]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-344.23.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
24 /*
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
27 *
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
30 * are met:
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
43 *
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
57 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
58 */
59
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/domain.h>
63 #include <sys/kernel.h>
64 #include <sys/proc.h>
65 #include <sys/malloc.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/stat.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/signalvar.h>
72 #include <sys/sysctl.h>
73 #include <sys/ev.h>
74
75 #include <sys/kdebug.h>
76
77 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
78 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
79
80
81 /*
82 * Primitive routines for operating on sockets and socket buffers
83 */
84
85 u_long sb_max = SB_MAX; /* XXX should be static */
86
87 static u_long sb_efficiency = 8; /* parameter for sbreserve() */
88
89 /*
90 * Procedures to manipulate state flags of socket
91 * and do appropriate wakeups. Normal sequence from the
92 * active (originating) side is that soisconnecting() is
93 * called during processing of connect() call,
94 * resulting in an eventual call to soisconnected() if/when the
95 * connection is established. When the connection is torn down
96 * soisdisconnecting() is called during processing of disconnect() call,
97 * and soisdisconnected() is called when the connection to the peer
98 * is totally severed. The semantics of these routines are such that
99 * connectionless protocols can call soisconnected() and soisdisconnected()
100 * only, bypassing the in-progress calls when setting up a ``connection''
101 * takes no time.
102 *
103 * From the passive side, a socket is created with
104 * two queues of sockets: so_incomp for connections in progress
105 * and so_comp for connections already made and awaiting user acceptance.
106 * As a protocol is preparing incoming connections, it creates a socket
107 * structure queued on so_incomp by calling sonewconn(). When the connection
108 * is established, soisconnected() is called, and transfers the
109 * socket structure to so_comp, making it available to accept().
110 *
111 * If a socket is closed with sockets on either
112 * so_incomp or so_comp, these sockets are dropped.
113 *
114 * If higher level protocols are implemented in
115 * the kernel, the wakeups done here will sometimes
116 * cause software-interrupt process scheduling.
117 */
118
119 void
120 soisconnecting(so)
121 register struct socket *so;
122 {
123
124 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
125 so->so_state |= SS_ISCONNECTING;
126 }
127
128 void
129 soisconnected(so)
130 struct socket *so;
131 {
132 struct socket *head = so->so_head;
133 struct kextcb *kp;
134
135 kp = sotokextcb(so);
136 while (kp) {
137 if (kp->e_soif && kp->e_soif->sf_soisconnected) {
138 if ((*kp->e_soif->sf_soisconnected)(so, kp))
139 return;
140 }
141 kp = kp->e_next;
142 }
143
144 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
145 so->so_state |= SS_ISCONNECTED;
146 if (head && (so->so_state & SS_INCOMP)) {
147 postevent(head,0,EV_RCONN);
148 TAILQ_REMOVE(&head->so_incomp, so, so_list);
149 head->so_incqlen--;
150 so->so_state &= ~SS_INCOMP;
151 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
152 so->so_state |= SS_COMP;
153 sorwakeup(head);
154 wakeup_one(&head->so_timeo);
155 } else {
156 postevent(so,0,EV_WCONN);
157 wakeup((caddr_t)&so->so_timeo);
158 sorwakeup(so);
159 sowwakeup(so);
160 }
161 }
162
163 void
164 soisdisconnecting(so)
165 register struct socket *so;
166 {
167 register struct kextcb *kp;
168
169 kp = sotokextcb(so);
170 while (kp) {
171 if (kp->e_soif && kp->e_soif->sf_soisdisconnecting) {
172 if ((*kp->e_soif->sf_soisdisconnecting)(so, kp))
173 return;
174 }
175 kp = kp->e_next;
176 }
177
178 so->so_state &= ~SS_ISCONNECTING;
179 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
180 wakeup((caddr_t)&so->so_timeo);
181 sowwakeup(so);
182 sorwakeup(so);
183 }
184
185 void
186 soisdisconnected(so)
187 register struct socket *so;
188 {
189 register struct kextcb *kp;
190
191 kp = sotokextcb(so);
192 while (kp) {
193 if (kp->e_soif && kp->e_soif->sf_soisdisconnected) {
194 if ((*kp->e_soif->sf_soisdisconnected)(so, kp))
195 return;
196 }
197 kp = kp->e_next;
198 }
199
200 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
201 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
202 wakeup((caddr_t)&so->so_timeo);
203 sowwakeup(so);
204 sorwakeup(so);
205 }
206
207 /*
208 * Return a random connection that hasn't been serviced yet and
209 * is eligible for discard. There is a one in qlen chance that
210 * we will return a null, saying that there are no dropable
211 * requests. In this case, the protocol specific code should drop
212 * the new request. This insures fairness.
213 *
214 * This may be used in conjunction with protocol specific queue
215 * congestion routines.
216 */
217 struct socket *
218 sodropablereq(head)
219 register struct socket *head;
220 {
221 register struct socket *so;
222 unsigned int i, j, qlen;
223 static int rnd;
224 static struct timeval old_runtime;
225 static unsigned int cur_cnt, old_cnt;
226 struct timeval tv;
227
228 microtime(&tv);
229 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
230 old_runtime = tv;
231 old_cnt = cur_cnt / i;
232 cur_cnt = 0;
233 }
234
235 so = TAILQ_FIRST(&head->so_incomp);
236 if (!so)
237 return (so);
238
239 qlen = head->so_incqlen;
240 if (++cur_cnt > qlen || old_cnt > qlen) {
241 rnd = (314159 * rnd + 66329) & 0xffff;
242 j = ((qlen + 1) * rnd) >> 16;
243
244 while (j-- && so)
245 so = TAILQ_NEXT(so, so_list);
246 }
247
248 return (so);
249 }
250
251 /*
252 * When an attempt at a new connection is noted on a socket
253 * which accepts connections, sonewconn is called. If the
254 * connection is possible (subject to space constraints, etc.)
255 * then we allocate a new structure, propoerly linked into the
256 * data structure of the original socket, and return this.
257 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
258 */
259 struct socket *
260 sonewconn(head, connstatus)
261 register struct socket *head;
262 int connstatus;
263 {
264 int error = 0;
265 register struct socket *so;
266 register struct kextcb *kp;
267
268 if (head->so_qlen > 3 * head->so_qlimit / 2)
269 return ((struct socket *)0);
270 so = soalloc(1, head->so_proto->pr_domain->dom_family, head->so_type);
271 if (so == NULL)
272 return ((struct socket *)0);
273 /* check if head was closed during the soalloc */
274 if (head->so_proto == NULL) {
275 sodealloc(so);
276 return ((struct socket *)0);
277 }
278
279 so->so_head = head;
280 so->so_type = head->so_type;
281 so->so_options = head->so_options &~ SO_ACCEPTCONN;
282 so->so_linger = head->so_linger;
283 so->so_state = head->so_state | SS_NOFDREF;
284 so->so_proto = head->so_proto;
285 so->so_timeo = head->so_timeo;
286 so->so_pgid = head->so_pgid;
287 so->so_uid = head->so_uid;
288
289 /* Attach socket filters for this protocol */
290 if (so->so_proto->pr_sfilter.tqh_first)
291 error = sfilter_init(so);
292 if (error != 0) {
293 sodealloc(so);
294 return ((struct socket *)0);
295 }
296
297 /* Call socket filters' sonewconn1 function if set */
298 kp = sotokextcb(so);
299 while (kp) {
300 if (kp->e_soif && kp->e_soif->sf_sonewconn) {
301 error = (int)(*kp->e_soif->sf_sonewconn)(so, connstatus, kp);
302 if (error == EJUSTRETURN) {
303 return so;
304 } else if (error != 0) {
305 sodealloc(so);
306 return NULL;
307 }
308 }
309 kp = kp->e_next;
310 }
311
312 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) ||
313 (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL)) {
314 sfilter_term(so);
315 sodealloc(so);
316 return ((struct socket *)0);
317 }
318 #ifdef __APPLE__
319 so->so_proto->pr_domain->dom_refs++;
320 #endif
321
322 if (connstatus) {
323 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
324 so->so_state |= SS_COMP;
325 } else {
326 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
327 so->so_state |= SS_INCOMP;
328 head->so_incqlen++;
329 }
330 head->so_qlen++;
331 if (connstatus) {
332 sorwakeup(head);
333 wakeup((caddr_t)&head->so_timeo);
334 so->so_state |= connstatus;
335 }
336 #ifdef __APPLE__
337 so->so_rcv.sb_so = so->so_snd.sb_so = so;
338 TAILQ_INIT(&so->so_evlist);
339 #endif
340 return (so);
341 }
342
343 /*
344 * Socantsendmore indicates that no more data will be sent on the
345 * socket; it would normally be applied to a socket when the user
346 * informs the system that no more data is to be sent, by the protocol
347 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
348 * will be received, and will normally be applied to the socket by a
349 * protocol when it detects that the peer will send no more data.
350 * Data queued for reading in the socket may yet be read.
351 */
352
353 void
354 socantsendmore(so)
355 struct socket *so;
356 {
357 register struct kextcb *kp;
358
359 kp = sotokextcb(so);
360 while (kp) {
361 if (kp->e_soif && kp->e_soif->sf_socantsendmore) {
362 if ((*kp->e_soif->sf_socantsendmore)(so, kp))
363 return;
364 }
365 kp = kp->e_next;
366 }
367
368
369 so->so_state |= SS_CANTSENDMORE;
370 sowwakeup(so);
371 }
372
373 void
374 socantrcvmore(so)
375 struct socket *so;
376 {
377 register struct kextcb *kp;
378
379 kp = sotokextcb(so);
380 while (kp) {
381 if (kp->e_soif && kp->e_soif->sf_socantrcvmore) {
382 if ((*kp->e_soif->sf_socantrcvmore)(so, kp))
383 return;
384 }
385 kp = kp->e_next;
386 }
387
388
389 so->so_state |= SS_CANTRCVMORE;
390 sorwakeup(so);
391 }
392
393 /*
394 * Wait for data to arrive at/drain from a socket buffer.
395 */
396 int
397 sbwait(sb)
398 struct sockbuf *sb;
399 {
400
401 sb->sb_flags |= SB_WAIT;
402 return (tsleep((caddr_t)&sb->sb_cc,
403 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
404 sb->sb_timeo));
405 }
406
407 /*
408 * Lock a sockbuf already known to be locked;
409 * return any error returned from sleep (EINTR).
410 */
411 int
412 sb_lock(sb)
413 register struct sockbuf *sb;
414 {
415 int error;
416
417 while (sb->sb_flags & SB_LOCK) {
418 sb->sb_flags |= SB_WANT;
419 error = tsleep((caddr_t)&sb->sb_flags,
420 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
421 "sblock", 0);
422 if (error)
423 return (error);
424 }
425 sb->sb_flags |= SB_LOCK;
426 return (0);
427 }
428
429 /*
430 * Wakeup processes waiting on a socket buffer.
431 * Do asynchronous notification via SIGIO
432 * if the socket has the SS_ASYNC flag set.
433 */
434 void
435 sowakeup(so, sb)
436 register struct socket *so;
437 register struct sockbuf *sb;
438 {
439 struct proc *p = current_proc();
440 /* We clear the flag before calling selwakeup. */
441 /* BSD calls selwakeup then sets the flag */
442 sb->sb_flags &= ~SB_SEL;
443 selwakeup(&sb->sb_sel);
444 if (sb->sb_flags & SB_WAIT) {
445 sb->sb_flags &= ~SB_WAIT;
446 wakeup((caddr_t)&sb->sb_cc);
447 }
448 if (so->so_state & SS_ASYNC) {
449 if (so->so_pgid < 0)
450 gsignal(-so->so_pgid, SIGIO);
451 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
452 psignal(p, SIGIO);
453 }
454 if (sb->sb_flags & SB_UPCALL)
455 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
456 }
457
458 /*
459 * Socket buffer (struct sockbuf) utility routines.
460 *
461 * Each socket contains two socket buffers: one for sending data and
462 * one for receiving data. Each buffer contains a queue of mbufs,
463 * information about the number of mbufs and amount of data in the
464 * queue, and other fields allowing select() statements and notification
465 * on data availability to be implemented.
466 *
467 * Data stored in a socket buffer is maintained as a list of records.
468 * Each record is a list of mbufs chained together with the m_next
469 * field. Records are chained together with the m_nextpkt field. The upper
470 * level routine soreceive() expects the following conventions to be
471 * observed when placing information in the receive buffer:
472 *
473 * 1. If the protocol requires each message be preceded by the sender's
474 * name, then a record containing that name must be present before
475 * any associated data (mbuf's must be of type MT_SONAME).
476 * 2. If the protocol supports the exchange of ``access rights'' (really
477 * just additional data associated with the message), and there are
478 * ``rights'' to be received, then a record containing this data
479 * should be present (mbuf's must be of type MT_RIGHTS).
480 * 3. If a name or rights record exists, then it must be followed by
481 * a data record, perhaps of zero length.
482 *
483 * Before using a new socket structure it is first necessary to reserve
484 * buffer space to the socket, by calling sbreserve(). This should commit
485 * some of the available buffer space in the system buffer pool for the
486 * socket (currently, it does nothing but enforce limits). The space
487 * should be released by calling sbrelease() when the socket is destroyed.
488 */
489
490 int
491 soreserve(so, sndcc, rcvcc)
492 register struct socket *so;
493 u_long sndcc, rcvcc;
494 {
495 register struct kextcb *kp;
496
497 kp = sotokextcb(so);
498 while (kp) {
499 if (kp->e_soif && kp->e_soif->sf_soreserve) {
500 if ((*kp->e_soif->sf_soreserve)(so, sndcc, rcvcc, kp))
501 return;
502 }
503 kp = kp->e_next;
504 }
505
506 if (sbreserve(&so->so_snd, sndcc) == 0)
507 goto bad;
508 if (sbreserve(&so->so_rcv, rcvcc) == 0)
509 goto bad2;
510 if (so->so_rcv.sb_lowat == 0)
511 so->so_rcv.sb_lowat = 1;
512 if (so->so_snd.sb_lowat == 0)
513 so->so_snd.sb_lowat = MCLBYTES;
514 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
515 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
516 return (0);
517 bad2:
518 #ifdef __APPLE__
519 selthreadclear(&so->so_snd.sb_sel);
520 #endif
521 sbrelease(&so->so_snd);
522 bad:
523 return (ENOBUFS);
524 }
525
526 /*
527 * Allot mbufs to a sockbuf.
528 * Attempt to scale mbmax so that mbcnt doesn't become limiting
529 * if buffering efficiency is near the normal case.
530 */
531 int
532 sbreserve(sb, cc)
533 struct sockbuf *sb;
534 u_long cc;
535 {
536 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
537 return (0);
538 sb->sb_hiwat = cc;
539 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
540 if (sb->sb_lowat > sb->sb_hiwat)
541 sb->sb_lowat = sb->sb_hiwat;
542 return (1);
543 }
544
545 /*
546 * Free mbufs held by a socket, and reserved mbuf space.
547 */
548 /* WARNING needs to do selthreadclear() before calling this */
549 void
550 sbrelease(sb)
551 struct sockbuf *sb;
552 {
553
554 sbflush(sb);
555 sb->sb_hiwat = 0;
556 sb->sb_mbmax = 0;
557
558 }
559
560 /*
561 * Routines to add and remove
562 * data from an mbuf queue.
563 *
564 * The routines sbappend() or sbappendrecord() are normally called to
565 * append new mbufs to a socket buffer, after checking that adequate
566 * space is available, comparing the function sbspace() with the amount
567 * of data to be added. sbappendrecord() differs from sbappend() in
568 * that data supplied is treated as the beginning of a new record.
569 * To place a sender's address, optional access rights, and data in a
570 * socket receive buffer, sbappendaddr() should be used. To place
571 * access rights and data in a socket receive buffer, sbappendrights()
572 * should be used. In either case, the new data begins a new record.
573 * Note that unlike sbappend() and sbappendrecord(), these routines check
574 * for the caller that there will be enough space to store the data.
575 * Each fails if there is not enough space, or if it cannot find mbufs
576 * to store additional information in.
577 *
578 * Reliable protocols may use the socket send buffer to hold data
579 * awaiting acknowledgement. Data is normally copied from a socket
580 * send buffer in a protocol with m_copy for output to a peer,
581 * and then removing the data from the socket buffer with sbdrop()
582 * or sbdroprecord() when the data is acknowledged by the peer.
583 */
584
585 /*
586 * Append mbuf chain m to the last record in the
587 * socket buffer sb. The additional space associated
588 * the mbuf chain is recorded in sb. Empty mbufs are
589 * discarded and mbufs are compacted where possible.
590 */
591 void
592 sbappend(sb, m)
593 struct sockbuf *sb;
594 struct mbuf *m;
595 {
596 struct kextcb *kp;
597 register struct mbuf *n;
598
599
600 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_START), sb, m->m_len, 0, 0, 0);
601
602 if (m == 0)
603 return;
604 kp = sotokextcb(sbtoso(sb));
605 while (kp) {
606 if (kp->e_sout && kp->e_sout->su_sbappend) {
607 if ((*kp->e_sout->su_sbappend)(sb, m, kp))
608 return;
609 }
610 kp = kp->e_next;
611 }
612 n = sb->sb_mb;
613 if (n) {
614 while (n->m_nextpkt)
615 n = n->m_nextpkt;
616 do {
617 if (n->m_flags & M_EOR) {
618 sbappendrecord(sb, m); /* XXXXXX!!!! */
619 return;
620 }
621 } while (n->m_next && (n = n->m_next));
622 }
623 sbcompress(sb, m, n);
624
625 KERNEL_DEBUG((DBG_FNC_SBAPPEND | DBG_FUNC_END), sb, sb->sb_cc, 0, 0, 0);
626 }
627
628 #ifdef SOCKBUF_DEBUG
629 void
630 sbcheck(sb)
631 register struct sockbuf *sb;
632 {
633 register struct mbuf *m;
634 register struct mbuf *n = 0;
635 register u_long len = 0, mbcnt = 0;
636
637 for (m = sb->sb_mb; m; m = n) {
638 n = m->m_nextpkt;
639 for (; m; m = m->m_next) {
640 len += m->m_len;
641 mbcnt += MSIZE;
642 if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
643 mbcnt += m->m_ext.ext_size;
644 }
645 }
646 #ifndef __APPLE__
647 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
648 printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
649 mbcnt, sb->sb_mbcnt);
650 panic("sbcheck");
651 }
652 #else
653 if (len != sb->sb_cc)
654 printf("sbcheck len %ld != sb_cc %ld\n", len, sb->sb_cc);
655 if (mbcnt != sb->sb_mbcnt)
656 printf("sbcheck mbcnt %ld != sb_mbcnt %ld\n", mbcnt, sb->sb_mbcnt);
657 #endif
658 }
659 #endif
660
661 /*
662 * As above, except the mbuf chain
663 * begins a new record.
664 */
665 void
666 sbappendrecord(sb, m0)
667 register struct sockbuf *sb;
668 register struct mbuf *m0;
669 {
670 register struct mbuf *m;
671 register struct kextcb *kp;
672
673 if (m0 == 0)
674 return;
675
676 kp = sotokextcb(sbtoso(sb));
677 while (kp)
678 { if (kp->e_sout && kp->e_sout->su_sbappendrecord)
679 { if ((*kp->e_sout->su_sbappendrecord)(sb, m0, kp))
680 return;
681 }
682 kp = kp->e_next;
683 }
684
685 m = sb->sb_mb;
686 if (m)
687 while (m->m_nextpkt)
688 m = m->m_nextpkt;
689 /*
690 * Put the first mbuf on the queue.
691 * Note this permits zero length records.
692 */
693 sballoc(sb, m0);
694 if (m)
695 m->m_nextpkt = m0;
696 else
697 sb->sb_mb = m0;
698 m = m0->m_next;
699 m0->m_next = 0;
700 if (m && (m0->m_flags & M_EOR)) {
701 m0->m_flags &= ~M_EOR;
702 m->m_flags |= M_EOR;
703 }
704 sbcompress(sb, m, m0);
705 }
706
707 /*
708 * As above except that OOB data
709 * is inserted at the beginning of the sockbuf,
710 * but after any other OOB data.
711 */
712 void
713 sbinsertoob(sb, m0)
714 register struct sockbuf *sb;
715 register struct mbuf *m0;
716 {
717 register struct mbuf *m;
718 register struct mbuf **mp;
719 register struct kextcb *kp;
720
721 if (m0 == 0)
722 return;
723
724 kp = sotokextcb(sbtoso(sb));
725 while (kp)
726 { if (kp->e_sout && kp->e_sout->su_sbinsertoob)
727 { if ((*kp->e_sout->su_sbinsertoob)(sb, m0, kp))
728 return;
729 }
730 kp = kp->e_next;
731 }
732
733 for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) {
734 m = *mp;
735 again:
736 switch (m->m_type) {
737
738 case MT_OOBDATA:
739 continue; /* WANT next train */
740
741 case MT_CONTROL:
742 m = m->m_next;
743 if (m)
744 goto again; /* inspect THIS train further */
745 }
746 break;
747 }
748 /*
749 * Put the first mbuf on the queue.
750 * Note this permits zero length records.
751 */
752 sballoc(sb, m0);
753 m0->m_nextpkt = *mp;
754 *mp = m0;
755 m = m0->m_next;
756 m0->m_next = 0;
757 if (m && (m0->m_flags & M_EOR)) {
758 m0->m_flags &= ~M_EOR;
759 m->m_flags |= M_EOR;
760 }
761 sbcompress(sb, m, m0);
762 }
763
764 /*
765 * Append address and data, and optionally, control (ancillary) data
766 * to the receive queue of a socket. If present,
767 * m0 must include a packet header with total length.
768 * Returns 0 if no space in sockbuf or insufficient mbufs.
769 */
770 int
771 sbappendaddr(sb, asa, m0, control)
772 register struct sockbuf *sb;
773 struct sockaddr *asa;
774 struct mbuf *m0, *control;
775 {
776 register struct mbuf *m, *n;
777 int space = asa->sa_len;
778 register struct kextcb *kp;
779
780 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
781 panic("sbappendaddr");
782
783 kp = sotokextcb(sbtoso(sb));
784 while (kp)
785 { if (kp->e_sout && kp->e_sout->su_sbappendaddr)
786 { if ((*kp->e_sout->su_sbappendaddr)(sb, asa, m0, control, kp))
787 return 0;
788 }
789 kp = kp->e_next;
790 }
791
792 if (m0)
793 space += m0->m_pkthdr.len;
794 for (n = control; n; n = n->m_next) {
795 space += n->m_len;
796 if (n->m_next == 0) /* keep pointer to last control buf */
797 break;
798 }
799 if (space > sbspace(sb))
800 return (0);
801 if (asa->sa_len > MLEN)
802 return (0);
803 MGET(m, M_DONTWAIT, MT_SONAME);
804 if (m == 0)
805 return (0);
806 m->m_len = asa->sa_len;
807 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
808 if (n)
809 n->m_next = m0; /* concatenate data to control */
810 else
811 control = m0;
812 m->m_next = control;
813 for (n = m; n; n = n->m_next)
814 sballoc(sb, n);
815 n = sb->sb_mb;
816 if (n) {
817 while (n->m_nextpkt)
818 n = n->m_nextpkt;
819 n->m_nextpkt = m;
820 } else
821 sb->sb_mb = m;
822 postevent(0,sb,EV_RWBYTES);
823 return (1);
824 }
825
826 int
827 sbappendcontrol(sb, m0, control)
828 struct sockbuf *sb;
829 struct mbuf *control, *m0;
830 {
831 register struct mbuf *m, *n;
832 int space = 0;
833 register struct kextcb *kp;
834
835 if (control == 0)
836 panic("sbappendcontrol");
837
838 kp = sotokextcb(sbtoso(sb));
839 while (kp)
840 { if (kp->e_sout && kp->e_sout->su_sbappendcontrol)
841 { if ((*kp->e_sout->su_sbappendcontrol)(sb, m0, control, kp))
842 return 0;
843 }
844 kp = kp->e_next;
845 }
846
847 for (m = control; ; m = m->m_next) {
848 space += m->m_len;
849 if (m->m_next == 0)
850 break;
851 }
852 n = m; /* save pointer to last control buffer */
853 for (m = m0; m; m = m->m_next)
854 space += m->m_len;
855 if (space > sbspace(sb))
856 return (0);
857 n->m_next = m0; /* concatenate data to control */
858 for (m = control; m; m = m->m_next)
859 sballoc(sb, m);
860 n = sb->sb_mb;
861 if (n) {
862 while (n->m_nextpkt)
863 n = n->m_nextpkt;
864 n->m_nextpkt = control;
865 } else
866 sb->sb_mb = control;
867 postevent(0,sb,EV_RWBYTES);
868 return (1);
869 }
870
871 /*
872 * Compress mbuf chain m into the socket
873 * buffer sb following mbuf n. If n
874 * is null, the buffer is presumed empty.
875 */
876 void
877 sbcompress(sb, m, n)
878 register struct sockbuf *sb;
879 register struct mbuf *m, *n;
880 {
881 register int eor = 0;
882 register struct mbuf *o;
883
884 while (m) {
885 eor |= m->m_flags & M_EOR;
886 if (m->m_len == 0 &&
887 (eor == 0 ||
888 (((o = m->m_next) || (o = n)) &&
889 o->m_type == m->m_type))) {
890 m = m_free(m);
891 continue;
892 }
893 if (n && (n->m_flags & M_EOR) == 0 &&
894 #ifndef __APPLE__
895 M_WRITABLE(n) &&
896 #endif
897 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
898 m->m_len <= M_TRAILINGSPACE(n) &&
899 n->m_type == m->m_type) {
900 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
901 (unsigned)m->m_len);
902 n->m_len += m->m_len;
903 sb->sb_cc += m->m_len;
904 m = m_free(m);
905 continue;
906 }
907 if (n)
908 n->m_next = m;
909 else
910 sb->sb_mb = m;
911 sballoc(sb, m);
912 n = m;
913 m->m_flags &= ~M_EOR;
914 m = m->m_next;
915 n->m_next = 0;
916 }
917 if (eor) {
918 if (n)
919 n->m_flags |= eor;
920 else
921 printf("semi-panic: sbcompress\n");
922 }
923 postevent(0,sb, EV_RWBYTES);
924 }
925
926 /*
927 * Free all mbufs in a sockbuf.
928 * Check that all resources are reclaimed.
929 */
930 void
931 sbflush(sb)
932 register struct sockbuf *sb;
933 {
934 register struct kextcb *kp;
935
936 kp = sotokextcb(sbtoso(sb));
937 while (kp) {
938 if (kp->e_sout && kp->e_sout->su_sbflush) {
939 if ((*kp->e_sout->su_sbflush)(sb, kp))
940 return;
941 }
942 kp = kp->e_next;
943 }
944
945 if (sb->sb_flags & SB_LOCK)
946 sb_lock(sb);
947 while (sb->sb_mbcnt) {
948 /*
949 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
950 * we would loop forever. Panic instead.
951 */
952 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
953 break;
954 sbdrop(sb, (int)sb->sb_cc);
955 }
956 if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
957 panic("sbflush: cc %ld || mb %p || mbcnt %ld", sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
958 postevent(0, sb, EV_RWBYTES);
959 }
960
961 /*
962 * Drop data from (the front of) a sockbuf.
963 * use m_freem_list to free the mbuf structures
964 * under a single lock... this is done by pruning
965 * the top of the tree from the body by keeping track
966 * of where we get to in the tree and then zeroing the
967 * two pertinent pointers m_nextpkt and m_next
968 * the socket buffer is then updated to point at the new
969 * top of the tree and the pruned area is released via
970 * m_freem_list.
971 */
972 void
973 sbdrop(sb, len)
974 register struct sockbuf *sb;
975 register int len;
976 {
977 register struct mbuf *m, *free_list, *ml;
978 struct mbuf *next, *last;
979 register struct kextcb *kp;
980
981 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
982
983 kp = sotokextcb(sbtoso(sb));
984 while (kp) {
985 if (kp->e_sout && kp->e_sout->su_sbdrop) {
986 if ((*kp->e_sout->su_sbdrop)(sb, len, kp))
987 return;
988 }
989 kp = kp->e_next;
990 }
991 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
992 free_list = last = m;
993 ml = (struct mbuf *)0;
994
995 while (len > 0) {
996 if (m == 0) {
997 if (next == 0) {
998 /* temporarily replacing this panic with printf because
999 * it occurs occasionally when closing a socket when there
1000 * is no harm in ignoring it. This problem will be investigated
1001 * further.
1002 */
1003 /* panic("sbdrop"); */
1004 printf("sbdrop - count not zero\n");
1005 len = 0;
1006 /* zero the counts. if we have no mbufs, we have no data (PR-2986815) */
1007 sb->sb_cc = 0;
1008 sb->sb_mbcnt = 0;
1009 break;
1010 }
1011 m = last = next;
1012 next = m->m_nextpkt;
1013 continue;
1014 }
1015 if (m->m_len > len) {
1016 m->m_len -= len;
1017 m->m_data += len;
1018 sb->sb_cc -= len;
1019 break;
1020 }
1021 len -= m->m_len;
1022 sbfree(sb, m);
1023
1024 ml = m;
1025 m = m->m_next;
1026 }
1027 while (m && m->m_len == 0) {
1028 sbfree(sb, m);
1029
1030 ml = m;
1031 m = m->m_next;
1032 }
1033 if (ml) {
1034 ml->m_next = (struct mbuf *)0;
1035 last->m_nextpkt = (struct mbuf *)0;
1036 m_freem_list(free_list);
1037 }
1038 if (m) {
1039 sb->sb_mb = m;
1040 m->m_nextpkt = next;
1041 } else
1042 sb->sb_mb = next;
1043
1044 postevent(0, sb, EV_RWBYTES);
1045
1046 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1047 }
1048
1049 /*
1050 * Drop a record off the front of a sockbuf
1051 * and move the next record to the front.
1052 */
1053 void
1054 sbdroprecord(sb)
1055 register struct sockbuf *sb;
1056 {
1057 register struct mbuf *m, *mn;
1058 register struct kextcb *kp;
1059
1060 kp = sotokextcb(sbtoso(sb));
1061 while (kp) {
1062 if (kp->e_sout && kp->e_sout->su_sbdroprecord) {
1063 if ((*kp->e_sout->su_sbdroprecord)(sb, kp))
1064 return;
1065 }
1066 kp = kp->e_next;
1067 }
1068
1069 m = sb->sb_mb;
1070 if (m) {
1071 sb->sb_mb = m->m_nextpkt;
1072 do {
1073 sbfree(sb, m);
1074 MFREE(m, mn);
1075 m = mn;
1076 } while (m);
1077 }
1078 postevent(0, sb, EV_RWBYTES);
1079 }
1080
1081 /*
1082 * Create a "control" mbuf containing the specified data
1083 * with the specified type for presentation on a socket buffer.
1084 */
1085 struct mbuf *
1086 sbcreatecontrol(p, size, type, level)
1087 caddr_t p;
1088 register int size;
1089 int type, level;
1090 {
1091 register struct cmsghdr *cp;
1092 struct mbuf *m;
1093
1094 if (CMSG_SPACE((u_int)size) > MLEN)
1095 return ((struct mbuf *) NULL);
1096 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1097 return ((struct mbuf *) NULL);
1098 cp = mtod(m, struct cmsghdr *);
1099 /* XXX check size? */
1100 (void)memcpy(CMSG_DATA(cp), p, size);
1101 m->m_len = CMSG_SPACE(size);
1102 cp->cmsg_len = CMSG_LEN(size);
1103 cp->cmsg_level = level;
1104 cp->cmsg_type = type;
1105 return (m);
1106 }
1107
1108 /*
1109 * Some routines that return EOPNOTSUPP for entry points that are not
1110 * supported by a protocol. Fill in as needed.
1111 */
1112 int
1113 pru_abort_notsupp(struct socket *so)
1114 {
1115 return EOPNOTSUPP;
1116 }
1117
1118
1119 int
1120 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
1121 {
1122 return EOPNOTSUPP;
1123 }
1124
1125 int
1126 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
1127 {
1128 return EOPNOTSUPP;
1129 }
1130
1131 int
1132 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1133 {
1134 return EOPNOTSUPP;
1135 }
1136
1137 int
1138 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
1139 {
1140 return EOPNOTSUPP;
1141 }
1142
1143 int
1144 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
1145 {
1146 return EOPNOTSUPP;
1147 }
1148
1149 int
1150 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
1151 struct ifnet *ifp, struct proc *p)
1152 {
1153 return EOPNOTSUPP;
1154 }
1155
1156 int
1157 pru_detach_notsupp(struct socket *so)
1158 {
1159 return EOPNOTSUPP;
1160 }
1161
1162 int
1163 pru_disconnect_notsupp(struct socket *so)
1164 {
1165 return EOPNOTSUPP;
1166 }
1167
1168 int
1169 pru_listen_notsupp(struct socket *so, struct proc *p)
1170 {
1171 return EOPNOTSUPP;
1172 }
1173
1174 int
1175 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
1176 {
1177 return EOPNOTSUPP;
1178 }
1179
1180 int
1181 pru_rcvd_notsupp(struct socket *so, int flags)
1182 {
1183 return EOPNOTSUPP;
1184 }
1185
1186 int
1187 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
1188 {
1189 return EOPNOTSUPP;
1190 }
1191
1192 int
1193 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
1194 struct sockaddr *addr, struct mbuf *control,
1195 struct proc *p)
1196
1197 {
1198 return EOPNOTSUPP;
1199 }
1200
1201
1202 /*
1203 * This isn't really a ``null'' operation, but it's the default one
1204 * and doesn't do anything destructive.
1205 */
1206 int
1207 pru_sense_null(struct socket *so, struct stat *sb)
1208 {
1209 sb->st_blksize = so->so_snd.sb_hiwat;
1210 return 0;
1211 }
1212
1213
1214 int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr,
1215 struct uio *uio, struct mbuf *top,
1216 struct mbuf *control, int flags)
1217
1218 {
1219 return EOPNOTSUPP;
1220 }
1221
1222 int pru_soreceive_notsupp(struct socket *so,
1223 struct sockaddr **paddr,
1224 struct uio *uio, struct mbuf **mp0,
1225 struct mbuf **controlp, int *flagsp)
1226 {
1227 return EOPNOTSUPP;
1228 }
1229
1230 int
1231
1232 pru_shutdown_notsupp(struct socket *so)
1233 {
1234 return EOPNOTSUPP;
1235 }
1236
1237 int
1238 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
1239 {
1240 return EOPNOTSUPP;
1241 }
1242
1243 int pru_sosend(struct socket *so, struct sockaddr *addr,
1244 struct uio *uio, struct mbuf *top,
1245 struct mbuf *control, int flags)
1246 {
1247 return EOPNOTSUPP;
1248 }
1249
1250 int pru_soreceive(struct socket *so,
1251 struct sockaddr **paddr,
1252 struct uio *uio, struct mbuf **mp0,
1253 struct mbuf **controlp, int *flagsp)
1254 {
1255 return EOPNOTSUPP;
1256 }
1257
1258
1259 int pru_sopoll_notsupp(struct socket *so, int events,
1260 struct ucred *cred)
1261 {
1262 return EOPNOTSUPP;
1263 }
1264
1265
1266 #ifdef __APPLE__
1267 /*
1268 * The following are macros on BSD and functions on Darwin
1269 */
1270
1271 /*
1272 * Do we need to notify the other side when I/O is possible?
1273 */
1274
1275 int
1276 sb_notify(struct sockbuf *sb)
1277 {
1278 return ((sb->sb_flags & (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL)) != 0);
1279 }
1280
1281 /*
1282 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1283 * This is problematical if the fields are unsigned, as the space might
1284 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1285 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1286 */
1287 long
1288 sbspace(struct sockbuf *sb)
1289 {
1290 return ((long) imin((int)(sb->sb_hiwat - sb->sb_cc),
1291 (int)(sb->sb_mbmax - sb->sb_mbcnt)));
1292 }
1293
1294 /* do we have to send all at once on a socket? */
1295 int
1296 sosendallatonce(struct socket *so)
1297 {
1298 return (so->so_proto->pr_flags & PR_ATOMIC);
1299 }
1300
1301 /* can we read something from so? */
1302 int
1303 soreadable(struct socket *so)
1304 {
1305 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1306 (so->so_state & SS_CANTRCVMORE) ||
1307 so->so_comp.tqh_first || so->so_error);
1308 }
1309
1310 /* can we write something to so? */
1311
1312 int
1313 sowriteable(struct socket *so)
1314 {
1315 return ((sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1316 ((so->so_state&SS_ISCONNECTED) ||
1317 (so->so_proto->pr_flags&PR_CONNREQUIRED)==0)) ||
1318 (so->so_state & SS_CANTSENDMORE) ||
1319 so->so_error);
1320 }
1321
1322 /* adjust counters in sb reflecting allocation of m */
1323
1324 void
1325 sballoc(struct sockbuf *sb, struct mbuf *m)
1326 {
1327 sb->sb_cc += m->m_len;
1328 sb->sb_mbcnt += MSIZE;
1329 if (m->m_flags & M_EXT)
1330 sb->sb_mbcnt += m->m_ext.ext_size;
1331 }
1332
1333 /* adjust counters in sb reflecting freeing of m */
1334 void
1335 sbfree(struct sockbuf *sb, struct mbuf *m)
1336 {
1337 sb->sb_cc -= m->m_len;
1338 sb->sb_mbcnt -= MSIZE;
1339 if (m->m_flags & M_EXT)
1340 sb->sb_mbcnt -= m->m_ext.ext_size;
1341 }
1342
1343 /*
1344 * Set lock on sockbuf sb; sleep if lock is already held.
1345 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1346 * Returns error without lock if sleep is interrupted.
1347 */
1348 int
1349 sblock(struct sockbuf *sb, int wf)
1350 {
1351 return(sb->sb_flags & SB_LOCK ?
1352 ((wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK) :
1353 (sb->sb_flags |= SB_LOCK), 0);
1354 }
1355
1356 /* release lock on sockbuf sb */
1357 void
1358 sbunlock(struct sockbuf *sb)
1359 {
1360 sb->sb_flags &= ~SB_LOCK;
1361 if (sb->sb_flags & SB_WANT) {
1362 sb->sb_flags &= ~SB_WANT;
1363 wakeup((caddr_t)&(sb)->sb_flags);
1364 }
1365 }
1366
1367 void
1368 sorwakeup(struct socket * so)
1369 {
1370 if (sb_notify(&so->so_rcv))
1371 sowakeup(so, &so->so_rcv);
1372 }
1373
1374 void
1375 sowwakeup(struct socket * so)
1376 {
1377 if (sb_notify(&so->so_snd))
1378 sowakeup(so, &so->so_snd);
1379 }
1380 #endif __APPLE__
1381
1382 /*
1383 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1384 */
1385 struct sockaddr *
1386 dup_sockaddr(sa, canwait)
1387 struct sockaddr *sa;
1388 int canwait;
1389 {
1390 struct sockaddr *sa2;
1391
1392 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1393 canwait ? M_WAITOK : M_NOWAIT);
1394 if (sa2)
1395 bcopy(sa, sa2, sa->sa_len);
1396 return sa2;
1397 }
1398
1399 /*
1400 * Create an external-format (``xsocket'') structure using the information
1401 * in the kernel-format socket structure pointed to by so. This is done
1402 * to reduce the spew of irrelevant information over this interface,
1403 * to isolate user code from changes in the kernel structure, and
1404 * potentially to provide information-hiding if we decide that
1405 * some of this information should be hidden from users.
1406 */
1407 void
1408 sotoxsocket(struct socket *so, struct xsocket *xso)
1409 {
1410 xso->xso_len = sizeof *xso;
1411 xso->xso_so = so;
1412 xso->so_type = so->so_type;
1413 xso->so_options = so->so_options;
1414 xso->so_linger = so->so_linger;
1415 xso->so_state = so->so_state;
1416 xso->so_pcb = so->so_pcb;
1417 xso->xso_protocol = so->so_proto->pr_protocol;
1418 xso->xso_family = so->so_proto->pr_domain->dom_family;
1419 xso->so_qlen = so->so_qlen;
1420 xso->so_incqlen = so->so_incqlen;
1421 xso->so_qlimit = so->so_qlimit;
1422 xso->so_timeo = so->so_timeo;
1423 xso->so_error = so->so_error;
1424 xso->so_pgid = so->so_pgid;
1425 xso->so_oobmark = so->so_oobmark;
1426 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1427 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1428 xso->so_uid = so->so_uid;
1429 }
1430
1431 /*
1432 * This does the same for sockbufs. Note that the xsockbuf structure,
1433 * since it is always embedded in a socket, does not include a self
1434 * pointer nor a length. We make this entry point public in case
1435 * some other mechanism needs it.
1436 */
1437 void
1438 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1439 {
1440 xsb->sb_cc = sb->sb_cc;
1441 xsb->sb_hiwat = sb->sb_hiwat;
1442 xsb->sb_mbcnt = sb->sb_mbcnt;
1443 xsb->sb_mbmax = sb->sb_mbmax;
1444 xsb->sb_lowat = sb->sb_lowat;
1445 xsb->sb_flags = sb->sb_flags;
1446 xsb->sb_timeo = sb->sb_timeo;
1447 }
1448
1449 /*
1450 * Here is the definition of some of the basic objects in the kern.ipc
1451 * branch of the MIB.
1452 */
1453 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC");
1454
1455 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1456 static int dummy;
1457 SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
1458
1459 SYSCTL_INT(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLFLAG_RW,
1460 &sb_max, 0, "Maximum socket buffer size");
1461 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD,
1462 &maxsockets, 0, "Maximum number of sockets avaliable");
1463 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
1464 &sb_efficiency, 0, "");
1465 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD, &nmbclusters, 0, "");
1466