]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task_policy.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / osfmk / kern / task_policy.c
1 /*
2 * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
31
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
34
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
46 #include <kern/sfi.h>
47 #include <kern/coalition.h>
48 #if CONFIG_TELEMETRY
49 #include <kern/telemetry.h>
50 #endif
51 #if CONFIG_EMBEDDED
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* CONFIG_EMBEDDED */
55
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
58 #if IMPORTANCE_TRACE
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
62
63 #include <sys/kdebug.h>
64
65 /*
66 * Task Policy
67 *
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
72 *
73 * Architecture:
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
77 *
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
80 *
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
84 *
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
88 *
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
91 * 1) Lock task
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
96 * 4) Unlock task
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
99 *
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
105 *
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
108 *
109 *
110 * Suppression policy
111 *
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
114 *
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
118 *
119 * Locking
120 *
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
124 *
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
127 *
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
131 *
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
136 */
137
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2);
140
141 static void task_policy_update_locked(task_t task, task_pend_token_t pend_token);
142 static void task_policy_update_internal_locked(task_t task, boolean_t in_create, task_pend_token_t pend_token);
143
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2);
146 static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2);
147
148 static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token);
149
150 static uint64_t task_requested_bitfield(task_t task);
151 static uint64_t task_effective_bitfield(task_t task);
152
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task);
155 static uintptr_t trequested_1(task_t task);
156 static uintptr_t teffective_0(task_t task);
157 static uintptr_t teffective_1(task_t task);
158
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
161 static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
162 static int task_enable_cpumon_locked(task_t task);
163 static int task_disable_cpumon(task_t task);
164 static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
165 static int task_apply_resource_actions(task_t task, int type);
166 static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
167
168 #ifdef MACH_BSD
169 typedef struct proc * proc_t;
170 int proc_pid(void *proc);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p);
173 extern char * proc_best_name(proc_t proc);
174
175 extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg,
176 char *buffer, uint32_t buffersize,
177 int32_t *retval);
178 #endif /* MACH_BSD */
179
180
181 #if CONFIG_EMBEDDED
182 /* TODO: make CONFIG_TASKWATCH */
183 /* Taskwatch related helper functions */
184 static void set_thread_appbg(thread_t thread, int setbg,int importance);
185 static void add_taskwatch_locked(task_t task, task_watch_t * twp);
186 static void remove_taskwatch_locked(task_t task, task_watch_t * twp);
187 static void task_watch_lock(void);
188 static void task_watch_unlock(void);
189 static void apply_appstate_watchers(task_t task);
190
191 typedef struct task_watcher {
192 queue_chain_t tw_links; /* queueing of threads */
193 task_t tw_task; /* task that is being watched */
194 thread_t tw_thread; /* thread that is watching the watch_task */
195 int tw_state; /* the current app state of the thread */
196 int tw_importance; /* importance prior to backgrounding */
197 } task_watch_t;
198
199 typedef struct thread_watchlist {
200 thread_t thread; /* thread being worked on for taskwatch action */
201 int importance; /* importance to be restored if thread is being made active */
202 } thread_watchlist_t;
203
204 #endif /* CONFIG_EMBEDDED */
205
206 extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
207
208 /* Importance Inheritance related helper functions */
209
210 #if IMPORTANCE_INHERITANCE
211
212 static void task_importance_mark_live_donor(task_t task, boolean_t donating);
213 static void task_importance_mark_receiver(task_t task, boolean_t receiving);
214 static void task_importance_mark_denap_receiver(task_t task, boolean_t denap);
215
216 static boolean_t task_is_marked_live_importance_donor(task_t task);
217 static boolean_t task_is_importance_receiver(task_t task);
218 static boolean_t task_is_importance_denap_receiver(task_t task);
219
220 static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count);
221
222 static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
223 static void task_importance_update_live_donor(task_t target_task);
224
225 static void task_set_boost_locked(task_t task, boolean_t boost_active);
226
227 #endif /* IMPORTANCE_INHERITANCE */
228
229 #if IMPORTANCE_TRACE
230 #define __imptrace_only
231 #else /* IMPORTANCE_TRACE */
232 #define __imptrace_only __unused
233 #endif /* !IMPORTANCE_TRACE */
234
235 #if IMPORTANCE_INHERITANCE
236 #define __imp_only
237 #else
238 #define __imp_only __unused
239 #endif
240
241 /*
242 * Default parameters for certain policies
243 */
244
245 int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
246 int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
247 int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
248
249 int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
250
251 const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
252
253 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
254 const struct task_requested_policy default_task_requested_policy = {
255 .trp_bg_iotier = proc_default_bg_iotier
256 };
257 const struct task_effective_policy default_task_effective_policy = {};
258
259 /*
260 * Default parameters for CPU usage monitor.
261 *
262 * Default setting is 50% over 3 minutes.
263 */
264 #define DEFAULT_CPUMON_PERCENTAGE 50
265 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
266
267 uint8_t proc_max_cpumon_percentage;
268 uint64_t proc_max_cpumon_interval;
269
270
271 kern_return_t
272 qos_latency_policy_validate(task_latency_qos_t ltier) {
273 if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
274 ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0)))
275 return KERN_INVALID_ARGUMENT;
276
277 return KERN_SUCCESS;
278 }
279
280 kern_return_t
281 qos_throughput_policy_validate(task_throughput_qos_t ttier) {
282 if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
283 ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0)))
284 return KERN_INVALID_ARGUMENT;
285
286 return KERN_SUCCESS;
287 }
288
289 static kern_return_t
290 task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count) {
291 if (count < TASK_QOS_POLICY_COUNT)
292 return KERN_INVALID_ARGUMENT;
293
294 task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
295 task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
296
297 kern_return_t kr = qos_latency_policy_validate(ltier);
298
299 if (kr != KERN_SUCCESS)
300 return kr;
301
302 kr = qos_throughput_policy_validate(ttier);
303
304 return kr;
305 }
306
307 uint32_t
308 qos_extract(uint32_t qv) {
309 return (qv & 0xFF);
310 }
311
312 uint32_t
313 qos_latency_policy_package(uint32_t qv) {
314 return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
315 }
316
317 uint32_t
318 qos_throughput_policy_package(uint32_t qv) {
319 return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
320 }
321
322 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
323 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
324 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
325 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
326 static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 |
327 TASK_POLICY_SUPPRESSION_NONDONOR;
328
329 kern_return_t
330 task_policy_set(
331 task_t task,
332 task_policy_flavor_t flavor,
333 task_policy_t policy_info,
334 mach_msg_type_number_t count)
335 {
336 kern_return_t result = KERN_SUCCESS;
337
338 if (task == TASK_NULL || task == kernel_task)
339 return (KERN_INVALID_ARGUMENT);
340
341 switch (flavor) {
342
343 case TASK_CATEGORY_POLICY: {
344 task_category_policy_t info = (task_category_policy_t)policy_info;
345
346 if (count < TASK_CATEGORY_POLICY_COUNT)
347 return (KERN_INVALID_ARGUMENT);
348
349 #if CONFIG_EMBEDDED
350 /* On embedded, you can't modify your own role. */
351 if (current_task() == task)
352 return (KERN_INVALID_ARGUMENT);
353 #endif
354
355 switch(info->role) {
356 case TASK_FOREGROUND_APPLICATION:
357 case TASK_BACKGROUND_APPLICATION:
358 case TASK_DEFAULT_APPLICATION:
359 proc_set_task_policy(task,
360 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
361 info->role);
362 break;
363
364 case TASK_CONTROL_APPLICATION:
365 if (task != current_task() || task->sec_token.val[0] != 0)
366 result = KERN_INVALID_ARGUMENT;
367 else
368 proc_set_task_policy(task,
369 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
370 info->role);
371 break;
372
373 case TASK_GRAPHICS_SERVER:
374 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
375 if (task != current_task() || task->sec_token.val[0] != 0)
376 result = KERN_INVALID_ARGUMENT;
377 else
378 proc_set_task_policy(task,
379 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
380 info->role);
381 break;
382 default:
383 result = KERN_INVALID_ARGUMENT;
384 break;
385 } /* switch (info->role) */
386
387 break;
388 }
389
390 /* Desired energy-efficiency/performance "quality-of-service" */
391 case TASK_BASE_QOS_POLICY:
392 case TASK_OVERRIDE_QOS_POLICY:
393 {
394 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
395 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
396
397 if (kr != KERN_SUCCESS)
398 return kr;
399
400
401 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
402 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
403
404 proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE,
405 flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
406 lqos, tqos);
407 }
408 break;
409
410 case TASK_BASE_LATENCY_QOS_POLICY:
411 {
412 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
413 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
414
415 if (kr != KERN_SUCCESS)
416 return kr;
417
418 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
419
420 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
421 }
422 break;
423
424 case TASK_BASE_THROUGHPUT_QOS_POLICY:
425 {
426 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
427 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
428
429 if (kr != KERN_SUCCESS)
430 return kr;
431
432 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
433
434 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
435 }
436 break;
437
438 case TASK_SUPPRESSION_POLICY:
439 {
440 #if CONFIG_EMBEDDED
441 /*
442 * Suppression policy is not enabled for embedded
443 * because apps aren't marked as denap receivers
444 */
445 result = KERN_INVALID_ARGUMENT;
446 break;
447 #else /* CONFIG_EMBEDDED */
448
449 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
450
451 if (count < TASK_SUPPRESSION_POLICY_COUNT)
452 return (KERN_INVALID_ARGUMENT);
453
454 struct task_qos_policy qosinfo;
455
456 qosinfo.task_latency_qos_tier = info->timer_throttle;
457 qosinfo.task_throughput_qos_tier = info->throughput_qos;
458
459 kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
460
461 if (kr != KERN_SUCCESS)
462 return kr;
463
464 /* TEMPORARY disablement of task suppression */
465 if (info->active &&
466 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE))
467 return KERN_SUCCESS;
468
469 struct task_pend_token pend_token = {};
470
471 task_lock(task);
472
473 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
474 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
475 proc_selfpid(), task_pid(task), trequested_0(task),
476 trequested_1(task), 0);
477
478 task->requested_policy.trp_sup_active = (info->active) ? 1 : 0;
479 task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
480 task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle);
481 task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0;
482 task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos);
483 task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
484 task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
485
486 task_policy_update_locked(task, &pend_token);
487
488 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
489 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
490 proc_selfpid(), task_pid(task), trequested_0(task),
491 trequested_1(task), 0);
492
493 task_unlock(task);
494
495 task_policy_update_complete_unlocked(task, &pend_token);
496
497 break;
498
499 #endif /* CONFIG_EMBEDDED */
500 }
501
502 default:
503 result = KERN_INVALID_ARGUMENT;
504 break;
505 }
506
507 return (result);
508 }
509
510 /* Sets BSD 'nice' value on the task */
511 kern_return_t
512 task_importance(
513 task_t task,
514 integer_t importance)
515 {
516 if (task == TASK_NULL || task == kernel_task)
517 return (KERN_INVALID_ARGUMENT);
518
519 task_lock(task);
520
521 if (!task->active) {
522 task_unlock(task);
523
524 return (KERN_TERMINATED);
525 }
526
527 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
528 task_unlock(task);
529
530 return (KERN_INVALID_ARGUMENT);
531 }
532
533 task->importance = importance;
534
535 struct task_pend_token pend_token = {};
536
537 task_policy_update_locked(task, &pend_token);
538
539 task_unlock(task);
540
541 task_policy_update_complete_unlocked(task, &pend_token);
542
543 return (KERN_SUCCESS);
544 }
545
546 kern_return_t
547 task_policy_get(
548 task_t task,
549 task_policy_flavor_t flavor,
550 task_policy_t policy_info,
551 mach_msg_type_number_t *count,
552 boolean_t *get_default)
553 {
554 if (task == TASK_NULL || task == kernel_task)
555 return (KERN_INVALID_ARGUMENT);
556
557 switch (flavor) {
558
559 case TASK_CATEGORY_POLICY:
560 {
561 task_category_policy_t info = (task_category_policy_t)policy_info;
562
563 if (*count < TASK_CATEGORY_POLICY_COUNT)
564 return (KERN_INVALID_ARGUMENT);
565
566 if (*get_default)
567 info->role = TASK_UNSPECIFIED;
568 else
569 info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
570 break;
571 }
572
573 case TASK_BASE_QOS_POLICY: /* FALLTHRU */
574 case TASK_OVERRIDE_QOS_POLICY:
575 {
576 task_qos_policy_t info = (task_qos_policy_t)policy_info;
577
578 if (*count < TASK_QOS_POLICY_COUNT)
579 return (KERN_INVALID_ARGUMENT);
580
581 if (*get_default) {
582 info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
583 info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
584 } else if (flavor == TASK_BASE_QOS_POLICY) {
585 int value1, value2;
586
587 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
588
589 info->task_latency_qos_tier = qos_latency_policy_package(value1);
590 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
591
592 } else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
593 int value1, value2;
594
595 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
596
597 info->task_latency_qos_tier = qos_latency_policy_package(value1);
598 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
599 }
600
601 break;
602 }
603
604 case TASK_POLICY_STATE:
605 {
606 task_policy_state_t info = (task_policy_state_t)policy_info;
607
608 if (*count < TASK_POLICY_STATE_COUNT)
609 return (KERN_INVALID_ARGUMENT);
610
611 /* Only root can get this info */
612 if (current_task()->sec_token.val[0] != 0)
613 return KERN_PROTECTION_FAILURE;
614
615 if (*get_default) {
616 info->requested = 0;
617 info->effective = 0;
618 info->pending = 0;
619 info->imp_assertcnt = 0;
620 info->imp_externcnt = 0;
621 info->flags = 0;
622 info->imp_transitions = 0;
623 } else {
624 task_lock(task);
625
626 info->requested = task_requested_bitfield(task);
627 info->effective = task_effective_bitfield(task);
628 info->pending = 0;
629
630 info->tps_requested_policy = *(uint64_t*)(&task->requested_policy);
631 info->tps_effective_policy = *(uint64_t*)(&task->effective_policy);
632
633 info->flags = 0;
634 if (task->task_imp_base != NULL) {
635 info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
636 info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
637 info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
638 info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
639 info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
640 info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
641 info->imp_transitions = task->task_imp_base->iit_transitions;
642 } else {
643 info->imp_assertcnt = 0;
644 info->imp_externcnt = 0;
645 info->imp_transitions = 0;
646 }
647 task_unlock(task);
648 }
649
650 break;
651 }
652
653 case TASK_SUPPRESSION_POLICY:
654 {
655 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
656
657 if (*count < TASK_SUPPRESSION_POLICY_COUNT)
658 return (KERN_INVALID_ARGUMENT);
659
660 task_lock(task);
661
662 if (*get_default) {
663 info->active = 0;
664 info->lowpri_cpu = 0;
665 info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
666 info->disk_throttle = 0;
667 info->cpu_limit = 0;
668 info->suspend = 0;
669 info->throughput_qos = 0;
670 info->suppressed_cpu = 0;
671 } else {
672 info->active = task->requested_policy.trp_sup_active;
673 info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu;
674 info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer);
675 info->disk_throttle = task->requested_policy.trp_sup_disk;
676 info->cpu_limit = 0;
677 info->suspend = 0;
678 info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput);
679 info->suppressed_cpu = task->requested_policy.trp_sup_cpu;
680 info->background_sockets = task->requested_policy.trp_sup_bg_sockets;
681 }
682
683 task_unlock(task);
684 break;
685 }
686
687 default:
688 return (KERN_INVALID_ARGUMENT);
689 }
690
691 return (KERN_SUCCESS);
692 }
693
694 /*
695 * Called at task creation
696 * We calculate the correct effective but don't apply it to anything yet.
697 * The threads, etc will inherit from the task as they get created.
698 */
699 void
700 task_policy_create(task_t task, task_t parent_task)
701 {
702 task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype;
703
704 task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg;
705 task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg;
706 task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier;
707 task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier;
708 task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive;
709 task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive;
710 task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier;
711 task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated;
712 task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp;
713
714 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) {
715 /* Do not update the apptype for exec copy task */
716 if (parent_task->requested_policy.trp_boosted) {
717 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
718 task_importance_mark_donor(task, TRUE);
719 } else {
720 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
721 task_importance_mark_receiver(task, FALSE);
722 }
723 }
724
725 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
726 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
727 task_pid(task), teffective_0(task),
728 teffective_1(task), task->priority, 0);
729
730 task_policy_update_internal_locked(task, TRUE, NULL);
731
732 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
733 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
734 task_pid(task), teffective_0(task),
735 teffective_1(task), task->priority, 0);
736
737 task_importance_update_live_donor(task);
738 }
739
740
741 static void
742 task_policy_update_locked(task_t task, task_pend_token_t pend_token)
743 {
744 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
745 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START),
746 task_pid(task), teffective_0(task),
747 teffective_1(task), task->priority, 0);
748
749 task_policy_update_internal_locked(task, FALSE, pend_token);
750
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
752 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END,
753 task_pid(task), teffective_0(task),
754 teffective_1(task), task->priority, 0);
755 }
756
757 /*
758 * One state update function TO RULE THEM ALL
759 *
760 * This function updates the task or thread effective policy fields
761 * and pushes the results to the relevant subsystems.
762 *
763 * Must call update_complete after unlocking the task,
764 * as some subsystems cannot be updated while holding the task lock.
765 *
766 * Called with task locked, not thread
767 */
768
769 static void
770 task_policy_update_internal_locked(task_t task, boolean_t in_create, task_pend_token_t pend_token)
771 {
772 /*
773 * Step 1:
774 * Gather requested policy
775 */
776
777 struct task_requested_policy requested = task->requested_policy;
778
779 /*
780 * Step 2:
781 * Calculate new effective policies from requested policy and task state
782 * Rules:
783 * Don't change requested, it won't take effect
784 */
785
786 struct task_effective_policy next = {};
787
788 /* Update task role */
789 next.tep_role = requested.trp_role;
790
791 /* Set task qos clamp and ceiling */
792 next.tep_qos_clamp = requested.trp_qos_clamp;
793
794 if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
795 requested.trp_apptype == TASK_APPTYPE_APP_TAL) {
796
797 switch (next.tep_role) {
798 case TASK_FOREGROUND_APPLICATION:
799 /* Foreground apps get urgent scheduler priority */
800 next.tep_qos_ui_is_urgent = 1;
801 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
802 break;
803
804 case TASK_BACKGROUND_APPLICATION:
805 /* This is really 'non-focal but on-screen' */
806 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
807 break;
808
809 case TASK_DEFAULT_APPLICATION:
810 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
811 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
812 break;
813
814 case TASK_NONUI_APPLICATION:
815 /* i.e. 'off-screen' */
816 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
817 break;
818
819 case TASK_CONTROL_APPLICATION:
820 case TASK_GRAPHICS_SERVER:
821 next.tep_qos_ui_is_urgent = 1;
822 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
823 break;
824
825 case TASK_THROTTLE_APPLICATION:
826 /* i.e. 'TAL launch' */
827 next.tep_qos_ceiling = THREAD_QOS_UTILITY;
828 break;
829
830 case TASK_DARWINBG_APPLICATION:
831 /* i.e. 'DARWIN_BG throttled background application' */
832 next.tep_qos_ceiling = THREAD_QOS_BACKGROUND;
833 break;
834
835 case TASK_UNSPECIFIED:
836 default:
837 /* Apps that don't have an application role get
838 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
839 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
840 break;
841 }
842 } else {
843 /* Daemons get USER_INTERACTIVE squashed to USER_INITIATED */
844 next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED;
845 }
846
847 /* Calculate DARWIN_BG */
848 boolean_t wants_darwinbg = FALSE;
849 boolean_t wants_all_sockets_bg = FALSE; /* Do I want my existing sockets to be bg */
850 boolean_t wants_watchersbg = FALSE; /* Do I want my pidbound threads to be bg */
851
852 /*
853 * If DARWIN_BG has been requested at either level, it's engaged.
854 * Only true DARWIN_BG changes cause watchers to transition.
855 *
856 * Backgrounding due to apptype does.
857 */
858 if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg ||
859 next.tep_role == TASK_DARWINBG_APPLICATION)
860 wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = TRUE;
861
862 /*
863 * Deprecated TAL implementation for TAL apptype
864 * Background TAL apps are throttled when TAL is enabled
865 */
866 if (requested.trp_apptype == TASK_APPTYPE_APP_TAL &&
867 requested.trp_role == TASK_BACKGROUND_APPLICATION &&
868 requested.trp_tal_enabled == 1) {
869 next.tep_tal_engaged = 1;
870 }
871
872 /* New TAL implementation based on TAL role alone, works for all apps */
873 if ((requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
874 requested.trp_apptype == TASK_APPTYPE_APP_TAL) &&
875 requested.trp_role == TASK_THROTTLE_APPLICATION) {
876 next.tep_tal_engaged = 1;
877 }
878
879 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
880 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
881 requested.trp_boosted == 0)
882 wants_darwinbg = TRUE;
883
884 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
885 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND)
886 wants_darwinbg = TRUE;
887
888 if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND || next.tep_qos_clamp == THREAD_QOS_MAINTENANCE)
889 wants_darwinbg = TRUE;
890
891 /* Calculate side effects of DARWIN_BG */
892
893 if (wants_darwinbg) {
894 next.tep_darwinbg = 1;
895 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
896 next.tep_new_sockets_bg = 1;
897 next.tep_lowpri_cpu = 1;
898 }
899
900 if (wants_all_sockets_bg)
901 next.tep_all_sockets_bg = 1;
902
903 if (wants_watchersbg)
904 next.tep_watchers_bg = 1;
905
906 /* Calculate low CPU priority */
907
908 boolean_t wants_lowpri_cpu = FALSE;
909
910 if (wants_darwinbg)
911 wants_lowpri_cpu = TRUE;
912
913 if (next.tep_tal_engaged)
914 wants_lowpri_cpu = TRUE;
915
916 if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0)
917 wants_lowpri_cpu = TRUE;
918
919 if (wants_lowpri_cpu)
920 next.tep_lowpri_cpu = 1;
921
922 /* Calculate IO policy */
923
924 /* Update BG IO policy (so we can see if it has changed) */
925 next.tep_bg_iotier = requested.trp_bg_iotier;
926
927 int iopol = THROTTLE_LEVEL_TIER0;
928
929 if (wants_darwinbg)
930 iopol = MAX(iopol, requested.trp_bg_iotier);
931
932 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD)
933 iopol = MAX(iopol, proc_standard_daemon_tier);
934
935 if (requested.trp_sup_disk && requested.trp_boosted == 0)
936 iopol = MAX(iopol, proc_suppressed_disk_tier);
937
938 if (next.tep_tal_engaged)
939 iopol = MAX(iopol, proc_tal_disk_tier);
940
941 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED)
942 iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]);
943
944 iopol = MAX(iopol, requested.trp_int_iotier);
945 iopol = MAX(iopol, requested.trp_ext_iotier);
946
947 next.tep_io_tier = iopol;
948
949 /* Calculate Passive IO policy */
950
951 if (requested.trp_ext_iopassive || requested.trp_int_iopassive)
952 next.tep_io_passive = 1;
953
954 /* Calculate suppression-active flag */
955 boolean_t appnap_transition = FALSE;
956
957 if (requested.trp_sup_active && requested.trp_boosted == 0)
958 next.tep_sup_active = 1;
959
960 if (task->effective_policy.tep_sup_active != next.tep_sup_active)
961 appnap_transition = TRUE;
962
963 /* Calculate timer QOS */
964 int latency_qos = requested.trp_base_latency_qos;
965
966 if (requested.trp_sup_timer && requested.trp_boosted == 0)
967 latency_qos = requested.trp_sup_timer;
968
969 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED)
970 latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]);
971
972 if (requested.trp_over_latency_qos != 0)
973 latency_qos = requested.trp_over_latency_qos;
974
975 /* Treat the windowserver special */
976 if (requested.trp_role == TASK_GRAPHICS_SERVER)
977 latency_qos = proc_graphics_timer_qos;
978
979 next.tep_latency_qos = latency_qos;
980
981 /* Calculate throughput QOS */
982 int through_qos = requested.trp_base_through_qos;
983
984 if (requested.trp_sup_throughput && requested.trp_boosted == 0)
985 through_qos = requested.trp_sup_throughput;
986
987 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED)
988 through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]);
989
990 if (requested.trp_over_through_qos != 0)
991 through_qos = requested.trp_over_through_qos;
992
993 next.tep_through_qos = through_qos;
994
995 /* Calculate suppressed CPU priority */
996 if (requested.trp_sup_cpu && requested.trp_boosted == 0)
997 next.tep_suppressed_cpu = 1;
998
999 /*
1000 * Calculate background sockets
1001 * Don't take into account boosting to limit transition frequency.
1002 */
1003 if (requested.trp_sup_bg_sockets){
1004 next.tep_all_sockets_bg = 1;
1005 next.tep_new_sockets_bg = 1;
1006 }
1007
1008 /* Apply SFI Managed class bit */
1009 next.tep_sfi_managed = requested.trp_sfi_managed;
1010
1011 /* Calculate 'live donor' status for live importance */
1012 switch (requested.trp_apptype) {
1013 case TASK_APPTYPE_APP_TAL:
1014 case TASK_APPTYPE_APP_DEFAULT:
1015 if (requested.trp_ext_darwinbg == 1 ||
1016 (next.tep_sup_active == 1 &&
1017 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) ||
1018 next.tep_role == TASK_DARWINBG_APPLICATION) {
1019 next.tep_live_donor = 0;
1020 } else {
1021 next.tep_live_donor = 1;
1022 }
1023 break;
1024
1025 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1026 case TASK_APPTYPE_DAEMON_STANDARD:
1027 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1028 case TASK_APPTYPE_DAEMON_BACKGROUND:
1029 default:
1030 next.tep_live_donor = 0;
1031 break;
1032 }
1033
1034 if (requested.trp_terminated) {
1035 /*
1036 * Shoot down the throttles that slow down exit or response to SIGTERM
1037 * We don't need to shoot down:
1038 * passive (don't want to cause others to throttle)
1039 * all_sockets_bg (don't need to iterate FDs on every exit)
1040 * new_sockets_bg (doesn't matter for exiting process)
1041 * pidsuspend (jetsam-ed BG process shouldn't run again)
1042 * watchers_bg (watcher threads don't need to be unthrottled)
1043 * latency_qos (affects userspace timers only)
1044 */
1045
1046 next.tep_terminated = 1;
1047 next.tep_darwinbg = 0;
1048 next.tep_lowpri_cpu = 0;
1049 next.tep_io_tier = THROTTLE_LEVEL_TIER0;
1050 next.tep_tal_engaged = 0;
1051 next.tep_role = TASK_UNSPECIFIED;
1052 next.tep_suppressed_cpu = 0;
1053 }
1054
1055 /*
1056 * Step 3:
1057 * Swap out old policy for new policy
1058 */
1059
1060 struct task_effective_policy prev = task->effective_policy;
1061
1062 /* This is the point where the new values become visible to other threads */
1063 task->effective_policy = next;
1064
1065 /* Don't do anything further to a half-formed task */
1066 if (in_create)
1067 return;
1068
1069 if (task == kernel_task)
1070 panic("Attempting to set task policy on kernel_task");
1071
1072 /*
1073 * Step 4:
1074 * Pend updates that can't be done while holding the task lock
1075 */
1076
1077 if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg)
1078 pend_token->tpt_update_sockets = 1;
1079
1080 /* Only re-scan the timer list if the qos level is getting less strong */
1081 if (prev.tep_latency_qos > next.tep_latency_qos)
1082 pend_token->tpt_update_timers = 1;
1083
1084 #if CONFIG_EMBEDDED
1085 if (prev.tep_watchers_bg != next.tep_watchers_bg)
1086 pend_token->tpt_update_watchers = 1;
1087 #endif /* CONFIG_EMBEDDED */
1088
1089 if (prev.tep_live_donor != next.tep_live_donor)
1090 pend_token->tpt_update_live_donor = 1;
1091
1092 /*
1093 * Step 5:
1094 * Update other subsystems as necessary if something has changed
1095 */
1096
1097 boolean_t update_threads = FALSE, update_sfi = FALSE;
1098
1099 /*
1100 * Check for the attributes that thread_policy_update_internal_locked() consults,
1101 * and trigger thread policy re-evaluation.
1102 */
1103 if (prev.tep_io_tier != next.tep_io_tier ||
1104 prev.tep_bg_iotier != next.tep_bg_iotier ||
1105 prev.tep_io_passive != next.tep_io_passive ||
1106 prev.tep_darwinbg != next.tep_darwinbg ||
1107 prev.tep_qos_clamp != next.tep_qos_clamp ||
1108 prev.tep_qos_ceiling != next.tep_qos_ceiling ||
1109 prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent ||
1110 prev.tep_latency_qos != next.tep_latency_qos ||
1111 prev.tep_through_qos != next.tep_through_qos ||
1112 prev.tep_lowpri_cpu != next.tep_lowpri_cpu ||
1113 prev.tep_new_sockets_bg != next.tep_new_sockets_bg ||
1114 prev.tep_terminated != next.tep_terminated )
1115 update_threads = TRUE;
1116
1117 /*
1118 * Check for the attributes that sfi_thread_classify() consults,
1119 * and trigger SFI re-evaluation.
1120 */
1121 if (prev.tep_latency_qos != next.tep_latency_qos ||
1122 prev.tep_role != next.tep_role ||
1123 prev.tep_sfi_managed != next.tep_sfi_managed )
1124 update_sfi = TRUE;
1125
1126 /* Reflect task role transitions into the coalition role counters */
1127 if (prev.tep_role != next.tep_role) {
1128 if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token))
1129 update_sfi = TRUE;
1130 }
1131
1132 boolean_t update_priority = FALSE;
1133
1134 int priority = BASEPRI_DEFAULT;
1135 int max_priority = MAXPRI_USER;
1136
1137 if (next.tep_lowpri_cpu) {
1138 priority = MAXPRI_THROTTLE;
1139 max_priority = MAXPRI_THROTTLE;
1140 } else if (next.tep_suppressed_cpu) {
1141 priority = MAXPRI_SUPPRESSED;
1142 max_priority = MAXPRI_SUPPRESSED;
1143 } else {
1144 switch (next.tep_role) {
1145 case TASK_CONTROL_APPLICATION:
1146 priority = BASEPRI_CONTROL;
1147 break;
1148 case TASK_GRAPHICS_SERVER:
1149 priority = BASEPRI_GRAPHICS;
1150 max_priority = MAXPRI_RESERVED;
1151 break;
1152 default:
1153 break;
1154 }
1155
1156 /* factor in 'nice' value */
1157 priority += task->importance;
1158
1159 if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1160 int qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp];
1161
1162 priority = MIN(priority, qos_clamp_priority);
1163 max_priority = MIN(max_priority, qos_clamp_priority);
1164 }
1165
1166 if (priority > max_priority)
1167 priority = max_priority;
1168 else if (priority < MINPRI)
1169 priority = MINPRI;
1170 }
1171
1172 assert(priority <= max_priority);
1173
1174 /* avoid extra work if priority isn't changing */
1175 if (priority != task->priority ||
1176 max_priority != task->max_priority ) {
1177 /* update the scheduling priority for the task */
1178 task->max_priority = max_priority;
1179 task->priority = priority;
1180 update_priority = TRUE;
1181 }
1182
1183 /* Loop over the threads in the task:
1184 * only once
1185 * only if necessary
1186 * with one thread mutex hold per thread
1187 */
1188 if (update_threads || update_priority || update_sfi) {
1189 thread_t thread;
1190
1191 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1192 struct task_pend_token thread_pend_token = {};
1193
1194 if (update_sfi)
1195 thread_pend_token.tpt_update_thread_sfi = 1;
1196
1197 if (update_priority || update_threads)
1198 thread_policy_update_tasklocked(thread,
1199 task->priority, task->max_priority,
1200 &thread_pend_token);
1201
1202 assert(!thread_pend_token.tpt_update_sockets);
1203
1204 // Slightly risky, as we still hold the task lock...
1205 thread_policy_update_complete_unlocked(thread, &thread_pend_token);
1206 }
1207 }
1208
1209 /*
1210 * Use the app-nap transitions to influence the
1211 * transition of the process within the jetsam band
1212 * [and optionally its live-donor status]
1213 * On macOS only.
1214 */
1215 if (appnap_transition == TRUE) {
1216 if (task->effective_policy.tep_sup_active == 1) {
1217
1218 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE);
1219 } else {
1220 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE);
1221 }
1222 }
1223 }
1224
1225
1226 /*
1227 * Yet another layering violation. We reach out and bang on the coalition directly.
1228 */
1229 static boolean_t
1230 task_policy_update_coalition_focal_tasks(task_t task,
1231 int prev_role,
1232 int next_role,
1233 task_pend_token_t pend_token)
1234 {
1235 boolean_t sfi_transition = FALSE;
1236 uint32_t new_count = 0;
1237
1238 /* task moving into/out-of the foreground */
1239 if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
1240 if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) {
1241 sfi_transition = TRUE;
1242 pend_token->tpt_update_tg_ui_flag = TRUE;
1243 }
1244 } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
1245 if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) {
1246 sfi_transition = TRUE;
1247 pend_token->tpt_update_tg_ui_flag = TRUE;
1248 }
1249 }
1250
1251 /* task moving into/out-of background */
1252 if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
1253 if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1))
1254 sfi_transition = TRUE;
1255 } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
1256 if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0))
1257 sfi_transition = TRUE;
1258 }
1259
1260 if (sfi_transition)
1261 pend_token->tpt_update_coal_sfi = 1;
1262 return sfi_transition;
1263 }
1264
1265 #if CONFIG_SCHED_SFI
1266
1267 /* coalition object is locked */
1268 static void
1269 task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task)
1270 {
1271 thread_t thread;
1272
1273 /* unused for now */
1274 (void)coal;
1275
1276 /* skip the task we're re-evaluating on behalf of: it's already updated */
1277 if (task == (task_t)ctx)
1278 return;
1279
1280 task_lock(task);
1281
1282 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1283 sfi_reevaluate(thread);
1284 }
1285
1286 task_unlock(task);
1287 }
1288 #endif /* CONFIG_SCHED_SFI */
1289
1290 /*
1291 * Called with task unlocked to do things that can't be done while holding the task lock
1292 */
1293 void
1294 task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token)
1295 {
1296 #ifdef MACH_BSD
1297 if (pend_token->tpt_update_sockets)
1298 proc_apply_task_networkbg(task->bsd_info, THREAD_NULL);
1299 #endif /* MACH_BSD */
1300
1301 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1302 if (pend_token->tpt_update_timers)
1303 ml_timer_evaluate();
1304
1305 #if CONFIG_EMBEDDED
1306 if (pend_token->tpt_update_watchers)
1307 apply_appstate_watchers(task);
1308 #endif /* CONFIG_EMBEDDED */
1309
1310 if (pend_token->tpt_update_live_donor)
1311 task_importance_update_live_donor(task);
1312
1313 #if CONFIG_SCHED_SFI
1314 /* use the resource coalition for SFI re-evaluation */
1315 if (pend_token->tpt_update_coal_sfi)
1316 coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE],
1317 (void *)task, task_sfi_reevaluate_cb);
1318 #endif /* CONFIG_SCHED_SFI */
1319
1320 }
1321
1322 /*
1323 * Initiate a task policy state transition
1324 *
1325 * Everything that modifies requested except functions that need to hold the task lock
1326 * should use this function
1327 *
1328 * Argument validation should be performed before reaching this point.
1329 *
1330 * TODO: Do we need to check task->active?
1331 */
1332 void
1333 proc_set_task_policy(task_t task,
1334 int category,
1335 int flavor,
1336 int value)
1337 {
1338 struct task_pend_token pend_token = {};
1339
1340 task_lock(task);
1341
1342 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1343 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1344 task_pid(task), trequested_0(task),
1345 trequested_1(task), value, 0);
1346
1347 proc_set_task_policy_locked(task, category, flavor, value, 0);
1348
1349 task_policy_update_locked(task, &pend_token);
1350
1351
1352 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1353 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1354 task_pid(task), trequested_0(task),
1355 trequested_1(task), tpending(&pend_token), 0);
1356
1357 task_unlock(task);
1358
1359 task_policy_update_complete_unlocked(task, &pend_token);
1360 }
1361
1362 /*
1363 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1364 * Same locking rules apply.
1365 */
1366 void
1367 proc_set_task_policy2(task_t task,
1368 int category,
1369 int flavor,
1370 int value,
1371 int value2)
1372 {
1373 struct task_pend_token pend_token = {};
1374
1375 task_lock(task);
1376
1377 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1378 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1379 task_pid(task), trequested_0(task),
1380 trequested_1(task), value, 0);
1381
1382 proc_set_task_policy_locked(task, category, flavor, value, value2);
1383
1384 task_policy_update_locked(task, &pend_token);
1385
1386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1387 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1388 task_pid(task), trequested_0(task),
1389 trequested_1(task), tpending(&pend_token), 0);
1390
1391 task_unlock(task);
1392
1393 task_policy_update_complete_unlocked(task, &pend_token);
1394 }
1395
1396 /*
1397 * Set the requested state for a specific flavor to a specific value.
1398 *
1399 * TODO:
1400 * Verify that arguments to non iopol things are 1 or 0
1401 */
1402 static void
1403 proc_set_task_policy_locked(task_t task,
1404 int category,
1405 int flavor,
1406 int value,
1407 int value2)
1408 {
1409 int tier, passive;
1410
1411 struct task_requested_policy requested = task->requested_policy;
1412
1413 switch (flavor) {
1414
1415 /* Category: EXTERNAL and INTERNAL */
1416
1417 case TASK_POLICY_DARWIN_BG:
1418 if (category == TASK_POLICY_EXTERNAL)
1419 requested.trp_ext_darwinbg = value;
1420 else
1421 requested.trp_int_darwinbg = value;
1422 break;
1423
1424 case TASK_POLICY_IOPOL:
1425 proc_iopol_to_tier(value, &tier, &passive);
1426 if (category == TASK_POLICY_EXTERNAL) {
1427 requested.trp_ext_iotier = tier;
1428 requested.trp_ext_iopassive = passive;
1429 } else {
1430 requested.trp_int_iotier = tier;
1431 requested.trp_int_iopassive = passive;
1432 }
1433 break;
1434
1435 case TASK_POLICY_IO:
1436 if (category == TASK_POLICY_EXTERNAL)
1437 requested.trp_ext_iotier = value;
1438 else
1439 requested.trp_int_iotier = value;
1440 break;
1441
1442 case TASK_POLICY_PASSIVE_IO:
1443 if (category == TASK_POLICY_EXTERNAL)
1444 requested.trp_ext_iopassive = value;
1445 else
1446 requested.trp_int_iopassive = value;
1447 break;
1448
1449 /* Category: INTERNAL */
1450
1451 case TASK_POLICY_DARWIN_BG_IOPOL:
1452 assert(category == TASK_POLICY_INTERNAL);
1453 proc_iopol_to_tier(value, &tier, &passive);
1454 requested.trp_bg_iotier = tier;
1455 break;
1456
1457 /* Category: ATTRIBUTE */
1458
1459 case TASK_POLICY_TAL:
1460 assert(category == TASK_POLICY_ATTRIBUTE);
1461 requested.trp_tal_enabled = value;
1462 break;
1463
1464 case TASK_POLICY_BOOST:
1465 assert(category == TASK_POLICY_ATTRIBUTE);
1466 requested.trp_boosted = value;
1467 break;
1468
1469 case TASK_POLICY_ROLE:
1470 assert(category == TASK_POLICY_ATTRIBUTE);
1471 requested.trp_role = value;
1472 break;
1473
1474 case TASK_POLICY_TERMINATED:
1475 assert(category == TASK_POLICY_ATTRIBUTE);
1476 requested.trp_terminated = value;
1477 break;
1478
1479 case TASK_BASE_LATENCY_QOS_POLICY:
1480 assert(category == TASK_POLICY_ATTRIBUTE);
1481 requested.trp_base_latency_qos = value;
1482 break;
1483
1484 case TASK_BASE_THROUGHPUT_QOS_POLICY:
1485 assert(category == TASK_POLICY_ATTRIBUTE);
1486 requested.trp_base_through_qos = value;
1487 break;
1488
1489 case TASK_POLICY_SFI_MANAGED:
1490 assert(category == TASK_POLICY_ATTRIBUTE);
1491 requested.trp_sfi_managed = value;
1492 break;
1493
1494 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1495 assert(category == TASK_POLICY_ATTRIBUTE);
1496 requested.trp_base_latency_qos = value;
1497 requested.trp_base_through_qos = value2;
1498 break;
1499
1500 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1501 assert(category == TASK_POLICY_ATTRIBUTE);
1502 requested.trp_over_latency_qos = value;
1503 requested.trp_over_through_qos = value2;
1504 break;
1505
1506 default:
1507 panic("unknown task policy: %d %d %d %d", category, flavor, value, value2);
1508 break;
1509 }
1510
1511 task->requested_policy = requested;
1512 }
1513
1514 /*
1515 * Gets what you set. Effective values may be different.
1516 */
1517 int
1518 proc_get_task_policy(task_t task,
1519 int category,
1520 int flavor)
1521 {
1522 int value = 0;
1523
1524 task_lock(task);
1525
1526 struct task_requested_policy requested = task->requested_policy;
1527
1528 switch (flavor) {
1529 case TASK_POLICY_DARWIN_BG:
1530 if (category == TASK_POLICY_EXTERNAL)
1531 value = requested.trp_ext_darwinbg;
1532 else
1533 value = requested.trp_int_darwinbg;
1534 break;
1535 case TASK_POLICY_IOPOL:
1536 if (category == TASK_POLICY_EXTERNAL)
1537 value = proc_tier_to_iopol(requested.trp_ext_iotier,
1538 requested.trp_ext_iopassive);
1539 else
1540 value = proc_tier_to_iopol(requested.trp_int_iotier,
1541 requested.trp_int_iopassive);
1542 break;
1543 case TASK_POLICY_IO:
1544 if (category == TASK_POLICY_EXTERNAL)
1545 value = requested.trp_ext_iotier;
1546 else
1547 value = requested.trp_int_iotier;
1548 break;
1549 case TASK_POLICY_PASSIVE_IO:
1550 if (category == TASK_POLICY_EXTERNAL)
1551 value = requested.trp_ext_iopassive;
1552 else
1553 value = requested.trp_int_iopassive;
1554 break;
1555 case TASK_POLICY_DARWIN_BG_IOPOL:
1556 assert(category == TASK_POLICY_ATTRIBUTE);
1557 value = proc_tier_to_iopol(requested.trp_bg_iotier, 0);
1558 break;
1559 case TASK_POLICY_ROLE:
1560 assert(category == TASK_POLICY_ATTRIBUTE);
1561 value = requested.trp_role;
1562 break;
1563 case TASK_POLICY_SFI_MANAGED:
1564 assert(category == TASK_POLICY_ATTRIBUTE);
1565 value = requested.trp_sfi_managed;
1566 break;
1567 default:
1568 panic("unknown policy_flavor %d", flavor);
1569 break;
1570 }
1571
1572 task_unlock(task);
1573
1574 return value;
1575 }
1576
1577 /*
1578 * Variant of proc_get_task_policy() that returns two scalar outputs.
1579 */
1580 void
1581 proc_get_task_policy2(task_t task,
1582 __assert_only int category,
1583 int flavor,
1584 int *value1,
1585 int *value2)
1586 {
1587 task_lock(task);
1588
1589 struct task_requested_policy requested = task->requested_policy;
1590
1591 switch (flavor) {
1592 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1593 assert(category == TASK_POLICY_ATTRIBUTE);
1594 *value1 = requested.trp_base_latency_qos;
1595 *value2 = requested.trp_base_through_qos;
1596 break;
1597
1598 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1599 assert(category == TASK_POLICY_ATTRIBUTE);
1600 *value1 = requested.trp_over_latency_qos;
1601 *value2 = requested.trp_over_through_qos;
1602 break;
1603
1604 default:
1605 panic("unknown policy_flavor %d", flavor);
1606 break;
1607 }
1608
1609 task_unlock(task);
1610 }
1611
1612 /*
1613 * Function for querying effective state for relevant subsystems
1614 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1615 *
1616 * ONLY the relevant subsystem should query this.
1617 * NEVER take a value from the 'effective' function and stuff it into a setter.
1618 *
1619 * NOTE: This accessor does not take the task lock.
1620 * Notifications of state updates need to be externally synchronized with state queries.
1621 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1622 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1623 */
1624 int
1625 proc_get_effective_task_policy(task_t task,
1626 int flavor)
1627 {
1628 int value = 0;
1629
1630 switch (flavor) {
1631 case TASK_POLICY_DARWIN_BG:
1632 /*
1633 * This backs the KPI call proc_pidbackgrounded to find
1634 * out if a pid is backgrounded.
1635 * It is used to communicate state to the VM system, as well as
1636 * prioritizing requests to the graphics system.
1637 * Returns 1 for background mode, 0 for normal mode
1638 */
1639 value = task->effective_policy.tep_darwinbg;
1640 break;
1641 case TASK_POLICY_ALL_SOCKETS_BG:
1642 /*
1643 * do_background_socket() calls this to determine what it should do to the proc's sockets
1644 * Returns 1 for background mode, 0 for normal mode
1645 *
1646 * This consults both thread and task so un-DBGing a thread while the task is BG
1647 * doesn't get you out of the network throttle.
1648 */
1649 value = task->effective_policy.tep_all_sockets_bg;
1650 break;
1651 case TASK_POLICY_LATENCY_QOS:
1652 /*
1653 * timer arming calls into here to find out the timer coalescing level
1654 * Returns a QoS tier (0-6)
1655 */
1656 value = task->effective_policy.tep_latency_qos;
1657 break;
1658 case TASK_POLICY_THROUGH_QOS:
1659 /*
1660 * This value is passed into the urgency callout from the scheduler
1661 * to the performance management subsystem.
1662 * Returns a QoS tier (0-6)
1663 */
1664 value = task->effective_policy.tep_through_qos;
1665 break;
1666 case TASK_POLICY_ROLE:
1667 /*
1668 * This controls various things that ask whether a process is foreground,
1669 * like SFI, VM, access to GPU, etc
1670 */
1671 value = task->effective_policy.tep_role;
1672 break;
1673 case TASK_POLICY_WATCHERS_BG:
1674 /*
1675 * This controls whether or not a thread watching this process should be BG.
1676 */
1677 value = task->effective_policy.tep_watchers_bg;
1678 break;
1679 case TASK_POLICY_SFI_MANAGED:
1680 /*
1681 * This controls whether or not a process is targeted for specific control by thermald.
1682 */
1683 value = task->effective_policy.tep_sfi_managed;
1684 break;
1685 default:
1686 panic("unknown policy_flavor %d", flavor);
1687 break;
1688 }
1689
1690 return value;
1691 }
1692
1693 /*
1694 * Convert from IOPOL_* values to throttle tiers.
1695 *
1696 * TODO: Can this be made more compact, like an array lookup
1697 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1698 */
1699
1700 void
1701 proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
1702 {
1703 *passive = 0;
1704 *tier = 0;
1705 switch (iopolicy) {
1706 case IOPOL_IMPORTANT:
1707 *tier = THROTTLE_LEVEL_TIER0;
1708 break;
1709 case IOPOL_PASSIVE:
1710 *tier = THROTTLE_LEVEL_TIER0;
1711 *passive = 1;
1712 break;
1713 case IOPOL_STANDARD:
1714 *tier = THROTTLE_LEVEL_TIER1;
1715 break;
1716 case IOPOL_UTILITY:
1717 *tier = THROTTLE_LEVEL_TIER2;
1718 break;
1719 case IOPOL_THROTTLE:
1720 *tier = THROTTLE_LEVEL_TIER3;
1721 break;
1722 default:
1723 panic("unknown I/O policy %d", iopolicy);
1724 break;
1725 }
1726 }
1727
1728 int
1729 proc_tier_to_iopol(int tier, int passive)
1730 {
1731 if (passive == 1) {
1732 switch (tier) {
1733 case THROTTLE_LEVEL_TIER0:
1734 return IOPOL_PASSIVE;
1735 default:
1736 panic("unknown passive tier %d", tier);
1737 return IOPOL_DEFAULT;
1738 }
1739 } else {
1740 switch (tier) {
1741 case THROTTLE_LEVEL_NONE:
1742 case THROTTLE_LEVEL_TIER0:
1743 return IOPOL_DEFAULT;
1744 case THROTTLE_LEVEL_TIER1:
1745 return IOPOL_STANDARD;
1746 case THROTTLE_LEVEL_TIER2:
1747 return IOPOL_UTILITY;
1748 case THROTTLE_LEVEL_TIER3:
1749 return IOPOL_THROTTLE;
1750 default:
1751 panic("unknown tier %d", tier);
1752 return IOPOL_DEFAULT;
1753 }
1754 }
1755 }
1756
1757 int
1758 proc_darwin_role_to_task_role(int darwin_role, int* task_role)
1759 {
1760 integer_t role = TASK_UNSPECIFIED;
1761
1762 switch (darwin_role) {
1763 case PRIO_DARWIN_ROLE_DEFAULT:
1764 role = TASK_UNSPECIFIED;
1765 break;
1766 case PRIO_DARWIN_ROLE_UI_FOCAL:
1767 role = TASK_FOREGROUND_APPLICATION;
1768 break;
1769 case PRIO_DARWIN_ROLE_UI:
1770 role = TASK_DEFAULT_APPLICATION;
1771 break;
1772 case PRIO_DARWIN_ROLE_NON_UI:
1773 role = TASK_NONUI_APPLICATION;
1774 break;
1775 case PRIO_DARWIN_ROLE_UI_NON_FOCAL:
1776 role = TASK_BACKGROUND_APPLICATION;
1777 break;
1778 case PRIO_DARWIN_ROLE_TAL_LAUNCH:
1779 role = TASK_THROTTLE_APPLICATION;
1780 break;
1781 case PRIO_DARWIN_ROLE_DARWIN_BG:
1782 role = TASK_DARWINBG_APPLICATION;
1783 break;
1784 default:
1785 return EINVAL;
1786 }
1787
1788 *task_role = role;
1789
1790 return 0;
1791 }
1792
1793 int
1794 proc_task_role_to_darwin_role(int task_role)
1795 {
1796 switch (task_role) {
1797 case TASK_FOREGROUND_APPLICATION:
1798 return PRIO_DARWIN_ROLE_UI_FOCAL;
1799 case TASK_BACKGROUND_APPLICATION:
1800 return PRIO_DARWIN_ROLE_UI_NON_FOCAL;
1801 case TASK_NONUI_APPLICATION:
1802 return PRIO_DARWIN_ROLE_NON_UI;
1803 case TASK_DEFAULT_APPLICATION:
1804 return PRIO_DARWIN_ROLE_UI;
1805 case TASK_THROTTLE_APPLICATION:
1806 return PRIO_DARWIN_ROLE_TAL_LAUNCH;
1807 case TASK_DARWINBG_APPLICATION:
1808 return PRIO_DARWIN_ROLE_DARWIN_BG;
1809 case TASK_UNSPECIFIED:
1810 default:
1811 return PRIO_DARWIN_ROLE_DEFAULT;
1812 }
1813 }
1814
1815
1816 /* TODO: remove this variable when interactive daemon audit period is over */
1817 extern boolean_t ipc_importance_interactive_receiver;
1818
1819 /*
1820 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1821 *
1822 * TODO: Make this function more table-driven instead of ad-hoc
1823 */
1824 void
1825 proc_set_task_spawnpolicy(task_t task, int apptype, int qos_clamp, int role,
1826 ipc_port_t * portwatch_ports, int portwatch_count)
1827 {
1828 struct task_pend_token pend_token = {};
1829
1830 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1831 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
1832 task_pid(task), trequested_0(task), trequested_1(task),
1833 apptype, 0);
1834
1835 switch (apptype) {
1836 case TASK_APPTYPE_APP_TAL:
1837 case TASK_APPTYPE_APP_DEFAULT:
1838 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1839 task_importance_mark_donor(task, FALSE);
1840 task_importance_mark_live_donor(task, TRUE);
1841 task_importance_mark_receiver(task, FALSE);
1842 #if CONFIG_EMBEDDED
1843 task_importance_mark_denap_receiver(task, FALSE);
1844 #else
1845 /* Apps are de-nap recievers on desktop for suppression behaviors */
1846 task_importance_mark_denap_receiver(task, TRUE);
1847 #endif /* CONFIG_EMBEDDED */
1848 break;
1849
1850 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1851 task_importance_mark_donor(task, TRUE);
1852 task_importance_mark_live_donor(task, FALSE);
1853
1854 /*
1855 * A boot arg controls whether interactive daemons are importance receivers.
1856 * Normally, they are not. But for testing their behavior as an adaptive
1857 * daemon, the boot-arg can be set.
1858 *
1859 * TODO: remove this when the interactive daemon audit period is over.
1860 */
1861 task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
1862 task_importance_mark_denap_receiver(task, FALSE);
1863 break;
1864
1865 case TASK_APPTYPE_DAEMON_STANDARD:
1866 task_importance_mark_donor(task, TRUE);
1867 task_importance_mark_live_donor(task, FALSE);
1868 task_importance_mark_receiver(task, FALSE);
1869 task_importance_mark_denap_receiver(task, FALSE);
1870 break;
1871
1872 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1873 task_importance_mark_donor(task, FALSE);
1874 task_importance_mark_live_donor(task, FALSE);
1875 task_importance_mark_receiver(task, TRUE);
1876 task_importance_mark_denap_receiver(task, FALSE);
1877 break;
1878
1879 case TASK_APPTYPE_DAEMON_BACKGROUND:
1880 task_importance_mark_donor(task, FALSE);
1881 task_importance_mark_live_donor(task, FALSE);
1882 task_importance_mark_receiver(task, FALSE);
1883 task_importance_mark_denap_receiver(task, FALSE);
1884 break;
1885
1886 case TASK_APPTYPE_NONE:
1887 break;
1888 }
1889
1890 if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
1891 int portwatch_boosts = 0;
1892
1893 for (int i = 0; i < portwatch_count; i++) {
1894 ipc_port_t port = NULL;
1895
1896 if ((port = portwatch_ports[i]) != NULL) {
1897 int boost = 0;
1898 task_add_importance_watchport(task, port, &boost);
1899 portwatch_boosts += boost;
1900 }
1901 }
1902
1903 if (portwatch_boosts > 0) {
1904 task_importance_hold_internal_assertion(task, portwatch_boosts);
1905 }
1906 }
1907
1908 task_lock(task);
1909
1910 if (apptype == TASK_APPTYPE_APP_TAL) {
1911 /* TAL starts off enabled by default */
1912 task->requested_policy.trp_tal_enabled = 1;
1913 }
1914
1915 if (apptype != TASK_APPTYPE_NONE) {
1916 task->requested_policy.trp_apptype = apptype;
1917 }
1918
1919 #if CONFIG_EMBEDDED
1920 /* Remove this after launchd starts setting it properly */
1921 if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) {
1922 task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION;
1923 } else
1924 #endif
1925 if (role != TASK_UNSPECIFIED) {
1926 task->requested_policy.trp_role = role;
1927 }
1928
1929 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
1930 task->requested_policy.trp_qos_clamp = qos_clamp;
1931 }
1932
1933 task_policy_update_locked(task, &pend_token);
1934
1935 task_unlock(task);
1936
1937 /* Ensure the donor bit is updated to be in sync with the new live donor status */
1938 pend_token.tpt_update_live_donor = 1;
1939
1940 task_policy_update_complete_unlocked(task, &pend_token);
1941
1942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1943 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
1944 task_pid(task), trequested_0(task), trequested_1(task),
1945 task_is_importance_receiver(task), 0);
1946 }
1947
1948 /*
1949 * Inherit task role across exec
1950 */
1951 void
1952 proc_inherit_task_role(task_t new_task,
1953 task_t old_task)
1954 {
1955 int role;
1956
1957 /* inherit the role from old task to new task */
1958 role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
1959 proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role);
1960 }
1961
1962 extern void *initproc;
1963
1964 /*
1965 * Compute the default main thread qos for a task
1966 */
1967 int
1968 task_compute_main_thread_qos(task_t task)
1969 {
1970 int primordial_qos = THREAD_QOS_UNSPECIFIED;
1971
1972 int qos_clamp = task->requested_policy.trp_qos_clamp;
1973
1974 switch (task->requested_policy.trp_apptype) {
1975 case TASK_APPTYPE_APP_TAL:
1976 case TASK_APPTYPE_APP_DEFAULT:
1977 primordial_qos = THREAD_QOS_USER_INTERACTIVE;
1978 break;
1979
1980 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1981 case TASK_APPTYPE_DAEMON_STANDARD:
1982 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1983 primordial_qos = THREAD_QOS_LEGACY;
1984 break;
1985
1986 case TASK_APPTYPE_DAEMON_BACKGROUND:
1987 primordial_qos = THREAD_QOS_BACKGROUND;
1988 break;
1989 }
1990
1991 if (task->bsd_info == initproc) {
1992 /* PID 1 gets a special case */
1993 primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED);
1994 }
1995
1996 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
1997 if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
1998 primordial_qos = MIN(qos_clamp, primordial_qos);
1999 } else {
2000 primordial_qos = qos_clamp;
2001 }
2002 }
2003
2004 return primordial_qos;
2005 }
2006
2007
2008 /* for process_policy to check before attempting to set */
2009 boolean_t
2010 proc_task_is_tal(task_t task)
2011 {
2012 return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
2013 }
2014
2015 int
2016 task_get_apptype(task_t task)
2017 {
2018 return task->requested_policy.trp_apptype;
2019 }
2020
2021 boolean_t
2022 task_is_daemon(task_t task)
2023 {
2024 switch (task->requested_policy.trp_apptype) {
2025 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2026 case TASK_APPTYPE_DAEMON_STANDARD:
2027 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2028 case TASK_APPTYPE_DAEMON_BACKGROUND:
2029 return TRUE;
2030 default:
2031 return FALSE;
2032 }
2033 }
2034
2035 boolean_t
2036 task_is_app(task_t task)
2037 {
2038 switch (task->requested_policy.trp_apptype) {
2039 case TASK_APPTYPE_APP_DEFAULT:
2040 case TASK_APPTYPE_APP_TAL:
2041 return TRUE;
2042 default:
2043 return FALSE;
2044 }
2045 }
2046
2047 /* for telemetry */
2048 integer_t
2049 task_grab_latency_qos(task_t task)
2050 {
2051 return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
2052 }
2053
2054 /* update the darwin background action state in the flags field for libproc */
2055 int
2056 proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
2057 {
2058 if (task->requested_policy.trp_ext_darwinbg)
2059 *flagsp |= PROC_FLAG_EXT_DARWINBG;
2060
2061 if (task->requested_policy.trp_int_darwinbg)
2062 *flagsp |= PROC_FLAG_DARWINBG;
2063
2064 #if CONFIG_EMBEDDED
2065 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND)
2066 *flagsp |= PROC_FLAG_IOS_APPLEDAEMON;
2067
2068 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE)
2069 *flagsp |= PROC_FLAG_IOS_IMPPROMOTION;
2070 #endif /* CONFIG_EMBEDDED */
2071
2072 if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
2073 task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL)
2074 *flagsp |= PROC_FLAG_APPLICATION;
2075
2076 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE)
2077 *flagsp |= PROC_FLAG_ADAPTIVE;
2078
2079 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
2080 task->requested_policy.trp_boosted == 1)
2081 *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
2082
2083 if (task_is_importance_donor(task))
2084 *flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
2085
2086 if (task->effective_policy.tep_sup_active)
2087 *flagsp |= PROC_FLAG_SUPPRESSED;
2088
2089 return(0);
2090 }
2091
2092 /*
2093 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2094 * The current scheme packs as much data into a single tracepoint as it can.
2095 *
2096 * Each task/thread requested/effective structure is 64 bits in size. Any
2097 * given tracepoint will emit either requested or effective data, but not both.
2098 *
2099 * A tracepoint may emit any of task, thread, or task & thread data.
2100 *
2101 * The type of data emitted varies with pointer size. Where possible, both
2102 * task and thread data are emitted. In LP32 systems, the first and second
2103 * halves of either the task or thread data is emitted.
2104 *
2105 * The code uses uintptr_t array indexes instead of high/low to avoid
2106 * confusion WRT big vs little endian.
2107 *
2108 * The truth table for the tracepoint data functions is below, and has the
2109 * following invariants:
2110 *
2111 * 1) task and thread are uintptr_t*
2112 * 2) task may never be NULL
2113 *
2114 *
2115 * LP32 LP64
2116 * trequested_0(task, NULL) task[0] task[0]
2117 * trequested_1(task, NULL) task[1] NULL
2118 * trequested_0(task, thread) thread[0] task[0]
2119 * trequested_1(task, thread) thread[1] thread[0]
2120 *
2121 * Basically, you get a full task or thread on LP32, and both on LP64.
2122 *
2123 * The uintptr_t munging here is squicky enough to deserve a comment.
2124 *
2125 * The variables we are accessing are laid out in memory like this:
2126 *
2127 * [ LP64 uintptr_t 0 ]
2128 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2129 *
2130 * 1 2 3 4 5 6 7 8
2131 *
2132 */
2133
2134 static uintptr_t
2135 trequested_0(task_t task)
2136 {
2137 static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
2138
2139 uintptr_t* raw = (uintptr_t*)&task->requested_policy;
2140
2141 return raw[0];
2142 }
2143
2144 static uintptr_t
2145 trequested_1(task_t task)
2146 {
2147 #if defined __LP64__
2148 (void)task;
2149 return 0;
2150 #else
2151 uintptr_t* raw = (uintptr_t*)(&task->requested_policy);
2152 return raw[1];
2153 #endif
2154 }
2155
2156 static uintptr_t
2157 teffective_0(task_t task)
2158 {
2159 uintptr_t* raw = (uintptr_t*)&task->effective_policy;
2160
2161 return raw[0];
2162 }
2163
2164 static uintptr_t
2165 teffective_1(task_t task)
2166 {
2167 #if defined __LP64__
2168 (void)task;
2169 return 0;
2170 #else
2171 uintptr_t* raw = (uintptr_t*)(&task->effective_policy);
2172 return raw[1];
2173 #endif
2174 }
2175
2176 /* dump pending for tracepoint */
2177 uint32_t tpending(task_pend_token_t pend_token) { return *(uint32_t*)(void*)(pend_token); }
2178
2179 uint64_t
2180 task_requested_bitfield(task_t task)
2181 {
2182 uint64_t bits = 0;
2183 struct task_requested_policy requested = task->requested_policy;
2184
2185 bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
2186 bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
2187 bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
2188 bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
2189 bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
2190 bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
2191 bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
2192 bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0);
2193
2194 bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0);
2195 bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
2196 bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
2197 bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0);
2198
2199 bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
2200 bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
2201 bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
2202 bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
2203 bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
2204 bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
2205 bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
2206
2207 bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
2208 bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
2209 bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
2210 bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
2211 bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
2212 bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
2213
2214 return bits;
2215 }
2216
2217 uint64_t
2218 task_effective_bitfield(task_t task)
2219 {
2220 uint64_t bits = 0;
2221 struct task_effective_policy effective = task->effective_policy;
2222
2223 bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
2224 bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0);
2225 bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0);
2226 bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
2227 bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0);
2228 bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
2229 bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
2230 bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
2231 bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
2232
2233 bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
2234 bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
2235 bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
2236 bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
2237 bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0);
2238 bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
2239 bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
2240 bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
2241 bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
2242
2243 return bits;
2244 }
2245
2246
2247 /*
2248 * Resource usage and CPU related routines
2249 */
2250
2251 int
2252 proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
2253 {
2254
2255 int error = 0;
2256 int scope;
2257
2258 task_lock(task);
2259
2260
2261 error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
2262 task_unlock(task);
2263
2264 /*
2265 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2266 */
2267 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2268 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
2269 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2270 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
2271 } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
2272 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2273 }
2274
2275 return(error);
2276 }
2277
2278 /*
2279 * Configure the default CPU usage monitor parameters.
2280 *
2281 * For tasks which have this mechanism activated: if any thread in the
2282 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2283 */
2284 void
2285 proc_init_cpumon_params(void)
2286 {
2287 /*
2288 * The max CPU percentage can be configured via the boot-args and
2289 * a key in the device tree. The boot-args are honored first, then the
2290 * device tree.
2291 */
2292 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
2293 sizeof (proc_max_cpumon_percentage)))
2294 {
2295 uint64_t max_percentage = 0ULL;
2296
2297 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage,
2298 sizeof(max_percentage)))
2299 {
2300 max_percentage = DEFAULT_CPUMON_PERCENTAGE;
2301 }
2302
2303 assert(max_percentage <= UINT8_MAX);
2304 proc_max_cpumon_percentage = (uint8_t) max_percentage;
2305 }
2306
2307 if (proc_max_cpumon_percentage > 100) {
2308 proc_max_cpumon_percentage = 100;
2309 }
2310
2311 /*
2312 * The interval should be specified in seconds.
2313 *
2314 * Like the max CPU percentage, the max CPU interval can be configured
2315 * via boot-args and the device tree.
2316 */
2317 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
2318 sizeof (proc_max_cpumon_interval)))
2319 {
2320 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval,
2321 sizeof(proc_max_cpumon_interval)))
2322 {
2323 proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
2324 }
2325 }
2326
2327 proc_max_cpumon_interval *= NSEC_PER_SEC;
2328
2329 /* TEMPORARY boot arg to control App suppression */
2330 PE_parse_boot_argn("task_policy_suppression_flags",
2331 &task_policy_suppression_flags,
2332 sizeof(task_policy_suppression_flags));
2333
2334 /* adjust suppression disk policy if called for in boot arg */
2335 if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) {
2336 proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2;
2337 }
2338 }
2339
2340 /*
2341 * Currently supported configurations for CPU limits.
2342 *
2343 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2344 * -------------------------------------+--------------------------+------------------------------
2345 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2346 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2347 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2348 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2349 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2350 *
2351 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2352 * after the specified amount of wallclock time has elapsed.
2353 *
2354 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2355 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2356 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2357 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2358 *
2359 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2360 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2361 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2362 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2363 *
2364 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2365 * CPU limit. All other types of notifications force task-wide scope for the limit.
2366 */
2367 int
2368 proc_set_task_ruse_cpu(task_t task, uint32_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
2369 int cpumon_entitled)
2370 {
2371 int error = 0;
2372 int scope;
2373
2374 /*
2375 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2376 */
2377 switch (policy) {
2378 // If no policy is explicitly given, the default is to throttle.
2379 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
2380 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
2381 if (deadline != 0)
2382 return (ENOTSUP);
2383 scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2384 break;
2385 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
2386 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
2387 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
2388 if (percentage != 0)
2389 return (ENOTSUP);
2390 scope = TASK_RUSECPU_FLAGS_DEADLINE;
2391 break;
2392 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
2393 if (deadline != 0)
2394 return (ENOTSUP);
2395 scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2396 #ifdef CONFIG_NOMONITORS
2397 return (error);
2398 #endif /* CONFIG_NOMONITORS */
2399 break;
2400 default:
2401 return (EINVAL);
2402 }
2403
2404 task_lock(task);
2405 if (task != current_task()) {
2406 task->policy_ru_cpu_ext = policy;
2407 } else {
2408 task->policy_ru_cpu = policy;
2409 }
2410 error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
2411 task_unlock(task);
2412 return(error);
2413 }
2414
2415 /* TODO: get rid of these */
2416 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2417 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2418 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2419 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2420 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2421 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2422
2423 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2424
2425 int
2426 proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
2427 {
2428 int error = 0;
2429 int action;
2430 void * bsdinfo = NULL;
2431
2432 task_lock(task);
2433 if (task != current_task()) {
2434 task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2435 } else {
2436 task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2437 }
2438
2439 error = task_clear_cpuusage_locked(task, cpumon_entitled);
2440 if (error != 0)
2441 goto out;
2442
2443 action = task->applied_ru_cpu;
2444 if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2445 /* reset action */
2446 task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2447 }
2448 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2449 bsdinfo = task->bsd_info;
2450 task_unlock(task);
2451 proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2452 goto out1;
2453 }
2454
2455 out:
2456 task_unlock(task);
2457 out1:
2458 return(error);
2459
2460 }
2461
2462 /* used to apply resource limit related actions */
2463 static int
2464 task_apply_resource_actions(task_t task, int type)
2465 {
2466 int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2467 void * bsdinfo = NULL;
2468
2469 switch (type) {
2470 case TASK_POLICY_CPU_RESOURCE_USAGE:
2471 break;
2472 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
2473 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
2474 case TASK_POLICY_DISK_RESOURCE_USAGE:
2475 case TASK_POLICY_NETWORK_RESOURCE_USAGE:
2476 case TASK_POLICY_POWER_RESOURCE_USAGE:
2477 return(0);
2478
2479 default:
2480 return(1);
2481 };
2482
2483 /* only cpu actions for now */
2484 task_lock(task);
2485
2486 if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2487 /* apply action */
2488 task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
2489 action = task->applied_ru_cpu_ext;
2490 } else {
2491 action = task->applied_ru_cpu_ext;
2492 }
2493
2494 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2495 bsdinfo = task->bsd_info;
2496 task_unlock(task);
2497 proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2498 } else
2499 task_unlock(task);
2500
2501 return(0);
2502 }
2503
2504 /*
2505 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2506 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2507 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2508 * to the caller, and prefer that, but there's no need for that at the moment.
2509 */
2510 static int
2511 task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
2512 {
2513 *percentagep = 0;
2514 *intervalp = 0;
2515 *deadlinep = 0;
2516
2517 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
2518 *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2519 *percentagep = task->rusage_cpu_perthr_percentage;
2520 *intervalp = task->rusage_cpu_perthr_interval;
2521 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
2522 *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2523 *percentagep = task->rusage_cpu_percentage;
2524 *intervalp = task->rusage_cpu_interval;
2525 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
2526 *scope = TASK_RUSECPU_FLAGS_DEADLINE;
2527 *deadlinep = task->rusage_cpu_deadline;
2528 } else {
2529 *scope = 0;
2530 }
2531
2532 return(0);
2533 }
2534
2535 /*
2536 * Suspend the CPU usage monitor for the task. Return value indicates
2537 * if the mechanism was actually enabled.
2538 */
2539 int
2540 task_suspend_cpumon(task_t task)
2541 {
2542 thread_t thread;
2543
2544 task_lock_assert_owned(task);
2545
2546 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
2547 return KERN_INVALID_ARGUMENT;
2548 }
2549
2550 #if CONFIG_TELEMETRY
2551 /*
2552 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2553 * monitor's warning zone.
2554 */
2555 telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
2556 #endif
2557
2558 /*
2559 * Suspend monitoring for the task, and propagate that change to each thread.
2560 */
2561 task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
2562 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2563 act_set_astledger(thread);
2564 }
2565
2566 return KERN_SUCCESS;
2567 }
2568
2569 /*
2570 * Remove all traces of the CPU monitor.
2571 */
2572 int
2573 task_disable_cpumon(task_t task)
2574 {
2575 int kret;
2576
2577 task_lock_assert_owned(task);
2578
2579 kret = task_suspend_cpumon(task);
2580 if (kret) return kret;
2581
2582 /* Once we clear these values, the monitor can't be resumed */
2583 task->rusage_cpu_perthr_percentage = 0;
2584 task->rusage_cpu_perthr_interval = 0;
2585
2586 return (KERN_SUCCESS);
2587 }
2588
2589
2590 static int
2591 task_enable_cpumon_locked(task_t task)
2592 {
2593 thread_t thread;
2594 task_lock_assert_owned(task);
2595
2596 if (task->rusage_cpu_perthr_percentage == 0 ||
2597 task->rusage_cpu_perthr_interval == 0) {
2598 return KERN_INVALID_ARGUMENT;
2599 }
2600
2601 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2602 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2603 act_set_astledger(thread);
2604 }
2605
2606 return KERN_SUCCESS;
2607 }
2608
2609 int
2610 task_resume_cpumon(task_t task)
2611 {
2612 kern_return_t kret;
2613
2614 if (!task) {
2615 return EINVAL;
2616 }
2617
2618 task_lock(task);
2619 kret = task_enable_cpumon_locked(task);
2620 task_unlock(task);
2621
2622 return kret;
2623 }
2624
2625
2626 /* duplicate values from bsd/sys/process_policy.h */
2627 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2628 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2629
2630 static int
2631 task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
2632 {
2633 uint64_t abstime = 0;
2634 uint64_t limittime = 0;
2635
2636 lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
2637
2638 /* By default, refill once per second */
2639 if (interval == 0)
2640 interval = NSEC_PER_SEC;
2641
2642 if (percentage != 0) {
2643 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2644 boolean_t warn = FALSE;
2645
2646 /*
2647 * A per-thread CPU limit on a task generates an exception
2648 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2649 * exceeds the limit.
2650 */
2651
2652 if (percentage == PROC_POLICY_CPUMON_DISABLE) {
2653 if (cpumon_entitled) {
2654 /* 25095698 - task_disable_cpumon() should be reliable */
2655 task_disable_cpumon(task);
2656 return 0;
2657 }
2658
2659 /*
2660 * This task wishes to disable the CPU usage monitor, but it's
2661 * missing the required entitlement:
2662 * com.apple.private.kernel.override-cpumon
2663 *
2664 * Instead, treat this as a request to reset its params
2665 * back to the defaults.
2666 */
2667 warn = TRUE;
2668 percentage = PROC_POLICY_CPUMON_DEFAULTS;
2669 }
2670
2671 if (percentage == PROC_POLICY_CPUMON_DEFAULTS) {
2672 percentage = proc_max_cpumon_percentage;
2673 interval = proc_max_cpumon_interval;
2674 }
2675
2676 if (percentage > 100) {
2677 percentage = 100;
2678 }
2679
2680 /*
2681 * Passing in an interval of -1 means either:
2682 * - Leave the interval as-is, if there's already a per-thread
2683 * limit configured
2684 * - Use the system default.
2685 */
2686 if (interval == -1ULL) {
2687 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2688 interval = task->rusage_cpu_perthr_interval;
2689 } else {
2690 interval = proc_max_cpumon_interval;
2691 }
2692 }
2693
2694 /*
2695 * Enforce global caps on CPU usage monitor here if the process is not
2696 * entitled to escape the global caps.
2697 */
2698 if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
2699 warn = TRUE;
2700 percentage = proc_max_cpumon_percentage;
2701 }
2702
2703 if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
2704 warn = TRUE;
2705 interval = proc_max_cpumon_interval;
2706 }
2707
2708 if (warn) {
2709 int pid = 0;
2710 const char *procname = "unknown";
2711
2712 #ifdef MACH_BSD
2713 pid = proc_selfpid();
2714 if (current_task()->bsd_info != NULL) {
2715 procname = proc_name_address(current_task()->bsd_info);
2716 }
2717 #endif
2718
2719 printf("process %s[%d] denied attempt to escape CPU monitor"
2720 " (missing required entitlement).\n", procname, pid);
2721 }
2722
2723 /* configure the limit values */
2724 task->rusage_cpu_perthr_percentage = percentage;
2725 task->rusage_cpu_perthr_interval = interval;
2726
2727 /* and enable the CPU monitor */
2728 (void)task_enable_cpumon_locked(task);
2729 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2730 /*
2731 * Currently, a proc-wide CPU limit always blocks if the limit is
2732 * exceeded (LEDGER_ACTION_BLOCK).
2733 */
2734 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
2735 task->rusage_cpu_percentage = percentage;
2736 task->rusage_cpu_interval = interval;
2737
2738 limittime = (interval * percentage) / 100;
2739 nanoseconds_to_absolutetime(limittime, &abstime);
2740
2741 ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
2742 ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
2743 ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
2744 }
2745 }
2746
2747 if (deadline != 0) {
2748 assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
2749
2750 /* if already in use, cancel and wait for it to cleanout */
2751 if (task->rusage_cpu_callt != NULL) {
2752 task_unlock(task);
2753 thread_call_cancel_wait(task->rusage_cpu_callt);
2754 task_lock(task);
2755 }
2756 if (task->rusage_cpu_callt == NULL) {
2757 task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
2758 }
2759 /* setup callout */
2760 if (task->rusage_cpu_callt != 0) {
2761 uint64_t save_abstime = 0;
2762
2763 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
2764 task->rusage_cpu_deadline = deadline;
2765
2766 nanoseconds_to_absolutetime(deadline, &abstime);
2767 save_abstime = abstime;
2768 clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
2769 thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
2770 }
2771 }
2772
2773 return(0);
2774 }
2775
2776 int
2777 task_clear_cpuusage(task_t task, int cpumon_entitled)
2778 {
2779 int retval = 0;
2780
2781 task_lock(task);
2782 retval = task_clear_cpuusage_locked(task, cpumon_entitled);
2783 task_unlock(task);
2784
2785 return(retval);
2786 }
2787
2788 static int
2789 task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
2790 {
2791 thread_call_t savecallt;
2792
2793 /* cancel percentage handling if set */
2794 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2795 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
2796 ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
2797 task->rusage_cpu_percentage = 0;
2798 task->rusage_cpu_interval = 0;
2799 }
2800
2801 /*
2802 * Disable the CPU usage monitor.
2803 */
2804 if (cpumon_entitled) {
2805 task_disable_cpumon(task);
2806 }
2807
2808 /* cancel deadline handling if set */
2809 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
2810 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
2811 if (task->rusage_cpu_callt != 0) {
2812 savecallt = task->rusage_cpu_callt;
2813 task->rusage_cpu_callt = NULL;
2814 task->rusage_cpu_deadline = 0;
2815 task_unlock(task);
2816 thread_call_cancel_wait(savecallt);
2817 thread_call_free(savecallt);
2818 task_lock(task);
2819 }
2820 }
2821 return(0);
2822 }
2823
2824 /* called by ledger unit to enforce action due to resource usage criteria being met */
2825 static void
2826 task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
2827 {
2828 task_t task = (task_t)param0;
2829 (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
2830 return;
2831 }
2832
2833
2834 /*
2835 * Routines for taskwatch and pidbind
2836 */
2837
2838 #if CONFIG_EMBEDDED
2839
2840 lck_mtx_t task_watch_mtx;
2841
2842 void
2843 task_watch_init(void)
2844 {
2845 lck_mtx_init(&task_watch_mtx, &task_lck_grp, &task_lck_attr);
2846 }
2847
2848 static void
2849 task_watch_lock(void)
2850 {
2851 lck_mtx_lock(&task_watch_mtx);
2852 }
2853
2854 static void
2855 task_watch_unlock(void)
2856 {
2857 lck_mtx_unlock(&task_watch_mtx);
2858 }
2859
2860 static void
2861 add_taskwatch_locked(task_t task, task_watch_t * twp)
2862 {
2863 queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links);
2864 task->num_taskwatchers++;
2865
2866 }
2867
2868 static void
2869 remove_taskwatch_locked(task_t task, task_watch_t * twp)
2870 {
2871 queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links);
2872 task->num_taskwatchers--;
2873 }
2874
2875
2876 int
2877 proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind)
2878 {
2879 thread_t target_thread = NULL;
2880 int ret = 0, setbg = 0;
2881 task_watch_t *twp = NULL;
2882 task_t task = TASK_NULL;
2883
2884 target_thread = task_findtid(curtask, tid);
2885 if (target_thread == NULL)
2886 return ESRCH;
2887 /* holds thread reference */
2888
2889 if (bind != 0) {
2890 /* task is still active ? */
2891 task_lock(target_task);
2892 if (target_task->active == 0) {
2893 task_unlock(target_task);
2894 ret = ESRCH;
2895 goto out;
2896 }
2897 task_unlock(target_task);
2898
2899 twp = (task_watch_t *)kalloc(sizeof(task_watch_t));
2900 if (twp == NULL) {
2901 task_watch_unlock();
2902 ret = ENOMEM;
2903 goto out;
2904 }
2905
2906 bzero(twp, sizeof(task_watch_t));
2907
2908 task_watch_lock();
2909
2910 if (target_thread->taskwatch != NULL){
2911 /* already bound to another task */
2912 task_watch_unlock();
2913
2914 kfree(twp, sizeof(task_watch_t));
2915 ret = EBUSY;
2916 goto out;
2917 }
2918
2919 task_reference(target_task);
2920
2921 setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG);
2922
2923 twp->tw_task = target_task; /* holds the task reference */
2924 twp->tw_thread = target_thread; /* holds the thread reference */
2925 twp->tw_state = setbg;
2926 twp->tw_importance = target_thread->importance;
2927
2928 add_taskwatch_locked(target_task, twp);
2929
2930 target_thread->taskwatch = twp;
2931
2932 task_watch_unlock();
2933
2934 if (setbg)
2935 set_thread_appbg(target_thread, setbg, INT_MIN);
2936
2937 /* retain the thread reference as it is in twp */
2938 target_thread = NULL;
2939 } else {
2940 /* unbind */
2941 task_watch_lock();
2942 if ((twp = target_thread->taskwatch) != NULL) {
2943 task = twp->tw_task;
2944 target_thread->taskwatch = NULL;
2945 remove_taskwatch_locked(task, twp);
2946
2947 task_watch_unlock();
2948
2949 task_deallocate(task); /* drop task ref in twp */
2950 set_thread_appbg(target_thread, 0, twp->tw_importance);
2951 thread_deallocate(target_thread); /* drop thread ref in twp */
2952 kfree(twp, sizeof(task_watch_t));
2953 } else {
2954 task_watch_unlock();
2955 ret = 0; /* return success if it not alredy bound */
2956 goto out;
2957 }
2958 }
2959 out:
2960 thread_deallocate(target_thread); /* drop thread ref acquired in this routine */
2961 return(ret);
2962 }
2963
2964 static void
2965 set_thread_appbg(thread_t thread, int setbg, __unused int importance)
2966 {
2967 int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE);
2968
2969 proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable);
2970 }
2971
2972 static void
2973 apply_appstate_watchers(task_t task)
2974 {
2975 int numwatchers = 0, i, j, setbg;
2976 thread_watchlist_t * threadlist;
2977 task_watch_t * twp;
2978
2979 retry:
2980 /* if no watchers on the list return */
2981 if ((numwatchers = task->num_taskwatchers) == 0)
2982 return;
2983
2984 threadlist = (thread_watchlist_t *)kalloc(numwatchers*sizeof(thread_watchlist_t));
2985 if (threadlist == NULL)
2986 return;
2987
2988 bzero(threadlist, numwatchers*sizeof(thread_watchlist_t));
2989
2990 task_watch_lock();
2991 /*serialize application of app state changes */
2992
2993 if (task->watchapplying != 0) {
2994 lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT);
2995 task_watch_unlock();
2996 kfree(threadlist, numwatchers*sizeof(thread_watchlist_t));
2997 goto retry;
2998 }
2999
3000 if (numwatchers != task->num_taskwatchers) {
3001 task_watch_unlock();
3002 kfree(threadlist, numwatchers*sizeof(thread_watchlist_t));
3003 goto retry;
3004 }
3005
3006 setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG);
3007
3008 task->watchapplying = 1;
3009 i = 0;
3010 queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) {
3011
3012 threadlist[i].thread = twp->tw_thread;
3013 thread_reference(threadlist[i].thread);
3014 if (setbg != 0) {
3015 twp->tw_importance = twp->tw_thread->importance;
3016 threadlist[i].importance = INT_MIN;
3017 } else
3018 threadlist[i].importance = twp->tw_importance;
3019 i++;
3020 if (i > numwatchers)
3021 break;
3022 }
3023
3024 task_watch_unlock();
3025
3026 for (j = 0; j< i; j++) {
3027 set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance);
3028 thread_deallocate(threadlist[j].thread);
3029 }
3030 kfree(threadlist, numwatchers*sizeof(thread_watchlist_t));
3031
3032
3033 task_watch_lock();
3034 task->watchapplying = 0;
3035 thread_wakeup_one(&task->watchapplying);
3036 task_watch_unlock();
3037 }
3038
3039 void
3040 thead_remove_taskwatch(thread_t thread)
3041 {
3042 task_watch_t * twp;
3043 int importance = 0;
3044
3045 task_watch_lock();
3046 if ((twp = thread->taskwatch) != NULL) {
3047 thread->taskwatch = NULL;
3048 remove_taskwatch_locked(twp->tw_task, twp);
3049 }
3050 task_watch_unlock();
3051 if (twp != NULL) {
3052 thread_deallocate(twp->tw_thread);
3053 task_deallocate(twp->tw_task);
3054 importance = twp->tw_importance;
3055 kfree(twp, sizeof(task_watch_t));
3056 /* remove the thread and networkbg */
3057 set_thread_appbg(thread, 0, importance);
3058 }
3059 }
3060
3061 void
3062 task_removewatchers(task_t task)
3063 {
3064 int numwatchers = 0, i, j;
3065 task_watch_t ** twplist = NULL;
3066 task_watch_t * twp = NULL;
3067
3068 retry:
3069 if ((numwatchers = task->num_taskwatchers) == 0)
3070 return;
3071
3072 twplist = (task_watch_t **)kalloc(numwatchers*sizeof(task_watch_t *));
3073 if (twplist == NULL)
3074 return;
3075
3076 bzero(twplist, numwatchers*sizeof(task_watch_t *));
3077
3078 task_watch_lock();
3079 if (task->num_taskwatchers == 0) {
3080 task_watch_unlock();
3081 goto out;
3082 }
3083
3084 if (numwatchers != task->num_taskwatchers) {
3085 task_watch_unlock();
3086 kfree(twplist, numwatchers*sizeof(task_watch_t *));
3087 numwatchers = 0;
3088 goto retry;
3089 }
3090
3091 i = 0;
3092 while((twp = (task_watch_t *)dequeue_head(&task->task_watchers)) != NULL)
3093 {
3094 twplist[i] = twp;
3095 task->num_taskwatchers--;
3096
3097 /*
3098 * Since the linkage is removed and thead state cleanup is already set up,
3099 * remove the refernce from the thread.
3100 */
3101 twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */
3102 i++;
3103 if ((task->num_taskwatchers == 0) || (i > numwatchers))
3104 break;
3105 }
3106
3107 task_watch_unlock();
3108
3109 for (j = 0; j< i; j++) {
3110
3111 twp = twplist[j];
3112 /* remove thread and network bg */
3113 set_thread_appbg(twp->tw_thread, 0, twp->tw_importance);
3114 thread_deallocate(twp->tw_thread);
3115 task_deallocate(twp->tw_task);
3116 kfree(twp, sizeof(task_watch_t));
3117 }
3118
3119 out:
3120 kfree(twplist, numwatchers*sizeof(task_watch_t *));
3121
3122 }
3123 #endif /* CONFIG_EMBEDDED */
3124
3125 /*
3126 * Routines for importance donation/inheritance/boosting
3127 */
3128
3129 static void
3130 task_importance_update_live_donor(task_t target_task)
3131 {
3132 #if IMPORTANCE_INHERITANCE
3133
3134 ipc_importance_task_t task_imp;
3135
3136 task_imp = ipc_importance_for_task(target_task, FALSE);
3137 if (IIT_NULL != task_imp) {
3138 ipc_importance_task_update_live_donor(task_imp);
3139 ipc_importance_task_release(task_imp);
3140 }
3141 #endif /* IMPORTANCE_INHERITANCE */
3142 }
3143
3144 void
3145 task_importance_mark_donor(task_t task, boolean_t donating)
3146 {
3147 #if IMPORTANCE_INHERITANCE
3148 ipc_importance_task_t task_imp;
3149
3150 task_imp = ipc_importance_for_task(task, FALSE);
3151 if (IIT_NULL != task_imp) {
3152 ipc_importance_task_mark_donor(task_imp, donating);
3153 ipc_importance_task_release(task_imp);
3154 }
3155 #endif /* IMPORTANCE_INHERITANCE */
3156 }
3157
3158 void
3159 task_importance_mark_live_donor(task_t task, boolean_t live_donating)
3160 {
3161 #if IMPORTANCE_INHERITANCE
3162 ipc_importance_task_t task_imp;
3163
3164 task_imp = ipc_importance_for_task(task, FALSE);
3165 if (IIT_NULL != task_imp) {
3166 ipc_importance_task_mark_live_donor(task_imp, live_donating);
3167 ipc_importance_task_release(task_imp);
3168 }
3169 #endif /* IMPORTANCE_INHERITANCE */
3170 }
3171
3172 void
3173 task_importance_mark_receiver(task_t task, boolean_t receiving)
3174 {
3175 #if IMPORTANCE_INHERITANCE
3176 ipc_importance_task_t task_imp;
3177
3178 task_imp = ipc_importance_for_task(task, FALSE);
3179 if (IIT_NULL != task_imp) {
3180 ipc_importance_task_mark_receiver(task_imp, receiving);
3181 ipc_importance_task_release(task_imp);
3182 }
3183 #endif /* IMPORTANCE_INHERITANCE */
3184 }
3185
3186 void
3187 task_importance_mark_denap_receiver(task_t task, boolean_t denap)
3188 {
3189 #if IMPORTANCE_INHERITANCE
3190 ipc_importance_task_t task_imp;
3191
3192 task_imp = ipc_importance_for_task(task, FALSE);
3193 if (IIT_NULL != task_imp) {
3194 ipc_importance_task_mark_denap_receiver(task_imp, denap);
3195 ipc_importance_task_release(task_imp);
3196 }
3197 #endif /* IMPORTANCE_INHERITANCE */
3198 }
3199
3200 void
3201 task_importance_reset(__imp_only task_t task)
3202 {
3203 #if IMPORTANCE_INHERITANCE
3204 ipc_importance_task_t task_imp;
3205
3206 /* TODO: Lower importance downstream before disconnect */
3207 task_imp = task->task_imp_base;
3208 ipc_importance_reset(task_imp, FALSE);
3209 task_importance_update_live_donor(task);
3210 #endif /* IMPORTANCE_INHERITANCE */
3211 }
3212
3213 void
3214 task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task)
3215 {
3216 #if IMPORTANCE_INHERITANCE
3217 ipc_importance_task_t new_task_imp = IIT_NULL;
3218
3219 new_task->task_imp_base = NULL;
3220 if (!parent_task) return;
3221
3222 if (task_is_marked_importance_donor(parent_task)) {
3223 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3224 assert(IIT_NULL != new_task_imp);
3225 ipc_importance_task_mark_donor(new_task_imp, TRUE);
3226 }
3227 if (task_is_marked_live_importance_donor(parent_task)) {
3228 if (IIT_NULL == new_task_imp)
3229 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3230 assert(IIT_NULL != new_task_imp);
3231 ipc_importance_task_mark_live_donor(new_task_imp, TRUE);
3232 }
3233 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3234 if (task_is_exec_copy(new_task) &&
3235 task_is_marked_importance_receiver(parent_task)) {
3236 if (IIT_NULL == new_task_imp)
3237 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3238 assert(IIT_NULL != new_task_imp);
3239 ipc_importance_task_mark_receiver(new_task_imp, TRUE);
3240 }
3241 if (task_is_marked_importance_denap_receiver(parent_task)) {
3242 if (IIT_NULL == new_task_imp)
3243 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3244 assert(IIT_NULL != new_task_imp);
3245 ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
3246 }
3247 if (IIT_NULL != new_task_imp) {
3248 assert(new_task->task_imp_base == new_task_imp);
3249 ipc_importance_task_release(new_task_imp);
3250 }
3251 #endif /* IMPORTANCE_INHERITANCE */
3252 }
3253
3254 #if IMPORTANCE_INHERITANCE
3255 /*
3256 * Sets the task boost bit to the provided value. Does NOT run the update function.
3257 *
3258 * Task lock must be held.
3259 */
3260 static void
3261 task_set_boost_locked(task_t task, boolean_t boost_active)
3262 {
3263 #if IMPORTANCE_TRACE
3264 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
3265 proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0);
3266 #endif /* IMPORTANCE_TRACE */
3267
3268 task->requested_policy.trp_boosted = boost_active;
3269
3270 #if IMPORTANCE_TRACE
3271 if (boost_active == TRUE){
3272 DTRACE_BOOST2(boost, task_t, task, int, task_pid(task));
3273 } else {
3274 DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task));
3275 }
3276 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
3277 proc_selfpid(), task_pid(task),
3278 trequested_0(task), trequested_1(task), 0);
3279 #endif /* IMPORTANCE_TRACE */
3280 }
3281
3282 /*
3283 * Sets the task boost bit to the provided value and applies the update.
3284 *
3285 * Task lock must be held. Must call update complete after unlocking the task.
3286 */
3287 void
3288 task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
3289 {
3290 task_set_boost_locked(task, boost_active);
3291
3292 task_policy_update_locked(task, pend_token);
3293 }
3294
3295 /*
3296 * Check if this task should donate importance.
3297 *
3298 * May be called without taking the task lock. In that case, donor status can change
3299 * so you must check only once for each donation event.
3300 */
3301 boolean_t
3302 task_is_importance_donor(task_t task)
3303 {
3304 if (task->task_imp_base == IIT_NULL)
3305 return FALSE;
3306 return ipc_importance_task_is_donor(task->task_imp_base);
3307 }
3308
3309 /*
3310 * Query the status of the task's donor mark.
3311 */
3312 boolean_t
3313 task_is_marked_importance_donor(task_t task)
3314 {
3315 if (task->task_imp_base == IIT_NULL)
3316 return FALSE;
3317 return ipc_importance_task_is_marked_donor(task->task_imp_base);
3318 }
3319
3320 /*
3321 * Query the status of the task's live donor and donor mark.
3322 */
3323 boolean_t
3324 task_is_marked_live_importance_donor(task_t task)
3325 {
3326 if (task->task_imp_base == IIT_NULL)
3327 return FALSE;
3328 return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
3329 }
3330
3331
3332 /*
3333 * This routine may be called without holding task lock
3334 * since the value of imp_receiver can never be unset.
3335 */
3336 boolean_t
3337 task_is_importance_receiver(task_t task)
3338 {
3339 if (task->task_imp_base == IIT_NULL)
3340 return FALSE;
3341 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3342 }
3343
3344 /*
3345 * Query the task's receiver mark.
3346 */
3347 boolean_t
3348 task_is_marked_importance_receiver(task_t task)
3349 {
3350 if (task->task_imp_base == IIT_NULL)
3351 return FALSE;
3352 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3353 }
3354
3355 /*
3356 * This routine may be called without holding task lock
3357 * since the value of de-nap receiver can never be unset.
3358 */
3359 boolean_t
3360 task_is_importance_denap_receiver(task_t task)
3361 {
3362 if (task->task_imp_base == IIT_NULL)
3363 return FALSE;
3364 return ipc_importance_task_is_denap_receiver(task->task_imp_base);
3365 }
3366
3367 /*
3368 * Query the task's de-nap receiver mark.
3369 */
3370 boolean_t
3371 task_is_marked_importance_denap_receiver(task_t task)
3372 {
3373 if (task->task_imp_base == IIT_NULL)
3374 return FALSE;
3375 return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
3376 }
3377
3378 /*
3379 * This routine may be called without holding task lock
3380 * since the value of imp_receiver can never be unset.
3381 */
3382 boolean_t
3383 task_is_importance_receiver_type(task_t task)
3384 {
3385 if (task->task_imp_base == IIT_NULL)
3386 return FALSE;
3387 return (task_is_importance_receiver(task) ||
3388 task_is_importance_denap_receiver(task));
3389 }
3390
3391 /*
3392 * External importance assertions are managed by the process in userspace
3393 * Internal importance assertions are the responsibility of the kernel
3394 * Assertions are changed from internal to external via task_importance_externalize_assertion
3395 */
3396
3397 int
3398 task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
3399 {
3400 ipc_importance_task_t task_imp;
3401 kern_return_t ret;
3402
3403 /* may be first time, so allow for possible importance setup */
3404 task_imp = ipc_importance_for_task(target_task, FALSE);
3405 if (IIT_NULL == task_imp) {
3406 return EOVERFLOW;
3407 }
3408 ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
3409 ipc_importance_task_release(task_imp);
3410
3411 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3412 }
3413
3414 int
3415 task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
3416 {
3417 ipc_importance_task_t task_imp;
3418 kern_return_t ret;
3419
3420 /* may be first time, so allow for possible importance setup */
3421 task_imp = ipc_importance_for_task(target_task, FALSE);
3422 if (IIT_NULL == task_imp) {
3423 return EOVERFLOW;
3424 }
3425 ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
3426 ipc_importance_task_release(task_imp);
3427
3428 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3429 }
3430
3431 int
3432 task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
3433 {
3434 ipc_importance_task_t task_imp;
3435 kern_return_t ret;
3436
3437 /* must already have set up an importance */
3438 task_imp = target_task->task_imp_base;
3439 if (IIT_NULL == task_imp) {
3440 return EOVERFLOW;
3441 }
3442 ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
3443 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3444 }
3445
3446 int
3447 task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
3448 {
3449 ipc_importance_task_t task_imp;
3450 kern_return_t ret;
3451
3452 /* must already have set up an importance */
3453 task_imp = target_task->task_imp_base;
3454 if (IIT_NULL == task_imp) {
3455 return EOVERFLOW;
3456 }
3457 ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
3458 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3459 }
3460
3461 int
3462 task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
3463 {
3464 ipc_importance_task_t task_imp;
3465 kern_return_t ret;
3466
3467 /* must already have set up an importance */
3468 task_imp = target_task->task_imp_base;
3469 if (IIT_NULL == task_imp) {
3470 return EOVERFLOW;
3471 }
3472 ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
3473 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3474 }
3475
3476 static void
3477 task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
3478 {
3479 int boost = 0;
3480
3481 __imptrace_only int released_pid = 0;
3482 __imptrace_only int pid = task_pid(task);
3483
3484 ipc_importance_task_t release_imp_task = IIT_NULL;
3485
3486 if (IP_VALID(port) != 0) {
3487 ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
3488
3489 ip_lock(port);
3490
3491 /*
3492 * The port must have been marked tempowner already.
3493 * This also filters out ports whose receive rights
3494 * are already enqueued in a message, as you can't
3495 * change the right's destination once it's already
3496 * on its way.
3497 */
3498 if (port->ip_tempowner != 0) {
3499 assert(port->ip_impdonation != 0);
3500
3501 boost = port->ip_impcount;
3502 if (IIT_NULL != port->ip_imp_task) {
3503 /*
3504 * if this port is already bound to a task,
3505 * release the task reference and drop any
3506 * watchport-forwarded boosts
3507 */
3508 release_imp_task = port->ip_imp_task;
3509 port->ip_imp_task = IIT_NULL;
3510 }
3511
3512 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3513 if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
3514 port->ip_imp_task = new_imp_task;
3515 new_imp_task = IIT_NULL;
3516 }
3517 }
3518 ip_unlock(port);
3519
3520 if (IIT_NULL != new_imp_task) {
3521 ipc_importance_task_release(new_imp_task);
3522 }
3523
3524 if (IIT_NULL != release_imp_task) {
3525 if (boost > 0)
3526 ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
3527
3528 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3529 ipc_importance_task_release(release_imp_task);
3530 }
3531 #if IMPORTANCE_TRACE
3532 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
3533 proc_selfpid(), pid, boost, released_pid, 0);
3534 #endif /* IMPORTANCE_TRACE */
3535 }
3536
3537 *boostp = boost;
3538 return;
3539 }
3540
3541 #endif /* IMPORTANCE_INHERITANCE */
3542
3543 /*
3544 * Routines for VM to query task importance
3545 */
3546
3547
3548 /*
3549 * Order to be considered while estimating importance
3550 * for low memory notification and purging purgeable memory.
3551 */
3552 #define TASK_IMPORTANCE_FOREGROUND 4
3553 #define TASK_IMPORTANCE_NOTDARWINBG 1
3554
3555
3556 /*
3557 * (Un)Mark the task as a privileged listener for memory notifications.
3558 * if marked, this task will be among the first to be notified amongst
3559 * the bulk of all other tasks when the system enters a pressure level
3560 * of interest to this task.
3561 */
3562 int
3563 task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value)
3564 {
3565 if (old_value != NULL) {
3566 *old_value = (boolean_t)task->low_mem_privileged_listener;
3567 } else {
3568 task_lock(task);
3569 task->low_mem_privileged_listener = (uint32_t)new_value;
3570 task_unlock(task);
3571 }
3572
3573 return 0;
3574 }
3575
3576 /*
3577 * Checks if the task is already notified.
3578 *
3579 * Condition: task lock should be held while calling this function.
3580 */
3581 boolean_t
3582 task_has_been_notified(task_t task, int pressurelevel)
3583 {
3584 if (task == NULL) {
3585 return FALSE;
3586 }
3587
3588 if (pressurelevel == kVMPressureWarning)
3589 return (task->low_mem_notified_warn ? TRUE : FALSE);
3590 else if (pressurelevel == kVMPressureCritical)
3591 return (task->low_mem_notified_critical ? TRUE : FALSE);
3592 else
3593 return TRUE;
3594 }
3595
3596
3597 /*
3598 * Checks if the task is used for purging.
3599 *
3600 * Condition: task lock should be held while calling this function.
3601 */
3602 boolean_t
3603 task_used_for_purging(task_t task, int pressurelevel)
3604 {
3605 if (task == NULL) {
3606 return FALSE;
3607 }
3608
3609 if (pressurelevel == kVMPressureWarning)
3610 return (task->purged_memory_warn ? TRUE : FALSE);
3611 else if (pressurelevel == kVMPressureCritical)
3612 return (task->purged_memory_critical ? TRUE : FALSE);
3613 else
3614 return TRUE;
3615 }
3616
3617
3618 /*
3619 * Mark the task as notified with memory notification.
3620 *
3621 * Condition: task lock should be held while calling this function.
3622 */
3623 void
3624 task_mark_has_been_notified(task_t task, int pressurelevel)
3625 {
3626 if (task == NULL) {
3627 return;
3628 }
3629
3630 if (pressurelevel == kVMPressureWarning)
3631 task->low_mem_notified_warn = 1;
3632 else if (pressurelevel == kVMPressureCritical)
3633 task->low_mem_notified_critical = 1;
3634 }
3635
3636
3637 /*
3638 * Mark the task as purged.
3639 *
3640 * Condition: task lock should be held while calling this function.
3641 */
3642 void
3643 task_mark_used_for_purging(task_t task, int pressurelevel)
3644 {
3645 if (task == NULL) {
3646 return;
3647 }
3648
3649 if (pressurelevel == kVMPressureWarning)
3650 task->purged_memory_warn = 1;
3651 else if (pressurelevel == kVMPressureCritical)
3652 task->purged_memory_critical = 1;
3653 }
3654
3655
3656 /*
3657 * Mark the task eligible for low memory notification.
3658 *
3659 * Condition: task lock should be held while calling this function.
3660 */
3661 void
3662 task_clear_has_been_notified(task_t task, int pressurelevel)
3663 {
3664 if (task == NULL) {
3665 return;
3666 }
3667
3668 if (pressurelevel == kVMPressureWarning)
3669 task->low_mem_notified_warn = 0;
3670 else if (pressurelevel == kVMPressureCritical)
3671 task->low_mem_notified_critical = 0;
3672 }
3673
3674
3675 /*
3676 * Mark the task eligible for purging its purgeable memory.
3677 *
3678 * Condition: task lock should be held while calling this function.
3679 */
3680 void
3681 task_clear_used_for_purging(task_t task)
3682 {
3683 if (task == NULL) {
3684 return;
3685 }
3686
3687 task->purged_memory_warn = 0;
3688 task->purged_memory_critical = 0;
3689 }
3690
3691
3692 /*
3693 * Estimate task importance for purging its purgeable memory
3694 * and low memory notification.
3695 *
3696 * Importance is calculated in the following order of criteria:
3697 * -Task role : Background vs Foreground
3698 * -Boost status: Not boosted vs Boosted
3699 * -Darwin BG status.
3700 *
3701 * Returns: Estimated task importance. Less important task will have lower
3702 * estimated importance.
3703 */
3704 int
3705 task_importance_estimate(task_t task)
3706 {
3707 int task_importance = 0;
3708
3709 if (task == NULL) {
3710 return 0;
3711 }
3712
3713 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION)
3714 task_importance += TASK_IMPORTANCE_FOREGROUND;
3715
3716 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0)
3717 task_importance += TASK_IMPORTANCE_NOTDARWINBG;
3718
3719 return task_importance;
3720 }
3721
3722 boolean_t
3723 task_has_assertions(task_t task)
3724 {
3725 return (task->task_imp_base->iit_assertcnt? TRUE : FALSE);
3726 }
3727
3728
3729 kern_return_t
3730 send_resource_violation(typeof(send_cpu_usage_violation) sendfunc,
3731 task_t violator,
3732 struct ledger_entry_info *linfo,
3733 resource_notify_flags_t flags)
3734 {
3735 #ifndef MACH_BSD
3736 return KERN_NOT_SUPPORTED;
3737 #else
3738 kern_return_t kr = KERN_SUCCESS;
3739 proc_t proc = NULL;
3740 posix_path_t proc_path = "";
3741 proc_name_t procname = "<unknown>";
3742 int pid = -1;
3743 clock_sec_t secs;
3744 clock_nsec_t nsecs;
3745 mach_timespec_t timestamp;
3746 thread_t curthread = current_thread();
3747 ipc_port_t dstport = MACH_PORT_NULL;
3748
3749 if (!violator) {
3750 kr = KERN_INVALID_ARGUMENT; goto finish;
3751 }
3752
3753 /* extract violator information */
3754 task_lock(violator);
3755 if (!(proc = get_bsdtask_info(violator))) {
3756 task_unlock(violator);
3757 kr = KERN_INVALID_ARGUMENT; goto finish;
3758 }
3759 (void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname));
3760 pid = task_pid(violator);
3761 if (flags & kRNFatalLimitFlag) {
3762 kr = proc_pidpathinfo_internal(proc, 0, proc_path,
3763 sizeof(proc_path), NULL);
3764 }
3765 task_unlock(violator);
3766 if (kr) goto finish;
3767
3768 /* violation time ~ now */
3769 clock_get_calendar_nanotime(&secs, &nsecs);
3770 timestamp.tv_sec = (int32_t)secs;
3771 timestamp.tv_nsec = (int32_t)nsecs;
3772 /* 25567702 tracks widening mach_timespec_t */
3773
3774 /* send message */
3775 kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE,
3776 HOST_RESOURCE_NOTIFY_PORT, &dstport);
3777 if (kr) goto finish;
3778
3779 thread_set_honor_qlimit(curthread);
3780 kr = sendfunc(dstport,
3781 procname, pid, proc_path, timestamp,
3782 linfo->lei_balance, linfo->lei_last_refill,
3783 linfo->lei_limit, linfo->lei_refill_period,
3784 flags);
3785 thread_clear_honor_qlimit(curthread);
3786
3787 ipc_port_release_send(dstport);
3788
3789 finish:
3790 return kr;
3791 #endif /* MACH_BSD */
3792 }
3793
3794
3795 /*
3796 * Resource violations trace four 64-bit integers. For K32, two additional
3797 * codes are allocated, the first with the low nibble doubled. So if the K64
3798 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3799 */
3800 #ifdef __LP64__
3801 void
3802 trace_resource_violation(uint16_t code,
3803 struct ledger_entry_info *linfo)
3804 {
3805 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code),
3806 linfo->lei_balance, linfo->lei_last_refill,
3807 linfo->lei_limit, linfo->lei_refill_period);
3808 }
3809 #else /* K32 */
3810 /* TODO: create/find a trace_two_LLs() for K32 systems */
3811 #define MASK32 0xffffffff
3812 void
3813 trace_resource_violation(uint16_t code,
3814 struct ledger_entry_info *linfo)
3815 {
3816 int8_t lownibble = (code & 0x3) * 2;
3817 int16_t codeA = (code & 0xffc) | lownibble;
3818 int16_t codeB = codeA + 1;
3819
3820 int32_t balance_high = (linfo->lei_balance >> 32) & MASK32;
3821 int32_t balance_low = linfo->lei_balance & MASK32;
3822 int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32;
3823 int32_t last_refill_low = linfo->lei_last_refill & MASK32;
3824
3825 int32_t limit_high = (linfo->lei_limit >> 32) & MASK32;
3826 int32_t limit_low = linfo->lei_limit & MASK32;
3827 int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32;
3828 int32_t refill_period_low = linfo->lei_refill_period & MASK32;
3829
3830 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA),
3831 balance_high, balance_low,
3832 last_refill_high, last_refill_low);
3833 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB),
3834 limit_high, limit_low,
3835 refill_period_high, refill_period_low);
3836 }
3837 #endif /* K64/K32 */