]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
xnu-1699.24.23.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57 #define DUMMYNET_DEBUG
58
59 /*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/time.h>
91 #include <sys/sysctl.h>
92 //#include <sys/mcache.h>
93 #include <net/if.h>
94 #include <net/route.h>
95 #include <net/kpi_protocol.h>
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/in_var.h>
99 #include <netinet/ip.h>
100 #include <netinet/ip_fw.h>
101 #include <netinet/ip_dummynet.h>
102 #include <netinet/ip_var.h>
103
104 /*
105 * We keep a private variable for the simulation time, but we could
106 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
107 */
108 static dn_key curr_time = 0 ; /* current simulation time */
109
110 /* this is for the timer that fires to call dummynet() - we only enable the timer when
111 there are packets to process, otherwise it's disabled */
112 static int timer_enabled = 0;
113
114 static int dn_hash_size = 64 ; /* default hash size */
115
116 /* statistics on number of queue searches and search steps */
117 static int searches, search_steps ;
118 static int pipe_expire = 1 ; /* expire queue if empty */
119 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
120
121 static int red_lookup_depth = 256; /* RED - default lookup table depth */
122 static int red_avg_pkt_size = 512; /* RED - default medium packet size */
123 static int red_max_pkt_size = 1500; /* RED - default max packet size */
124
125 static int serialize = 0;
126
127 /*
128 * Three heaps contain queues and pipes that the scheduler handles:
129 *
130 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
131 *
132 * wfq_ready_heap contains the pipes associated with WF2Q flows
133 *
134 * extract_heap contains pipes associated with delay lines.
135 *
136 */
137 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
138
139 static int heap_init(struct dn_heap *h, int size) ;
140 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
141 static void heap_extract(struct dn_heap *h, void *obj);
142
143
144 static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
145 struct mbuf **tail);
146 static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
147 struct mbuf **tail);
148 static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
149 struct mbuf **tail);
150
151 /*
152 * Packets are retrieved from queues in Dummynet in chains instead of
153 * packet-by-packet. The entire list of packets is first dequeued and
154 * sent out by the following function.
155 */
156 static void dummynet_send(struct mbuf *m);
157
158 #define HASHSIZE 16
159 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
160 static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
161 static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
162
163
164 #ifdef SYSCTL_NODE
165 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
166 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
167 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
168 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
169 SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
170 CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
172 CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
173 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
174 CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
175 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
176 CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
177 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
178 CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
179 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
180 CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
181 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
182 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
183 "Max ratio between dynamic queues and buckets");
184 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
185 CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
186 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
187 CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
188 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
189 CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
190 #endif
191
192 #ifdef DUMMYNET_DEBUG
193 int dummynet_debug = 0;
194 #ifdef SYSCTL_NODE
195 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
196 0, "control debugging printfs");
197 #endif
198 #define DPRINTF(X) if (dummynet_debug) printf X
199 #else
200 #define DPRINTF(X)
201 #endif
202
203 /* contrary to the comment above random(), it does not actually
204 * return a value [0, 2^31 - 1], which breaks plr amongst other
205 * things. Masking it should work even if the behavior of
206 * the function is fixed.
207 */
208 #define MY_RANDOM (random() & 0x7FFFFFFF)
209
210 /* dummynet lock */
211 static lck_grp_t *dn_mutex_grp;
212 static lck_grp_attr_t *dn_mutex_grp_attr;
213 static lck_attr_t *dn_mutex_attr;
214 static lck_mtx_t *dn_mutex;
215
216 static int config_pipe(struct dn_pipe *p);
217 static int ip_dn_ctl(struct sockopt *sopt);
218
219 static void dummynet(void *);
220 static void dummynet_flush(void);
221 void dummynet_drain(void);
222 static ip_dn_io_t dummynet_io;
223 static void dn_rule_delete(void *);
224
225 int if_tx_rdy(struct ifnet *ifp);
226
227 static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
228 static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
229 static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
230 static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
231 static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
232
233 static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
234 static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
235 static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
236 static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
237 static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
238
239
240 /*
241 * Heap management functions.
242 *
243 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
244 * Some macros help finding parent/children so we can optimize them.
245 *
246 * heap_init() is called to expand the heap when needed.
247 * Increment size in blocks of 16 entries.
248 * XXX failure to allocate a new element is a pretty bad failure
249 * as we basically stall a whole queue forever!!
250 * Returns 1 on error, 0 on success
251 */
252 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
253 #define HEAP_LEFT(x) ( 2*(x) + 1 )
254 #define HEAP_IS_LEFT(x) ( (x) & 1 )
255 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
256 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
257 #define HEAP_INCREMENT 15
258
259
260 int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
261 {
262 struct dn_pipe_32 user_pipe_32;
263 int error=0;
264
265 error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
266 if ( !error ){
267 p->pipe_nr = user_pipe_32.pipe_nr;
268 p->bandwidth = user_pipe_32.bandwidth;
269 p->delay = user_pipe_32.delay;
270 p->V = user_pipe_32.V;
271 p->sum = user_pipe_32.sum;
272 p->numbytes = user_pipe_32.numbytes;
273 p->sched_time = user_pipe_32.sched_time;
274 bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
275 p->ready = user_pipe_32.ready;
276
277 p->fs.fs_nr = user_pipe_32.fs.fs_nr;
278 p->fs.flags_fs = user_pipe_32.fs.flags_fs;
279 p->fs.parent_nr = user_pipe_32.fs.parent_nr;
280 p->fs.weight = user_pipe_32.fs.weight;
281 p->fs.qsize = user_pipe_32.fs.qsize;
282 p->fs.plr = user_pipe_32.fs.plr;
283 p->fs.flow_mask = user_pipe_32.fs.flow_mask;
284 p->fs.rq_size = user_pipe_32.fs.rq_size;
285 p->fs.rq_elements = user_pipe_32.fs.rq_elements;
286 p->fs.last_expired = user_pipe_32.fs.last_expired;
287 p->fs.backlogged = user_pipe_32.fs.backlogged;
288 p->fs.w_q = user_pipe_32.fs.w_q;
289 p->fs.max_th = user_pipe_32.fs.max_th;
290 p->fs.min_th = user_pipe_32.fs.min_th;
291 p->fs.max_p = user_pipe_32.fs.max_p;
292 p->fs.c_1 = user_pipe_32.fs.c_1;
293 p->fs.c_2 = user_pipe_32.fs.c_2;
294 p->fs.c_3 = user_pipe_32.fs.c_3;
295 p->fs.c_4 = user_pipe_32.fs.c_4;
296 p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
297 p->fs.lookup_step = user_pipe_32.fs.lookup_step;
298 p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
299 p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
300 p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
301 }
302 return error;
303 }
304
305
306 int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
307 {
308 struct dn_pipe_64 user_pipe_64;
309 int error=0;
310
311 error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
312 if ( !error ){
313 p->pipe_nr = user_pipe_64.pipe_nr;
314 p->bandwidth = user_pipe_64.bandwidth;
315 p->delay = user_pipe_64.delay;
316 p->V = user_pipe_64.V;
317 p->sum = user_pipe_64.sum;
318 p->numbytes = user_pipe_64.numbytes;
319 p->sched_time = user_pipe_64.sched_time;
320 bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
321 p->ready = user_pipe_64.ready;
322
323 p->fs.fs_nr = user_pipe_64.fs.fs_nr;
324 p->fs.flags_fs = user_pipe_64.fs.flags_fs;
325 p->fs.parent_nr = user_pipe_64.fs.parent_nr;
326 p->fs.weight = user_pipe_64.fs.weight;
327 p->fs.qsize = user_pipe_64.fs.qsize;
328 p->fs.plr = user_pipe_64.fs.plr;
329 p->fs.flow_mask = user_pipe_64.fs.flow_mask;
330 p->fs.rq_size = user_pipe_64.fs.rq_size;
331 p->fs.rq_elements = user_pipe_64.fs.rq_elements;
332 p->fs.last_expired = user_pipe_64.fs.last_expired;
333 p->fs.backlogged = user_pipe_64.fs.backlogged;
334 p->fs.w_q = user_pipe_64.fs.w_q;
335 p->fs.max_th = user_pipe_64.fs.max_th;
336 p->fs.min_th = user_pipe_64.fs.min_th;
337 p->fs.max_p = user_pipe_64.fs.max_p;
338 p->fs.c_1 = user_pipe_64.fs.c_1;
339 p->fs.c_2 = user_pipe_64.fs.c_2;
340 p->fs.c_3 = user_pipe_64.fs.c_3;
341 p->fs.c_4 = user_pipe_64.fs.c_4;
342 p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
343 p->fs.lookup_step = user_pipe_64.fs.lookup_step;
344 p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
345 p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
346 p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
347 }
348 return error;
349 }
350
351 static void
352 cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
353 {
354 fs_bp->fs_nr = set->fs_nr;
355 fs_bp->flags_fs = set->flags_fs ;
356 fs_bp->parent_nr = set->parent_nr ;
357 fs_bp->weight = set->weight ;
358 fs_bp->qsize = set->qsize ;
359 fs_bp->plr = set->plr ;
360 fs_bp->flow_mask = set->flow_mask ;
361 fs_bp->rq_size = set->rq_size ;
362 fs_bp->rq_elements = set->rq_elements ;
363 fs_bp->last_expired = set->last_expired ;
364 fs_bp->backlogged = set->backlogged ;
365 fs_bp->w_q = set->w_q ;
366 fs_bp->max_th = set->max_th ;
367 fs_bp->min_th = set->min_th ;
368 fs_bp->max_p = set->max_p ;
369 fs_bp->c_1 = set->c_1 ;
370 fs_bp->c_2 = set->c_2 ;
371 fs_bp->c_3 = set->c_3 ;
372 fs_bp->c_4 = set->c_4 ;
373 fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
374 fs_bp->lookup_depth = set->lookup_depth ;
375 fs_bp->lookup_step = set->lookup_step ;
376 fs_bp->lookup_weight = set->lookup_weight ;
377 fs_bp->avg_pkt_size = set->avg_pkt_size ;
378 fs_bp->max_pkt_size = set->max_pkt_size ;
379 }
380
381 static void
382 cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
383 {
384 fs_bp->fs_nr = set->fs_nr;
385 fs_bp->flags_fs = set->flags_fs ;
386 fs_bp->parent_nr = set->parent_nr ;
387 fs_bp->weight = set->weight ;
388 fs_bp->qsize = set->qsize ;
389 fs_bp->plr = set->plr ;
390 fs_bp->flow_mask = set->flow_mask ;
391 fs_bp->rq_size = set->rq_size ;
392 fs_bp->rq_elements = set->rq_elements ;
393 fs_bp->last_expired = set->last_expired ;
394 fs_bp->backlogged = set->backlogged ;
395 fs_bp->w_q = set->w_q ;
396 fs_bp->max_th = set->max_th ;
397 fs_bp->min_th = set->min_th ;
398 fs_bp->max_p = set->max_p ;
399 fs_bp->c_1 = set->c_1 ;
400 fs_bp->c_2 = set->c_2 ;
401 fs_bp->c_3 = set->c_3 ;
402 fs_bp->c_4 = set->c_4 ;
403 fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
404 fs_bp->lookup_depth = set->lookup_depth ;
405 fs_bp->lookup_step = set->lookup_step ;
406 fs_bp->lookup_weight = set->lookup_weight ;
407 fs_bp->avg_pkt_size = set->avg_pkt_size ;
408 fs_bp->max_pkt_size = set->max_pkt_size ;
409 }
410
411 static
412 void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
413 {
414 qp->id = q->id;
415 qp->len = q->len;
416 qp->len_bytes = q->len_bytes;
417 qp->numbytes = q->numbytes;
418 qp->tot_pkts = q->tot_pkts;
419 qp->tot_bytes = q->tot_bytes;
420 qp->drops = q->drops;
421 qp->hash_slot = q->hash_slot;
422 qp->avg = q->avg;
423 qp->count = q->count;
424 qp->random = q->random;
425 qp->q_time = q->q_time;
426 qp->heap_pos = q->heap_pos;
427 qp->sched_time = q->sched_time;
428 qp->S = q->S;
429 qp->F = q->F;
430 }
431
432 static
433 void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
434 {
435 qp->id = q->id;
436 qp->len = q->len;
437 qp->len_bytes = q->len_bytes;
438 qp->numbytes = q->numbytes;
439 qp->tot_pkts = q->tot_pkts;
440 qp->tot_bytes = q->tot_bytes;
441 qp->drops = q->drops;
442 qp->hash_slot = q->hash_slot;
443 qp->avg = q->avg;
444 qp->count = q->count;
445 qp->random = q->random;
446 qp->q_time = q->q_time;
447 qp->heap_pos = q->heap_pos;
448 qp->sched_time = q->sched_time;
449 qp->S = q->S;
450 qp->F = q->F;
451 }
452
453 static
454 char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
455 {
456 char *bp;
457
458 pipe_bp->pipe_nr = p->pipe_nr;
459 pipe_bp->bandwidth = p->bandwidth;
460 pipe_bp->delay = p->delay;
461 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
462 pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
463 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
464 pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
465 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
466 pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
467 pipe_bp->V = p->V;
468 pipe_bp->sum = p->sum;
469 pipe_bp->numbytes = p->numbytes;
470 pipe_bp->sched_time = p->sched_time;
471 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
472 pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
473 pipe_bp->ready = p->ready;
474
475 cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
476
477 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
478 /*
479 * XXX the following is a hack based on ->next being the
480 * first field in dn_pipe and dn_flow_set. The correct
481 * solution would be to move the dn_flow_set to the beginning
482 * of struct dn_pipe.
483 */
484 pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
485 /* clean pointers */
486 pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
487 pipe_bp->fs.next = (user32_addr_t)0 ;
488 pipe_bp->fs.pipe = (user32_addr_t)0 ;
489 pipe_bp->fs.rq = (user32_addr_t)0 ;
490 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
491 return( dn_copy_set_32( &(p->fs), bp) );
492 }
493
494 static
495 char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
496 {
497 char *bp;
498
499 pipe_bp->pipe_nr = p->pipe_nr;
500 pipe_bp->bandwidth = p->bandwidth;
501 pipe_bp->delay = p->delay;
502 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
503 pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
504 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
505 pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
506 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
507 pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
508 pipe_bp->V = p->V;
509 pipe_bp->sum = p->sum;
510 pipe_bp->numbytes = p->numbytes;
511 pipe_bp->sched_time = p->sched_time;
512 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
513 pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
514 pipe_bp->ready = p->ready;
515
516 cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
517
518 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
519 /*
520 * XXX the following is a hack based on ->next being the
521 * first field in dn_pipe and dn_flow_set. The correct
522 * solution would be to move the dn_flow_set to the beginning
523 * of struct dn_pipe.
524 */
525 pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
526 /* clean pointers */
527 pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
528 pipe_bp->fs.next = USER_ADDR_NULL ;
529 pipe_bp->fs.pipe = USER_ADDR_NULL ;
530 pipe_bp->fs.rq = USER_ADDR_NULL ;
531 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
532 return( dn_copy_set_64( &(p->fs), bp) );
533 }
534
535 static int
536 heap_init(struct dn_heap *h, int new_size)
537 {
538 struct dn_heap_entry *p;
539
540 if (h->size >= new_size ) {
541 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
542 h->size, new_size);
543 return 0 ;
544 }
545 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
546 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
547 if (p == NULL) {
548 printf("dummynet: heap_init, resize %d failed\n", new_size );
549 return 1 ; /* error */
550 }
551 if (h->size > 0) {
552 bcopy(h->p, p, h->size * sizeof(*p) );
553 FREE(h->p, M_DUMMYNET);
554 }
555 h->p = p ;
556 h->size = new_size ;
557 return 0 ;
558 }
559
560 /*
561 * Insert element in heap. Normally, p != NULL, we insert p in
562 * a new position and bubble up. If p == NULL, then the element is
563 * already in place, and key is the position where to start the
564 * bubble-up.
565 * Returns 1 on failure (cannot allocate new heap entry)
566 *
567 * If offset > 0 the position (index, int) of the element in the heap is
568 * also stored in the element itself at the given offset in bytes.
569 */
570 #define SET_OFFSET(heap, node) \
571 if (heap->offset > 0) \
572 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
573 /*
574 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
575 */
576 #define RESET_OFFSET(heap, node) \
577 if (heap->offset > 0) \
578 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
579 static int
580 heap_insert(struct dn_heap *h, dn_key key1, void *p)
581 {
582 int son = h->elements ;
583
584 if (p == NULL) /* data already there, set starting point */
585 son = key1 ;
586 else { /* insert new element at the end, possibly resize */
587 son = h->elements ;
588 if (son == h->size) /* need resize... */
589 if (heap_init(h, h->elements+1) )
590 return 1 ; /* failure... */
591 h->p[son].object = p ;
592 h->p[son].key = key1 ;
593 h->elements++ ;
594 }
595 while (son > 0) { /* bubble up */
596 int father = HEAP_FATHER(son) ;
597 struct dn_heap_entry tmp ;
598
599 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
600 break ; /* found right position */
601 /* son smaller than father, swap and repeat */
602 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
603 SET_OFFSET(h, son);
604 son = father ;
605 }
606 SET_OFFSET(h, son);
607 return 0 ;
608 }
609
610 /*
611 * remove top element from heap, or obj if obj != NULL
612 */
613 static void
614 heap_extract(struct dn_heap *h, void *obj)
615 {
616 int child, father, maxelt = h->elements - 1 ;
617
618 if (maxelt < 0) {
619 printf("dummynet: warning, extract from empty heap 0x%p\n", h);
620 return ;
621 }
622 father = 0 ; /* default: move up smallest child */
623 if (obj != NULL) { /* extract specific element, index is at offset */
624 if (h->offset <= 0)
625 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
626 father = *((int *)((char *)obj + h->offset)) ;
627 if (father < 0 || father >= h->elements) {
628 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
629 father, h->elements);
630 panic("dummynet: heap_extract");
631 }
632 }
633 RESET_OFFSET(h, father);
634 child = HEAP_LEFT(father) ; /* left child */
635 while (child <= maxelt) { /* valid entry */
636 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
637 child = child+1 ; /* take right child, otherwise left */
638 h->p[father] = h->p[child] ;
639 SET_OFFSET(h, father);
640 father = child ;
641 child = HEAP_LEFT(child) ; /* left child for next loop */
642 }
643 h->elements-- ;
644 if (father != maxelt) {
645 /*
646 * Fill hole with last entry and bubble up, reusing the insert code
647 */
648 h->p[father] = h->p[maxelt] ;
649 heap_insert(h, father, NULL); /* this one cannot fail */
650 }
651 }
652
653 /*
654 * heapify() will reorganize data inside an array to maintain the
655 * heap property. It is needed when we delete a bunch of entries.
656 */
657 static void
658 heapify(struct dn_heap *h)
659 {
660 int i ;
661
662 for (i = 0 ; i < h->elements ; i++ )
663 heap_insert(h, i , NULL) ;
664 }
665
666 /*
667 * cleanup the heap and free data structure
668 */
669 static void
670 heap_free(struct dn_heap *h)
671 {
672 if (h->size >0 )
673 FREE(h->p, M_DUMMYNET);
674 bzero(h, sizeof(*h));
675 }
676
677 /*
678 * --- end of heap management functions ---
679 */
680
681 /*
682 * Return the mbuf tag holding the dummynet state. As an optimization
683 * this is assumed to be the first tag on the list. If this turns out
684 * wrong we'll need to search the list.
685 */
686 static struct dn_pkt_tag *
687 dn_tag_get(struct mbuf *m)
688 {
689 struct m_tag *mtag = m_tag_first(m);
690 /* KASSERT(mtag != NULL &&
691 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
692 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
693 ("packet on dummynet queue w/o dummynet tag!"));
694 */
695 return (struct dn_pkt_tag *)(mtag+1);
696 }
697
698 /*
699 * Scheduler functions:
700 *
701 * transmit_event() is called when the delay-line needs to enter
702 * the scheduler, either because of existing pkts getting ready,
703 * or new packets entering the queue. The event handled is the delivery
704 * time of the packet.
705 *
706 * ready_event() does something similar with fixed-rate queues, and the
707 * event handled is the finish time of the head pkt.
708 *
709 * wfq_ready_event() does something similar with WF2Q queues, and the
710 * event handled is the start time of the head pkt.
711 *
712 * In all cases, we make sure that the data structures are consistent
713 * before passing pkts out, because this might trigger recursive
714 * invocations of the procedures.
715 */
716 static void
717 transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
718 {
719 struct mbuf *m ;
720 struct dn_pkt_tag *pkt ;
721 u_int64_t schedule_time;
722
723 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
724 ASSERT(serialize >= 0);
725 if (serialize == 0) {
726 while ((m = pipe->head) != NULL) {
727 pkt = dn_tag_get(m);
728 if (!DN_KEY_LEQ(pkt->output_time, curr_time))
729 break;
730
731 pipe->head = m->m_nextpkt;
732 if (*tail != NULL)
733 (*tail)->m_nextpkt = m;
734 else
735 *head = m;
736 *tail = m;
737 }
738
739 if (*tail != NULL)
740 (*tail)->m_nextpkt = NULL;
741 }
742
743 schedule_time = DN_KEY_LEQ(pkt->output_time, curr_time) ?
744 curr_time+1 : pkt->output_time;
745
746 /* if there are leftover packets, put the pipe into the heap for next ready event */
747 if ((m = pipe->head) != NULL) {
748 pkt = dn_tag_get(m);
749 /* XXX should check errors on heap_insert, by draining the
750 * whole pipe p and hoping in the future we are more successful
751 */
752 heap_insert(&extract_heap, schedule_time, pipe);
753 }
754 }
755
756 /*
757 * the following macro computes how many ticks we have to wait
758 * before being able to transmit a packet. The credit is taken from
759 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
760 */
761
762 /* hz is 100, which gives a granularity of 10ms in the old timer.
763 * The timer has been changed to fire every 1ms, so the use of
764 * hz has been modified here. All instances of hz have been left
765 * in place but adjusted by a factor of 10 so that hz is functionally
766 * equal to 1000.
767 */
768 #define SET_TICKS(_m, q, p) \
769 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
770 p->bandwidth ;
771
772 /*
773 * extract pkt from queue, compute output time (could be now)
774 * and put into delay line (p_queue)
775 */
776 static void
777 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
778 struct dn_pipe *p, int len)
779 {
780 struct dn_pkt_tag *dt = dn_tag_get(pkt);
781
782 q->head = pkt->m_nextpkt ;
783 q->len-- ;
784 q->len_bytes -= len ;
785
786 dt->output_time = curr_time + p->delay ;
787
788 if (p->head == NULL)
789 p->head = pkt;
790 else
791 p->tail->m_nextpkt = pkt;
792 p->tail = pkt;
793 p->tail->m_nextpkt = NULL;
794 }
795
796 /*
797 * ready_event() is invoked every time the queue must enter the
798 * scheduler, either because the first packet arrives, or because
799 * a previously scheduled event fired.
800 * On invokation, drain as many pkts as possible (could be 0) and then
801 * if there are leftover packets reinsert the pkt in the scheduler.
802 */
803 static void
804 ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
805 {
806 struct mbuf *pkt;
807 struct dn_pipe *p = q->fs->pipe ;
808 int p_was_empty ;
809
810 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
811
812 if (p == NULL) {
813 printf("dummynet: ready_event pipe is gone\n");
814 return ;
815 }
816 p_was_empty = (p->head == NULL) ;
817
818 /*
819 * schedule fixed-rate queues linked to this pipe:
820 * Account for the bw accumulated since last scheduling, then
821 * drain as many pkts as allowed by q->numbytes and move to
822 * the delay line (in p) computing output time.
823 * bandwidth==0 (no limit) means we can drain the whole queue,
824 * setting len_scaled = 0 does the job.
825 */
826 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
827 while ( (pkt = q->head) != NULL ) {
828 int len = pkt->m_pkthdr.len;
829 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
830 if (len_scaled > q->numbytes )
831 break ;
832 q->numbytes -= len_scaled ;
833 move_pkt(pkt, q, p, len);
834 }
835 /*
836 * If we have more packets queued, schedule next ready event
837 * (can only occur when bandwidth != 0, otherwise we would have
838 * flushed the whole queue in the previous loop).
839 * To this purpose we record the current time and compute how many
840 * ticks to go for the finish time of the packet.
841 */
842 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
843 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
844 q->sched_time = curr_time ;
845 heap_insert(&ready_heap, curr_time + t, (void *)q );
846 /* XXX should check errors on heap_insert, and drain the whole
847 * queue on error hoping next time we are luckier.
848 */
849 } else { /* RED needs to know when the queue becomes empty */
850 q->q_time = curr_time;
851 q->numbytes = 0;
852 }
853 /*
854 * If the delay line was empty call transmit_event(p) now.
855 * Otherwise, the scheduler will take care of it.
856 */
857 if (p_was_empty)
858 transmit_event(p, head, tail);
859 }
860
861 /*
862 * Called when we can transmit packets on WF2Q queues. Take pkts out of
863 * the queues at their start time, and enqueue into the delay line.
864 * Packets are drained until p->numbytes < 0. As long as
865 * len_scaled >= p->numbytes, the packet goes into the delay line
866 * with a deadline p->delay. For the last packet, if p->numbytes<0,
867 * there is an additional delay.
868 */
869 static void
870 ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
871 {
872 int p_was_empty = (p->head == NULL) ;
873 struct dn_heap *sch = &(p->scheduler_heap);
874 struct dn_heap *neh = &(p->not_eligible_heap) ;
875 int64_t p_numbytes = p->numbytes;
876
877 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
878
879 if (p->if_name[0] == 0) /* tx clock is simulated */
880 p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
881 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
882 if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
883 return ;
884 else {
885 DPRINTF(("dummynet: pipe %d ready from %s --\n",
886 p->pipe_nr, p->if_name));
887 }
888 }
889
890 /*
891 * While we have backlogged traffic AND credit, we need to do
892 * something on the queue.
893 */
894 while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
895 if (sch->elements > 0) { /* have some eligible pkts to send out */
896 struct dn_flow_queue *q = sch->p[0].object ;
897 struct mbuf *pkt = q->head;
898 struct dn_flow_set *fs = q->fs;
899 u_int64_t len = pkt->m_pkthdr.len;
900 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
901
902 heap_extract(sch, NULL); /* remove queue from heap */
903 p_numbytes -= len_scaled ;
904 move_pkt(pkt, q, p, len);
905
906 p->V += (len<<MY_M) / p->sum ; /* update V */
907 q->S = q->F ; /* update start time */
908 if (q->len == 0) { /* Flow not backlogged any more */
909 fs->backlogged-- ;
910 heap_insert(&(p->idle_heap), q->F, q);
911 } else { /* still backlogged */
912 /*
913 * update F and position in backlogged queue, then
914 * put flow in not_eligible_heap (we will fix this later).
915 */
916 len = (q->head)->m_pkthdr.len;
917 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
918 if (DN_KEY_LEQ(q->S, p->V))
919 heap_insert(neh, q->S, q);
920 else
921 heap_insert(sch, q->F, q);
922 }
923 }
924 /*
925 * now compute V = max(V, min(S_i)). Remember that all elements in sch
926 * have by definition S_i <= V so if sch is not empty, V is surely
927 * the max and we must not update it. Conversely, if sch is empty
928 * we only need to look at neh.
929 */
930 if (sch->elements == 0 && neh->elements > 0)
931 p->V = MAX64 ( p->V, neh->p[0].key );
932 /* move from neh to sch any packets that have become eligible */
933 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
934 struct dn_flow_queue *q = neh->p[0].object ;
935 heap_extract(neh, NULL);
936 heap_insert(sch, q->F, q);
937 }
938
939 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
940 p_numbytes = -1 ; /* mark not ready for I/O */
941 break ;
942 }
943 }
944 if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
945 && p->idle_heap.elements > 0) {
946 /*
947 * no traffic and no events scheduled. We can get rid of idle-heap.
948 */
949 int i ;
950
951 for (i = 0 ; i < p->idle_heap.elements ; i++) {
952 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
953
954 q->F = 0 ;
955 q->S = q->F + 1 ;
956 }
957 p->sum = 0 ;
958 p->V = 0 ;
959 p->idle_heap.elements = 0 ;
960 }
961 /*
962 * If we are getting clocks from dummynet (not a real interface) and
963 * If we are under credit, schedule the next ready event.
964 * Also fix the delivery time of the last packet.
965 */
966 if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
967 dn_key t=0 ; /* number of ticks i have to wait */
968
969 if (p->bandwidth > 0)
970 t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
971 dn_tag_get(p->tail)->output_time += t ;
972 p->sched_time = curr_time ;
973 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
974 /* XXX should check errors on heap_insert, and drain the whole
975 * queue on error hoping next time we are luckier.
976 */
977 }
978
979 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
980 if (p_numbytes > INT_MAX)
981 p->numbytes = INT_MAX;
982 else if (p_numbytes < INT_MIN)
983 p->numbytes = INT_MIN;
984 else
985 p->numbytes = p_numbytes;
986
987 /*
988 * If the delay line was empty call transmit_event(p) now.
989 * Otherwise, the scheduler will take care of it.
990 */
991 if (p_was_empty)
992 transmit_event(p, head, tail);
993
994 }
995
996 /*
997 * This is called every 1ms. It is used to
998 * increment the current tick counter and schedule expired events.
999 */
1000 static void
1001 dummynet(__unused void * unused)
1002 {
1003 void *p ; /* generic parameter to handler */
1004 struct dn_heap *h ;
1005 struct dn_heap *heaps[3];
1006 struct mbuf *head = NULL, *tail = NULL;
1007 int i;
1008 struct dn_pipe *pe ;
1009 struct timespec ts;
1010 struct timeval tv;
1011
1012 heaps[0] = &ready_heap ; /* fixed-rate queues */
1013 heaps[1] = &wfq_ready_heap ; /* wfq queues */
1014 heaps[2] = &extract_heap ; /* delay line */
1015
1016 lck_mtx_lock(dn_mutex);
1017
1018 /* make all time measurements in milliseconds (ms) -
1019 * here we convert secs and usecs to msecs (just divide the
1020 * usecs and take the closest whole number).
1021 */
1022 microuptime(&tv);
1023 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1024
1025 for (i=0; i < 3 ; i++) {
1026 h = heaps[i];
1027 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
1028 if (h->p[0].key > curr_time)
1029 printf("dummynet: warning, heap %d is %d ticks late\n",
1030 i, (int)(curr_time - h->p[0].key));
1031 p = h->p[0].object ; /* store a copy before heap_extract */
1032 heap_extract(h, NULL); /* need to extract before processing */
1033 if (i == 0)
1034 ready_event(p, &head, &tail) ;
1035 else if (i == 1) {
1036 struct dn_pipe *pipe = p;
1037 if (pipe->if_name[0] != '\0')
1038 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1039 pipe->if_name);
1040 else
1041 ready_event_wfq(p, &head, &tail) ;
1042 } else {
1043 transmit_event(p, &head, &tail);
1044 }
1045 }
1046 }
1047 /* sweep pipes trying to expire idle flow_queues */
1048 for (i = 0; i < HASHSIZE; i++)
1049 SLIST_FOREACH(pe, &pipehash[i], next)
1050 if (pe->idle_heap.elements > 0 &&
1051 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1052 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1053
1054 heap_extract(&(pe->idle_heap), NULL);
1055 q->S = q->F + 1 ; /* mark timestamp as invalid */
1056 pe->sum -= q->fs->weight ;
1057 }
1058
1059 /* check the heaps to see if there's still stuff in there, and
1060 * only set the timer if there are packets to process
1061 */
1062 timer_enabled = 0;
1063 for (i=0; i < 3 ; i++) {
1064 h = heaps[i];
1065 if (h->elements > 0) { // set the timer
1066 ts.tv_sec = 0;
1067 ts.tv_nsec = 1 * 1000000; // 1ms
1068 timer_enabled = 1;
1069 bsd_timeout(dummynet, NULL, &ts);
1070 break;
1071 }
1072 }
1073
1074 if (head != NULL)
1075 serialize++;
1076
1077 lck_mtx_unlock(dn_mutex);
1078
1079 /* Send out the de-queued list of ready-to-send packets */
1080 if (head != NULL) {
1081 dummynet_send(head);
1082 lck_mtx_lock(dn_mutex);
1083 serialize--;
1084 lck_mtx_unlock(dn_mutex);
1085 }
1086 }
1087
1088
1089 static void
1090 dummynet_send(struct mbuf *m)
1091 {
1092 struct dn_pkt_tag *pkt;
1093 struct mbuf *n;
1094
1095 for (; m != NULL; m = n) {
1096 n = m->m_nextpkt;
1097 m->m_nextpkt = NULL;
1098 pkt = dn_tag_get(m);
1099
1100 switch (pkt->dn_dir) {
1101 case DN_TO_IP_OUT: {
1102 struct route tmp_rt = pkt->ro;
1103 (void)ip_output(m, NULL, &tmp_rt, pkt->flags, NULL, NULL);
1104 if (tmp_rt.ro_rt) {
1105 rtfree(tmp_rt.ro_rt);
1106 tmp_rt.ro_rt = NULL;
1107 }
1108 break ;
1109 }
1110 case DN_TO_IP_IN :
1111 proto_inject(PF_INET, m);
1112 break ;
1113
1114 default:
1115 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1116 m_freem(m);
1117 break ;
1118 }
1119 }
1120 }
1121
1122
1123
1124 /*
1125 * called by an interface when tx_rdy occurs.
1126 */
1127 int
1128 if_tx_rdy(struct ifnet *ifp)
1129 {
1130 struct dn_pipe *p;
1131 struct mbuf *head = NULL, *tail = NULL;
1132 int i;
1133
1134 lck_mtx_lock(dn_mutex);
1135
1136 for (i = 0; i < HASHSIZE; i++)
1137 SLIST_FOREACH(p, &pipehash[i], next)
1138 if (p->ifp == ifp)
1139 break ;
1140 if (p == NULL) {
1141 char buf[32];
1142 snprintf(buf, sizeof(buf), "%s%d",ifp->if_name, ifp->if_unit);
1143 for (i = 0; i < HASHSIZE; i++)
1144 SLIST_FOREACH(p, &pipehash[i], next)
1145 if (!strcmp(p->if_name, buf) ) {
1146 p->ifp = ifp ;
1147 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
1148 break ;
1149 }
1150 }
1151 if (p != NULL) {
1152 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp->if_name,
1153 ifp->if_unit, ifp->if_snd.ifq_len));
1154 p->numbytes = 0 ; /* mark ready for I/O */
1155 ready_event_wfq(p, &head, &tail);
1156 }
1157
1158 if (head != NULL) {
1159 serialize++;
1160 }
1161
1162 lck_mtx_unlock(dn_mutex);
1163
1164
1165 /* Send out the de-queued list of ready-to-send packets */
1166 if (head != NULL) {
1167 dummynet_send(head);
1168 serialize--;
1169 }
1170 return 0;
1171 }
1172
1173 /*
1174 * Unconditionally expire empty queues in case of shortage.
1175 * Returns the number of queues freed.
1176 */
1177 static int
1178 expire_queues(struct dn_flow_set *fs)
1179 {
1180 struct dn_flow_queue *q, *prev ;
1181 int i, initial_elements = fs->rq_elements ;
1182 struct timeval timenow;
1183
1184 /* reviewed for getmicrotime usage */
1185 getmicrotime(&timenow);
1186
1187 if (fs->last_expired == timenow.tv_sec)
1188 return 0 ;
1189 fs->last_expired = timenow.tv_sec ;
1190 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1191 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1192 if (q->head != NULL || q->S != q->F+1) {
1193 prev = q ;
1194 q = q->next ;
1195 } else { /* entry is idle, expire it */
1196 struct dn_flow_queue *old_q = q ;
1197
1198 if (prev != NULL)
1199 prev->next = q = q->next ;
1200 else
1201 fs->rq[i] = q = q->next ;
1202 fs->rq_elements-- ;
1203 FREE(old_q, M_DUMMYNET);
1204 }
1205 return initial_elements - fs->rq_elements ;
1206 }
1207
1208 /*
1209 * If room, create a new queue and put at head of slot i;
1210 * otherwise, create or use the default queue.
1211 */
1212 static struct dn_flow_queue *
1213 create_queue(struct dn_flow_set *fs, int i)
1214 {
1215 struct dn_flow_queue *q ;
1216
1217 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1218 expire_queues(fs) == 0) {
1219 /*
1220 * No way to get room, use or create overflow queue.
1221 */
1222 i = fs->rq_size ;
1223 if ( fs->rq[i] != NULL )
1224 return fs->rq[i] ;
1225 }
1226 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1227 if (q == NULL) {
1228 printf("dummynet: sorry, cannot allocate queue for new flow\n");
1229 return NULL ;
1230 }
1231 q->fs = fs ;
1232 q->hash_slot = i ;
1233 q->next = fs->rq[i] ;
1234 q->S = q->F + 1; /* hack - mark timestamp as invalid */
1235 fs->rq[i] = q ;
1236 fs->rq_elements++ ;
1237 return q ;
1238 }
1239
1240 /*
1241 * Given a flow_set and a pkt in last_pkt, find a matching queue
1242 * after appropriate masking. The queue is moved to front
1243 * so that further searches take less time.
1244 */
1245 static struct dn_flow_queue *
1246 find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
1247 {
1248 int i = 0 ; /* we need i and q for new allocations */
1249 struct dn_flow_queue *q, *prev;
1250
1251 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1252 q = fs->rq[0] ;
1253 else {
1254 /* first, do the masking */
1255 id->dst_ip &= fs->flow_mask.dst_ip ;
1256 id->src_ip &= fs->flow_mask.src_ip ;
1257 id->dst_port &= fs->flow_mask.dst_port ;
1258 id->src_port &= fs->flow_mask.src_port ;
1259 id->proto &= fs->flow_mask.proto ;
1260 id->flags = 0 ; /* we don't care about this one */
1261 /* then, hash function */
1262 i = ( (id->dst_ip) & 0xffff ) ^
1263 ( (id->dst_ip >> 15) & 0xffff ) ^
1264 ( (id->src_ip << 1) & 0xffff ) ^
1265 ( (id->src_ip >> 16 ) & 0xffff ) ^
1266 (id->dst_port << 1) ^ (id->src_port) ^
1267 (id->proto );
1268 i = i % fs->rq_size ;
1269 /* finally, scan the current list for a match */
1270 searches++ ;
1271 for (prev=NULL, q = fs->rq[i] ; q ; ) {
1272 search_steps++;
1273 if (id->dst_ip == q->id.dst_ip &&
1274 id->src_ip == q->id.src_ip &&
1275 id->dst_port == q->id.dst_port &&
1276 id->src_port == q->id.src_port &&
1277 id->proto == q->id.proto &&
1278 id->flags == q->id.flags)
1279 break ; /* found */
1280 else if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
1281 /* entry is idle and not in any heap, expire it */
1282 struct dn_flow_queue *old_q = q ;
1283
1284 if (prev != NULL)
1285 prev->next = q = q->next ;
1286 else
1287 fs->rq[i] = q = q->next ;
1288 fs->rq_elements-- ;
1289 FREE(old_q, M_DUMMYNET);
1290 continue ;
1291 }
1292 prev = q ;
1293 q = q->next ;
1294 }
1295 if (q && prev != NULL) { /* found and not in front */
1296 prev->next = q->next ;
1297 q->next = fs->rq[i] ;
1298 fs->rq[i] = q ;
1299 }
1300 }
1301 if (q == NULL) { /* no match, need to allocate a new entry */
1302 q = create_queue(fs, i);
1303 if (q != NULL)
1304 q->id = *id ;
1305 }
1306 return q ;
1307 }
1308
1309 static int
1310 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1311 {
1312 /*
1313 * RED algorithm
1314 *
1315 * RED calculates the average queue size (avg) using a low-pass filter
1316 * with an exponential weighted (w_q) moving average:
1317 * avg <- (1-w_q) * avg + w_q * q_size
1318 * where q_size is the queue length (measured in bytes or * packets).
1319 *
1320 * If q_size == 0, we compute the idle time for the link, and set
1321 * avg = (1 - w_q)^(idle/s)
1322 * where s is the time needed for transmitting a medium-sized packet.
1323 *
1324 * Now, if avg < min_th the packet is enqueued.
1325 * If avg > max_th the packet is dropped. Otherwise, the packet is
1326 * dropped with probability P function of avg.
1327 *
1328 */
1329
1330 int64_t p_b = 0;
1331 /* queue in bytes or packets ? */
1332 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1333
1334 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1335
1336 /* average queue size estimation */
1337 if (q_size != 0) {
1338 /*
1339 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1340 */
1341 int diff = SCALE(q_size) - q->avg;
1342 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1343
1344 q->avg += (int) v;
1345 } else {
1346 /*
1347 * queue is empty, find for how long the queue has been
1348 * empty and use a lookup table for computing
1349 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1350 * (small) packet.
1351 * XXX check wraps...
1352 */
1353 if (q->avg) {
1354 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1355
1356 q->avg = (t < fs->lookup_depth) ?
1357 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1358 }
1359 }
1360 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1361
1362 /* should i drop ? */
1363
1364 if (q->avg < fs->min_th) {
1365 q->count = -1;
1366 return 0; /* accept packet ; */
1367 }
1368 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1369 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1370 /*
1371 * According to Gentle-RED, if avg is greater than max_th the
1372 * packet is dropped with a probability
1373 * p_b = c_3 * avg - c_4
1374 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1375 */
1376 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1377 } else {
1378 q->count = -1;
1379 DPRINTF(("dummynet: - drop"));
1380 return 1 ;
1381 }
1382 } else if (q->avg > fs->min_th) {
1383 /*
1384 * we compute p_b using the linear dropping function p_b = c_1 *
1385 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1386 * max_p * min_th / (max_th - min_th)
1387 */
1388 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1389 }
1390 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1391 p_b = (p_b * len) / fs->max_pkt_size;
1392 if (++q->count == 0)
1393 q->random = MY_RANDOM & 0xffff;
1394 else {
1395 /*
1396 * q->count counts packets arrived since last drop, so a greater
1397 * value of q->count means a greater packet drop probability.
1398 */
1399 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1400 q->count = 0;
1401 DPRINTF(("dummynet: - red drop"));
1402 /* after a drop we calculate a new random value */
1403 q->random = MY_RANDOM & 0xffff;
1404 return 1; /* drop */
1405 }
1406 }
1407 /* end of RED algorithm */
1408 return 0 ; /* accept */
1409 }
1410
1411 static __inline
1412 struct dn_flow_set *
1413 locate_flowset(int fs_nr)
1414 {
1415 struct dn_flow_set *fs;
1416 SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1417 if (fs->fs_nr == fs_nr)
1418 return fs ;
1419
1420 return (NULL);
1421 }
1422
1423 static __inline struct dn_pipe *
1424 locate_pipe(int pipe_nr)
1425 {
1426 struct dn_pipe *pipe;
1427
1428 SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1429 if (pipe->pipe_nr == pipe_nr)
1430 return (pipe);
1431
1432 return (NULL);
1433 }
1434
1435
1436
1437 /*
1438 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1439 * depending on whether WF2Q or fixed bw is used.
1440 *
1441 * pipe_nr pipe or queue the packet is destined for.
1442 * dir where shall we send the packet after dummynet.
1443 * m the mbuf with the packet
1444 * ifp the 'ifp' parameter from the caller.
1445 * NULL in ip_input, destination interface in ip_output,
1446 * real_dst in bdg_forward
1447 * ro route parameter (only used in ip_output, NULL otherwise)
1448 * dst destination address, only used by ip_output
1449 * rule matching rule, in case of multiple passes
1450 * flags flags from the caller, only used in ip_output
1451 *
1452 */
1453 static int
1454 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa)
1455 {
1456 struct mbuf *head = NULL, *tail = NULL;
1457 struct dn_pkt_tag *pkt;
1458 struct m_tag *mtag;
1459 struct dn_flow_set *fs = NULL;
1460 struct dn_pipe *pipe ;
1461 u_int64_t len = m->m_pkthdr.len ;
1462 struct dn_flow_queue *q = NULL ;
1463 int is_pipe;
1464 struct timespec ts;
1465 struct timeval tv;
1466
1467 #if IPFW2
1468 ipfw_insn *cmd = fwa->rule->cmd + fwa->rule->act_ofs;
1469
1470 if (cmd->opcode == O_LOG)
1471 cmd += F_LEN(cmd);
1472 is_pipe = (cmd->opcode == O_PIPE);
1473 #else
1474 is_pipe = (fwa->rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1475 #endif
1476
1477 pipe_nr &= 0xffff ;
1478
1479 lck_mtx_lock(dn_mutex);
1480
1481 /* make all time measurements in milliseconds (ms) -
1482 * here we convert secs and usecs to msecs (just divide the
1483 * usecs and take the closest whole number).
1484 */
1485 microuptime(&tv);
1486 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1487
1488 /*
1489 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1490 */
1491 if (is_pipe) {
1492 pipe = locate_pipe(pipe_nr);
1493 if (pipe != NULL)
1494 fs = &(pipe->fs);
1495 } else
1496 fs = locate_flowset(pipe_nr);
1497
1498
1499 if (fs == NULL){
1500 goto dropit ; /* this queue/pipe does not exist! */
1501 }
1502 pipe = fs->pipe ;
1503 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1504 pipe = locate_pipe(fs->parent_nr);
1505
1506 if (pipe != NULL)
1507 fs->pipe = pipe ;
1508 else {
1509 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1510 fs->parent_nr, fs->fs_nr);
1511 goto dropit ;
1512 }
1513 }
1514 q = find_queue(fs, &(fwa->f_id));
1515 if ( q == NULL )
1516 goto dropit ; /* cannot allocate queue */
1517 /*
1518 * update statistics, then check reasons to drop pkt
1519 */
1520 q->tot_bytes += len ;
1521 q->tot_pkts++ ;
1522 if ( fs->plr && (MY_RANDOM < fs->plr) )
1523 goto dropit ; /* random pkt drop */
1524 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1525 if (q->len_bytes > fs->qsize)
1526 goto dropit ; /* queue size overflow */
1527 } else {
1528 if (q->len >= fs->qsize)
1529 goto dropit ; /* queue count overflow */
1530 }
1531 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1532 goto dropit ;
1533
1534 /* XXX expensive to zero, see if we can remove it*/
1535 mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1536 sizeof(struct dn_pkt_tag), M_NOWAIT, m);
1537 if ( mtag == NULL )
1538 goto dropit ; /* cannot allocate packet header */
1539 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1540
1541 pkt = (struct dn_pkt_tag *)(mtag+1);
1542 bzero(pkt, sizeof(struct dn_pkt_tag));
1543 /* ok, i can handle the pkt now... */
1544 /* build and enqueue packet + parameters */
1545 pkt->rule = fwa->rule ;
1546 pkt->dn_dir = dir ;
1547
1548 pkt->ifp = fwa->oif;
1549 if (dir == DN_TO_IP_OUT) {
1550 /*
1551 * We need to copy *ro because for ICMP pkts (and maybe others)
1552 * the caller passed a pointer into the stack; dst might also be
1553 * a pointer into *ro so it needs to be updated.
1554 */
1555 pkt->ro = *(fwa->ro);
1556 if (fwa->ro->ro_rt)
1557 RT_ADDREF(fwa->ro->ro_rt);
1558
1559 if (fwa->dst == (struct sockaddr_in *)&fwa->ro->ro_dst) /* dst points into ro */
1560 fwa->dst = (struct sockaddr_in *)&(pkt->ro.ro_dst) ;
1561
1562 bcopy (fwa->dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
1563 pkt->flags = fwa->flags;
1564 if (fwa->ipoa != NULL)
1565 pkt->ipoa = *(fwa->ipoa);
1566 }
1567 if (q->head == NULL)
1568 q->head = m;
1569 else
1570 q->tail->m_nextpkt = m;
1571 q->tail = m;
1572 q->len++;
1573 q->len_bytes += len ;
1574
1575 if ( q->head != m ) /* flow was not idle, we are done */
1576 goto done;
1577 /*
1578 * If we reach this point the flow was previously idle, so we need
1579 * to schedule it. This involves different actions for fixed-rate or
1580 * WF2Q queues.
1581 */
1582 if (is_pipe) {
1583 /*
1584 * Fixed-rate queue: just insert into the ready_heap.
1585 */
1586 dn_key t = 0 ;
1587 if (pipe->bandwidth)
1588 t = SET_TICKS(m, q, pipe);
1589 q->sched_time = curr_time ;
1590 if (t == 0) /* must process it now */
1591 ready_event( q , &head, &tail );
1592 else
1593 heap_insert(&ready_heap, curr_time + t , q );
1594 } else {
1595 /*
1596 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1597 * set S to the virtual time V for the controlling pipe, and update
1598 * the sum of weights for the pipe; otherwise, remove flow from
1599 * idle_heap and set S to max(F,V).
1600 * Second, compute finish time F = S + len/weight.
1601 * Third, if pipe was idle, update V=max(S, V).
1602 * Fourth, count one more backlogged flow.
1603 */
1604 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1605 q->S = pipe->V ;
1606 pipe->sum += fs->weight ; /* add weight of new queue */
1607 } else {
1608 heap_extract(&(pipe->idle_heap), q);
1609 q->S = MAX64(q->F, pipe->V ) ;
1610 }
1611 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1612
1613 if (pipe->not_eligible_heap.elements == 0 &&
1614 pipe->scheduler_heap.elements == 0)
1615 pipe->V = MAX64 ( q->S, pipe->V );
1616 fs->backlogged++ ;
1617 /*
1618 * Look at eligibility. A flow is not eligibile if S>V (when
1619 * this happens, it means that there is some other flow already
1620 * scheduled for the same pipe, so the scheduler_heap cannot be
1621 * empty). If the flow is not eligible we just store it in the
1622 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1623 * and possibly invoke ready_event_wfq() right now if there is
1624 * leftover credit.
1625 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1626 * and for all flows in not_eligible_heap (NEH), S_i > V .
1627 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1628 * we only need to look into NEH.
1629 */
1630 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1631 if (pipe->scheduler_heap.elements == 0)
1632 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1633 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1634 } else {
1635 heap_insert(&(pipe->scheduler_heap), q->F, q);
1636 if (pipe->numbytes >= 0) { /* pipe is idle */
1637 if (pipe->scheduler_heap.elements != 1)
1638 printf("dummynet: OUCH! pipe should have been idle!\n");
1639 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1640 pipe->pipe_nr, (int)(q->F >> MY_M)));
1641 pipe->sched_time = curr_time ;
1642 ready_event_wfq(pipe, &head, &tail);
1643 }
1644 }
1645 }
1646 done:
1647 /* start the timer and set global if not already set */
1648 if (!timer_enabled) {
1649 ts.tv_sec = 0;
1650 ts.tv_nsec = 1 * 1000000; // 1ms
1651 timer_enabled = 1;
1652 bsd_timeout(dummynet, NULL, &ts);
1653 }
1654
1655 lck_mtx_unlock(dn_mutex);
1656
1657 if (head != NULL)
1658 dummynet_send(head);
1659
1660 return 0;
1661
1662 dropit:
1663 if (q)
1664 q->drops++ ;
1665 lck_mtx_unlock(dn_mutex);
1666 m_freem(m);
1667 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1668 }
1669
1670 /*
1671 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1672 * Doing this would probably save us the initial bzero of dn_pkt
1673 */
1674 #define DN_FREE_PKT(_m) do { \
1675 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1676 if (tag) { \
1677 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1678 if (n->ro.ro_rt != NULL) { \
1679 rtfree(n->ro.ro_rt); \
1680 n->ro.ro_rt = NULL; \
1681 } \
1682 } \
1683 m_tag_delete(_m, tag); \
1684 m_freem(_m); \
1685 } while (0)
1686
1687 /*
1688 * Dispose all packets and flow_queues on a flow_set.
1689 * If all=1, also remove red lookup table and other storage,
1690 * including the descriptor itself.
1691 * For the one in dn_pipe MUST also cleanup ready_heap...
1692 */
1693 static void
1694 purge_flow_set(struct dn_flow_set *fs, int all)
1695 {
1696 struct dn_flow_queue *q, *qn ;
1697 int i ;
1698
1699 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1700
1701 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1702 for (q = fs->rq[i] ; q ; q = qn ) {
1703 struct mbuf *m, *mnext;
1704
1705 mnext = q->head;
1706 while ((m = mnext) != NULL) {
1707 mnext = m->m_nextpkt;
1708 DN_FREE_PKT(m);
1709 }
1710 qn = q->next ;
1711 FREE(q, M_DUMMYNET);
1712 }
1713 fs->rq[i] = NULL ;
1714 }
1715 fs->rq_elements = 0 ;
1716 if (all) {
1717 /* RED - free lookup table */
1718 if (fs->w_q_lookup)
1719 FREE(fs->w_q_lookup, M_DUMMYNET);
1720 if (fs->rq)
1721 FREE(fs->rq, M_DUMMYNET);
1722 /* if this fs is not part of a pipe, free it */
1723 if (fs->pipe && fs != &(fs->pipe->fs) )
1724 FREE(fs, M_DUMMYNET);
1725 }
1726 }
1727
1728 /*
1729 * Dispose all packets queued on a pipe (not a flow_set).
1730 * Also free all resources associated to a pipe, which is about
1731 * to be deleted.
1732 */
1733 static void
1734 purge_pipe(struct dn_pipe *pipe)
1735 {
1736 struct mbuf *m, *mnext;
1737
1738 purge_flow_set( &(pipe->fs), 1 );
1739
1740 mnext = pipe->head;
1741 while ((m = mnext) != NULL) {
1742 mnext = m->m_nextpkt;
1743 DN_FREE_PKT(m);
1744 }
1745
1746 heap_free( &(pipe->scheduler_heap) );
1747 heap_free( &(pipe->not_eligible_heap) );
1748 heap_free( &(pipe->idle_heap) );
1749 }
1750
1751 /*
1752 * Delete all pipes and heaps returning memory. Must also
1753 * remove references from all ipfw rules to all pipes.
1754 */
1755 static void
1756 dummynet_flush(void)
1757 {
1758 struct dn_pipe *pipe, *pipe1;
1759 struct dn_flow_set *fs, *fs1;
1760 int i;
1761
1762 lck_mtx_lock(dn_mutex);
1763
1764 /* remove all references to pipes ...*/
1765 flush_pipe_ptrs(NULL);
1766
1767 /* Free heaps so we don't have unwanted events. */
1768 heap_free(&ready_heap);
1769 heap_free(&wfq_ready_heap);
1770 heap_free(&extract_heap);
1771
1772 /*
1773 * Now purge all queued pkts and delete all pipes.
1774 *
1775 * XXXGL: can we merge the for(;;) cycles into one or not?
1776 */
1777 for (i = 0; i < HASHSIZE; i++)
1778 SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1779 SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1780 purge_flow_set(fs, 1);
1781 }
1782 for (i = 0; i < HASHSIZE; i++)
1783 SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1784 SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1785 purge_pipe(pipe);
1786 FREE(pipe, M_DUMMYNET);
1787 }
1788 lck_mtx_unlock(dn_mutex);
1789 }
1790
1791
1792 extern struct ip_fw *ip_fw_default_rule ;
1793 static void
1794 dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
1795 {
1796 int i ;
1797 struct dn_flow_queue *q ;
1798 struct mbuf *m ;
1799
1800 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1801 for (q = fs->rq[i] ; q ; q = q->next )
1802 for (m = q->head ; m ; m = m->m_nextpkt ) {
1803 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1804 if (pkt->rule == r)
1805 pkt->rule = ip_fw_default_rule ;
1806 }
1807 }
1808 /*
1809 * when a firewall rule is deleted, scan all queues and remove the flow-id
1810 * from packets matching this rule.
1811 */
1812 void
1813 dn_rule_delete(void *r)
1814 {
1815 struct dn_pipe *p ;
1816 struct dn_flow_set *fs ;
1817 struct dn_pkt_tag *pkt ;
1818 struct mbuf *m ;
1819 int i;
1820
1821 lck_mtx_lock(dn_mutex);
1822
1823 /*
1824 * If the rule references a queue (dn_flow_set), then scan
1825 * the flow set, otherwise scan pipes. Should do either, but doing
1826 * both does not harm.
1827 */
1828 for (i = 0; i < HASHSIZE; i++)
1829 SLIST_FOREACH(fs, &flowsethash[i], next)
1830 dn_rule_delete_fs(fs, r);
1831
1832 for (i = 0; i < HASHSIZE; i++)
1833 SLIST_FOREACH(p, &pipehash[i], next) {
1834 fs = &(p->fs);
1835 dn_rule_delete_fs(fs, r);
1836 for (m = p->head ; m ; m = m->m_nextpkt ) {
1837 pkt = dn_tag_get(m);
1838 if (pkt->rule == r)
1839 pkt->rule = ip_fw_default_rule;
1840 }
1841 }
1842 lck_mtx_unlock(dn_mutex);
1843 }
1844
1845 /*
1846 * setup RED parameters
1847 */
1848 static int
1849 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1850 {
1851 int i;
1852
1853 x->w_q = p->w_q;
1854 x->min_th = SCALE(p->min_th);
1855 x->max_th = SCALE(p->max_th);
1856 x->max_p = p->max_p;
1857
1858 x->c_1 = p->max_p / (p->max_th - p->min_th);
1859 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1860 if (x->flags_fs & DN_IS_GENTLE_RED) {
1861 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1862 x->c_4 = (SCALE(1) - 2 * p->max_p);
1863 }
1864
1865 /* if the lookup table already exist, free and create it again */
1866 if (x->w_q_lookup) {
1867 FREE(x->w_q_lookup, M_DUMMYNET);
1868 x->w_q_lookup = NULL ;
1869 }
1870 if (red_lookup_depth == 0) {
1871 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1872 FREE(x, M_DUMMYNET);
1873 return EINVAL;
1874 }
1875 x->lookup_depth = red_lookup_depth;
1876 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
1877 M_DUMMYNET, M_DONTWAIT);
1878 if (x->w_q_lookup == NULL) {
1879 printf("dummynet: sorry, cannot allocate red lookup table\n");
1880 FREE(x, M_DUMMYNET);
1881 return ENOSPC;
1882 }
1883
1884 /* fill the lookup table with (1 - w_q)^x */
1885 x->lookup_step = p->lookup_step ;
1886 x->lookup_weight = p->lookup_weight ;
1887 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1888 for (i = 1; i < x->lookup_depth; i++)
1889 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1890 if (red_avg_pkt_size < 1)
1891 red_avg_pkt_size = 512 ;
1892 x->avg_pkt_size = red_avg_pkt_size ;
1893 if (red_max_pkt_size < 1)
1894 red_max_pkt_size = 1500 ;
1895 x->max_pkt_size = red_max_pkt_size ;
1896 return 0 ;
1897 }
1898
1899 static int
1900 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
1901 {
1902 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
1903 int l = pfs->rq_size;
1904
1905 if (l == 0)
1906 l = dn_hash_size;
1907 if (l < 4)
1908 l = 4;
1909 else if (l > DN_MAX_HASH_SIZE)
1910 l = DN_MAX_HASH_SIZE;
1911 x->rq_size = l;
1912 } else /* one is enough for null mask */
1913 x->rq_size = 1;
1914 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
1915 M_DUMMYNET, M_DONTWAIT | M_ZERO);
1916 if (x->rq == NULL) {
1917 printf("dummynet: sorry, cannot allocate queue\n");
1918 return ENOSPC;
1919 }
1920 x->rq_elements = 0;
1921 return 0 ;
1922 }
1923
1924 static void
1925 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
1926 {
1927 x->flags_fs = src->flags_fs;
1928 x->qsize = src->qsize;
1929 x->plr = src->plr;
1930 x->flow_mask = src->flow_mask;
1931 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1932 if (x->qsize > 1024*1024)
1933 x->qsize = 1024*1024 ;
1934 } else {
1935 if (x->qsize == 0)
1936 x->qsize = 50;
1937 if (x->qsize > 100)
1938 x->qsize = 50;
1939 }
1940 /* configuring RED */
1941 if ( x->flags_fs & DN_IS_RED )
1942 config_red(src, x) ; /* XXX should check errors */
1943 }
1944
1945 /*
1946 * setup pipe or queue parameters.
1947 */
1948
1949 static int
1950 config_pipe(struct dn_pipe *p)
1951 {
1952 int i, r;
1953 struct dn_flow_set *pfs = &(p->fs);
1954 struct dn_flow_queue *q;
1955
1956 /*
1957 * The config program passes parameters as follows:
1958 * bw = bits/second (0 means no limits),
1959 * delay = ms, must be translated into ticks.
1960 * qsize = slots/bytes
1961 */
1962 p->delay = ( p->delay * (hz*10) ) / 1000 ;
1963 /* We need either a pipe number or a flow_set number */
1964 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
1965 return EINVAL ;
1966 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
1967 return EINVAL ;
1968 if (p->pipe_nr != 0) { /* this is a pipe */
1969 struct dn_pipe *x, *b;
1970
1971 lck_mtx_lock(dn_mutex);
1972
1973 /* locate pipe */
1974 b = locate_pipe(p->pipe_nr);
1975
1976 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
1977 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
1978 if (x == NULL) {
1979 lck_mtx_unlock(dn_mutex);
1980 printf("dummynet: no memory for new pipe\n");
1981 return ENOSPC;
1982 }
1983 x->pipe_nr = p->pipe_nr;
1984 x->fs.pipe = x ;
1985 /* idle_heap is the only one from which we extract from the middle.
1986 */
1987 x->idle_heap.size = x->idle_heap.elements = 0 ;
1988 x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
1989 } else {
1990 x = b;
1991 /* Flush accumulated credit for all queues */
1992 for (i = 0; i <= x->fs.rq_size; i++)
1993 for (q = x->fs.rq[i]; q; q = q->next)
1994 q->numbytes = 0;
1995 }
1996
1997 x->bandwidth = p->bandwidth ;
1998 x->numbytes = 0; /* just in case... */
1999 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2000 x->ifp = NULL ; /* reset interface ptr */
2001 x->delay = p->delay ;
2002 set_fs_parms(&(x->fs), pfs);
2003
2004
2005 if ( x->fs.rq == NULL ) { /* a new pipe */
2006 r = alloc_hash(&(x->fs), pfs) ;
2007 if (r) {
2008 lck_mtx_unlock(dn_mutex);
2009 FREE(x, M_DUMMYNET);
2010 return r ;
2011 }
2012 SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2013 x, next);
2014 }
2015 lck_mtx_unlock(dn_mutex);
2016 } else { /* config queue */
2017 struct dn_flow_set *x, *b ;
2018
2019 lck_mtx_lock(dn_mutex);
2020 /* locate flow_set */
2021 b = locate_flowset(pfs->fs_nr);
2022
2023 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
2024 if (pfs->parent_nr == 0) { /* need link to a pipe */
2025 lck_mtx_unlock(dn_mutex);
2026 return EINVAL ;
2027 }
2028 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
2029 if (x == NULL) {
2030 lck_mtx_unlock(dn_mutex);
2031 printf("dummynet: no memory for new flow_set\n");
2032 return ENOSPC;
2033 }
2034 x->fs_nr = pfs->fs_nr;
2035 x->parent_nr = pfs->parent_nr;
2036 x->weight = pfs->weight ;
2037 if (x->weight == 0)
2038 x->weight = 1 ;
2039 else if (x->weight > 100)
2040 x->weight = 100 ;
2041 } else {
2042 /* Change parent pipe not allowed; must delete and recreate */
2043 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2044 lck_mtx_unlock(dn_mutex);
2045 return EINVAL ;
2046 }
2047 x = b;
2048 }
2049 set_fs_parms(x, pfs);
2050
2051 if ( x->rq == NULL ) { /* a new flow_set */
2052 r = alloc_hash(x, pfs) ;
2053 if (r) {
2054 lck_mtx_unlock(dn_mutex);
2055 FREE(x, M_DUMMYNET);
2056 return r ;
2057 }
2058 SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2059 x, next);
2060 }
2061 lck_mtx_unlock(dn_mutex);
2062 }
2063 return 0 ;
2064 }
2065
2066 /*
2067 * Helper function to remove from a heap queues which are linked to
2068 * a flow_set about to be deleted.
2069 */
2070 static void
2071 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2072 {
2073 int i = 0, found = 0 ;
2074 for (; i < h->elements ;)
2075 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2076 h->elements-- ;
2077 h->p[i] = h->p[h->elements] ;
2078 found++ ;
2079 } else
2080 i++ ;
2081 if (found)
2082 heapify(h);
2083 }
2084
2085 /*
2086 * helper function to remove a pipe from a heap (can be there at most once)
2087 */
2088 static void
2089 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2090 {
2091 if (h->elements > 0) {
2092 int i = 0 ;
2093 for (i=0; i < h->elements ; i++ ) {
2094 if (h->p[i].object == p) { /* found it */
2095 h->elements-- ;
2096 h->p[i] = h->p[h->elements] ;
2097 heapify(h);
2098 break ;
2099 }
2100 }
2101 }
2102 }
2103
2104 /*
2105 * drain all queues. Called in case of severe mbuf shortage.
2106 */
2107 void
2108 dummynet_drain(void)
2109 {
2110 struct dn_flow_set *fs;
2111 struct dn_pipe *p;
2112 struct mbuf *m, *mnext;
2113 int i;
2114
2115 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2116
2117 heap_free(&ready_heap);
2118 heap_free(&wfq_ready_heap);
2119 heap_free(&extract_heap);
2120 /* remove all references to this pipe from flow_sets */
2121 for (i = 0; i < HASHSIZE; i++)
2122 SLIST_FOREACH(fs, &flowsethash[i], next)
2123 purge_flow_set(fs, 0);
2124
2125 for (i = 0; i < HASHSIZE; i++)
2126 SLIST_FOREACH(p, &pipehash[i], next) {
2127 purge_flow_set(&(p->fs), 0);
2128
2129 mnext = p->head;
2130 while ((m = mnext) != NULL) {
2131 mnext = m->m_nextpkt;
2132 DN_FREE_PKT(m);
2133 }
2134 p->head = p->tail = NULL ;
2135 }
2136 }
2137
2138 /*
2139 * Fully delete a pipe or a queue, cleaning up associated info.
2140 */
2141 static int
2142 delete_pipe(struct dn_pipe *p)
2143 {
2144 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2145 return EINVAL ;
2146 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2147 return EINVAL ;
2148 if (p->pipe_nr != 0) { /* this is an old-style pipe */
2149 struct dn_pipe *b;
2150 struct dn_flow_set *fs;
2151 int i;
2152
2153 lck_mtx_lock(dn_mutex);
2154 /* locate pipe */
2155 b = locate_pipe(p->pipe_nr);
2156 if(b == NULL){
2157 lck_mtx_unlock(dn_mutex);
2158 return EINVAL ; /* not found */
2159 }
2160
2161 /* Unlink from list of pipes. */
2162 SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2163
2164 /* remove references to this pipe from the ip_fw rules. */
2165 flush_pipe_ptrs(&(b->fs));
2166
2167 /* Remove all references to this pipe from flow_sets. */
2168 for (i = 0; i < HASHSIZE; i++)
2169 SLIST_FOREACH(fs, &flowsethash[i], next)
2170 if (fs->pipe == b) {
2171 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2172 p->pipe_nr, fs->fs_nr);
2173 fs->pipe = NULL ;
2174 purge_flow_set(fs, 0);
2175 }
2176 fs_remove_from_heap(&ready_heap, &(b->fs));
2177
2178 purge_pipe(b); /* remove all data associated to this pipe */
2179 /* remove reference to here from extract_heap and wfq_ready_heap */
2180 pipe_remove_from_heap(&extract_heap, b);
2181 pipe_remove_from_heap(&wfq_ready_heap, b);
2182 lck_mtx_unlock(dn_mutex);
2183
2184 FREE(b, M_DUMMYNET);
2185 } else { /* this is a WF2Q queue (dn_flow_set) */
2186 struct dn_flow_set *b;
2187
2188 lck_mtx_lock(dn_mutex);
2189 /* locate set */
2190 b = locate_flowset(p->fs.fs_nr);
2191 if (b == NULL) {
2192 lck_mtx_unlock(dn_mutex);
2193 return EINVAL ; /* not found */
2194 }
2195
2196 /* remove references to this flow_set from the ip_fw rules. */
2197 flush_pipe_ptrs(b);
2198
2199 /* Unlink from list of flowsets. */
2200 SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2201
2202 if (b->pipe != NULL) {
2203 /* Update total weight on parent pipe and cleanup parent heaps */
2204 b->pipe->sum -= b->weight * b->backlogged ;
2205 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2206 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2207 #if 1 /* XXX should i remove from idle_heap as well ? */
2208 fs_remove_from_heap(&(b->pipe->idle_heap), b);
2209 #endif
2210 }
2211 purge_flow_set(b, 1);
2212 lck_mtx_unlock(dn_mutex);
2213 }
2214 return 0 ;
2215 }
2216
2217 /*
2218 * helper function used to copy data from kernel in DUMMYNET_GET
2219 */
2220 static
2221 char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
2222 {
2223 int i, copied = 0 ;
2224 struct dn_flow_queue *q;
2225 struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
2226
2227 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2228
2229 for (i = 0 ; i <= set->rq_size ; i++)
2230 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2231 if (q->hash_slot != i)
2232 printf("dummynet: ++ at %d: wrong slot (have %d, "
2233 "should be %d)\n", copied, q->hash_slot, i);
2234 if (q->fs != set)
2235 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2236 i, q->fs, set);
2237 copied++ ;
2238 cp_queue_to_32_user( q, qp );
2239 /* cleanup pointers */
2240 qp->next = (user32_addr_t)0 ;
2241 qp->head = qp->tail = (user32_addr_t)0 ;
2242 qp->fs = (user32_addr_t)0 ;
2243 }
2244 if (copied != set->rq_elements)
2245 printf("dummynet: ++ wrong count, have %d should be %d\n",
2246 copied, set->rq_elements);
2247 return (char *)qp ;
2248 }
2249
2250 static
2251 char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2252 {
2253 int i, copied = 0 ;
2254 struct dn_flow_queue *q;
2255 struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
2256
2257 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2258
2259 for (i = 0 ; i <= set->rq_size ; i++)
2260 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2261 if (q->hash_slot != i)
2262 printf("dummynet: ++ at %d: wrong slot (have %d, "
2263 "should be %d)\n", copied, q->hash_slot, i);
2264 if (q->fs != set)
2265 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
2266 i, q->fs, set);
2267 copied++ ;
2268 //bcopy(q, qp, sizeof(*q));
2269 cp_queue_to_64_user( q, qp );
2270 /* cleanup pointers */
2271 qp->next = USER_ADDR_NULL ;
2272 qp->head = qp->tail = USER_ADDR_NULL ;
2273 qp->fs = USER_ADDR_NULL ;
2274 }
2275 if (copied != set->rq_elements)
2276 printf("dummynet: ++ wrong count, have %d should be %d\n",
2277 copied, set->rq_elements);
2278 return (char *)qp ;
2279 }
2280
2281 static size_t
2282 dn_calc_size(int is64user)
2283 {
2284 struct dn_flow_set *set ;
2285 struct dn_pipe *p ;
2286 size_t size = 0 ;
2287 size_t pipesize;
2288 size_t queuesize;
2289 size_t setsize;
2290 int i;
2291
2292 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2293 if ( is64user ){
2294 pipesize = sizeof(struct dn_pipe_64);
2295 queuesize = sizeof(struct dn_flow_queue_64);
2296 setsize = sizeof(struct dn_flow_set_64);
2297 }
2298 else {
2299 pipesize = sizeof(struct dn_pipe_32);
2300 queuesize = sizeof( struct dn_flow_queue_32 );
2301 setsize = sizeof(struct dn_flow_set_32);
2302 }
2303 /*
2304 * compute size of data structures: list of pipes and flow_sets.
2305 */
2306 for (i = 0; i < HASHSIZE; i++) {
2307 SLIST_FOREACH(p, &pipehash[i], next)
2308 size += sizeof(*p) +
2309 p->fs.rq_elements * sizeof(struct dn_flow_queue);
2310 SLIST_FOREACH(set, &flowsethash[i], next)
2311 size += sizeof (*set) +
2312 set->rq_elements * sizeof(struct dn_flow_queue);
2313 }
2314 return size;
2315 }
2316
2317 static int
2318 dummynet_get(struct sockopt *sopt)
2319 {
2320 char *buf, *bp=NULL; /* bp is the "copy-pointer" */
2321 size_t size ;
2322 struct dn_flow_set *set ;
2323 struct dn_pipe *p ;
2324 int error=0, i ;
2325 int is64user = 0;
2326
2327 /* XXX lock held too long */
2328 lck_mtx_lock(dn_mutex);
2329 /*
2330 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
2331 * cannot use this flag while holding a mutex.
2332 */
2333 if (proc_is64bit(sopt->sopt_p))
2334 is64user = 1;
2335 for (i = 0; i < 10; i++) {
2336 size = dn_calc_size(is64user);
2337 lck_mtx_unlock(dn_mutex);
2338 buf = _MALLOC(size, M_TEMP, M_WAITOK);
2339 if (buf == NULL)
2340 return ENOBUFS;
2341 lck_mtx_lock(dn_mutex);
2342 if (size == dn_calc_size(is64user))
2343 break;
2344 FREE(buf, M_TEMP);
2345 buf = NULL;
2346 }
2347 if (buf == NULL) {
2348 lck_mtx_unlock(dn_mutex);
2349 return ENOBUFS ;
2350 }
2351
2352
2353 bp = buf;
2354 for (i = 0; i < HASHSIZE; i++)
2355 SLIST_FOREACH(p, &pipehash[i], next) {
2356 /*
2357 * copy pipe descriptor into *bp, convert delay back to ms,
2358 * then copy the flow_set descriptor(s) one at a time.
2359 * After each flow_set, copy the queue descriptor it owns.
2360 */
2361 if ( is64user ){
2362 bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
2363 }
2364 else{
2365 bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
2366 }
2367 }
2368 for (i = 0; i < HASHSIZE; i++)
2369 SLIST_FOREACH(set, &flowsethash[i], next) {
2370 struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
2371 cp_flow_set_to_64_user(set, fs_bp);
2372 /* XXX same hack as above */
2373 fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
2374 fs_bp->pipe = USER_ADDR_NULL;
2375 fs_bp->rq = USER_ADDR_NULL ;
2376 bp += sizeof(struct dn_flow_set_64);
2377 bp = dn_copy_set_64( set, bp );
2378 }
2379 lck_mtx_unlock(dn_mutex);
2380
2381 error = sooptcopyout(sopt, buf, size);
2382 FREE(buf, M_TEMP);
2383 return error ;
2384 }
2385
2386 /*
2387 * Handler for the various dummynet socket options (get, flush, config, del)
2388 */
2389 static int
2390 ip_dn_ctl(struct sockopt *sopt)
2391 {
2392 int error = 0 ;
2393 struct dn_pipe *p, tmp_pipe;
2394
2395 /* Disallow sets in really-really secure mode. */
2396 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2397 return (EPERM);
2398
2399 switch (sopt->sopt_name) {
2400 default :
2401 printf("dummynet: -- unknown option %d", sopt->sopt_name);
2402 return EINVAL ;
2403
2404 case IP_DUMMYNET_GET :
2405 error = dummynet_get(sopt);
2406 break ;
2407
2408 case IP_DUMMYNET_FLUSH :
2409 dummynet_flush() ;
2410 break ;
2411
2412 case IP_DUMMYNET_CONFIGURE :
2413 p = &tmp_pipe ;
2414 if (proc_is64bit(sopt->sopt_p))
2415 error = cp_pipe_from_user_64( sopt, p );
2416 else
2417 error = cp_pipe_from_user_32( sopt, p );
2418
2419 if (error)
2420 break ;
2421 error = config_pipe(p);
2422 break ;
2423
2424 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2425 p = &tmp_pipe ;
2426 if (proc_is64bit(sopt->sopt_p))
2427 error = cp_pipe_from_user_64( sopt, p );
2428 else
2429 error = cp_pipe_from_user_32( sopt, p );
2430 if (error)
2431 break ;
2432
2433 error = delete_pipe(p);
2434 break ;
2435 }
2436 return error ;
2437 }
2438
2439 void
2440 ip_dn_init(void)
2441 {
2442 /* setup locks */
2443 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2444 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2445 dn_mutex_attr = lck_attr_alloc_init();
2446
2447 if ((dn_mutex = lck_mtx_alloc_init(dn_mutex_grp, dn_mutex_attr)) == NULL) {
2448 printf("ip_dn_init: can't alloc dn_mutex\n");
2449 return;
2450 }
2451
2452 ready_heap.size = ready_heap.elements = 0 ;
2453 ready_heap.offset = 0 ;
2454
2455 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2456 wfq_ready_heap.offset = 0 ;
2457
2458 extract_heap.size = extract_heap.elements = 0 ;
2459 extract_heap.offset = 0 ;
2460 ip_dn_ctl_ptr = ip_dn_ctl;
2461 ip_dn_io_ptr = dummynet_io;
2462 ip_dn_ruledel_ptr = dn_rule_delete;
2463 }