tp->t_inpcb->in6p_last_outif) {
735 tp->t_inpcb->in6p_last_outif = outif;
736 }
737 }
738 } else
739 #endif /* INET6 */
740 {
741 struct ip_out_args ipoa = { ifscope, nocell };
742
743 if (ro != &sro) {
744 /* Copy the cached route and take an extra reference */
745 inp_route_copyout(tp->t_inpcb, &sro);
746 }
747 /*
748 * For consistency, pass a local route copy.
749 */
750 (void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
751
752 if (ro != &sro) {
753 if (sro.ro_rt != NULL &&
754 (outif = sro.ro_rt->rt_ifp->if_index) !=
755 tp->t_inpcb->inp_last_outif)
756 tp->t_inpcb->inp_last_outif = outif;
757 /* Synchronize cached PCB route */
758 inp_route_copyin(tp->t_inpcb, &sro);
759 } else if (sro.ro_rt != NULL) {
760 rtfree(sro.ro_rt);
761 }
762 }
763 }
764
765 /*
766 * Create a new TCP control block, making an
767 * empty reassembly queue and hooking it to the argument
768 * protocol control block. The `inp' parameter must have
769 * come from the zone allocator set up in tcp_init().
770 */
771 struct tcpcb *
772 tcp_newtcpcb(inp)
773 struct inpcb *inp;
774 {
775 struct inp_tp *it;
776 register struct tcpcb *tp;
777 register struct socket *so = inp->inp_socket;
778 #if INET6
779 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
780 #endif /* INET6 */
781
782 calculate_tcp_clock();
783
784 if (so->cached_in_sock_layer == 0) {
785 it = (struct inp_tp *)inp;
786 tp = &it->tcb;
787 }
788 else
789 tp = (struct tcpcb *) inp->inp_saved_ppcb;
790
791 bzero((char *) tp, sizeof(struct tcpcb));
792 LIST_INIT(&tp->t_segq);
793 tp->t_maxseg = tp->t_maxopd =
794 #if INET6
795 isipv6 ? tcp_v6mssdflt :
796 #endif /* INET6 */
797 tcp_mssdflt;
798
799 if (tcp_do_rfc1323)
800 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
801 tp->sack_enable = tcp_do_sack;
802 TAILQ_INIT(&tp->snd_holes);
803 tp->t_inpcb = inp; /* XXX */
804 /*
805 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
806 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
807 * reasonable initial retransmit time.
808 */
809 tp->t_srtt = TCPTV_SRTTBASE;
810 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
811 tp->t_rttmin = tcp_TCPTV_MIN;
812 tp->t_rxtcur = TCPTV_RTOBASE;
813
814 /* Initialize congestion control algorithm for this connection
815 * to newreno by default
816 */
817 tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
818 if (CC_ALGO(tp)->init != NULL) {
819 CC_ALGO(tp)->init(tp);
820 }
821
822 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
823 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
824 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
825 tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
826 tp->t_rcvtime = tcp_now;
827 tp->t_bw_rtttime = 0;
828 tp->tentry.timer_start = tcp_now;
829 tp->t_persist_timeout = tcp_max_persist_timeout;
830 tp->t_persist_stop = 0;
831 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
832 /*
833 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
834 * because the socket may be bound to an IPv6 wildcard address,
835 * which may match an IPv4-mapped IPv6 address.
836 */
837 inp->inp_ip_ttl = ip_defttl;
838 inp->inp_ppcb = (caddr_t)tp;
839 return (tp); /* XXX */
840 }
841
842 /*
843 * Drop a TCP connection, reporting
844 * the specified error. If connection is synchronized,
845 * then send a RST to peer.
846 */
847 struct tcpcb *
848 tcp_drop(tp, errno)
849 register struct tcpcb *tp;
850 int errno;
851 {
852 struct socket *so = tp->t_inpcb->inp_socket;
853 #if CONFIG_DTRACE
854 struct inpcb *inp = tp->t_inpcb;
855 #endif /* CONFIG_DTRACE */
856
857 if (TCPS_HAVERCVDSYN(tp->t_state)) {
858 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
859 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
860 tp->t_state = TCPS_CLOSED;
861 (void) tcp_output(tp);
862 tcpstat.tcps_drops++;
863 } else
864 tcpstat.tcps_conndrops++;
865 if (errno == ETIMEDOUT && tp->t_softerror)
866 errno = tp->t_softerror;
867 so->so_error = errno;
868 return (tcp_close(tp));
869 }
870
871 /*
872 * Close a TCP control block:
873 * discard all space held by the tcp
874 * discard internet protocol block
875 * wake up any sleepers
876 */
877 struct tcpcb *
878 tcp_close(tp)
879 register struct tcpcb *tp;
880 {
881 struct inpcb *inp = tp->t_inpcb;
882 struct socket *so = inp->inp_socket;
883 #if INET6
884 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
885 #endif /* INET6 */
886 struct rtentry *rt;
887 int dosavessthresh;
888
889 if ( inp->inp_ppcb == NULL) /* tcp_close was called previously, bail */
890 return(NULL);
891
892 tcp_canceltimers(tp);
893 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
894
895 /*
896 * If another thread for this tcp is currently in ip (indicated by
897 * the TF_SENDINPROG flag), defer the cleanup until after it returns
898 * back to tcp. This is done to serialize the close until after all
899 * pending output is finished, in order to avoid having the PCB be
900 * detached and the cached route cleaned, only for ip to cache the
901 * route back into the PCB again. Note that we've cleared all the
902 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
903 * that is should call us again once it returns from ip; at that
904 * point both flags should be cleared and we can proceed further
905 * with the cleanup.
906 */
907 if (tp->t_flags & (TF_CLOSING|TF_SENDINPROG)) {
908 tp->t_flags |= TF_CLOSING;
909 return (NULL);
910 }
911
912 if (CC_ALGO(tp)->cleanup != NULL) {
913 CC_ALGO(tp)->cleanup(tp);
914 }
915
916 #if INET6
917 rt = isipv6 ? inp->in6p_route.ro_rt : inp->inp_route.ro_rt;
918 #else
919 rt = inp->inp_route.ro_rt;
920 #endif
921 if (rt != NULL)
922 RT_LOCK_SPIN(rt);
923
924 /*
925 * If we got enough samples through the srtt filter,
926 * save the rtt and rttvar in the routing entry.
927 * 'Enough' is arbitrarily defined as the 16 samples.
928 * 16 samples is enough for the srtt filter to converge
929 * to within 5% of the correct value; fewer samples and
930 * we could save a very bogus rtt.
931 *
932 * Don't update the default route's characteristics and don't
933 * update anything that the user "locked".
934 */
935 if (tp->t_rttupdated >= 16) {
936 register u_int32_t i = 0;
937
938 #if INET6
939 if (isipv6) {
940 struct sockaddr_in6 *sin6;
941
942 if (rt == NULL)
943 goto no_valid_rt;
944 sin6 = (struct sockaddr_in6 *)rt_key(rt);
945 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
946 goto no_valid_rt;
947 }
948 else
949 #endif /* INET6 */
950 if (rt == NULL || !(rt->rt_flags & RTF_UP) ||
951 ((struct sockaddr_in *)rt_key(rt))->sin_addr.s_addr ==
952 INADDR_ANY || rt->generation_id != route_generation) {
953 if (tp->t_state >= TCPS_CLOSE_WAIT) {
954 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
955 struct tcpcb *, tp, int32_t, TCPS_CLOSING);
956 tp->t_state = TCPS_CLOSING;
957 }
958 goto no_valid_rt;
959 }
960
961 RT_LOCK_ASSERT_HELD(rt);
962 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
963 i = tp->t_srtt *
964 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
965 if (rt->rt_rmx.rmx_rtt && i)
966 /*
967 * filter this update to half the old & half
968 * the new values, converting scale.
969 * See route.h and tcp_var.h for a
970 * description of the scaling constants.
971 */
972 rt->rt_rmx.rmx_rtt =
973 (rt->rt_rmx.rmx_rtt + i) / 2;
974 else
975 rt->rt_rmx.rmx_rtt = i;
976 tcpstat.tcps_cachedrtt++;
977 }
978 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
979 i = tp->t_rttvar *
980 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
981 if (rt->rt_rmx.rmx_rttvar && i)
982 rt->rt_rmx.rmx_rttvar =
983 (rt->rt_rmx.rmx_rttvar + i) / 2;
984 else
985 rt->rt_rmx.rmx_rttvar = i;
986 tcpstat.tcps_cachedrttvar++;
987 }
988 /*
989 * The old comment here said:
990 * update the pipelimit (ssthresh) if it has been updated
991 * already or if a pipesize was specified & the threshhold
992 * got below half the pipesize. I.e., wait for bad news
993 * before we start updating, then update on both good
994 * and bad news.
995 *
996 * But we want to save the ssthresh even if no pipesize is
997 * specified explicitly in the route, because such
998 * connections still have an implicit pipesize specified
999 * by the global tcp_sendspace. In the absence of a reliable
1000 * way to calculate the pipesize, it will have to do.
1001 */
1002 i = tp->snd_ssthresh;
1003 if (rt->rt_rmx.rmx_sendpipe != 0)
1004 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1005 else
1006 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1007 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1008 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1009 || dosavessthresh) {
1010 /*
1011 * convert the limit from user data bytes to
1012 * packets then to packet data bytes.
1013 */
1014 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1015 if (i < 2)
1016 i = 2;
1017 i *= (u_int32_t)(tp->t_maxseg +
1018 #if INET6
1019 (isipv6 ? sizeof (struct ip6_hdr) +
1020 sizeof (struct tcphdr) :
1021 #endif
1022 sizeof (struct tcpiphdr)
1023 #if INET6
1024 )
1025 #endif
1026 );
1027 if (rt->rt_rmx.rmx_ssthresh)
1028 rt->rt_rmx.rmx_ssthresh =
1029 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1030 else
1031 rt->rt_rmx.rmx_ssthresh = i;
1032 tcpstat.tcps_cachedssthresh++;
1033 }
1034 }
1035
1036 /*
1037 * Mark route for deletion if no information is cached.
1038 */
1039 if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1040 if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1041 rt->rt_rmx.rmx_rtt == 0) {
1042 rt->rt_flags |= RTF_DELCLONE;
1043 }
1044 }
1045
1046 no_valid_rt:
1047 if (rt != NULL)
1048 RT_UNLOCK(rt);
1049
1050 /* free the reassembly queue, if any */
1051 (void) tcp_freeq(tp);
1052
1053 tcp_free_sackholes(tp);
1054
1055 /* Free the packet list */
1056 if (tp->t_pktlist_head != NULL)
1057 m_freem_list(tp->t_pktlist_head);
1058 TCP_PKTLIST_CLEAR(tp);
1059
1060 #ifdef __APPLE__
1061 if (so->cached_in_sock_layer)
1062 inp->inp_saved_ppcb = (caddr_t) tp;
1063 #endif
1064 /* Issue a wakeup before detach so that we don't miss
1065 * a wakeup
1066 */
1067 sodisconnectwakeup(so);
1068
1069 #if INET6
1070 if (INP_CHECK_SOCKAF(so, AF_INET6))
1071 in6_pcbdetach(inp);
1072 else
1073 #endif /* INET6 */
1074 in_pcbdetach(inp);
1075
1076 /* Call soisdisconnected after detach because it might unlock the socket */
1077 soisdisconnected(so);
1078 tcpstat.tcps_closed++;
1079 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, tcpstat.tcps_closed,0,0,0,0);
1080 return(NULL);
1081 }
1082
1083 int
1084 tcp_freeq(tp)
1085 struct tcpcb *tp;
1086 {
1087
1088 register struct tseg_qent *q;
1089 int rv = 0;
1090
1091 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1092 LIST_REMOVE(q, tqe_q);
1093 m_freem(q->tqe_m);
1094 zfree(tcp_reass_zone, q);
1095 tcp_reass_qsize--;
1096 rv = 1;
1097 }
1098 return (rv);
1099 }
1100
1101 void
1102 tcp_drain()
1103 {
1104 if (do_tcpdrain)
1105 {
1106 struct inpcb *inpb;
1107 struct tcpcb *tcpb;
1108 struct tseg_qent *te;
1109
1110 /*
1111 * Walk the tcpbs, if existing, and flush the reassembly queue,
1112 * if there is one...
1113 * XXX: The "Net/3" implementation doesn't imply that the TCP
1114 * reassembly queue should be flushed, but in a situation
1115 * where we're really low on mbufs, this is potentially
1116 * usefull.
1117 */
1118 if (!lck_rw_try_lock_exclusive(tcbinfo.mtx)) /* do it next time if the lock is in use */
1119 return;
1120
1121 for (inpb = LIST_FIRST(tcbinfo.listhead); inpb;
1122 inpb = LIST_NEXT(inpb, inp_list)) {
1123 if ((tcpb = intotcpcb(inpb))) {
1124 while ((te = LIST_FIRST(&tcpb->t_segq))
1125 != NULL) {
1126 LIST_REMOVE(te, tqe_q);
1127 m_freem(te->tqe_m);
1128 zfree(tcp_reass_zone, te);
1129 tcp_reass_qsize--;
1130 }
1131 }
1132 }
1133 lck_rw_done(tcbinfo.mtx);
1134
1135 }
1136 }
1137
1138 /*
1139 * Notify a tcp user of an asynchronous error;
1140 * store error as soft error, but wake up user
1141 * (for now, won't do anything until can select for soft error).
1142 *
1143 * Do not wake up user since there currently is no mechanism for
1144 * reporting soft errors (yet - a kqueue filter may be added).
1145 */
1146 static void
1147 tcp_notify(inp, error)
1148 struct inpcb *inp;
1149 int error;
1150 {
1151 struct tcpcb *tp;
1152
1153 if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1154 return; /* pcb is gone already */
1155
1156 tp = (struct tcpcb *)inp->inp_ppcb;
1157
1158 /*
1159 * Ignore some errors if we are hooked up.
1160 * If connection hasn't completed, has retransmitted several times,
1161 * and receives a second error, give up now. This is better
1162 * than waiting a long time to establish a connection that
1163 * can never complete.
1164 */
1165 if (tp->t_state == TCPS_ESTABLISHED &&
1166 (error == EHOSTUNREACH || error == ENETUNREACH ||
1167 error == EHOSTDOWN)) {
1168 return;
1169 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1170 tp->t_softerror)
1171 tcp_drop(tp, error);
1172 else
1173 tp->t_softerror = error;
1174 #if 0
1175 wakeup((caddr_t) &so->so_timeo);
1176 sorwakeup(so);
1177 sowwakeup(so);
1178 #endif
1179 }
1180
1181 /*
1182 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1183 * The otcpcb data structure is passed to user space and must not change.
1184 */
1185 static void
1186 tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1187 {
1188 int i;
1189
1190 otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1191 otp->t_dupacks = tp->t_dupacks;
1192 for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1193 otp->t_timer[i] = tp->t_timer[i];
1194 otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))(uintptr_t)tp->t_inpcb;
1195 otp->t_state = tp->t_state;
1196 otp->t_flags = tp->t_flags;
1197 otp->t_force = tp->t_force;
1198 otp->snd_una = tp->snd_una;
1199 otp->snd_max = tp->snd_max;
1200 otp->snd_nxt = tp->snd_nxt;
1201 otp->snd_up = tp->snd_up;
1202 otp->snd_wl1 = tp->snd_wl1;
1203 otp->snd_wl2 = tp->snd_wl2;
1204 otp->iss = tp->iss;
1205 otp->irs = tp->irs;
1206 otp->rcv_nxt = tp->rcv_nxt;
1207 otp->rcv_adv = tp->rcv_adv;
1208 otp->rcv_wnd = tp->rcv_wnd;
1209 otp->rcv_up = tp->rcv_up;
1210 otp->snd_wnd = tp->snd_wnd;
1211 otp->snd_cwnd = tp->snd_cwnd;
1212 otp->snd_ssthresh = tp->snd_ssthresh;
1213 otp->t_maxopd = tp->t_maxopd;
1214 otp->t_rcvtime = tp->t_rcvtime;
1215 otp->t_starttime = tp->t_starttime;
1216 otp->t_rtttime = tp->t_rtttime;
1217 otp->t_rtseq = tp->t_rtseq;
1218 otp->t_rxtcur = tp->t_rxtcur;
1219 otp->t_maxseg = tp->t_maxseg;
1220 otp->t_srtt = tp->t_srtt;
1221 otp->t_rttvar = tp->t_rttvar;
1222 otp->t_rxtshift = tp->t_rxtshift;
1223 otp->t_rttmin = tp->t_rttmin;
1224 otp->t_rttupdated = tp->t_rttupdated;
1225 otp->max_sndwnd = tp->max_sndwnd;
1226 otp->t_softerror = tp->t_softerror;
1227 otp->t_oobflags = tp->t_oobflags;
1228 otp->t_iobc = tp->t_iobc;
1229 otp->snd_scale = tp->snd_scale;
1230 otp->rcv_scale = tp->rcv_scale;
1231 otp->request_r_scale = tp->request_r_scale;
1232 otp->requested_s_scale = tp->requested_s_scale;
1233 otp->ts_recent = tp->ts_recent;
1234 otp->ts_recent_age = tp->ts_recent_age;
1235 otp->last_ack_sent = tp->last_ack_sent;
1236 otp->cc_send = tp->cc_send;
1237 otp->cc_recv = tp->cc_recv;
1238 otp->snd_recover = tp->snd_recover;
1239 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1240 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1241 otp->t_badrxtwin = tp->t_badrxtwin;
1242 }
1243
1244 static int
1245 tcp_pcblist SYSCTL_HANDLER_ARGS
1246 {
1247 #pragma unused(oidp, arg1, arg2)
1248 int error, i, n;
1249 struct inpcb *inp, **inp_list;
1250 inp_gen_t gencnt;
1251 struct xinpgen xig;
1252 int slot;
1253
1254 /*
1255 * The process of preparing the TCB list is too time-consuming and
1256 * resource-intensive to repeat twice on every request.
1257 */
1258 lck_rw_lock_shared(tcbinfo.mtx);
1259 if (req->oldptr == USER_ADDR_NULL) {
1260 n = tcbinfo.ipi_count;
1261 req->oldidx = 2 * (sizeof xig)
1262 + (n + n/8) * sizeof(struct xtcpcb);
1263 lck_rw_done(tcbinfo.mtx);
1264 return 0;
1265 }
1266
1267 if (req->newptr != USER_ADDR_NULL) {
1268 lck_rw_done(tcbinfo.mtx);
1269 return EPERM;
1270 }
1271
1272 /*
1273 * OK, now we're committed to doing something.
1274 */
1275 gencnt = tcbinfo.ipi_gencnt;
1276 n = tcbinfo.ipi_count;
1277
1278 bzero(&xig, sizeof(xig));
1279 xig.xig_len = sizeof xig;
1280 xig.xig_count = n;
1281 xig.xig_gen = gencnt;
1282 xig.xig_sogen = so_gencnt;
1283 error = SYSCTL_OUT(req, &xig, sizeof xig);
1284 if (error) {
1285 lck_rw_done(tcbinfo.mtx);
1286 return error;
1287 }
1288 /*
1289 * We are done if there is no pcb
1290 */
1291 if (n == 0) {
1292 lck_rw_done(tcbinfo.mtx);
1293 return 0;
1294 }
1295
1296 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1297 if (inp_list == 0) {
1298 lck_rw_done(tcbinfo.mtx);
1299 return ENOMEM;
1300 }
1301
1302 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
1303 inp = LIST_NEXT(inp, inp_list)) {
1304 #ifdef __APPLE__
1305 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1306 #else
1307 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
1308 #endif
1309 inp_list[i++] = inp;
1310 }
1311
1312 for (slot = 0; slot < N_TIME_WAIT_SLOTS; slot++) {
1313 struct inpcb *inpnxt;
1314
1315 for (inp = time_wait_slots[slot].lh_first; inp && i < n; inp = inpnxt) {
1316 inpnxt = inp->inp_list.le_next;
1317 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1318 inp_list[i++] = inp;
1319 }
1320 }
1321
1322 n = i;
1323
1324 error = 0;
1325 for (i = 0; i < n; i++) {
1326 inp = inp_list[i];
1327 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1328 struct xtcpcb xt;
1329 caddr_t inp_ppcb;
1330
1331 bzero(&xt, sizeof(xt));
1332 xt.xt_len = sizeof xt;
1333 /* XXX should avoid extra copy */
1334 inpcb_to_compat(inp, &xt.xt_inp);
1335 inp_ppcb = inp->inp_ppcb;
1336 if (inp_ppcb != NULL) {
1337 tcpcb_to_otcpcb((struct tcpcb *)inp_ppcb,
1338 &xt.xt_tp);
1339 } else {
1340 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1341 }
1342 if (inp->inp_socket)
1343 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1344 error = SYSCTL_OUT(req, &xt, sizeof xt);
1345 }
1346 }
1347 if (!error) {
1348 /*
1349 * Give the user an updated idea of our state.
1350 * If the generation differs from what we told
1351 * her before, she knows that something happened
1352 * while we were processing this request, and it
1353 * might be necessary to retry.
1354 */
1355 bzero(&xig, sizeof(xig));
1356 xig.xig_len = sizeof xig;
1357 xig.xig_gen = tcbinfo.ipi_gencnt;
1358 xig.xig_sogen = so_gencnt;
1359 xig.xig_count = tcbinfo.ipi_count;
1360 error = SYSCTL_OUT(req, &xig, sizeof xig);
1361 }
1362 FREE(inp_list, M_TEMP);
1363 lck_rw_done(tcbinfo.mtx);
1364 return error;
1365 }
1366
1367 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1368 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1369
1370 #if !CONFIG_EMBEDDED
1371
1372 static void
1373 tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1374 {
1375 int i;
1376
1377 otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1378 otp->t_dupacks = tp->t_dupacks;
1379 for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1380 otp->t_timer[i] = tp->t_timer[i];
1381 otp->t_state = tp->t_state;
1382 otp->t_flags = tp->t_flags;
1383 otp->t_force = tp->t_force;
1384 otp->snd_una = tp->snd_una;
1385 otp->snd_max = tp->snd_max;
1386 otp->snd_nxt = tp->snd_nxt;
1387 otp->snd_up = tp->snd_up;
1388 otp->snd_wl1 = tp->snd_wl1;
1389 otp->snd_wl2 = tp->snd_wl2;
1390 otp->iss = tp->iss;
1391 otp->irs = tp->irs;
1392 otp->rcv_nxt = tp->rcv_nxt;
1393 otp->rcv_adv = tp->rcv_adv;
1394 otp->rcv_wnd = tp->rcv_wnd;
1395 otp->rcv_up = tp->rcv_up;
1396 otp->snd_wnd = tp->snd_wnd;
1397 otp->snd_cwnd = tp->snd_cwnd;
1398 otp->snd_ssthresh = tp->snd_ssthresh;
1399 otp->t_maxopd = tp->t_maxopd;
1400 otp->t_rcvtime = tp->t_rcvtime;
1401 otp->t_starttime = tp->t_starttime;
1402 otp->t_rtttime = tp->t_rtttime;
1403 otp->t_rtseq = tp->t_rtseq;
1404 otp->t_rxtcur = tp->t_rxtcur;
1405 otp->t_maxseg = tp->t_maxseg;
1406 otp->t_srtt = tp->t_srtt;
1407 otp->t_rttvar = tp->t_rttvar;
1408 otp->t_rxtshift = tp->t_rxtshift;
1409 otp->t_rttmin = tp->t_rttmin;
1410 otp->t_rttupdated = tp->t_rttupdated;
1411 otp->max_sndwnd = tp->max_sndwnd;
1412 otp->t_softerror = tp->t_softerror;
1413 otp->t_oobflags = tp->t_oobflags;
1414 otp->t_iobc = tp->t_iobc;
1415 otp->snd_scale = tp->snd_scale;
1416 otp->rcv_scale = tp->rcv_scale;
1417 otp->request_r_scale = tp->request_r_scale;
1418 otp->requested_s_scale = tp->requested_s_scale;
1419 otp->ts_recent = tp->ts_recent;
1420 otp->ts_recent_age = tp->ts_recent_age;
1421 otp->last_ack_sent = tp->last_ack_sent;
1422 otp->cc_send = tp->cc_send;
1423 otp->cc_recv = tp->cc_recv;
1424 otp->snd_recover = tp->snd_recover;
1425 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1426 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1427 otp->t_badrxtwin = tp->t_badrxtwin;
1428 }
1429
1430
1431 static int
1432 tcp_pcblist64 SYSCTL_HANDLER_ARGS
1433 {
1434 #pragma unused(oidp, arg1, arg2)
1435 int error, i, n;
1436 struct inpcb *inp, **inp_list;
1437 inp_gen_t gencnt;
1438 struct xinpgen xig;
1439 int slot;
1440
1441 /*
1442 * The process of preparing the TCB list is too time-consuming and
1443 * resource-intensive to repeat twice on every request.
1444 */
1445 lck_rw_lock_shared(tcbinfo.mtx);
1446 if (req->oldptr == USER_ADDR_NULL) {
1447 n = tcbinfo.ipi_count;
1448 req->oldidx = 2 * (sizeof xig)
1449 + (n + n/8) * sizeof(struct xtcpcb64);
1450 lck_rw_done(tcbinfo.mtx);
1451 return 0;
1452 }
1453
1454 if (req->newptr != USER_ADDR_NULL) {
1455 lck_rw_done(tcbinfo.mtx);
1456 return EPERM;
1457 }
1458
1459 /*
1460 * OK, now we're committed to doing something.
1461 */
1462 gencnt = tcbinfo.ipi_gencnt;
1463 n = tcbinfo.ipi_count;
1464
1465 bzero(&xig, sizeof(xig));
1466 xig.xig_len = sizeof xig;
1467 xig.xig_count = n;
1468 xig.xig_gen = gencnt;
1469 xig.xig_sogen = so_gencnt;
1470 error = SYSCTL_OUT(req, &xig, sizeof xig);
1471 if (error) {
1472 lck_rw_done(tcbinfo.mtx);
1473 return error;
1474 }
1475 /*
1476 * We are done if there is no pcb
1477 */
1478 if (n == 0) {
1479 lck_rw_done(tcbinfo.mtx);
1480 return 0;
1481 }
1482
1483 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1484 if (inp_list == 0) {
1485 lck_rw_done(tcbinfo.mtx);
1486 return ENOMEM;
1487 }
1488
1489 for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp && i < n;
1490 inp = LIST_NEXT(inp, inp_list)) {
1491 #ifdef __APPLE__
1492 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1493 #else
1494 if (inp->inp_gencnt <= gencnt && !prison_xinpcb(req->p, inp))
1495 #endif
1496 inp_list[i++] = inp;
1497 }
1498
1499 for (slot = 0; slot < N_TIME_WAIT_SLOTS; slot++) {
1500 struct inpcb *inpnxt;
1501
1502 for (inp = time_wait_slots[slot].lh_first; inp && i < n; inp = inpnxt) {
1503 inpnxt = inp->inp_list.le_next;
1504 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1505 inp_list[i++] = inp;
1506 }
1507 }
1508
1509 n = i;
1510
1511 error = 0;
1512 for (i = 0; i < n; i++) {
1513 inp = inp_list[i];
1514 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1515 struct xtcpcb64 xt;
1516
1517 bzero(&xt, sizeof(xt));
1518 xt.xt_len = sizeof xt;
1519 inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1520 xt.xt_inpcb.inp_ppcb = (u_int64_t)(uintptr_t)inp->inp_ppcb;
1521 if (inp->inp_ppcb != NULL)
1522 tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1523 if (inp->inp_socket)
1524 sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1525 error = SYSCTL_OUT(req, &xt, sizeof xt);
1526 }
1527 }
1528 if (!error) {
1529 /*
1530 * Give the user an updated idea of our state.
1531 * If the generation differs from what we told
1532 * her before, she knows that something happened
1533 * while we were processing this request, and it
1534 * might be necessary to retry.
1535 */
1536 bzero(&xig, sizeof(xig));
1537 xig.xig_len = sizeof xig;
1538 xig.xig_gen = tcbinfo.ipi_gencnt;
1539 xig.xig_sogen = so_gencnt;
1540 xig.xig_count = tcbinfo.ipi_count;
1541 error = SYSCTL_OUT(req, &xig, sizeof xig);
1542 }
1543 FREE(inp_list, M_TEMP);
1544 lck_rw_done(tcbinfo.mtx);
1545 return error;
1546 }
1547
1548 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1549 tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
1550
1551 #endif /* !CONFIG_EMBEDDED */
1552
1553 static int
1554 tcp_pcblist_n SYSCTL_HANDLER_ARGS
1555 {
1556 #pragma unused(oidp, arg1, arg2)
1557 int error = 0;
1558
1559 error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
1560
1561 return error;
1562 }
1563
1564
1565 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1566 tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
1567
1568
1569 void
1570 tcp_ctlinput(cmd, sa, vip)
1571 int cmd;
1572 struct sockaddr *sa;
1573 void *vip;
1574 {
1575 tcp_seq icmp_tcp_seq;
1576 struct ip *ip = vip;
1577 struct tcphdr *th;
1578 struct in_addr faddr;
1579 struct inpcb *inp;
1580 struct tcpcb *tp;
1581
1582 void (*notify)(struct inpcb *, int) = tcp_notify;
1583
1584 struct icmp *icp;
1585
1586 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1587 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1588 return;
1589
1590 if (cmd == PRC_MSGSIZE)
1591 notify = tcp_mtudisc;
1592 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1593 cmd == PRC_UNREACH_PORT) && ip)
1594 notify = tcp_drop_syn_sent;
1595 else if (PRC_IS_REDIRECT(cmd)) {
1596 ip = 0;
1597 notify = in_rtchange;
1598 } else if (cmd == PRC_HOSTDEAD)
1599 ip = 0;
1600 /* Source quench is deprecated */
1601 else if (cmd == PRC_QUENCH)
1602 return;
1603 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1604 return;
1605 if (ip) {
1606 icp = (struct icmp *)((caddr_t)ip
1607 - offsetof(struct icmp, icmp_ip));
1608 th = (struct tcphdr *)((caddr_t)ip
1609 + (IP_VHL_HL(ip->ip_vhl) << 2));
1610 inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1611 ip->ip_src, th->th_sport, 0, NULL);
1612 if (inp != NULL && inp->inp_socket != NULL) {
1613 tcp_lock(inp->inp_socket, 1, 0);
1614 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1615 tcp_unlock(inp->inp_socket, 1, 0);
1616 return;
1617 }
1618 icmp_tcp_seq = htonl(th->th_seq);
1619 tp = intotcpcb(inp);
1620 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1621 SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1622 if (cmd == PRC_MSGSIZE) {
1623
1624 /*
1625 * MTU discovery:
1626 * If we got a needfrag and there is a host route to the
1627 * original destination, and the MTU is not locked, then
1628 * set the MTU in the route to the suggested new value
1629 * (if given) and then notify as usual. The ULPs will
1630 * notice that the MTU has changed and adapt accordingly.
1631 * If no new MTU was suggested, then we guess a new one
1632 * less than the current value. If the new MTU is
1633 * unreasonably small (defined by sysctl tcp_minmss), then
1634 * we reset the MTU to the interface value and enable the
1635 * lock bit, indicating that we are no longer doing MTU
1636 * discovery.
1637 */
1638 struct rtentry *rt;
1639 int mtu;
1640 struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
1641 0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
1642 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
1643
1644 rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
1645 RTF_CLONING | RTF_PRCLONING);
1646 if (rt != NULL) {
1647 RT_LOCK(rt);
1648 if ((rt->rt_flags & RTF_HOST) &&
1649 !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1650 mtu = ntohs(icp->icmp_nextmtu);
1651 if (!mtu)
1652 mtu = ip_next_mtu(rt->rt_rmx.
1653 rmx_mtu, 1);
1654 #if DEBUG_MTUDISC
1655 printf("MTU for %s reduced to %d\n",
1656 inet_ntop(AF_INET,
1657 &icmpsrc.sin_addr, ipv4str,
1658 sizeof (ipv4str)), mtu);
1659 #endif
1660 if (mtu < max(296, (tcp_minmss +
1661 sizeof (struct tcpiphdr)))) {
1662 /* rt->rt_rmx.rmx_mtu =
1663 rt->rt_ifp->if_mtu; */
1664 rt->rt_rmx.rmx_locks |= RTV_MTU;
1665 } else if (rt->rt_rmx.rmx_mtu > mtu) {
1666 rt->rt_rmx.rmx_mtu = mtu;
1667 }
1668 }
1669 RT_UNLOCK(rt);
1670 rtfree(rt);
1671 }
1672 }
1673
1674 (*notify)(inp, inetctlerrmap[cmd]);
1675 }
1676 tcp_unlock(inp->inp_socket, 1, 0);
1677 }
1678 } else
1679 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1680 }
1681
1682 #if INET6
1683 void
1684 tcp6_ctlinput(cmd, sa, d)
1685 int cmd;
1686 struct sockaddr *sa;
1687 void *d;
1688 {
1689 struct tcphdr th;
1690 void (*notify)(struct inpcb *, int) = tcp_notify;
1691 struct ip6_hdr *ip6;
1692 struct mbuf *m;
1693 struct ip6ctlparam *ip6cp = NULL;
1694 const struct sockaddr_in6 *sa6_src = NULL;
1695 int off;
1696 struct tcp_portonly {
1697 u_int16_t th_sport;
1698 u_int16_t th_dport;
1699 } *thp;
1700
1701 if (sa->sa_family != AF_INET6 ||
1702 sa->sa_len != sizeof(struct sockaddr_in6))
1703 return;
1704
1705 if (cmd == PRC_MSGSIZE)
1706 notify = tcp_mtudisc;
1707 else if (!PRC_IS_REDIRECT(cmd) &&
1708 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1709 return;
1710 /* Source quench is deprecated */
1711 else if (cmd == PRC_QUENCH)
1712 return;
1713
1714 /* if the parameter is from icmp6, decode it. */
1715 if (d != NULL) {
1716 ip6cp = (struct ip6ctlparam *)d;
1717 m = ip6cp->ip6c_m;
1718 ip6 = ip6cp->ip6c_ip6;
1719 off = ip6cp->ip6c_off;
1720 sa6_src = ip6cp->ip6c_src;
1721 } else {
1722 m = NULL;
1723 ip6 = NULL;
1724 off = 0; /* fool gcc */
1725 sa6_src = &sa6_any;
1726 }
1727
1728 if (ip6) {
1729 /*
1730 * XXX: We assume that when IPV6 is non NULL,
1731 * M and OFF are valid.
1732 */
1733
1734 /* check if we can safely examine src and dst ports */
1735 if (m->m_pkthdr.len < off + sizeof(*thp))
1736 return;
1737
1738 bzero(&th, sizeof(th));
1739 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1740
1741 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1742 (struct sockaddr *)ip6cp->ip6c_src,
1743 th.th_sport, cmd, NULL, notify);
1744 } else {
1745 in6_pcbnotify(&tcbinfo, sa, 0,
1746 (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
1747 }
1748 }
1749 #endif /* INET6 */
1750
1751
1752 /*
1753 * Following is where TCP initial sequence number generation occurs.
1754 *
1755 * There are two places where we must use initial sequence numbers:
1756 * 1. In SYN-ACK packets.
1757 * 2. In SYN packets.
1758 *
1759 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1760 * and should be as unpredictable as possible to avoid the possibility
1761 * of spoofing and/or connection hijacking. To satisfy this
1762 * requirement, SYN-ACK ISNs are generated via the arc4random()
1763 * function. If exact RFC 1948 compliance is requested via sysctl,
1764 * these ISNs will be generated just like those in SYN packets.
1765 *
1766 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1767 * depends on this property. In addition, these ISNs should be
1768 * unguessable so as to prevent connection hijacking. To satisfy
1769 * the requirements of this situation, the algorithm outlined in
1770 * RFC 1948 is used to generate sequence numbers.
1771 *
1772 * For more information on the theory of operation, please see
1773 * RFC 1948.
1774 *
1775 * Implementation details:
1776 *
1777 * Time is based off the system timer, and is corrected so that it
1778 * increases by one megabyte per second. This allows for proper
1779 * recycling on high speed LANs while still leaving over an hour
1780 * before rollover.
1781 *
1782 * Two sysctls control the generation of ISNs:
1783 *
1784 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1785 * between seeding of isn_secret. This is normally set to zero,
1786 * as reseeding should not be necessary.
1787 *
1788 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1789 * strictly. When strict compliance is requested, reseeding is
1790 * disabled and SYN-ACKs will be generated in the same manner as
1791 * SYNs. Strict mode is disabled by default.
1792 *
1793 */
1794
1795 #define ISN_BYTES_PER_SECOND 1048576
1796
1797 tcp_seq
1798 tcp_new_isn(tp)
1799 struct tcpcb *tp;
1800 {
1801 u_int32_t md5_buffer[4];
1802 tcp_seq new_isn;
1803 struct timeval timenow;
1804 u_char isn_secret[32];
1805 int isn_last_reseed = 0;
1806 MD5_CTX isn_ctx;
1807
1808 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1809 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1810 && tcp_strict_rfc1948 == 0)
1811 #ifdef __APPLE__
1812 return random();
1813 #else
1814 return arc4random();
1815 #endif
1816 getmicrotime(&timenow);
1817
1818 /* Seed if this is the first use, reseed if requested. */
1819 if ((isn_last_reseed == 0) ||
1820 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1821 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1822 < (u_int)timenow.tv_sec))) {
1823 #ifdef __APPLE__
1824 read_random(&isn_secret, sizeof(isn_secret));
1825 #else
1826 read_random_unlimited(&isn_secret, sizeof(isn_secret));
1827 #endif
1828 isn_last_reseed = timenow.tv_sec;
1829 }
1830
1831 /* Compute the md5 hash and return the ISN. */
1832 MD5Init(&isn_ctx);
1833 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1834 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1835 #if INET6
1836 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1837 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1838 sizeof(struct in6_addr));
1839 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1840 sizeof(struct in6_addr));
1841 } else
1842 #endif
1843 {
1844 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1845 sizeof(struct in_addr));
1846 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1847 sizeof(struct in_addr));
1848 }
1849 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1850 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1851 new_isn = (tcp_seq) md5_buffer[0];
1852 new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
1853 return new_isn;
1854 }
1855
1856
1857 /*
1858 * When a specific ICMP unreachable message is received and the
1859 * connection state is SYN-SENT, drop the connection. This behavior
1860 * is controlled by the icmp_may_rst sysctl.
1861 */
1862 void
1863 tcp_drop_syn_sent(inp, errno)
1864 struct inpcb *inp;
1865 int errno;
1866 {
1867 struct tcpcb *tp = intotcpcb(inp);
1868
1869 if (tp && tp->t_state == TCPS_SYN_SENT)
1870 tcp_drop(tp, errno);
1871 }
1872
1873 /*
1874 * When `need fragmentation' ICMP is received, update our idea of the MSS
1875 * based on the new value in the route. Also nudge TCP to send something,
1876 * since we know the packet we just sent was dropped.
1877 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1878 */
1879 void
1880 tcp_mtudisc(
1881 struct inpcb *inp,
1882 __unused int errno
1883 )
1884 {
1885 struct tcpcb *tp = intotcpcb(inp);
1886 struct rtentry *rt;
1887 struct rmxp_tao *taop;
1888 struct socket *so = inp->inp_socket;
1889 int offered;
1890 int mss;
1891 #if INET6
1892 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1893 #endif /* INET6 */
1894
1895 if (tp) {
1896 #if INET6
1897 if (isipv6)
1898 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
1899 else
1900 #endif /* INET6 */
1901 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
1902 if (!rt || !rt->rt_rmx.rmx_mtu) {
1903 tp->t_maxopd = tp->t_maxseg =
1904 #if INET6
1905 isipv6 ? tcp_v6mssdflt :
1906 #endif /* INET6 */
1907 tcp_mssdflt;
1908
1909 /* Route locked during lookup above */
1910 if (rt != NULL)
1911 RT_UNLOCK(rt);
1912 return;
1913 }
1914 taop = rmx_taop(rt->rt_rmx);
1915 offered = taop->tao_mssopt;
1916 mss = rt->rt_rmx.rmx_mtu -
1917 #if INET6
1918 (isipv6 ?
1919 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1920 #endif /* INET6 */
1921 sizeof(struct tcpiphdr)
1922 #if INET6
1923 )
1924 #endif /* INET6 */
1925 ;
1926
1927 /* Route locked during lookup above */
1928 RT_UNLOCK(rt);
1929
1930 if (offered)
1931 mss = min(mss, offered);
1932 /*
1933 * XXX - The above conditional probably violates the TCP
1934 * spec. The problem is that, since we don't know the
1935 * other end's MSS, we are supposed to use a conservative
1936 * default. But, if we do that, then MTU discovery will
1937 * never actually take place, because the conservative
1938 * default is much less than the MTUs typically seen
1939 * on the Internet today. For the moment, we'll sweep
1940 * this under the carpet.
1941 *
1942 * The conservative default might not actually be a problem
1943 * if the only case this occurs is when sending an initial
1944 * SYN with options and data to a host we've never talked
1945 * to before. Then, they will reply with an MSS value which
1946 * will get recorded and the new parameters should get
1947 * recomputed. For Further Study.
1948 */
1949 if (tp->t_maxopd <= mss)
1950 return;
1951 tp->t_maxopd = mss;
1952
1953 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1954 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1955 mss -= TCPOLEN_TSTAMP_APPA;
1956
1957 if (so->so_snd.sb_hiwat < mss)
1958 mss = so->so_snd.sb_hiwat;
1959
1960 tp->t_maxseg = mss;
1961
1962 /*
1963 * Reset the slow-start flight size as it may depends on the new MSS
1964 */
1965 if (CC_ALGO(tp)->cwnd_init != NULL)
1966 CC_ALGO(tp)->cwnd_init(tp);
1967 tcpstat.tcps_mturesent++;
1968 tp->t_rtttime = 0;
1969 tp->snd_nxt = tp->snd_una;
1970 tcp_output(tp);
1971 }
1972 }
1973
1974 /*
1975 * Look-up the routing entry to the peer of this inpcb. If no route
1976 * is found and it cannot be allocated the return NULL. This routine
1977 * is called by TCP routines that access the rmx structure and by tcp_mss
1978 * to get the interface MTU. If a route is found, this routine will
1979 * hold the rtentry lock; the caller is responsible for unlocking.
1980 */
1981 struct rtentry *
1982 tcp_rtlookup(inp, input_ifscope)
1983 struct inpcb *inp;
1984 unsigned int input_ifscope;
1985 {
1986 struct route *ro;
1987 struct rtentry *rt;
1988 struct tcpcb *tp;
1989
1990 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1991
1992 ro = &inp->inp_route;
1993 if ((rt = ro->ro_rt) != NULL)
1994 RT_LOCK(rt);
1995
1996 if (rt == NULL || !(rt->rt_flags & RTF_UP) ||
1997 rt->generation_id != route_generation) {
1998 /* No route yet, so try to acquire one */
1999 if (inp->inp_faddr.s_addr != INADDR_ANY) {
2000 unsigned int ifscope;
2001
2002 ro->ro_dst.sa_family = AF_INET;
2003 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2004 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
2005 inp->inp_faddr;
2006
2007 /*
2008 * If the socket was bound to an interface, then
2009 * the bound-to-interface takes precedence over
2010 * the inbound interface passed in by the caller
2011 * (if we get here as part of the output path then
2012 * input_ifscope is IFSCOPE_NONE).
2013 */
2014 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2015 inp->inp_boundif : input_ifscope;
2016
2017 if (rt != NULL)
2018 RT_UNLOCK(rt);
2019 rtalloc_scoped(ro, ifscope);
2020 if ((rt = ro->ro_rt) != NULL)
2021 RT_LOCK(rt);
2022 }
2023 }
2024
2025 /*
2026 * Update MTU discovery determination. Don't do it if:
2027 * 1) it is disabled via the sysctl
2028 * 2) the route isn't up
2029 * 3) the MTU is locked (if it is, then discovery has been
2030 * disabled)
2031 */
2032
2033 tp = intotcpcb(inp);
2034
2035 if (!path_mtu_discovery || ((rt != NULL) &&
2036 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2037 tp->t_flags &= ~TF_PMTUD;
2038 else
2039 tp->t_flags |= TF_PMTUD;
2040
2041 #if CONFIG_IFEF_NOWINDOWSCALE
2042 if (tcp_obey_ifef_nowindowscale &&
2043 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2044 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2045 /* Window scaling is enabled on this interface */
2046 tp->t_flags &= ~TF_REQ_SCALE;
2047 }
2048 #endif
2049
2050 if (rt != NULL && rt->rt_ifp != NULL) {
2051 somultipages(inp->inp_socket,
2052 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2053 tcp_set_tso(tp, rt->rt_ifp);
2054 }
2055
2056 /*
2057 * Caller needs to call RT_UNLOCK(rt).
2058 */
2059 return rt;
2060 }
2061
2062 #if INET6
2063 struct rtentry *
2064 tcp_rtlookup6(inp, input_ifscope)
2065 struct inpcb *inp;
2066 unsigned int input_ifscope;
2067 {
2068 struct route_in6 *ro6;
2069 struct rtentry *rt;
2070 struct tcpcb *tp;
2071
2072 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2073
2074 ro6 = &inp->in6p_route;
2075 if ((rt = ro6->ro_rt) != NULL)
2076 RT_LOCK(rt);
2077
2078 if (rt == NULL || !(rt->rt_flags & RTF_UP) ||
2079 rt->generation_id != route_generation) {
2080 /* No route yet, so try to acquire one */
2081 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2082 struct sockaddr_in6 *dst6;
2083 unsigned int ifscope;
2084
2085 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2086 dst6->sin6_family = AF_INET6;
2087 dst6->sin6_len = sizeof(*dst6);
2088 dst6->sin6_addr = inp->in6p_faddr;
2089
2090 /*
2091 * If the socket was bound to an interface, then
2092 * the bound-to-interface takes precedence over
2093 * the inbound interface passed in by the caller
2094 * (if we get here as part of the output path then
2095 * input_ifscope is IFSCOPE_NONE).
2096 */
2097 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2098 inp->inp_boundif : input_ifscope;
2099
2100 if (rt != NULL)
2101 RT_UNLOCK(rt);
2102 rtalloc_scoped((struct route *)ro6, ifscope);
2103 if ((rt = ro6->ro_rt) != NULL)
2104 RT_LOCK(rt);
2105 }
2106 }
2107 /*
2108 * Update path MTU Discovery determination
2109 * while looking up the route:
2110 * 1) we have a valid route to the destination
2111 * 2) the MTU is not locked (if it is, then discovery has been
2112 * disabled)
2113 */
2114
2115
2116 tp = intotcpcb(inp);
2117
2118 /*
2119 * Update MTU discovery determination. Don't do it if:
2120 * 1) it is disabled via the sysctl
2121 * 2) the route isn't up
2122 * 3) the MTU is locked (if it is, then discovery has been
2123 * disabled)
2124 */
2125
2126 if (!path_mtu_discovery || ((rt != NULL) &&
2127 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2128 tp->t_flags &= ~TF_PMTUD;
2129 else
2130 tp->t_flags |= TF_PMTUD;
2131
2132 #if CONFIG_IFEF_NOWINDOWSCALE
2133 if (tcp_obey_ifef_nowindowscale &&
2134 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2135 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2136 /* Window scaling is not enabled on this interface */
2137 tp->t_flags &= ~TF_REQ_SCALE;
2138 }
2139 #endif
2140
2141 if (rt != NULL && rt->rt_ifp != NULL) {
2142 somultipages(inp->inp_socket,
2143 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2144 tcp_set_tso(tp, rt->rt_ifp);
2145 }
2146
2147 /*
2148 * Caller needs to call RT_UNLOCK(rt).
2149 */
2150 return rt;
2151 }
2152 #endif /* INET6 */
2153
2154 #if IPSEC
2155 /* compute ESP/AH header size for TCP, including outer IP header. */
2156 size_t
2157 ipsec_hdrsiz_tcp(tp)
2158 struct tcpcb *tp;
2159 {
2160 struct inpcb *inp;
2161 struct mbuf *m;
2162 size_t hdrsiz;
2163 struct ip *ip;
2164 #if INET6
2165 struct ip6_hdr *ip6 = NULL;
2166 #endif /* INET6 */
2167 struct tcphdr *th;
2168
2169 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2170 return 0;
2171 MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */
2172 if (!m)
2173 return 0;
2174
2175 #if INET6
2176 if ((inp->inp_vflag & INP_IPV6) != 0) {
2177 ip6 = mtod(m, struct ip6_hdr *);
2178 th = (struct tcphdr *)(ip6 + 1);
2179 m->m_pkthdr.len = m->m_len =
2180 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2181 tcp_fillheaders(tp, ip6, th);
2182 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2183 } else
2184 #endif /* INET6 */
2185 {
2186 ip = mtod(m, struct ip *);
2187 th = (struct tcphdr *)(ip + 1);
2188 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2189 tcp_fillheaders(tp, ip, th);
2190 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2191 }
2192 m_free(m);
2193 return hdrsiz;
2194 }
2195 #endif /*IPSEC*/
2196
2197 /*
2198 * Return a pointer to the cached information about the remote host.
2199 * The cached information is stored in the protocol specific part of
2200 * the route metrics.
2201 */
2202 struct rmxp_tao *
2203 tcp_gettaocache(inp)
2204 struct inpcb *inp;
2205 {
2206 struct rtentry *rt;
2207 struct rmxp_tao *taop;
2208
2209 #if INET6
2210 if ((inp->inp_vflag & INP_IPV6) != 0)
2211 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2212 else
2213 #endif /* INET6 */
2214 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2215
2216 /* Make sure this is a host route and is up. */
2217 if (rt == NULL ||
2218 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2219 /* Route locked during lookup above */
2220 if (rt != NULL)
2221 RT_UNLOCK(rt);
2222 return NULL;
2223 }
2224
2225 taop = rmx_taop(rt->rt_rmx);
2226 /* Route locked during lookup above */
2227 RT_UNLOCK(rt);
2228 return (taop);
2229 }
2230
2231 /*
2232 * Clear all the TAO cache entries, called from tcp_init.
2233 *
2234 * XXX
2235 * This routine is just an empty one, because we assume that the routing
2236 * routing tables are initialized at the same time when TCP, so there is
2237 * nothing in the cache left over.
2238 */
2239 static void
2240 tcp_cleartaocache()
2241 {
2242 }
2243
2244 int
2245 tcp_lock(struct socket *so, int refcount, void *lr)
2246 {
2247 void *lr_saved;
2248
2249 if (lr == NULL)
2250 lr_saved = __builtin_return_address(0);
2251 else
2252 lr_saved = lr;
2253
2254 if (so->so_pcb != NULL) {
2255 lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2256 } else {
2257 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2258 so, lr_saved, solockhistory_nr(so));
2259 /* NOTREACHED */
2260 }
2261
2262 if (so->so_usecount < 0) {
2263 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2264 so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2265 /* NOTREACHED */
2266 }
2267 if (refcount)
2268 so->so_usecount++;
2269 so->lock_lr[so->next_lock_lr] = lr_saved;
2270 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2271 return (0);
2272 }
2273
2274 int
2275 tcp_unlock(struct socket *so, int refcount, void *lr)
2276 {
2277 void *lr_saved;
2278
2279 if (lr == NULL)
2280 lr_saved = __builtin_return_address(0);
2281 else
2282 lr_saved = lr;
2283
2284 #ifdef MORE_TCPLOCK_DEBUG
2285 printf("tcp_unlock: so=%p sopcb=%p lock=%p ref=%x lr=%p\n",
2286 so, so->so_pcb, &((struct inpcb *)so->so_pcb)->inpcb_mtx,
2287 so->so_usecount, lr_saved);
2288 #endif
2289 if (refcount)
2290 so->so_usecount--;
2291
2292 if (so->so_usecount < 0) {
2293 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2294 so, so->so_usecount, solockhistory_nr(so));
2295 /* NOTREACHED */
2296 }
2297 if (so->so_pcb == NULL) {
2298 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2299 so, so->so_usecount, lr_saved, solockhistory_nr(so));
2300 /* NOTREACHED */
2301 } else {
2302 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2303 LCK_MTX_ASSERT_OWNED);
2304 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2305 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2306 lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2307 }
2308 return (0);
2309 }
2310
2311 lck_mtx_t *
2312 tcp_getlock(
2313 struct socket *so,
2314 __unused int locktype)
2315 {
2316 struct inpcb *inp = sotoinpcb(so);
2317
2318 if (so->so_pcb) {
2319 if (so->so_usecount < 0)
2320 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2321 so, so->so_usecount, solockhistory_nr(so));
2322 return(&inp->inpcb_mtx);
2323 }
2324 else {
2325 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2326 so, solockhistory_nr(so));
2327 return (so->so_proto->pr_domain->dom_mtx);
2328 }
2329 }
2330
2331 int32_t
2332 tcp_sbspace(struct tcpcb *tp)
2333 {
2334 struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2335 int32_t space, newspace;
2336
2337 space = ((int32_t) imin((sb->sb_hiwat - sb->sb_cc),
2338 (sb->sb_mbmax - sb->sb_mbcnt)));
2339 if (space < 0)
2340 space = 0;
2341
2342 /* Avoid increasing window size if the current window
2343 * is already very low, we could be in "persist" mode and
2344 * we could break some apps (see rdar://5409343)
2345 */
2346
2347 if (space < tp->t_maxseg)
2348 return space;
2349
2350 /* Clip window size for slower link */
2351
2352 if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2353 return imin(space, slowlink_wsize);
2354
2355 /*
2356 * Check for ressources constraints before over-ajusting the amount of space we can
2357 * advertise in the TCP window size updates.
2358 */
2359
2360 if (sbspace_factor && (tp->t_inpcb->inp_pcbinfo->ipi_count < tcp_sockthreshold) &&
2361 (total_mb_cnt / 8) < (mbstat.m_clusters / sbspace_factor)) {
2362 if (space < (int32_t)(sb->sb_maxused - sb->sb_cc)) {/* make sure we don't constrain the window if we have enough ressources */
2363 space = (int32_t) imax((sb->sb_maxused - sb->sb_cc), tp->rcv_maxbyps);
2364 }
2365 newspace = (int32_t) imax(((int32_t)sb->sb_maxused - sb->sb_cc), (int32_t)tp->rcv_maxbyps);
2366
2367 if (newspace > space)
2368 space = newspace;
2369 }
2370 return space;
2371 }
2372 /*
2373 * Checks TCP Segment Offloading capability for a given connection and interface pair.
2374 */
2375 void
2376 tcp_set_tso(tp, ifp)
2377 struct tcpcb *tp;
2378 struct ifnet *ifp;
2379 {
2380 #if INET6
2381 struct inpcb *inp = tp->t_inpcb;
2382 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2383
2384 if (isipv6) {
2385 if (ifp && ifp->if_hwassist & IFNET_TSO_IPV6) {
2386 tp->t_flags |= TF_TSO;
2387 if (ifp->if_tso_v6_mtu != 0)
2388 tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2389 else
2390 tp->tso_max_segment_size = TCP_MAXWIN;
2391 } else
2392 tp->t_flags &= ~TF_TSO;
2393
2394 } else
2395 #endif /* INET6 */
2396
2397 {
2398 if (ifp && ifp->if_hwassist & IFNET_TSO_IPV4) {
2399 tp->t_flags |= TF_TSO;
2400 if (ifp->if_tso_v4_mtu != 0)
2401 tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2402 else
2403 tp->tso_max_segment_size = TCP_MAXWIN;
2404 } else
2405 tp->t_flags &= ~TF_TSO;
2406 }
2407 }
2408
2409 #define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
2410
2411 /* Function to calculate the tcp clock. The tcp clock will get updated
2412 * at the boundaries of the tcp layer. This is done at 3 places:
2413 * 1. Right before processing an input tcp packet
2414 * 2. Whenever a connection wants to access the network using tcp_usrreqs
2415 * 3. When a tcp timer fires or before tcp slow timeout
2416 *
2417 */
2418
2419 void
2420 calculate_tcp_clock()
2421 {
2422 struct timeval tv = tcp_uptime;
2423 struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
2424 struct timeval now, hold_now;
2425 uint32_t incr = 0;
2426
2427 timevaladd(&tv, &interval);
2428 microuptime(&now);
2429 if (timevalcmp(&now, &tv, >)) {
2430 /* time to update the clock */
2431 lck_spin_lock(tcp_uptime_lock);
2432 if (timevalcmp(&tcp_uptime, &now, >=)) {
2433 /* clock got updated while we were waiting for the lock */
2434 lck_spin_unlock(tcp_uptime_lock);
2435 return;
2436 }
2437
2438 microuptime(&now);
2439 hold_now = now;
2440 tv = tcp_uptime;
2441 timevalsub(&now, &tv);
2442
2443 incr = TIMEVAL_TO_TCPHZ(now);
2444 if (incr > 0) {
2445 tcp_uptime = hold_now;
2446 tcp_now += incr;
2447 }
2448
2449 lck_spin_unlock(tcp_uptime_lock);
2450 }
2451 return;
2452 }
2453
2454 /* DSEP Review Done pl-20051213-v02 @3253,@3391,@3400 */