]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_sack.c
xnu-1699.24.23.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_sack.c
1 /*
2 * Copyright (c) 2004,2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 */
61
62 #define _IP_VHL
63
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mbuf.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74
75 #include <kern/zalloc.h>
76
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #if INET6
85 #include <netinet6/in6_pcb.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/ip6_var.h>
88 #endif
89 #include <netinet/tcp.h>
90 //#define TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #if TCPDEBUG
97 #include <netinet/tcp_debug.h>
98 #endif
99 #include <sys/kdebug.h>
100
101 #if IPSEC
102 #include <netinet6/ipsec.h>
103 #endif /*IPSEC*/
104
105 int tcp_do_sack = 1;
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_sack, 0,
107 "Enable/Disable TCP SACK support");
108 static int tcp_sack_maxholes = 128;
109 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
110 &tcp_sack_maxholes, 0,
111 "Maximum number of TCP SACK holes allowed per connection");
112
113 static int tcp_sack_globalmaxholes = 65536;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalmaxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
115 &tcp_sack_globalmaxholes, 0,
116 "Global maximum number of TCP SACK holes");
117
118 static int tcp_sack_globalholes = 0;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
120 &tcp_sack_globalholes, 0,
121 "Global number of TCP SACK holes currently allocated");
122
123 extern struct zone *sack_hole_zone;
124
125 /*
126 * This function is called upon receipt of new valid data (while not in header
127 * prediction mode), and it updates the ordered list of sacks.
128 */
129 void
130 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
131 {
132 /*
133 * First reported block MUST be the most recent one. Subsequent
134 * blocks SHOULD be in the order in which they arrived at the
135 * receiver. These two conditions make the implementation fully
136 * compliant with RFC 2018.
137 */
138 struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
139 int num_head, num_saved, i;
140
141 /* SACK block for the received segment. */
142 head_blk.start = rcv_start;
143 head_blk.end = rcv_end;
144
145 /*
146 * Merge updated SACK blocks into head_blk, and
147 * save unchanged SACK blocks into saved_blks[].
148 * num_saved will have the number of the saved SACK blocks.
149 */
150 num_saved = 0;
151 for (i = 0; i < tp->rcv_numsacks; i++) {
152 tcp_seq start = tp->sackblks[i].start;
153 tcp_seq end = tp->sackblks[i].end;
154 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
155 /*
156 * Discard this SACK block.
157 */
158 } else if (SEQ_LEQ(head_blk.start, end) &&
159 SEQ_GEQ(head_blk.end, start)) {
160 /*
161 * Merge this SACK block into head_blk.
162 * This SACK block itself will be discarded.
163 */
164 if (SEQ_GT(head_blk.start, start))
165 head_blk.start = start;
166 if (SEQ_LT(head_blk.end, end))
167 head_blk.end = end;
168 } else {
169 /*
170 * Save this SACK block.
171 */
172 saved_blks[num_saved].start = start;
173 saved_blks[num_saved].end = end;
174 num_saved++;
175 }
176 }
177
178 /*
179 * Update SACK list in tp->sackblks[].
180 */
181 num_head = 0;
182 if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
183 /*
184 * The received data segment is an out-of-order segment.
185 * Put head_blk at the top of SACK list.
186 */
187 tp->sackblks[0] = head_blk;
188 num_head = 1;
189 /*
190 * If the number of saved SACK blocks exceeds its limit,
191 * discard the last SACK block.
192 */
193 if (num_saved >= MAX_SACK_BLKS)
194 num_saved--;
195 }
196 if (num_saved > 0) {
197 /*
198 * Copy the saved SACK blocks back.
199 */
200 bcopy(saved_blks, &tp->sackblks[num_head],
201 sizeof(struct sackblk) * num_saved);
202 }
203
204 /* Save the number of SACK blocks. */
205 tp->rcv_numsacks = num_head + num_saved;
206
207 /* If we are requesting SACK recovery, reset the stretch-ack state
208 * so that connection will generate more acks after recovery and
209 * sender's cwnd will open.
210 */
211 if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0)
212 tcp_reset_stretch_ack(tp);
213
214 #if TRAFFIC_MGT
215 if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0)
216 reset_acc_iaj(tp);
217 #endif /* TRAFFIC_MGT */
218 }
219
220 /*
221 * Delete all receiver-side SACK information.
222 */
223 void
224 tcp_clean_sackreport( struct tcpcb *tp)
225 {
226
227 tp->rcv_numsacks = 0;
228 bzero(&tp->sackblks[0], sizeof (struct sackblk) * MAX_SACK_BLKS);
229 }
230
231 /*
232 * Allocate struct sackhole.
233 */
234 static struct sackhole *
235 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
236 {
237 struct sackhole *hole;
238
239 if (tp->snd_numholes >= tcp_sack_maxholes ||
240 tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
241 tcpstat.tcps_sack_sboverflow++;
242 return NULL;
243 }
244
245 hole = (struct sackhole *)zalloc_noblock(sack_hole_zone);
246 if (hole == NULL)
247 return NULL;
248
249 hole->start = start;
250 hole->end = end;
251 hole->rxmit = start;
252
253 tp->snd_numholes++;
254 tcp_sack_globalholes++;
255
256 return hole;
257 }
258
259 /*
260 * Free struct sackhole.
261 */
262 static void
263 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
264 {
265 zfree(sack_hole_zone, hole);
266
267 tp->snd_numholes--;
268 tcp_sack_globalholes--;
269 }
270
271 /*
272 * Insert new SACK hole into scoreboard.
273 */
274 static struct sackhole *
275 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
276 struct sackhole *after)
277 {
278 struct sackhole *hole;
279
280 /* Allocate a new SACK hole. */
281 hole = tcp_sackhole_alloc(tp, start, end);
282 if (hole == NULL)
283 return NULL;
284
285 /* Insert the new SACK hole into scoreboard */
286 if (after != NULL)
287 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
288 else
289 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
290
291 /* Update SACK hint. */
292 if (tp->sackhint.nexthole == NULL)
293 tp->sackhint.nexthole = hole;
294
295 return hole;
296 }
297
298 /*
299 * Remove SACK hole from scoreboard.
300 */
301 static void
302 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
303 {
304 /* Update SACK hint. */
305 if (tp->sackhint.nexthole == hole)
306 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
307
308 /* Remove this SACK hole. */
309 TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
310
311 /* Free this SACK hole. */
312 tcp_sackhole_free(tp, hole);
313 }
314
315 /*
316 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
317 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
318 * the sequence space).
319 */
320 void
321 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
322 {
323 struct sackhole *cur, *temp;
324 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
325 int i, j, num_sack_blks;
326
327 num_sack_blks = 0;
328 /*
329 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
330 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
331 */
332 if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
333 sack_blocks[num_sack_blks].start = tp->snd_una;
334 sack_blocks[num_sack_blks++].end = th_ack;
335 }
336 /*
337 * Append received valid SACK blocks to sack_blocks[].
338 * Check that the SACK block range is valid.
339 */
340 for (i = 0; i < to->to_nsacks; i++) {
341 bcopy((to->to_sacks + i * TCPOLEN_SACK),
342 &sack, sizeof(sack));
343 sack.start = ntohl(sack.start);
344 sack.end = ntohl(sack.end);
345 if (SEQ_GT(sack.end, sack.start) &&
346 SEQ_GT(sack.start, tp->snd_una) &&
347 SEQ_GT(sack.start, th_ack) &&
348 SEQ_LT(sack.start, tp->snd_max) &&
349 SEQ_GT(sack.end, tp->snd_una) &&
350 SEQ_LEQ(sack.end, tp->snd_max))
351 sack_blocks[num_sack_blks++] = sack;
352 }
353
354 /*
355 * Return if SND.UNA is not advanced and no valid SACK block
356 * is received.
357 */
358 if (num_sack_blks == 0)
359 return;
360
361 /*
362 * Sort the SACK blocks so we can update the scoreboard
363 * with just one pass. The overhead of sorting upto 4+1 elements
364 * is less than making upto 4+1 passes over the scoreboard.
365 */
366 for (i = 0; i < num_sack_blks; i++) {
367 for (j = i + 1; j < num_sack_blks; j++) {
368 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
369 sack = sack_blocks[i];
370 sack_blocks[i] = sack_blocks[j];
371 sack_blocks[j] = sack;
372 }
373 }
374 }
375 if (TAILQ_EMPTY(&tp->snd_holes))
376 /*
377 * Empty scoreboard. Need to initialize snd_fack (it may be
378 * uninitialized or have a bogus value). Scoreboard holes
379 * (from the sack blocks received) are created later below (in
380 * the logic that adds holes to the tail of the scoreboard).
381 */
382 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
383 /*
384 * In the while-loop below, incoming SACK blocks (sack_blocks[])
385 * and SACK holes (snd_holes) are traversed from their tails with
386 * just one pass in order to reduce the number of compares especially
387 * when the bandwidth-delay product is large.
388 * Note: Typically, in the first RTT of SACK recovery, the highest
389 * three or four SACK blocks with the same ack number are received.
390 * In the second RTT, if retransmitted data segments are not lost,
391 * the highest three or four SACK blocks with ack number advancing
392 * are received.
393 */
394 sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
395 if (SEQ_LT(tp->snd_fack, sblkp->start)) {
396 /*
397 * The highest SACK block is beyond fack.
398 * Append new SACK hole at the tail.
399 * If the second or later highest SACK blocks are also
400 * beyond the current fack, they will be inserted by
401 * way of hole splitting in the while-loop below.
402 */
403 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
404 if (temp != NULL) {
405 tp->snd_fack = sblkp->end;
406 /* Go to the previous sack block. */
407 sblkp--;
408 } else {
409 /*
410 * We failed to add a new hole based on the current
411 * sack block. Skip over all the sack blocks that
412 * fall completely to the right of snd_fack and proceed
413 * to trim the scoreboard based on the remaining sack
414 * blocks. This also trims the scoreboard for th_ack
415 * (which is sack_blocks[0]).
416 */
417 while (sblkp >= sack_blocks &&
418 SEQ_LT(tp->snd_fack, sblkp->start))
419 sblkp--;
420 if (sblkp >= sack_blocks &&
421 SEQ_LT(tp->snd_fack, sblkp->end))
422 tp->snd_fack = sblkp->end;
423 }
424 } else if (SEQ_LT(tp->snd_fack, sblkp->end))
425 /* fack is advanced. */
426 tp->snd_fack = sblkp->end;
427 /* We must have at least one SACK hole in scoreboard */
428 cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
429 /*
430 * Since the incoming sack blocks are sorted, we can process them
431 * making one sweep of the scoreboard.
432 */
433 while (sblkp >= sack_blocks && cur != NULL) {
434 if (SEQ_GEQ(sblkp->start, cur->end)) {
435 /*
436 * SACKs data beyond the current hole.
437 * Go to the previous sack block.
438 */
439 sblkp--;
440 continue;
441 }
442 if (SEQ_LEQ(sblkp->end, cur->start)) {
443 /*
444 * SACKs data before the current hole.
445 * Go to the previous hole.
446 */
447 cur = TAILQ_PREV(cur, sackhole_head, scblink);
448 continue;
449 }
450 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
451 if (SEQ_LEQ(sblkp->start, cur->start)) {
452 /* Data acks at least the beginning of hole */
453 if (SEQ_GEQ(sblkp->end, cur->end)) {
454 /* Acks entire hole, so delete hole */
455 temp = cur;
456 cur = TAILQ_PREV(cur, sackhole_head, scblink);
457 tcp_sackhole_remove(tp, temp);
458 /*
459 * The sack block may ack all or part of the next
460 * hole too, so continue onto the next hole.
461 */
462 continue;
463 } else {
464 /* Move start of hole forward */
465 cur->start = sblkp->end;
466 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
467 }
468 } else {
469 /* Data acks at least the end of hole */
470 if (SEQ_GEQ(sblkp->end, cur->end)) {
471 /* Move end of hole backward */
472 cur->end = sblkp->start;
473 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
474 } else {
475 /*
476 * ACKs some data in middle of a hole; need to
477 * split current hole
478 */
479 temp = tcp_sackhole_insert(tp, sblkp->end,
480 cur->end, cur);
481 if (temp != NULL) {
482 if (SEQ_GT(cur->rxmit, temp->rxmit)) {
483 temp->rxmit = cur->rxmit;
484 tp->sackhint.sack_bytes_rexmit
485 += (temp->rxmit
486 - temp->start);
487 }
488 cur->end = sblkp->start;
489 cur->rxmit = SEQ_MIN(cur->rxmit,
490 cur->end);
491 }
492 }
493 }
494 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
495 /*
496 * Testing sblkp->start against cur->start tells us whether
497 * we're done with the sack block or the sack hole.
498 * Accordingly, we advance one or the other.
499 */
500 if (SEQ_LEQ(sblkp->start, cur->start))
501 cur = TAILQ_PREV(cur, sackhole_head, scblink);
502 else
503 sblkp--;
504 }
505 }
506
507 /*
508 * Free all SACK holes to clear the scoreboard.
509 */
510 void
511 tcp_free_sackholes(struct tcpcb *tp)
512 {
513 struct sackhole *q;
514
515 while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
516 tcp_sackhole_remove(tp, q);
517 tp->sackhint.sack_bytes_rexmit = 0;
518 tp->sackhint.nexthole = NULL;
519 tp->sack_newdata = 0;
520
521 }
522
523 /*
524 * Partial ack handling within a sack recovery episode.
525 * Keeping this very simple for now. When a partial ack
526 * is received, force snd_cwnd to a value that will allow
527 * the sender to transmit no more than 2 segments.
528 * If necessary, a better scheme can be adopted at a
529 * later point, but for now, the goal is to prevent the
530 * sender from bursting a large amount of data in the midst
531 * of sack recovery.
532 */
533 void
534 tcp_sack_partialack(tp, th)
535 struct tcpcb *tp;
536 struct tcphdr *th;
537 {
538 int num_segs = 1;
539
540 tp->t_timer[TCPT_REXMT] = 0;
541 tp->t_rtttime = 0;
542 /* send one or 2 segments based on how much new data was acked */
543 if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
544 num_segs = 2;
545 tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
546 (tp->snd_nxt - tp->sack_newdata) +
547 num_segs * tp->t_maxseg);
548 if (tp->snd_cwnd > tp->snd_ssthresh)
549 tp->snd_cwnd = tp->snd_ssthresh;
550 tp->t_flags |= TF_ACKNOW;
551 (void) tcp_output(tp);
552 }
553
554 /*
555 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
556 * now to sanity check the hint.
557 */
558 static struct sackhole *
559 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
560 {
561 struct sackhole *p;
562
563 *sack_bytes_rexmt = 0;
564 TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
565 if (SEQ_LT(p->rxmit, p->end)) {
566 if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
567 continue;
568 }
569 *sack_bytes_rexmt += (p->rxmit - p->start);
570 break;
571 }
572 *sack_bytes_rexmt += (p->rxmit - p->start);
573 }
574 return (p);
575 }
576
577 /*
578 * Returns the next hole to retransmit and the number of retransmitted bytes
579 * from the scoreboard. We store both the next hole and the number of
580 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
581 * reception). This avoids scoreboard traversals completely.
582 *
583 * The loop here will traverse *at most* one link. Here's the argument.
584 * For the loop to traverse more than 1 link before finding the next hole to
585 * retransmit, we would need to have at least 1 node following the current hint
586 * with (rxmit == end). But, for all holes following the current hint,
587 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
588 * in order to traverse more 1 link in the loop below, we need to have at least
589 * one node following the current hint with (start == rxmit == end).
590 * But that can't happen, (start == end) means that all the data in that hole
591 * has been sacked, in which case, the hole would have been removed from the
592 * scoreboard.
593 */
594 struct sackhole *
595 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
596 {
597 struct sackhole *hole = NULL, *dbg_hole = NULL;
598 int dbg_bytes_rexmt;
599
600 dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
601 *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
602 hole = tp->sackhint.nexthole;
603 if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
604 goto out;
605 while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
606 if (SEQ_LT(hole->rxmit, hole->end)) {
607 tp->sackhint.nexthole = hole;
608 break;
609 }
610 }
611 out:
612 if (dbg_hole != hole) {
613 printf("%s: Computed sack hole not the same as cached value\n", __func__);
614 hole = dbg_hole;
615 }
616 if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
617 printf("%s: Computed sack_bytes_retransmitted (%d) not "
618 "the same as cached value (%d)\n",
619 __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
620 *sack_bytes_rexmt = dbg_bytes_rexmt;
621 }
622 return (hole);
623 }
624
625 /*
626 * After a timeout, the SACK list may be rebuilt. This SACK information
627 * should be used to avoid retransmitting SACKed data. This function
628 * traverses the SACK list to see if snd_nxt should be moved forward.
629 */
630 void
631 tcp_sack_adjust(struct tcpcb *tp)
632 {
633 struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
634
635 if (cur == NULL)
636 return; /* No holes */
637 if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
638 return; /* We're already beyond any SACKed blocks */
639 /*
640 * Two cases for which we want to advance snd_nxt:
641 * i) snd_nxt lies between end of one hole and beginning of another
642 * ii) snd_nxt lies between end of last hole and snd_fack
643 */
644 while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
645 if (SEQ_LT(tp->snd_nxt, cur->end))
646 return;
647 if (SEQ_GEQ(tp->snd_nxt, p->start))
648 cur = p;
649 else {
650 tp->snd_nxt = p->start;
651 return;
652 }
653 }
654 if (SEQ_LT(tp->snd_nxt, cur->end))
655 return;
656 tp->snd_nxt = tp->snd_fack;
657 return;
658 }