]> git.saurik.com Git - apple/xnu.git/blob - bsd/miscfs/nullfs/null_vnops.c
xnu-344.23.tar.gz
[apple/xnu.git] / bsd / miscfs / nullfs / null_vnops.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
23 /*
24 * Copyright (c) 1992, 1993
25 * The Regents of the University of California. All rights reserved.
26 *
27 * This code is derived from software contributed to Berkeley by
28 * John Heidemann of the UCLA Ficus project.
29 *
30 * Redistribution and use in source and binary forms, with or without
31 * modification, are permitted provided that the following conditions
32 * are met:
33 * 1. Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * 2. Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in the
37 * documentation and/or other materials provided with the distribution.
38 * 3. All advertising materials mentioning features or use of this software
39 * must display the following acknowledgement:
40 * This product includes software developed by the University of
41 * California, Berkeley and its contributors.
42 * 4. Neither the name of the University nor the names of its contributors
43 * may be used to endorse or promote products derived from this software
44 * without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * SUCH DAMAGE.
57 *
58 * @(#)null_vnops.c 8.6 (Berkeley) 5/27/95
59 *
60 * Ancestors:
61 * @(#)lofs_vnops.c 1.2 (Berkeley) 6/18/92
62 * ...and...
63 * @(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
64 */
65
66 /*
67 * Null Layer
68 *
69 * (See mount_null(8) for more information.)
70 *
71 * The null layer duplicates a portion of the file system
72 * name space under a new name. In this respect, it is
73 * similar to the loopback file system. It differs from
74 * the loopback fs in two respects: it is implemented using
75 * a stackable layers techniques, and it's "null-node"s stack above
76 * all lower-layer vnodes, not just over directory vnodes.
77 *
78 * The null layer has two purposes. First, it serves as a demonstration
79 * of layering by proving a layer which does nothing. (It actually
80 * does everything the loopback file system does, which is slightly
81 * more than nothing.) Second, the null layer can serve as a prototype
82 * layer. Since it provides all necessary layer framework,
83 * new file system layers can be created very easily be starting
84 * with a null layer.
85 *
86 * The remainder of this man page examines the null layer as a basis
87 * for constructing new layers.
88 *
89 *
90 * INSTANTIATING NEW NULL LAYERS
91 *
92 * New null layers are created with mount_null(8).
93 * Mount_null(8) takes two arguments, the pathname
94 * of the lower vfs (target-pn) and the pathname where the null
95 * layer will appear in the namespace (alias-pn). After
96 * the null layer is put into place, the contents
97 * of target-pn subtree will be aliased under alias-pn.
98 *
99 *
100 * OPERATION OF A NULL LAYER
101 *
102 * The null layer is the minimum file system layer,
103 * simply bypassing all possible operations to the lower layer
104 * for processing there. The majority of its activity centers
105 * on the bypass routine, though which nearly all vnode operations
106 * pass.
107 *
108 * The bypass routine accepts arbitrary vnode operations for
109 * handling by the lower layer. It begins by examing vnode
110 * operation arguments and replacing any null-nodes by their
111 * lower-layer equivlants. It then invokes the operation
112 * on the lower layer. Finally, it replaces the null-nodes
113 * in the arguments and, if a vnode is return by the operation,
114 * stacks a null-node on top of the returned vnode.
115 *
116 * Although bypass handles most operations, vop_getattr, vop_lock,
117 * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
118 * bypassed. Vop_getattr must change the fsid being returned.
119 * Vop_lock and vop_unlock must handle any locking for the
120 * current vnode as well as pass the lock request down.
121 * Vop_inactive and vop_reclaim are not bypassed so that
122 * they can handle freeing null-layer specific data. Vop_print
123 * is not bypassed to avoid excessive debugging information.
124 * Also, certain vnode operations change the locking state within
125 * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
126 * and symlink). Ideally these operations should not change the
127 * lock state, but should be changed to let the caller of the
128 * function unlock them. Otherwise all intermediate vnode layers
129 * (such as union, umapfs, etc) must catch these functions to do
130 * the necessary locking at their layer.
131 *
132 *
133 * INSTANTIATING VNODE STACKS
134 *
135 * Mounting associates the null layer with a lower layer,
136 * effect stacking two VFSes. Vnode stacks are instead
137 * created on demand as files are accessed.
138 *
139 * The initial mount creates a single vnode stack for the
140 * root of the new null layer. All other vnode stacks
141 * are created as a result of vnode operations on
142 * this or other null vnode stacks.
143 *
144 * New vnode stacks come into existance as a result of
145 * an operation which returns a vnode.
146 * The bypass routine stacks a null-node above the new
147 * vnode before returning it to the caller.
148 *
149 * For example, imagine mounting a null layer with
150 * "mount_null /usr/include /dev/layer/null".
151 * Changing directory to /dev/layer/null will assign
152 * the root null-node (which was created when the null layer was mounted).
153 * Now consider opening "sys". A vop_lookup would be
154 * done on the root null-node. This operation would bypass through
155 * to the lower layer which would return a vnode representing
156 * the UFS "sys". Null_bypass then builds a null-node
157 * aliasing the UFS "sys" and returns this to the caller.
158 * Later operations on the null-node "sys" will repeat this
159 * process when constructing other vnode stacks.
160 *
161 *
162 * CREATING OTHER FILE SYSTEM LAYERS
163 *
164 * One of the easiest ways to construct new file system layers is to make
165 * a copy of the null layer, rename all files and variables, and
166 * then begin modifing the copy. Sed can be used to easily rename
167 * all variables.
168 *
169 * The umap layer is an example of a layer descended from the
170 * null layer.
171 *
172 *
173 * INVOKING OPERATIONS ON LOWER LAYERS
174 *
175 * There are two techniques to invoke operations on a lower layer
176 * when the operation cannot be completely bypassed. Each method
177 * is appropriate in different situations. In both cases,
178 * it is the responsibility of the aliasing layer to make
179 * the operation arguments "correct" for the lower layer
180 * by mapping an vnode arguments to the lower layer.
181 *
182 * The first approach is to call the aliasing layer's bypass routine.
183 * This method is most suitable when you wish to invoke the operation
184 * currently being hanldled on the lower layer. It has the advantage
185 * that the bypass routine already must do argument mapping.
186 * An example of this is null_getattrs in the null layer.
187 *
188 * A second approach is to directly invoked vnode operations on
189 * the lower layer with the VOP_OPERATIONNAME interface.
190 * The advantage of this method is that it is easy to invoke
191 * arbitrary operations on the lower layer. The disadvantage
192 * is that vnodes arguments must be manualy mapped.
193 *
194 */
195
196 #include <sys/param.h>
197 #include <sys/systm.h>
198 #include <sys/proc.h>
199 #include <sys/time.h>
200 #include <sys/types.h>
201 #include <sys/vnode.h>
202 #include <sys/mount.h>
203 #include <sys/namei.h>
204 #include <sys/malloc.h>
205 #include <sys/buf.h>
206 #include <miscfs/nullfs/null.h>
207
208
209 int null_bug_bypass = 0; /* for debugging: enables bypass printf'ing */
210
211 /*
212 * This is the 10-Apr-92 bypass routine.
213 * This version has been optimized for speed, throwing away some
214 * safety checks. It should still always work, but it's not as
215 * robust to programmer errors.
216 * Define SAFETY to include some error checking code.
217 *
218 * In general, we map all vnodes going down and unmap them on the way back.
219 * As an exception to this, vnodes can be marked "unmapped" by setting
220 * the Nth bit in operation's vdesc_flags.
221 *
222 * Also, some BSD vnode operations have the side effect of vrele'ing
223 * their arguments. With stacking, the reference counts are held
224 * by the upper node, not the lower one, so we must handle these
225 * side-effects here. This is not of concern in Sun-derived systems
226 * since there are no such side-effects.
227 *
228 * This makes the following assumptions:
229 * - only one returned vpp
230 * - no INOUT vpp's (Sun's vop_open has one of these)
231 * - the vnode operation vector of the first vnode should be used
232 * to determine what implementation of the op should be invoked
233 * - all mapped vnodes are of our vnode-type (NEEDSWORK:
234 * problems on rmdir'ing mount points and renaming?)
235 */
236 int
237 null_bypass(ap)
238 struct vop_generic_args /* {
239 struct vnodeop_desc *a_desc;
240 <other random data follows, presumably>
241 } */ *ap;
242 {
243 extern int (**null_vnodeop_p)(void *); /* not extern, really "forward" */
244 register struct vnode **this_vp_p;
245 int error;
246 struct vnode *old_vps[VDESC_MAX_VPS];
247 struct vnode **vps_p[VDESC_MAX_VPS];
248 struct vnode ***vppp;
249 struct vnodeop_desc *descp = ap->a_desc;
250 int reles, i;
251
252 if (null_bug_bypass)
253 printf ("null_bypass: %s\n", descp->vdesc_name);
254
255 #ifdef SAFETY
256 /*
257 * We require at least one vp.
258 */
259 if (descp->vdesc_vp_offsets == NULL ||
260 descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
261 panic ("null_bypass: no vp's in map.\n");
262 #endif
263
264 /*
265 * Map the vnodes going in.
266 * Later, we'll invoke the operation based on
267 * the first mapped vnode's operation vector.
268 */
269 reles = descp->vdesc_flags;
270 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
271 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
272 break; /* bail out at end of list */
273 vps_p[i] = this_vp_p =
274 VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
275 /*
276 * We're not guaranteed that any but the first vnode
277 * are of our type. Check for and don't map any
278 * that aren't. (We must always map first vp or vclean fails.)
279 */
280 if (i && (*this_vp_p == NULL ||
281 (*this_vp_p)->v_op != null_vnodeop_p)) {
282 old_vps[i] = NULL;
283 } else {
284 old_vps[i] = *this_vp_p;
285 *(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
286 /*
287 * XXX - Several operations have the side effect
288 * of vrele'ing their vp's. We must account for
289 * that. (This should go away in the future.)
290 */
291 if (reles & 1)
292 VREF(*this_vp_p);
293 }
294
295 }
296
297 /*
298 * Call the operation on the lower layer
299 * with the modified argument structure.
300 */
301 error = VCALL(*(vps_p[0]), descp->vdesc_offset, ap);
302
303 /*
304 * Maintain the illusion of call-by-value
305 * by restoring vnodes in the argument structure
306 * to their original value.
307 */
308 reles = descp->vdesc_flags;
309 for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
310 if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
311 break; /* bail out at end of list */
312 if (old_vps[i]) {
313 *(vps_p[i]) = old_vps[i];
314 if (reles & 1)
315 vrele(*(vps_p[i]));
316 }
317 }
318
319 /*
320 * Map the possible out-going vpp
321 * (Assumes that the lower layer always returns
322 * a VREF'ed vpp unless it gets an error.)
323 */
324 if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
325 !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
326 !error) {
327 /*
328 * XXX - even though some ops have vpp returned vp's,
329 * several ops actually vrele this before returning.
330 * We must avoid these ops.
331 * (This should go away when these ops are regularized.)
332 */
333 if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
334 goto out;
335 vppp = VOPARG_OFFSETTO(struct vnode***,
336 descp->vdesc_vpp_offset,ap);
337 error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
338 }
339
340 out:
341 return (error);
342 }
343
344 /*
345 * We have to carry on the locking protocol on the null layer vnodes
346 * as we progress through the tree. We also have to enforce read-only
347 * if this layer is mounted read-only.
348 */
349 null_lookup(ap)
350 struct vop_lookup_args /* {
351 struct vnode * a_dvp;
352 struct vnode ** a_vpp;
353 struct componentname * a_cnp;
354 } */ *ap;
355 {
356 struct componentname *cnp = ap->a_cnp;
357 struct proc *p = cnp->cn_proc;
358 int flags = cnp->cn_flags;
359 struct vop_lock_args lockargs;
360 struct vop_unlock_args unlockargs;
361 struct vnode *dvp, *vp;
362 int error;
363
364 if ((flags & ISLASTCN) && (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
365 (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
366 return (EROFS);
367 error = null_bypass(ap);
368 if (error == EJUSTRETURN && (flags & ISLASTCN) &&
369 (ap->a_dvp->v_mount->mnt_flag & MNT_RDONLY) &&
370 (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME))
371 error = EROFS;
372 /*
373 * We must do the same locking and unlocking at this layer as
374 * is done in the layers below us. We could figure this out
375 * based on the error return and the LASTCN, LOCKPARENT, and
376 * LOCKLEAF flags. However, it is more expidient to just find
377 * out the state of the lower level vnodes and set ours to the
378 * same state.
379 */
380 dvp = ap->a_dvp;
381 vp = *ap->a_vpp;
382 if (dvp == vp)
383 return (error);
384 if (!VOP_ISLOCKED(dvp)) {
385 unlockargs.a_vp = dvp;
386 unlockargs.a_flags = 0;
387 unlockargs.a_p = p;
388 vop_nounlock(&unlockargs);
389 }
390 if (vp != NULL && VOP_ISLOCKED(vp)) {
391 lockargs.a_vp = vp;
392 lockargs.a_flags = LK_SHARED;
393 lockargs.a_p = p;
394 vop_nolock(&lockargs);
395 }
396 return (error);
397 }
398
399 /*
400 * Setattr call. Disallow write attempts if the layer is mounted read-only.
401 */
402 int
403 null_setattr(ap)
404 struct vop_setattr_args /* {
405 struct vnodeop_desc *a_desc;
406 struct vnode *a_vp;
407 struct vattr *a_vap;
408 struct ucred *a_cred;
409 struct proc *a_p;
410 } */ *ap;
411 {
412 struct vnode *vp = ap->a_vp;
413 struct vattr *vap = ap->a_vap;
414
415 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
416 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
417 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
418 (vp->v_mount->mnt_flag & MNT_RDONLY))
419 return (EROFS);
420 if (vap->va_size != VNOVAL) {
421 switch (vp->v_type) {
422 case VDIR:
423 return (EISDIR);
424 case VCHR:
425 case VBLK:
426 case VSOCK:
427 case VFIFO:
428 return (0);
429 case VREG:
430 case VLNK:
431 default:
432 /*
433 * Disallow write attempts if the filesystem is
434 * mounted read-only.
435 */
436 if (vp->v_mount->mnt_flag & MNT_RDONLY)
437 return (EROFS);
438 }
439 }
440 return (null_bypass(ap));
441 }
442
443 /*
444 * We handle getattr only to change the fsid.
445 */
446 int
447 null_getattr(ap)
448 struct vop_getattr_args /* {
449 struct vnode *a_vp;
450 struct vattr *a_vap;
451 struct ucred *a_cred;
452 struct proc *a_p;
453 } */ *ap;
454 {
455 int error;
456
457 if (error = null_bypass(ap))
458 return (error);
459 /* Requires that arguments be restored. */
460 ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
461 return (0);
462 }
463
464 int
465 null_access(ap)
466 struct vop_access_args /* {
467 struct vnode *a_vp;
468 int a_mode;
469 struct ucred *a_cred;
470 struct proc *a_p;
471 } */ *ap;
472 {
473 struct vnode *vp = ap->a_vp;
474 mode_t mode = ap->a_mode;
475
476 /*
477 * Disallow write attempts on read-only layers;
478 * unless the file is a socket, fifo, or a block or
479 * character device resident on the file system.
480 */
481 if (mode & VWRITE) {
482 switch (vp->v_type) {
483 case VDIR:
484 case VLNK:
485 case VREG:
486 if (vp->v_mount->mnt_flag & MNT_RDONLY)
487 return (EROFS);
488 break;
489 }
490 }
491 return (null_bypass(ap));
492 }
493
494 /*
495 * We need to process our own vnode lock and then clear the
496 * interlock flag as it applies only to our vnode, not the
497 * vnodes below us on the stack.
498 */
499 int
500 null_lock(ap)
501 struct vop_lock_args /* {
502 struct vnode *a_vp;
503 int a_flags;
504 struct proc *a_p;
505 } */ *ap;
506 {
507
508 vop_nolock(ap);
509 if ((ap->a_flags & LK_TYPE_MASK) == LK_DRAIN)
510 return (0);
511 ap->a_flags &= ~LK_INTERLOCK;
512 return (null_bypass(ap));
513 }
514
515 /*
516 * We need to process our own vnode unlock and then clear the
517 * interlock flag as it applies only to our vnode, not the
518 * vnodes below us on the stack.
519 */
520 int
521 null_unlock(ap)
522 struct vop_unlock_args /* {
523 struct vnode *a_vp;
524 int a_flags;
525 struct proc *a_p;
526 } */ *ap;
527 {
528 struct vnode *vp = ap->a_vp;
529
530 vop_nounlock(ap);
531 ap->a_flags &= ~LK_INTERLOCK;
532 return (null_bypass(ap));
533 }
534
535 int
536 null_inactive(ap)
537 struct vop_inactive_args /* {
538 struct vnode *a_vp;
539 struct proc *a_p;
540 } */ *ap;
541 {
542 /*
543 * Do nothing (and _don't_ bypass).
544 * Wait to vrele lowervp until reclaim,
545 * so that until then our null_node is in the
546 * cache and reusable.
547 *
548 * NEEDSWORK: Someday, consider inactive'ing
549 * the lowervp and then trying to reactivate it
550 * with capabilities (v_id)
551 * like they do in the name lookup cache code.
552 * That's too much work for now.
553 */
554 VOP_UNLOCK(ap->a_vp, 0, ap->a_p);
555 return (0);
556 }
557
558 int
559 null_reclaim(ap)
560 struct vop_reclaim_args /* {
561 struct vnode *a_vp;
562 struct proc *a_p;
563 } */ *ap;
564 {
565 struct vnode *vp = ap->a_vp;
566 struct null_node *xp = VTONULL(vp);
567 struct vnode *lowervp = xp->null_lowervp;
568
569 /*
570 * Note: in vop_reclaim, vp->v_op == dead_vnodeop_p,
571 * so we can't call VOPs on ourself.
572 */
573 /* After this assignment, this node will not be re-used. */
574 xp->null_lowervp = NULL;
575 LIST_REMOVE(xp, null_hash);
576 FREE(vp->v_data, M_TEMP);
577 vp->v_data = NULL;
578 vrele (lowervp);
579 return (0);
580 }
581
582 int
583 null_print(ap)
584 struct vop_print_args /* {
585 struct vnode *a_vp;
586 } */ *ap;
587 {
588 register struct vnode *vp = ap->a_vp;
589 printf ("\ttag VT_NULLFS, vp=%x, lowervp=%x\n", vp, NULLVPTOLOWERVP(vp));
590 return (0);
591 }
592
593 /*
594 * XXX - vop_strategy must be hand coded because it has no
595 * vnode in its arguments.
596 * This goes away with a merged VM/buffer cache.
597 */
598 int
599 null_strategy(ap)
600 struct vop_strategy_args /* {
601 struct buf *a_bp;
602 } */ *ap;
603 {
604 struct buf *bp = ap->a_bp;
605 int error;
606 struct vnode *savedvp;
607
608 savedvp = bp->b_vp;
609 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
610
611 error = VOP_STRATEGY(bp);
612
613 bp->b_vp = savedvp;
614
615 return (error);
616 }
617
618 /*
619 * XXX - like vop_strategy, vop_bwrite must be hand coded because it has no
620 * vnode in its arguments.
621 * This goes away with a merged VM/buffer cache.
622 */
623 int
624 null_bwrite(ap)
625 struct vop_bwrite_args /* {
626 struct buf *a_bp;
627 } */ *ap;
628 {
629 struct buf *bp = ap->a_bp;
630 int error;
631 struct vnode *savedvp;
632
633 savedvp = bp->b_vp;
634 bp->b_vp = NULLVPTOLOWERVP(bp->b_vp);
635
636 error = VOP_BWRITE(bp);
637
638 bp->b_vp = savedvp;
639
640 return (error);
641 }
642
643 /*
644 * Global vfs data structures
645 */
646
647 #define VOPFUNC int (*)(void *)
648
649 int (**null_vnodeop_p)(void *);
650 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
651 { &vop_default_desc, (VOPFUNC)null_bypass },
652
653 { &vop_lookup_desc, (VOPFUNC)null_lookup },
654 { &vop_setattr_desc, (VOPFUNC)null_setattr },
655 { &vop_getattr_desc, (VOPFUNC)null_getattr },
656 { &vop_access_desc, (VOPFUNC)null_access },
657 { &vop_lock_desc, (VOPFUNC)null_lock },
658 { &vop_unlock_desc, (VOPFUNC)null_unlock },
659 { &vop_inactive_desc, (VOPFUNC)null_inactive },
660 { &vop_reclaim_desc, (VOPFUNC)null_reclaim },
661 { &vop_print_desc, (VOPFUNC)null_print },
662
663 { &vop_strategy_desc, (VOPFUNC)null_strategy },
664 { &vop_bwrite_desc, (VOPFUNC)null_bwrite },
665
666 { (struct vnodeop_desc*)NULL, (int(*)())NULL }
667 };
668 struct vnodeopv_desc null_vnodeop_opv_desc =
669 { &null_vnodeop_p, null_vnodeop_entries };