]> git.saurik.com Git - apple/xnu.git/blob - tools/tests/affinity/sets.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / tools / tests / affinity / sets.c
1 #include <AvailabilityMacros.h>
2 #include <mach/thread_policy.h>
3 #include <mach/mach.h>
4 #include <mach/mach_error.h>
5 #include <mach/mach_time.h>
6 #include <pthread.h>
7 #include <sys/queue.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <err.h>
13 #include <errno.h>
14 #include <sys/sysctl.h>
15
16 /*
17 * Sets is a multithreaded test/benchmarking program to evaluate
18 * affinity set placement in Leopard.
19 *
20 * The picture here, for each set, is:
21 *
22 * free work
23 * -> queue --> producer --> queue --> consumer --
24 * | |
25 * -----------------------------------------------
26 *
27 * <------ "stage" -----> <------ "stage" ----->
28
29 * We spin off sets of production line threads (2 sets by default).
30 * All threads of each line sets the same affinity tag (unless disabled).
31 * By default there are 2 stage (worker) threads per production line.
32 * A worker thread removes a buffer from an input queue, processses it and
33 * queues it on an output queue. By default the initial stage (producer)
34 * writes every byte in a buffer and the other (consumer) stages read every
35 * byte. By default the buffers are 1MB (256 pages) in size but this can be
36 * overidden. By default there are 2 buffers per set (again overridable).
37 * Worker threads process (iterate over) 10000 buffers by default.
38 *
39 * With affinity enabled, each producer and consumer thread sets its affinity
40 * to the set number, 1 .. N. So the threads of each set share an L2 cache.
41 *
42 * Buffer management uses pthread mutex/condition variables. A thread blocks
43 * when no buffer is available on a queue and it is signaled when a buffer
44 * is placed on an empty queue. Queues are tailq'a a la <sys/queue.h>.
45 * The queue management is centralized in a single routine: what queues to
46 * use as input and output and what function to call for processing is
47 * data-driven.
48 */
49
50 pthread_mutex_t funnel;
51 pthread_cond_t barrier;
52
53 uint64_t timer;
54 int threads;
55 int threads_ready = 0;
56
57 int iterations = 10000;
58 boolean_t affinity = FALSE;
59 boolean_t halting = FALSE;
60 boolean_t cache_config = FALSE;
61 int verbosity = 1;
62
63 typedef struct work {
64 TAILQ_ENTRY(work) link;
65 int *data;
66 } work_t;
67
68 /*
69 * A work queue, complete with pthread objects for its management
70 */
71 typedef struct work_queue {
72 pthread_mutex_t mtx;
73 pthread_cond_t cnd;
74 TAILQ_HEAD(, work) queue;
75 boolean_t waiters;
76 } work_queue_t;
77
78 /* Worker functions take a integer array and size */
79 typedef void (worker_fn_t)(int *, int);
80
81 /* This struct controls the function of a thread */
82 typedef struct {
83 int stagenum;
84 char *name;
85 worker_fn_t *fn;
86 work_queue_t *input;
87 work_queue_t *output;
88 struct line_info *set;
89 pthread_t thread;
90 work_queue_t bufq;
91 } stage_info_t;
92
93 /* This defines a thread set */
94 #define WORKERS_MAX 10
95 typedef struct line_info {
96 int setnum;
97 int *data;
98 int isize;
99 stage_info_t *stage[WORKERS_MAX];
100 } line_info_t;
101
102 #define DBG(x...) do { \
103 if (verbosity > 1) { \
104 pthread_mutex_lock(&funnel); \
105 printf(x); \
106 pthread_mutex_unlock(&funnel); \
107 } \
108 } while (0)
109
110 #define mutter(x...) do { \
111 if (verbosity > 0) { \
112 printf(x); \
113 } \
114 } while (0)
115
116 #define s_if_plural(x) (((x) > 1) ? "s" : "")
117
118 static void
119 usage()
120 {
121 fprintf(stderr,
122 "usage: sets [-a] Turn affinity on (off)\n"
123 " [-b B] Number of buffers per set/line (2)\n"
124 " [-c] Configure for max cache performance\n"
125 " [-h] Print this\n"
126 " [-i I] Number of items/buffers to process (1000)\n"
127 " [-s S] Number of stages per set/line (2)\n"
128 " [-t] Halt for keyboard input to start\n"
129 " [-p P] Number of pages per buffer (256=1MB)]\n"
130 " [-w] Consumer writes data\n"
131 " [-v V] Level of verbosity 0..2 (1)\n"
132 " [N] Number of sets/lines (2)\n"
133 );
134 exit(1);
135 }
136
137 /* Trivial producer: write to each byte */
138 void
139 writer_fn(int *data, int isize)
140 {
141 int i;
142
143 for (i = 0; i < isize; i++) {
144 data[i] = i;
145 }
146 }
147
148 /* Trivial consumer: read each byte */
149 void
150 reader_fn(int *data, int isize)
151 {
152 int i;
153 int datum;
154
155 for (i = 0; i < isize; i++) {
156 datum = data[i];
157 }
158 }
159
160 /* Consumer reading and writing the buffer */
161 void
162 reader_writer_fn(int *data, int isize)
163 {
164 int i;
165
166 for (i = 0; i < isize; i++) {
167 data[i] += 1;
168 }
169 }
170
171 /*
172 * This is the central function for every thread.
173 * For each invocation, its role is ets by (a pointer to) a stage_info_t.
174 */
175 void *
176 manager_fn(void *arg)
177 {
178 stage_info_t *sp = (stage_info_t *) arg;
179 line_info_t *lp = sp->set;
180 kern_return_t ret;
181 long iteration = 0;
182
183 /*
184 * If we're using affinity sets (we are by default)
185 * set our tag to by our thread set number.
186 */
187 thread_extended_policy_data_t epolicy;
188 thread_affinity_policy_data_t policy;
189
190 epolicy.timeshare = FALSE;
191 ret = thread_policy_set(
192 mach_thread_self(), THREAD_EXTENDED_POLICY,
193 (thread_policy_t) &epolicy,
194 THREAD_EXTENDED_POLICY_COUNT);
195 if (ret != KERN_SUCCESS)
196 printf("thread_policy_set(THREAD_EXTENDED_POLICY) returned %d\n", ret);
197
198 if (affinity) {
199 policy.affinity_tag = lp->setnum;
200 ret = thread_policy_set(
201 mach_thread_self(), THREAD_AFFINITY_POLICY,
202 (thread_policy_t) &policy,
203 THREAD_AFFINITY_POLICY_COUNT);
204 if (ret != KERN_SUCCESS)
205 printf("thread_policy_set(THREAD_AFFINITY_POLICY) returned %d\n", ret);
206 }
207
208 DBG("Starting %s set: %d stage: %d\n", sp->name, lp->setnum, sp->stagenum);
209
210 /*
211 * Start barrier.
212 * The tets thread to get here releases everyone and starts the timer.
213 */
214 pthread_mutex_lock(&funnel);
215 threads_ready++;
216 if (threads_ready == threads) {
217 pthread_mutex_unlock(&funnel);
218 if (halting) {
219 printf(" all threads ready for process %d, "
220 "hit any key to start", getpid());
221 fflush(stdout);
222 (void) getchar();
223 }
224 pthread_cond_broadcast(&barrier);
225 timer = mach_absolute_time();
226 } else {
227 pthread_cond_wait(&barrier, &funnel);
228 pthread_mutex_unlock(&funnel);
229 }
230
231 do {
232 int i;
233 work_t *workp;
234
235 /*
236 * Get a buffer from the input queue.
237 * Block if none.
238 */
239 pthread_mutex_lock(&sp->input->mtx);
240 while (1) {
241 workp = TAILQ_FIRST(&(sp->input->queue));
242 if (workp != NULL)
243 break;
244 DBG(" %s[%d,%d] iteration %d waiting for buffer\n",
245 sp->name, lp->setnum, sp->stagenum, iteration);
246 sp->input->waiters = TRUE;
247 pthread_cond_wait(&sp->input->cnd, &sp->input->mtx);
248 sp->input->waiters = FALSE;
249 }
250 TAILQ_REMOVE(&(sp->input->queue), workp, link);
251 pthread_mutex_unlock(&sp->input->mtx);
252
253 DBG(" %s[%d,%d] iteration %d work %p data %p\n",
254 sp->name, lp->setnum, sp->stagenum, iteration, workp, workp->data);
255
256 /* Do our stuff with the buffer */
257 (void) sp->fn(workp->data, lp->isize);
258
259 /*
260 * Place the buffer on the input queue.
261 * Signal waiters if required.
262 */
263 pthread_mutex_lock(&sp->output->mtx);
264 TAILQ_INSERT_TAIL(&(sp->output->queue), workp, link);
265 if (sp->output->waiters) {
266 DBG(" %s[%d,%d] iteration %d signaling work\n",
267 sp->name, lp->setnum, sp->stagenum, iteration);
268 pthread_cond_signal(&sp->output->cnd);
269 }
270 pthread_mutex_unlock(&sp->output->mtx);
271 } while (++iteration < iterations);
272
273 DBG("Ending %s[%d,%d]\n", sp->name, lp->setnum, sp->stagenum);
274
275 return (void *) iteration;
276 }
277
278 #define MAX_CACHE_DEPTH 10
279 static void
280 auto_config(int npages, int *nbufs, int *nsets)
281 {
282 size_t len;
283 int ncpu;
284 int llc;
285 int64_t cacheconfig[MAX_CACHE_DEPTH];
286 int64_t cachesize[MAX_CACHE_DEPTH];
287
288 mutter("Autoconfiguring...\n");
289
290 len = sizeof(cacheconfig);
291 if (sysctlbyname("hw.cacheconfig",
292 &cacheconfig[0], &len, NULL, 0) != 0) {
293 printf("Unable to get hw.cacheconfig, %d\n", errno);
294 exit(1);
295 }
296 len = sizeof(cachesize);
297 if (sysctlbyname("hw.cachesize",
298 &cachesize[0], &len, NULL, 0) != 0) {
299 printf("Unable to get hw.cachesize, %d\n", errno);
300 exit(1);
301 }
302
303 /*
304 * Find LLC
305 */
306 for (llc = MAX_CACHE_DEPTH - 1; llc > 0; llc--)
307 if (cacheconfig[llc] != 0)
308 break;
309
310 /*
311 * Calculate number of buffers of size pages*4096 bytes
312 * fit into 90% of an L2 cache.
313 */
314 *nbufs = cachesize[llc] * 9 / (npages * 4096 * 10);
315 mutter(" L%d (LLC) cache %qd bytes: "
316 "using %d buffers of size %d bytes\n",
317 llc, cachesize[llc], *nbufs, (npages * 4096));
318
319 /*
320 * Calcalute how many sets:
321 */
322 *nsets = cacheconfig[0]/cacheconfig[llc];
323 mutter(" %qd cpus; %qd cpus per L%d cache: using %d sets\n",
324 cacheconfig[0], cacheconfig[llc], llc, *nsets);
325 }
326
327 void (*producer_fnp)(int *data, int isize) = &writer_fn;
328 void (*consumer_fnp)(int *data, int isize) = &reader_fn;
329
330 int
331 main(int argc, char *argv[])
332 {
333 int i;
334 int j;
335 int pages = 256; /* 1MB */
336 int buffers = 2;
337 int sets = 2;
338 int stages = 2;
339 int *status;
340 line_info_t *line_info;
341 line_info_t *lp;
342 stage_info_t *stage_info;
343 stage_info_t *sp;
344 kern_return_t ret;
345 int c;
346
347 /* Do switch parsing: */
348 while ((c = getopt (argc, argv, "ab:chi:p:s:twv:")) != -1) {
349 switch (c) {
350 case 'a':
351 affinity = !affinity;
352 break;
353 case 'b':
354 buffers = atoi(optarg);
355 break;
356 case 'c':
357 cache_config = TRUE;
358 break;
359 case 'i':
360 iterations = atoi(optarg);
361 break;
362 case 'p':
363 pages = atoi(optarg);
364 break;
365 case 's':
366 stages = atoi(optarg);
367 if (stages >= WORKERS_MAX)
368 usage();
369 break;
370 case 't':
371 halting = TRUE;
372 break;
373 case 'w':
374 consumer_fnp = &reader_writer_fn;
375 break;
376 case 'v':
377 verbosity = atoi(optarg);
378 break;
379 case '?':
380 case 'h':
381 default:
382 usage();
383 }
384 }
385 argc -= optind; argv += optind;
386 if (argc > 0)
387 sets = atoi(*argv);
388
389 if (cache_config)
390 auto_config(pages, &buffers, &sets);
391
392 pthread_mutex_init(&funnel, NULL);
393 pthread_cond_init(&barrier, NULL);
394
395 /*
396 * Fire up the worker threads.
397 */
398 threads = sets * stages;
399 mutter("Launching %d set%s of %d threads with %saffinity, "
400 "consumer reads%s data\n",
401 sets, s_if_plural(sets), stages, affinity? "": "no ",
402 (consumer_fnp == &reader_writer_fn)? " and writes" : "");
403 if (pages < 256)
404 mutter(" %dkB bytes per buffer, ", pages * 4);
405 else
406 mutter(" %dMB bytes per buffer, ", pages / 256);
407 mutter("%d buffer%s per set ",
408 buffers, s_if_plural(buffers));
409 if (buffers * pages < 256)
410 mutter("(total %dkB)\n", buffers * pages * 4);
411 else
412 mutter("(total %dMB)\n", buffers * pages / 256);
413 mutter(" processing %d buffer%s...\n",
414 iterations, s_if_plural(iterations));
415 line_info = (line_info_t *) malloc(sets * sizeof(line_info_t));
416 stage_info = (stage_info_t *) malloc(sets * stages * sizeof(stage_info_t));
417 for (i = 0; i < sets; i++) {
418 work_t *work_array;
419
420 lp = &line_info[i];
421
422 lp->setnum = i + 1;
423 lp->isize = pages * 4096 / sizeof(int);
424 lp->data = (int *) malloc(buffers * pages * 4096);
425
426 /* Set up the queue for the workers of this thread set: */
427 for (j = 0; j < stages; j++) {
428 sp = &stage_info[(i*stages) + j];
429 sp->stagenum = j;
430 sp->set = lp;
431 lp->stage[j] = sp;
432 pthread_mutex_init(&sp->bufq.mtx, NULL);
433 pthread_cond_init(&sp->bufq.cnd, NULL);
434 TAILQ_INIT(&sp->bufq.queue);
435 sp->bufq.waiters = FALSE;
436 }
437
438 /*
439 * Take a second pass through the stages
440 * to define what the workers are and to interconnect their input/outputs
441 */
442 for (j = 0; j < stages; j++) {
443 sp = lp->stage[j];
444 if (j == 0) {
445 sp->fn = producer_fnp;
446 sp->name = "producer";
447 } else {
448 sp->fn = consumer_fnp;
449 sp->name = "consumer";
450 }
451 sp->input = &lp->stage[j]->bufq;
452 sp->output = &lp->stage[(j + 1) % stages]->bufq;
453 }
454
455 /* Set up the buffers on the first worker of the set. */
456 work_array = (work_t *) malloc(buffers * sizeof(work_t));
457 for (j = 0; j < buffers; j++) {
458 work_array[j].data = lp->data + (lp->isize * j);
459 TAILQ_INSERT_TAIL(&lp->stage[0]->bufq.queue, &work_array[j], link);
460 DBG(" empty work item %p for set %d data %p\n",
461 &work_array[j], i, work_array[j].data);
462 }
463
464 /* Create this set of threads */
465 for (j = 0; j < stages; j++) {
466 if (ret = pthread_create(&lp->stage[j]->thread, NULL,
467 &manager_fn,
468 (void *) lp->stage[j]))
469 err(1, "pthread_create %d,%d", i, j);
470 }
471 }
472
473 /*
474 * We sit back anf wait for the slave to finish.
475 */
476 for (i = 0; i < sets; i++) {
477 lp = &line_info[i];
478 for (j = 0; j < stages; j++) {
479 if(ret = pthread_join(lp->stage[j]->thread, (void **)&status))
480 err(1, "pthread_join %d,%d", i, j);
481 DBG("Thread %d,%d status %d\n", i, j, status);
482 }
483 }
484
485 /*
486 * See how long the work took.
487 */
488 timer = mach_absolute_time() - timer;
489 timer = timer / 1000000ULL;
490 printf("%d.%03d seconds elapsed.\n",
491 (int) (timer/1000ULL), (int) (timer % 1000ULL));
492
493 return 0;
494 }