2 * Copyright (c) 2011 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Link-layer Reachability Record
32 * Each interface maintains a red-black tree which contains records related
33 * to the on-link nodes which we are interested in communicating with. Each
34 * record gets allocated and inserted into the tree in the following manner:
35 * upon processing an ARP announcement or reply from a known node (i.e. there
36 * exists a ARP route entry for the node), and if a link-layer reachability
37 * record for the node doesn't yet exist; and, upon processing a ND6 RS/RA/
38 * NS/NA/redirect from a node, and if a link-layer reachability record for the
39 * node doesn't yet exist.
41 * Each newly created record is then referred to by the resolver route entry;
42 * if a record already exists, its reference count gets increased for the new
43 * resolver entry which now refers to it. A record gets removed from the tree
44 * and freed once its reference counts drops to zero, i.e. when there is no
45 * more resolver entry referring to it.
47 * A record contains the link-layer protocol (e.g. Ethertype IP/IPv6), the
48 * HW address of the sender, the "last heard from" timestamp (lr_lastrcvd) and
49 * the number of references made to it (lr_reqcnt). Because the key for each
50 * record in the red-black tree consists of the link-layer protocol, therefore
51 * the namespace for the records is partitioned based on the type of link-layer
52 * protocol, i.e. an Ethertype IP link-layer record is only referred to by one
53 * or more ARP entries; an Ethernet IPv6 link-layer record is only referred to
54 * by one or more ND6 entries. Therefore, lr_reqcnt represents the number of
55 * resolver entry references to the record for the same protocol family.
57 * Upon receiving packets from the network, the protocol's input callback
58 * (e.g. ether_inet{6}_input) informs the corresponding resolver (ARP/ND6)
59 * about the (link-layer) origin of the packet. This results in searching
60 * for a matching record in the red-black tree for the interface where the
61 * packet arrived on. If there's no match, no further processing takes place.
62 * Otherwise, the lr_lastrcvd timestamp of the record is updated.
64 * When an IP/IPv6 packet is transmitted to the resolver (i.e. the destination
65 * is on-link), ARP/ND6 records the "last spoken to" timestamp in the route
66 * entry ({la,ln}_lastused).
68 * The reachability of the on-link node is determined by the following logic,
69 * upon sending a packet thru the resolver:
71 * a) If the record is only used by exactly one resolver entry (lr_reqcnt
72 * is 1), i.e. the target host does not have IP/IPv6 aliases that we know
73 * of, check if lr_lastrcvd is "recent." If so, simply send the packet;
74 * otherwise, re-resolve the target node.
76 * b) If the record is shared by multiple resolver entries (lr_reqcnt is
77 * greater than 1), i.e. the target host has more than one IP/IPv6 aliases
78 * on the same network interface, we can't rely on lr_lastrcvd alone, as
79 * one of the IP/IPv6 aliases could have been silently moved to another
80 * node for which we don't have a link-layer record. If lr_lastrcvd is
81 * not "recent", we re-resolve the target node. Otherwise, we perform
82 * an additional check against {la,ln}_lastused to see whether it is also
83 * "recent", relative to lr_lastrcvd. If so, simply send the packet;
84 * otherwise, re-resolve the target node.
86 * The value for "recent" is configurable by adjusting the basetime value for
87 * net.link.ether.inet.arp_llreach_base or net.inet6.icmp6.nd6_llreach_base.
88 * The default basetime value is 30 seconds, and the actual expiration time
89 * is calculated by multiplying the basetime value with some random factor,
90 * which results in a number between 15 to 45 seconds. Setting the basetime
91 * value to 0 effectively disables this feature for the corresponding resolver.
95 * The above logic is based upon the following assumptions:
97 * i) Network traffics are mostly bi-directional, i.e. the act of sending
98 * packets to an on-link node would most likely cause us to receive
99 * packets from that node.
101 * ii) If the on-link node's IP/IPv6 address silently moves to another
102 * on-link node for which we are not aware of, non-unicast packets
103 * from the old node would trigger the record's lr_lastrcvd to be
106 * We can mitigate the above by having the resolver check its {la,ln}_lastused
107 * timestamp at all times, i.e. not only when lr_reqcnt is greater than 1; but
108 * we currently optimize for the common cases.
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/kernel.h>
114 #include <sys/malloc.h>
115 #include <sys/tree.h>
116 #include <sys/sysctl.h>
117 #include <sys/mcache.h>
118 #include <sys/protosw.h>
120 #include <net/if_dl.h>
122 #include <net/if_var.h>
123 #include <net/if_llreach.h>
124 #include <net/dlil.h>
126 #include <kern/assert.h>
127 #include <kern/locks.h>
128 #include <kern/zalloc.h>
131 #include <netinet6/in6_var.h>
132 #include <netinet6/nd6.h>
135 static unsigned int iflr_size
; /* size of if_llreach */
136 static struct zone
*iflr_zone
; /* zone for if_llreach */
138 #define IFLR_ZONE_MAX 128 /* maximum elements in zone */
139 #define IFLR_ZONE_NAME "if_llreach" /* zone name */
141 static struct if_llreach
*iflr_alloc(int);
142 static void iflr_free(struct if_llreach
*);
143 static __inline
int iflr_cmp(const struct if_llreach
*,
144 const struct if_llreach
*);
145 static __inline
int iflr_reachable(struct if_llreach
*, int, u_int64_t
);
146 static int sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS
;
148 /* The following is protected by if_llreach_lock */
149 RB_GENERATE_PREV(ll_reach_tree
, if_llreach
, lr_link
, iflr_cmp
);
151 SYSCTL_DECL(_net_link_generic_system
);
153 SYSCTL_NODE(_net_link_generic_system
, OID_AUTO
, llreach_info
,
154 CTLFLAG_RD
| CTLFLAG_LOCKED
, sysctl_llreach_ifinfo
,
155 "Per-interface tree of source link-layer reachability records");
158 * Link-layer reachability is based off node constants in RFC4861.
161 #define LL_COMPUTE_RTIME(x) ND_COMPUTE_RTIME(x)
163 #define LL_MIN_RANDOM_FACTOR 512 /* 1024 * 0.5 */
164 #define LL_MAX_RANDOM_FACTOR 1536 /* 1024 * 1.5 */
165 #define LL_COMPUTE_RTIME(x) \
166 (((LL_MIN_RANDOM_FACTOR * (x >> 10)) + (random() & \
167 ((LL_MAX_RANDOM_FACTOR - LL_MIN_RANDOM_FACTOR) * (x >> 10)))) / 1000)
171 ifnet_llreach_init(void)
173 iflr_size
= sizeof (struct if_llreach
);
174 iflr_zone
= zinit(iflr_size
,
175 IFLR_ZONE_MAX
* iflr_size
, 0, IFLR_ZONE_NAME
);
176 if (iflr_zone
== NULL
) {
177 panic("%s: failed allocating %s", __func__
, IFLR_ZONE_NAME
);
180 zone_change(iflr_zone
, Z_EXPAND
, TRUE
);
181 zone_change(iflr_zone
, Z_CALLERACCT
, FALSE
);
185 ifnet_llreach_ifattach(struct ifnet
*ifp
, boolean_t reuse
)
187 lck_rw_lock_exclusive(&ifp
->if_llreach_lock
);
188 /* Initialize link-layer source tree (if not already) */
190 RB_INIT(&ifp
->if_ll_srcs
);
191 lck_rw_done(&ifp
->if_llreach_lock
);
195 ifnet_llreach_ifdetach(struct ifnet
*ifp
)
199 * Nothing to do for now; the link-layer source tree might
200 * contain entries at this point, that are still referred
201 * to by route entries pointing to this ifp.
206 * Link-layer source tree comparison function.
208 * An ordered predicate is necessary; bcmp() is not documented to return
209 * an indication of order, memcmp() is, and is an ISO C99 requirement.
212 iflr_cmp(const struct if_llreach
*a
, const struct if_llreach
*b
)
214 return (memcmp(&a
->lr_key
, &b
->lr_key
, sizeof (a
->lr_key
)));
218 iflr_reachable(struct if_llreach
*lr
, int cmp_delta
, u_int64_t tval
)
223 now
= net_uptime(); /* current approx. uptime */
225 * No need for lr_lock; atomically read the last rcvd uptime.
227 expire
= lr
->lr_lastrcvd
+ lr
->lr_reachable
;
229 * If we haven't heard back from the local host for over
230 * lr_reachable seconds, consider that the host is no
234 return (expire
>= now
);
236 * If the caller supplied a reference time, consider the
237 * host is reachable if the record hasn't expired (see above)
238 * and if the reference time is within the past lr_reachable
241 return ((expire
>= now
) && (now
- tval
) < lr
->lr_reachable
);
245 ifnet_llreach_reachable(struct if_llreach
*lr
)
248 * Check whether the cache is too old to be trusted.
250 return (iflr_reachable(lr
, 0, 0));
254 ifnet_llreach_reachable_delta(struct if_llreach
*lr
, u_int64_t tval
)
257 * Check whether the cache is too old to be trusted.
259 return (iflr_reachable(lr
, 1, tval
));
263 ifnet_llreach_set_reachable(struct ifnet
*ifp
, u_int16_t llproto
, void *addr
,
266 struct if_llreach find
, *lr
;
268 VERIFY(alen
== IF_LLREACH_MAXLEN
); /* for now */
270 find
.lr_key
.proto
= llproto
;
271 bcopy(addr
, &find
.lr_key
.addr
, IF_LLREACH_MAXLEN
);
273 lck_rw_lock_shared(&ifp
->if_llreach_lock
);
274 lr
= RB_FIND(ll_reach_tree
, &ifp
->if_ll_srcs
, &find
);
276 lck_rw_done(&ifp
->if_llreach_lock
);
280 * No need for lr_lock; atomically update the last rcvd uptime.
282 lr
->lr_lastrcvd
= net_uptime();
283 lck_rw_done(&ifp
->if_llreach_lock
);
287 ifnet_llreach_alloc(struct ifnet
*ifp
, u_int16_t llproto
, void *addr
,
288 unsigned int alen
, u_int64_t llreach_base
)
290 struct if_llreach find
, *lr
;
293 if (llreach_base
== 0)
296 VERIFY(alen
== IF_LLREACH_MAXLEN
); /* for now */
298 find
.lr_key
.proto
= llproto
;
299 bcopy(addr
, &find
.lr_key
.addr
, IF_LLREACH_MAXLEN
);
301 lck_rw_lock_shared(&ifp
->if_llreach_lock
);
302 lr
= RB_FIND(ll_reach_tree
, &ifp
->if_ll_srcs
, &find
);
306 VERIFY(lr
->lr_reqcnt
>= 1);
308 VERIFY(lr
->lr_reqcnt
!= 0);
309 IFLR_ADDREF_LOCKED(lr
); /* for caller */
310 lr
->lr_lastrcvd
= net_uptime(); /* current approx. uptime */
312 lck_rw_done(&ifp
->if_llreach_lock
);
316 if (!lck_rw_lock_shared_to_exclusive(&ifp
->if_llreach_lock
))
317 lck_rw_lock_exclusive(&ifp
->if_llreach_lock
);
319 lck_rw_assert(&ifp
->if_llreach_lock
, LCK_RW_ASSERT_EXCLUSIVE
);
321 /* in case things have changed while becoming writer */
322 lr
= RB_FIND(ll_reach_tree
, &ifp
->if_ll_srcs
, &find
);
326 lr
= iflr_alloc(M_WAITOK
);
328 lck_rw_done(&ifp
->if_llreach_lock
);
333 VERIFY(lr
->lr_reqcnt
== 1);
334 IFLR_ADDREF_LOCKED(lr
); /* for RB tree */
335 IFLR_ADDREF_LOCKED(lr
); /* for caller */
336 lr
->lr_lastrcvd
= net_uptime(); /* current approx. uptime */
337 lr
->lr_baseup
= lr
->lr_lastrcvd
; /* base uptime */
339 lr
->lr_basecal
= now
.tv_sec
; /* base calendar time */
340 lr
->lr_basereachable
= llreach_base
;
341 lr
->lr_reachable
= LL_COMPUTE_RTIME(lr
->lr_basereachable
* 1000);
342 lr
->lr_debug
|= IFD_ATTACHED
;
344 lr
->lr_key
.proto
= llproto
;
345 bcopy(addr
, &lr
->lr_key
.addr
, IF_LLREACH_MAXLEN
);
346 RB_INSERT(ll_reach_tree
, &ifp
->if_ll_srcs
, lr
);
348 lck_rw_done(&ifp
->if_llreach_lock
);
354 ifnet_llreach_free(struct if_llreach
*lr
)
358 /* no need to lock here; lr_ifp never changes */
361 lck_rw_lock_exclusive(&ifp
->if_llreach_lock
);
363 if (lr
->lr_reqcnt
== 0) {
364 panic("%s: lr=%p negative reqcnt", __func__
, lr
);
368 if (lr
->lr_reqcnt
> 0) {
370 lck_rw_done(&ifp
->if_llreach_lock
);
371 IFLR_REMREF(lr
); /* for caller */
374 if (!(lr
->lr_debug
& IFD_ATTACHED
)) {
375 panic("%s: Attempt to detach an unattached llreach lr=%p",
379 lr
->lr_debug
&= ~IFD_ATTACHED
;
380 RB_REMOVE(ll_reach_tree
, &ifp
->if_ll_srcs
, lr
);
382 lck_rw_done(&ifp
->if_llreach_lock
);
384 IFLR_REMREF(lr
); /* for RB tree */
385 IFLR_REMREF(lr
); /* for caller */
389 ifnet_llreach_up2cal(struct if_llreach
*lr
, u_int64_t uptime
)
391 u_int64_t calendar
= 0;
397 getmicrotime(&cnow
); /* current calendar time */
398 unow
= net_uptime(); /* current approx. uptime */
400 * Take into account possible calendar time changes;
401 * adjust base calendar value if necessary, i.e.
402 * the calendar skew should equate to the uptime skew.
404 lr
->lr_basecal
+= (cnow
.tv_sec
- lr
->lr_basecal
) -
405 (unow
- lr
->lr_baseup
);
407 calendar
= lr
->lr_basecal
+ lr
->lr_reachable
+
408 (uptime
- lr
->lr_baseup
);
414 static struct if_llreach
*
417 struct if_llreach
*lr
;
419 lr
= (how
== M_WAITOK
) ? zalloc(iflr_zone
) : zalloc_noblock(iflr_zone
);
421 bzero(lr
, iflr_size
);
422 lck_mtx_init(&lr
->lr_lock
, ifnet_lock_group
, ifnet_lock_attr
);
423 lr
->lr_debug
|= IFD_ALLOC
;
429 iflr_free(struct if_llreach
*lr
)
432 if (lr
->lr_debug
& IFD_ATTACHED
) {
433 panic("%s: attached lr=%p is being freed", __func__
, lr
);
435 } else if (!(lr
->lr_debug
& IFD_ALLOC
)) {
436 panic("%s: lr %p cannot be freed", __func__
, lr
);
438 } else if (lr
->lr_refcnt
!= 0) {
439 panic("%s: non-zero refcount lr=%p", __func__
, lr
);
441 } else if (lr
->lr_reqcnt
!= 0) {
442 panic("%s: non-zero reqcnt lr=%p", __func__
, lr
);
445 lr
->lr_debug
&= ~IFD_ALLOC
;
448 lck_mtx_destroy(&lr
->lr_lock
, ifnet_lock_group
);
449 zfree(iflr_zone
, lr
);
453 iflr_addref(struct if_llreach
*lr
, int locked
)
458 IFLR_LOCK_ASSERT_HELD(lr
);
460 if (++lr
->lr_refcnt
== 0) {
461 panic("%s: lr=%p wraparound refcnt", __func__
, lr
);
469 iflr_remref(struct if_llreach
*lr
)
472 if (lr
->lr_refcnt
== 0) {
473 panic("%s: lr=%p negative refcnt", __func__
, lr
);
477 if (lr
->lr_refcnt
> 0) {
483 iflr_free(lr
); /* deallocate it */
487 ifnet_lr2ri(struct if_llreach
*lr
, struct rt_reach_info
*ri
)
489 struct if_llreach_info lri
;
491 IFLR_LOCK_ASSERT_HELD(lr
);
493 bzero(ri
, sizeof (*ri
));
494 ifnet_lr2lri(lr
, &lri
);
495 ri
->ri_refcnt
= lri
.lri_refcnt
;
496 ri
->ri_probes
= lri
.lri_probes
;
497 ri
->ri_rcv_expire
= lri
.lri_expire
;
501 ifnet_lr2lri(struct if_llreach
*lr
, struct if_llreach_info
*lri
)
503 IFLR_LOCK_ASSERT_HELD(lr
);
505 bzero(lri
, sizeof (*lri
));
507 * Note here we return request count, not actual memory refcnt.
509 lri
->lri_refcnt
= lr
->lr_reqcnt
;
510 lri
->lri_ifindex
= lr
->lr_ifp
->if_index
;
511 lri
->lri_probes
= lr
->lr_probes
;
512 lri
->lri_expire
= ifnet_llreach_up2cal(lr
, lr
->lr_lastrcvd
);
513 lri
->lri_proto
= lr
->lr_key
.proto
;
514 bcopy(&lr
->lr_key
.addr
, &lri
->lri_addr
, IF_LLREACH_MAXLEN
);
518 sysctl_llreach_ifinfo SYSCTL_HANDLER_ARGS
521 int *name
, retval
= 0;
522 unsigned int namelen
;
524 struct if_llreach
*lr
;
525 struct if_llreach_info lri
;
529 namelen
= (unsigned int)arg2
;
531 if (req
->newptr
!= USER_ADDR_NULL
)
538 ifnet_head_lock_shared();
539 if (ifindex
<= 0 || ifindex
> (u_int
)if_index
) {
540 printf("%s: ifindex %u out of range\n", __func__
, ifindex
);
545 ifp
= ifindex2ifnet
[ifindex
];
548 printf("%s: no ifp for ifindex %u\n", __func__
, ifindex
);
552 lck_rw_lock_shared(&ifp
->if_llreach_lock
);
553 RB_FOREACH(lr
, ll_reach_tree
, &ifp
->if_ll_srcs
) {
554 /* Export to if_llreach_info structure */
556 ifnet_lr2lri(lr
, &lri
);
559 if ((retval
= SYSCTL_OUT(req
, &lri
, sizeof (lri
))) != 0)
562 lck_rw_done(&ifp
->if_llreach_lock
);