2 * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
47 #include <kern/coalition.h>
49 #include <kern/telemetry.h>
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* CONFIG_EMBEDDED */
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
63 #include <sys/kdebug.h>
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task
, int category
, int flavor
, int value
, int value2
);
141 static void task_policy_update_locked(task_t task
, task_pend_token_t pend_token
);
142 static void task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
);
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task
, int category
, int flavor
, int value1
, int value2
);
146 static void proc_get_task_policy2(task_t task
, int category
, int flavor
, int *value1
, int *value2
);
148 static boolean_t
task_policy_update_coalition_focal_tasks(task_t task
, int prev_role
, int next_role
, task_pend_token_t pend_token
);
150 static uint64_t task_requested_bitfield(task_t task
);
151 static uint64_t task_effective_bitfield(task_t task
);
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task
);
155 static uintptr_t trequested_1(task_t task
);
156 static uintptr_t teffective_0(task_t task
);
157 static uintptr_t teffective_1(task_t task
);
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int entitled
);
161 static int task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
);
162 static int task_enable_cpumon_locked(task_t task
);
163 static int task_disable_cpumon(task_t task
);
164 static int task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
);
165 static int task_apply_resource_actions(task_t task
, int type
);
166 static void task_action_cpuusage(thread_call_param_t param0
, thread_call_param_t param1
);
169 typedef struct proc
* proc_t
;
170 int proc_pid(void *proc
);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p
);
173 extern char * proc_best_name(proc_t proc
);
175 extern int proc_pidpathinfo_internal(proc_t p
, uint64_t arg
,
176 char *buffer
, uint32_t buffersize
,
178 #endif /* MACH_BSD */
182 /* TODO: make CONFIG_TASKWATCH */
183 /* Taskwatch related helper functions */
184 static void set_thread_appbg(thread_t thread
, int setbg
,int importance
);
185 static void add_taskwatch_locked(task_t task
, task_watch_t
* twp
);
186 static void remove_taskwatch_locked(task_t task
, task_watch_t
* twp
);
187 static void task_watch_lock(void);
188 static void task_watch_unlock(void);
189 static void apply_appstate_watchers(task_t task
);
191 typedef struct task_watcher
{
192 queue_chain_t tw_links
; /* queueing of threads */
193 task_t tw_task
; /* task that is being watched */
194 thread_t tw_thread
; /* thread that is watching the watch_task */
195 int tw_state
; /* the current app state of the thread */
196 int tw_importance
; /* importance prior to backgrounding */
199 typedef struct thread_watchlist
{
200 thread_t thread
; /* thread being worked on for taskwatch action */
201 int importance
; /* importance to be restored if thread is being made active */
202 } thread_watchlist_t
;
204 #endif /* CONFIG_EMBEDDED */
206 extern int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
208 /* Importance Inheritance related helper functions */
210 #if IMPORTANCE_INHERITANCE
212 static void task_importance_mark_live_donor(task_t task
, boolean_t donating
);
213 static void task_importance_mark_receiver(task_t task
, boolean_t receiving
);
214 static void task_importance_mark_denap_receiver(task_t task
, boolean_t denap
);
216 static boolean_t
task_is_marked_live_importance_donor(task_t task
);
217 static boolean_t
task_is_importance_receiver(task_t task
);
218 static boolean_t
task_is_importance_denap_receiver(task_t task
);
220 static int task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
);
222 static void task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
);
223 static void task_importance_update_live_donor(task_t target_task
);
225 static void task_set_boost_locked(task_t task
, boolean_t boost_active
);
227 #endif /* IMPORTANCE_INHERITANCE */
230 #define __imptrace_only
231 #else /* IMPORTANCE_TRACE */
232 #define __imptrace_only __unused
233 #endif /* !IMPORTANCE_TRACE */
235 #if IMPORTANCE_INHERITANCE
238 #define __imp_only __unused
242 * Default parameters for certain policies
245 int proc_standard_daemon_tier
= THROTTLE_LEVEL_TIER1
;
246 int proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER1
;
247 int proc_tal_disk_tier
= THROTTLE_LEVEL_TIER1
;
249 int proc_graphics_timer_qos
= (LATENCY_QOS_TIER_0
& 0xFF);
251 const int proc_default_bg_iotier
= THROTTLE_LEVEL_TIER2
;
253 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
254 const struct task_requested_policy default_task_requested_policy
= {
255 .trp_bg_iotier
= proc_default_bg_iotier
257 const struct task_effective_policy default_task_effective_policy
= {};
260 * Default parameters for CPU usage monitor.
262 * Default setting is 50% over 3 minutes.
264 #define DEFAULT_CPUMON_PERCENTAGE 50
265 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
267 uint8_t proc_max_cpumon_percentage
;
268 uint64_t proc_max_cpumon_interval
;
272 qos_latency_policy_validate(task_latency_qos_t ltier
) {
273 if ((ltier
!= LATENCY_QOS_TIER_UNSPECIFIED
) &&
274 ((ltier
> LATENCY_QOS_TIER_5
) || (ltier
< LATENCY_QOS_TIER_0
)))
275 return KERN_INVALID_ARGUMENT
;
281 qos_throughput_policy_validate(task_throughput_qos_t ttier
) {
282 if ((ttier
!= THROUGHPUT_QOS_TIER_UNSPECIFIED
) &&
283 ((ttier
> THROUGHPUT_QOS_TIER_5
) || (ttier
< THROUGHPUT_QOS_TIER_0
)))
284 return KERN_INVALID_ARGUMENT
;
290 task_qos_policy_validate(task_qos_policy_t qosinfo
, mach_msg_type_number_t count
) {
291 if (count
< TASK_QOS_POLICY_COUNT
)
292 return KERN_INVALID_ARGUMENT
;
294 task_latency_qos_t ltier
= qosinfo
->task_latency_qos_tier
;
295 task_throughput_qos_t ttier
= qosinfo
->task_throughput_qos_tier
;
297 kern_return_t kr
= qos_latency_policy_validate(ltier
);
299 if (kr
!= KERN_SUCCESS
)
302 kr
= qos_throughput_policy_validate(ttier
);
308 qos_extract(uint32_t qv
) {
313 qos_latency_policy_package(uint32_t qv
) {
314 return (qv
== LATENCY_QOS_TIER_UNSPECIFIED
) ? LATENCY_QOS_TIER_UNSPECIFIED
: ((0xFF << 16) | qv
);
318 qos_throughput_policy_package(uint32_t qv
) {
319 return (qv
== THROUGHPUT_QOS_TIER_UNSPECIFIED
) ? THROUGHPUT_QOS_TIER_UNSPECIFIED
: ((0xFE << 16) | qv
);
322 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
323 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
324 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
325 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
326 static boolean_t task_policy_suppression_flags
= TASK_POLICY_SUPPRESSION_IOTIER2
|
327 TASK_POLICY_SUPPRESSION_NONDONOR
;
332 task_policy_flavor_t flavor
,
333 task_policy_t policy_info
,
334 mach_msg_type_number_t count
)
336 kern_return_t result
= KERN_SUCCESS
;
338 if (task
== TASK_NULL
|| task
== kernel_task
)
339 return (KERN_INVALID_ARGUMENT
);
343 case TASK_CATEGORY_POLICY
: {
344 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
346 if (count
< TASK_CATEGORY_POLICY_COUNT
)
347 return (KERN_INVALID_ARGUMENT
);
350 /* On embedded, you can't modify your own role. */
351 if (current_task() == task
)
352 return (KERN_INVALID_ARGUMENT
);
356 case TASK_FOREGROUND_APPLICATION
:
357 case TASK_BACKGROUND_APPLICATION
:
358 case TASK_DEFAULT_APPLICATION
:
359 proc_set_task_policy(task
,
360 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
364 case TASK_CONTROL_APPLICATION
:
365 if (task
!= current_task() || task
->sec_token
.val
[0] != 0)
366 result
= KERN_INVALID_ARGUMENT
;
368 proc_set_task_policy(task
,
369 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
373 case TASK_GRAPHICS_SERVER
:
374 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
375 if (task
!= current_task() || task
->sec_token
.val
[0] != 0)
376 result
= KERN_INVALID_ARGUMENT
;
378 proc_set_task_policy(task
,
379 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
383 result
= KERN_INVALID_ARGUMENT
;
385 } /* switch (info->role) */
390 /* Desired energy-efficiency/performance "quality-of-service" */
391 case TASK_BASE_QOS_POLICY
:
392 case TASK_OVERRIDE_QOS_POLICY
:
394 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
395 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
397 if (kr
!= KERN_SUCCESS
)
401 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
402 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
404 proc_set_task_policy2(task
, TASK_POLICY_ATTRIBUTE
,
405 flavor
== TASK_BASE_QOS_POLICY
? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
: TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
,
410 case TASK_BASE_LATENCY_QOS_POLICY
:
412 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
413 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
415 if (kr
!= KERN_SUCCESS
)
418 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
420 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_LATENCY_QOS_POLICY
, lqos
);
424 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
426 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
427 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
429 if (kr
!= KERN_SUCCESS
)
432 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
434 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_THROUGHPUT_QOS_POLICY
, tqos
);
438 case TASK_SUPPRESSION_POLICY
:
442 * Suppression policy is not enabled for embedded
443 * because apps aren't marked as denap receivers
445 result
= KERN_INVALID_ARGUMENT
;
447 #else /* CONFIG_EMBEDDED */
449 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
451 if (count
< TASK_SUPPRESSION_POLICY_COUNT
)
452 return (KERN_INVALID_ARGUMENT
);
454 struct task_qos_policy qosinfo
;
456 qosinfo
.task_latency_qos_tier
= info
->timer_throttle
;
457 qosinfo
.task_throughput_qos_tier
= info
->throughput_qos
;
459 kern_return_t kr
= task_qos_policy_validate(&qosinfo
, TASK_QOS_POLICY_COUNT
);
461 if (kr
!= KERN_SUCCESS
)
464 /* TEMPORARY disablement of task suppression */
466 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_DISABLE
))
469 struct task_pend_token pend_token
= {};
473 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
474 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_START
,
475 proc_selfpid(), task_pid(task
), trequested_0(task
),
476 trequested_1(task
), 0);
478 task
->requested_policy
.trp_sup_active
= (info
->active
) ? 1 : 0;
479 task
->requested_policy
.trp_sup_lowpri_cpu
= (info
->lowpri_cpu
) ? 1 : 0;
480 task
->requested_policy
.trp_sup_timer
= qos_extract(info
->timer_throttle
);
481 task
->requested_policy
.trp_sup_disk
= (info
->disk_throttle
) ? 1 : 0;
482 task
->requested_policy
.trp_sup_throughput
= qos_extract(info
->throughput_qos
);
483 task
->requested_policy
.trp_sup_cpu
= (info
->suppressed_cpu
) ? 1 : 0;
484 task
->requested_policy
.trp_sup_bg_sockets
= (info
->background_sockets
) ? 1 : 0;
486 task_policy_update_locked(task
, &pend_token
);
488 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
489 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_END
,
490 proc_selfpid(), task_pid(task
), trequested_0(task
),
491 trequested_1(task
), 0);
495 task_policy_update_complete_unlocked(task
, &pend_token
);
499 #endif /* CONFIG_EMBEDDED */
503 result
= KERN_INVALID_ARGUMENT
;
510 /* Sets BSD 'nice' value on the task */
514 integer_t importance
)
516 if (task
== TASK_NULL
|| task
== kernel_task
)
517 return (KERN_INVALID_ARGUMENT
);
524 return (KERN_TERMINATED
);
527 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) >= TASK_CONTROL_APPLICATION
) {
530 return (KERN_INVALID_ARGUMENT
);
533 task
->importance
= importance
;
535 struct task_pend_token pend_token
= {};
537 task_policy_update_locked(task
, &pend_token
);
541 task_policy_update_complete_unlocked(task
, &pend_token
);
543 return (KERN_SUCCESS
);
549 task_policy_flavor_t flavor
,
550 task_policy_t policy_info
,
551 mach_msg_type_number_t
*count
,
552 boolean_t
*get_default
)
554 if (task
== TASK_NULL
|| task
== kernel_task
)
555 return (KERN_INVALID_ARGUMENT
);
559 case TASK_CATEGORY_POLICY
:
561 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
563 if (*count
< TASK_CATEGORY_POLICY_COUNT
)
564 return (KERN_INVALID_ARGUMENT
);
567 info
->role
= TASK_UNSPECIFIED
;
569 info
->role
= proc_get_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
573 case TASK_BASE_QOS_POLICY
: /* FALLTHRU */
574 case TASK_OVERRIDE_QOS_POLICY
:
576 task_qos_policy_t info
= (task_qos_policy_t
)policy_info
;
578 if (*count
< TASK_QOS_POLICY_COUNT
)
579 return (KERN_INVALID_ARGUMENT
);
582 info
->task_latency_qos_tier
= LATENCY_QOS_TIER_UNSPECIFIED
;
583 info
->task_throughput_qos_tier
= THROUGHPUT_QOS_TIER_UNSPECIFIED
;
584 } else if (flavor
== TASK_BASE_QOS_POLICY
) {
587 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
589 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
590 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
592 } else if (flavor
== TASK_OVERRIDE_QOS_POLICY
) {
595 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
597 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
598 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
604 case TASK_POLICY_STATE
:
606 task_policy_state_t info
= (task_policy_state_t
)policy_info
;
608 if (*count
< TASK_POLICY_STATE_COUNT
)
609 return (KERN_INVALID_ARGUMENT
);
611 /* Only root can get this info */
612 if (current_task()->sec_token
.val
[0] != 0)
613 return KERN_PROTECTION_FAILURE
;
619 info
->imp_assertcnt
= 0;
620 info
->imp_externcnt
= 0;
622 info
->imp_transitions
= 0;
626 info
->requested
= task_requested_bitfield(task
);
627 info
->effective
= task_effective_bitfield(task
);
630 info
->tps_requested_policy
= *(uint64_t*)(&task
->requested_policy
);
631 info
->tps_effective_policy
= *(uint64_t*)(&task
->effective_policy
);
634 if (task
->task_imp_base
!= NULL
) {
635 info
->imp_assertcnt
= task
->task_imp_base
->iit_assertcnt
;
636 info
->imp_externcnt
= IIT_EXTERN(task
->task_imp_base
);
637 info
->flags
|= (task_is_marked_importance_receiver(task
) ? TASK_IMP_RECEIVER
: 0);
638 info
->flags
|= (task_is_marked_importance_denap_receiver(task
) ? TASK_DENAP_RECEIVER
: 0);
639 info
->flags
|= (task_is_marked_importance_donor(task
) ? TASK_IMP_DONOR
: 0);
640 info
->flags
|= (task_is_marked_live_importance_donor(task
) ? TASK_IMP_LIVE_DONOR
: 0);
641 info
->imp_transitions
= task
->task_imp_base
->iit_transitions
;
643 info
->imp_assertcnt
= 0;
644 info
->imp_externcnt
= 0;
645 info
->imp_transitions
= 0;
653 case TASK_SUPPRESSION_POLICY
:
655 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
657 if (*count
< TASK_SUPPRESSION_POLICY_COUNT
)
658 return (KERN_INVALID_ARGUMENT
);
664 info
->lowpri_cpu
= 0;
665 info
->timer_throttle
= LATENCY_QOS_TIER_UNSPECIFIED
;
666 info
->disk_throttle
= 0;
669 info
->throughput_qos
= 0;
670 info
->suppressed_cpu
= 0;
672 info
->active
= task
->requested_policy
.trp_sup_active
;
673 info
->lowpri_cpu
= task
->requested_policy
.trp_sup_lowpri_cpu
;
674 info
->timer_throttle
= qos_latency_policy_package(task
->requested_policy
.trp_sup_timer
);
675 info
->disk_throttle
= task
->requested_policy
.trp_sup_disk
;
678 info
->throughput_qos
= qos_throughput_policy_package(task
->requested_policy
.trp_sup_throughput
);
679 info
->suppressed_cpu
= task
->requested_policy
.trp_sup_cpu
;
680 info
->background_sockets
= task
->requested_policy
.trp_sup_bg_sockets
;
688 return (KERN_INVALID_ARGUMENT
);
691 return (KERN_SUCCESS
);
695 * Called at task creation
696 * We calculate the correct effective but don't apply it to anything yet.
697 * The threads, etc will inherit from the task as they get created.
700 task_policy_create(task_t task
, task_t parent_task
)
702 task
->requested_policy
.trp_apptype
= parent_task
->requested_policy
.trp_apptype
;
704 task
->requested_policy
.trp_int_darwinbg
= parent_task
->requested_policy
.trp_int_darwinbg
;
705 task
->requested_policy
.trp_ext_darwinbg
= parent_task
->requested_policy
.trp_ext_darwinbg
;
706 task
->requested_policy
.trp_int_iotier
= parent_task
->requested_policy
.trp_int_iotier
;
707 task
->requested_policy
.trp_ext_iotier
= parent_task
->requested_policy
.trp_ext_iotier
;
708 task
->requested_policy
.trp_int_iopassive
= parent_task
->requested_policy
.trp_int_iopassive
;
709 task
->requested_policy
.trp_ext_iopassive
= parent_task
->requested_policy
.trp_ext_iopassive
;
710 task
->requested_policy
.trp_bg_iotier
= parent_task
->requested_policy
.trp_bg_iotier
;
711 task
->requested_policy
.trp_terminated
= parent_task
->requested_policy
.trp_terminated
;
712 task
->requested_policy
.trp_qos_clamp
= parent_task
->requested_policy
.trp_qos_clamp
;
714 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&& !task_is_exec_copy(task
)) {
715 /* Do not update the apptype for exec copy task */
716 if (parent_task
->requested_policy
.trp_boosted
) {
717 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_INTERACTIVE
;
718 task_importance_mark_donor(task
, TRUE
);
720 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_BACKGROUND
;
721 task_importance_mark_receiver(task
, FALSE
);
725 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
726 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
727 task_pid(task
), teffective_0(task
),
728 teffective_1(task
), task
->priority
, 0);
730 task_policy_update_internal_locked(task
, TRUE
, NULL
);
732 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
733 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
734 task_pid(task
), teffective_0(task
),
735 teffective_1(task
), task
->priority
, 0);
737 task_importance_update_live_donor(task
);
742 task_policy_update_locked(task_t task
, task_pend_token_t pend_token
)
744 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
745 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
) | DBG_FUNC_START
),
746 task_pid(task
), teffective_0(task
),
747 teffective_1(task
), task
->priority
, 0);
749 task_policy_update_internal_locked(task
, FALSE
, pend_token
);
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
752 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
)) | DBG_FUNC_END
,
753 task_pid(task
), teffective_0(task
),
754 teffective_1(task
), task
->priority
, 0);
758 * One state update function TO RULE THEM ALL
760 * This function updates the task or thread effective policy fields
761 * and pushes the results to the relevant subsystems.
763 * Must call update_complete after unlocking the task,
764 * as some subsystems cannot be updated while holding the task lock.
766 * Called with task locked, not thread
770 task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
)
774 * Gather requested policy
777 struct task_requested_policy requested
= task
->requested_policy
;
781 * Calculate new effective policies from requested policy and task state
783 * Don't change requested, it won't take effect
786 struct task_effective_policy next
= {};
788 /* Update task role */
789 next
.tep_role
= requested
.trp_role
;
791 /* Set task qos clamp and ceiling */
792 next
.tep_qos_clamp
= requested
.trp_qos_clamp
;
794 if (requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
795 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
797 switch (next
.tep_role
) {
798 case TASK_FOREGROUND_APPLICATION
:
799 /* Foreground apps get urgent scheduler priority */
800 next
.tep_qos_ui_is_urgent
= 1;
801 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
804 case TASK_BACKGROUND_APPLICATION
:
805 /* This is really 'non-focal but on-screen' */
806 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
809 case TASK_DEFAULT_APPLICATION
:
810 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
811 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
814 case TASK_NONUI_APPLICATION
:
815 /* i.e. 'off-screen' */
816 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
819 case TASK_CONTROL_APPLICATION
:
820 case TASK_GRAPHICS_SERVER
:
821 next
.tep_qos_ui_is_urgent
= 1;
822 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
825 case TASK_THROTTLE_APPLICATION
:
826 /* i.e. 'TAL launch' */
827 next
.tep_qos_ceiling
= THREAD_QOS_UTILITY
;
830 case TASK_DARWINBG_APPLICATION
:
831 /* i.e. 'DARWIN_BG throttled background application' */
832 next
.tep_qos_ceiling
= THREAD_QOS_BACKGROUND
;
835 case TASK_UNSPECIFIED
:
837 /* Apps that don't have an application role get
838 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
839 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
843 /* Daemons get USER_INTERACTIVE squashed to USER_INITIATED */
844 next
.tep_qos_ceiling
= THREAD_QOS_USER_INITIATED
;
847 /* Calculate DARWIN_BG */
848 boolean_t wants_darwinbg
= FALSE
;
849 boolean_t wants_all_sockets_bg
= FALSE
; /* Do I want my existing sockets to be bg */
850 boolean_t wants_watchersbg
= FALSE
; /* Do I want my pidbound threads to be bg */
853 * If DARWIN_BG has been requested at either level, it's engaged.
854 * Only true DARWIN_BG changes cause watchers to transition.
856 * Backgrounding due to apptype does.
858 if (requested
.trp_int_darwinbg
|| requested
.trp_ext_darwinbg
||
859 next
.tep_role
== TASK_DARWINBG_APPLICATION
)
860 wants_watchersbg
= wants_all_sockets_bg
= wants_darwinbg
= TRUE
;
863 * Deprecated TAL implementation for TAL apptype
864 * Background TAL apps are throttled when TAL is enabled
866 if (requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
&&
867 requested
.trp_role
== TASK_BACKGROUND_APPLICATION
&&
868 requested
.trp_tal_enabled
== 1) {
869 next
.tep_tal_engaged
= 1;
872 /* New TAL implementation based on TAL role alone, works for all apps */
873 if ((requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
874 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) &&
875 requested
.trp_role
== TASK_THROTTLE_APPLICATION
) {
876 next
.tep_tal_engaged
= 1;
879 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
880 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
881 requested
.trp_boosted
== 0)
882 wants_darwinbg
= TRUE
;
884 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
885 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
)
886 wants_darwinbg
= TRUE
;
888 if (next
.tep_qos_clamp
== THREAD_QOS_BACKGROUND
|| next
.tep_qos_clamp
== THREAD_QOS_MAINTENANCE
)
889 wants_darwinbg
= TRUE
;
891 /* Calculate side effects of DARWIN_BG */
893 if (wants_darwinbg
) {
894 next
.tep_darwinbg
= 1;
895 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
896 next
.tep_new_sockets_bg
= 1;
897 next
.tep_lowpri_cpu
= 1;
900 if (wants_all_sockets_bg
)
901 next
.tep_all_sockets_bg
= 1;
903 if (wants_watchersbg
)
904 next
.tep_watchers_bg
= 1;
906 /* Calculate low CPU priority */
908 boolean_t wants_lowpri_cpu
= FALSE
;
911 wants_lowpri_cpu
= TRUE
;
913 if (next
.tep_tal_engaged
)
914 wants_lowpri_cpu
= TRUE
;
916 if (requested
.trp_sup_lowpri_cpu
&& requested
.trp_boosted
== 0)
917 wants_lowpri_cpu
= TRUE
;
919 if (wants_lowpri_cpu
)
920 next
.tep_lowpri_cpu
= 1;
922 /* Calculate IO policy */
924 /* Update BG IO policy (so we can see if it has changed) */
925 next
.tep_bg_iotier
= requested
.trp_bg_iotier
;
927 int iopol
= THROTTLE_LEVEL_TIER0
;
930 iopol
= MAX(iopol
, requested
.trp_bg_iotier
);
932 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_STANDARD
)
933 iopol
= MAX(iopol
, proc_standard_daemon_tier
);
935 if (requested
.trp_sup_disk
&& requested
.trp_boosted
== 0)
936 iopol
= MAX(iopol
, proc_suppressed_disk_tier
);
938 if (next
.tep_tal_engaged
)
939 iopol
= MAX(iopol
, proc_tal_disk_tier
);
941 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
)
942 iopol
= MAX(iopol
, thread_qos_policy_params
.qos_iotier
[next
.tep_qos_clamp
]);
944 iopol
= MAX(iopol
, requested
.trp_int_iotier
);
945 iopol
= MAX(iopol
, requested
.trp_ext_iotier
);
947 next
.tep_io_tier
= iopol
;
949 /* Calculate Passive IO policy */
951 if (requested
.trp_ext_iopassive
|| requested
.trp_int_iopassive
)
952 next
.tep_io_passive
= 1;
954 /* Calculate suppression-active flag */
955 boolean_t appnap_transition
= FALSE
;
957 if (requested
.trp_sup_active
&& requested
.trp_boosted
== 0)
958 next
.tep_sup_active
= 1;
960 if (task
->effective_policy
.tep_sup_active
!= next
.tep_sup_active
)
961 appnap_transition
= TRUE
;
963 /* Calculate timer QOS */
964 int latency_qos
= requested
.trp_base_latency_qos
;
966 if (requested
.trp_sup_timer
&& requested
.trp_boosted
== 0)
967 latency_qos
= requested
.trp_sup_timer
;
969 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
)
970 latency_qos
= MAX(latency_qos
, (int)thread_qos_policy_params
.qos_latency_qos
[next
.tep_qos_clamp
]);
972 if (requested
.trp_over_latency_qos
!= 0)
973 latency_qos
= requested
.trp_over_latency_qos
;
975 /* Treat the windowserver special */
976 if (requested
.trp_role
== TASK_GRAPHICS_SERVER
)
977 latency_qos
= proc_graphics_timer_qos
;
979 next
.tep_latency_qos
= latency_qos
;
981 /* Calculate throughput QOS */
982 int through_qos
= requested
.trp_base_through_qos
;
984 if (requested
.trp_sup_throughput
&& requested
.trp_boosted
== 0)
985 through_qos
= requested
.trp_sup_throughput
;
987 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
)
988 through_qos
= MAX(through_qos
, (int)thread_qos_policy_params
.qos_through_qos
[next
.tep_qos_clamp
]);
990 if (requested
.trp_over_through_qos
!= 0)
991 through_qos
= requested
.trp_over_through_qos
;
993 next
.tep_through_qos
= through_qos
;
995 /* Calculate suppressed CPU priority */
996 if (requested
.trp_sup_cpu
&& requested
.trp_boosted
== 0)
997 next
.tep_suppressed_cpu
= 1;
1000 * Calculate background sockets
1001 * Don't take into account boosting to limit transition frequency.
1003 if (requested
.trp_sup_bg_sockets
){
1004 next
.tep_all_sockets_bg
= 1;
1005 next
.tep_new_sockets_bg
= 1;
1008 /* Apply SFI Managed class bit */
1009 next
.tep_sfi_managed
= requested
.trp_sfi_managed
;
1011 /* Calculate 'live donor' status for live importance */
1012 switch (requested
.trp_apptype
) {
1013 case TASK_APPTYPE_APP_TAL
:
1014 case TASK_APPTYPE_APP_DEFAULT
:
1015 if (requested
.trp_ext_darwinbg
== 1 ||
1016 (next
.tep_sup_active
== 1 &&
1017 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_NONDONOR
)) ||
1018 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
1019 next
.tep_live_donor
= 0;
1021 next
.tep_live_donor
= 1;
1025 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1026 case TASK_APPTYPE_DAEMON_STANDARD
:
1027 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1028 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1030 next
.tep_live_donor
= 0;
1034 if (requested
.trp_terminated
) {
1036 * Shoot down the throttles that slow down exit or response to SIGTERM
1037 * We don't need to shoot down:
1038 * passive (don't want to cause others to throttle)
1039 * all_sockets_bg (don't need to iterate FDs on every exit)
1040 * new_sockets_bg (doesn't matter for exiting process)
1041 * pidsuspend (jetsam-ed BG process shouldn't run again)
1042 * watchers_bg (watcher threads don't need to be unthrottled)
1043 * latency_qos (affects userspace timers only)
1046 next
.tep_terminated
= 1;
1047 next
.tep_darwinbg
= 0;
1048 next
.tep_lowpri_cpu
= 0;
1049 next
.tep_io_tier
= THROTTLE_LEVEL_TIER0
;
1050 next
.tep_tal_engaged
= 0;
1051 next
.tep_role
= TASK_UNSPECIFIED
;
1052 next
.tep_suppressed_cpu
= 0;
1057 * Swap out old policy for new policy
1060 struct task_effective_policy prev
= task
->effective_policy
;
1062 /* This is the point where the new values become visible to other threads */
1063 task
->effective_policy
= next
;
1065 /* Don't do anything further to a half-formed task */
1069 if (task
== kernel_task
)
1070 panic("Attempting to set task policy on kernel_task");
1074 * Pend updates that can't be done while holding the task lock
1077 if (prev
.tep_all_sockets_bg
!= next
.tep_all_sockets_bg
)
1078 pend_token
->tpt_update_sockets
= 1;
1080 /* Only re-scan the timer list if the qos level is getting less strong */
1081 if (prev
.tep_latency_qos
> next
.tep_latency_qos
)
1082 pend_token
->tpt_update_timers
= 1;
1085 if (prev
.tep_watchers_bg
!= next
.tep_watchers_bg
)
1086 pend_token
->tpt_update_watchers
= 1;
1087 #endif /* CONFIG_EMBEDDED */
1089 if (prev
.tep_live_donor
!= next
.tep_live_donor
)
1090 pend_token
->tpt_update_live_donor
= 1;
1094 * Update other subsystems as necessary if something has changed
1097 boolean_t update_threads
= FALSE
, update_sfi
= FALSE
;
1100 * Check for the attributes that thread_policy_update_internal_locked() consults,
1101 * and trigger thread policy re-evaluation.
1103 if (prev
.tep_io_tier
!= next
.tep_io_tier
||
1104 prev
.tep_bg_iotier
!= next
.tep_bg_iotier
||
1105 prev
.tep_io_passive
!= next
.tep_io_passive
||
1106 prev
.tep_darwinbg
!= next
.tep_darwinbg
||
1107 prev
.tep_qos_clamp
!= next
.tep_qos_clamp
||
1108 prev
.tep_qos_ceiling
!= next
.tep_qos_ceiling
||
1109 prev
.tep_qos_ui_is_urgent
!= next
.tep_qos_ui_is_urgent
||
1110 prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1111 prev
.tep_through_qos
!= next
.tep_through_qos
||
1112 prev
.tep_lowpri_cpu
!= next
.tep_lowpri_cpu
||
1113 prev
.tep_new_sockets_bg
!= next
.tep_new_sockets_bg
||
1114 prev
.tep_terminated
!= next
.tep_terminated
)
1115 update_threads
= TRUE
;
1118 * Check for the attributes that sfi_thread_classify() consults,
1119 * and trigger SFI re-evaluation.
1121 if (prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1122 prev
.tep_role
!= next
.tep_role
||
1123 prev
.tep_sfi_managed
!= next
.tep_sfi_managed
)
1126 /* Reflect task role transitions into the coalition role counters */
1127 if (prev
.tep_role
!= next
.tep_role
) {
1128 if (task_policy_update_coalition_focal_tasks(task
, prev
.tep_role
, next
.tep_role
, pend_token
))
1132 boolean_t update_priority
= FALSE
;
1134 int priority
= BASEPRI_DEFAULT
;
1135 int max_priority
= MAXPRI_USER
;
1137 if (next
.tep_lowpri_cpu
) {
1138 priority
= MAXPRI_THROTTLE
;
1139 max_priority
= MAXPRI_THROTTLE
;
1140 } else if (next
.tep_suppressed_cpu
) {
1141 priority
= MAXPRI_SUPPRESSED
;
1142 max_priority
= MAXPRI_SUPPRESSED
;
1144 switch (next
.tep_role
) {
1145 case TASK_CONTROL_APPLICATION
:
1146 priority
= BASEPRI_CONTROL
;
1148 case TASK_GRAPHICS_SERVER
:
1149 priority
= BASEPRI_GRAPHICS
;
1150 max_priority
= MAXPRI_RESERVED
;
1156 /* factor in 'nice' value */
1157 priority
+= task
->importance
;
1159 if (task
->effective_policy
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1160 int qos_clamp_priority
= thread_qos_policy_params
.qos_pri
[task
->effective_policy
.tep_qos_clamp
];
1162 priority
= MIN(priority
, qos_clamp_priority
);
1163 max_priority
= MIN(max_priority
, qos_clamp_priority
);
1166 if (priority
> max_priority
)
1167 priority
= max_priority
;
1168 else if (priority
< MINPRI
)
1172 assert(priority
<= max_priority
);
1174 /* avoid extra work if priority isn't changing */
1175 if (priority
!= task
->priority
||
1176 max_priority
!= task
->max_priority
) {
1177 /* update the scheduling priority for the task */
1178 task
->max_priority
= max_priority
;
1179 task
->priority
= priority
;
1180 update_priority
= TRUE
;
1183 /* Loop over the threads in the task:
1186 * with one thread mutex hold per thread
1188 if (update_threads
|| update_priority
|| update_sfi
) {
1191 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1192 struct task_pend_token thread_pend_token
= {};
1195 thread_pend_token
.tpt_update_thread_sfi
= 1;
1197 if (update_priority
|| update_threads
)
1198 thread_policy_update_tasklocked(thread
,
1199 task
->priority
, task
->max_priority
,
1200 &thread_pend_token
);
1202 assert(!thread_pend_token
.tpt_update_sockets
);
1204 // Slightly risky, as we still hold the task lock...
1205 thread_policy_update_complete_unlocked(thread
, &thread_pend_token
);
1210 * Use the app-nap transitions to influence the
1211 * transition of the process within the jetsam band
1212 * [and optionally its live-donor status]
1215 if (appnap_transition
== TRUE
) {
1216 if (task
->effective_policy
.tep_sup_active
== 1) {
1218 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), TRUE
);
1220 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), FALSE
);
1227 * Yet another layering violation. We reach out and bang on the coalition directly.
1230 task_policy_update_coalition_focal_tasks(task_t task
,
1233 task_pend_token_t pend_token
)
1235 boolean_t sfi_transition
= FALSE
;
1236 uint32_t new_count
= 0;
1238 /* task moving into/out-of the foreground */
1239 if (prev_role
!= TASK_FOREGROUND_APPLICATION
&& next_role
== TASK_FOREGROUND_APPLICATION
) {
1240 if (task_coalition_adjust_focal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1241 sfi_transition
= TRUE
;
1242 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1244 } else if (prev_role
== TASK_FOREGROUND_APPLICATION
&& next_role
!= TASK_FOREGROUND_APPLICATION
) {
1245 if (task_coalition_adjust_focal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1246 sfi_transition
= TRUE
;
1247 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1251 /* task moving into/out-of background */
1252 if (prev_role
!= TASK_BACKGROUND_APPLICATION
&& next_role
== TASK_BACKGROUND_APPLICATION
) {
1253 if (task_coalition_adjust_nonfocal_count(task
, 1, &new_count
) && (new_count
== 1))
1254 sfi_transition
= TRUE
;
1255 } else if (prev_role
== TASK_BACKGROUND_APPLICATION
&& next_role
!= TASK_BACKGROUND_APPLICATION
) {
1256 if (task_coalition_adjust_nonfocal_count(task
, -1, &new_count
) && (new_count
== 0))
1257 sfi_transition
= TRUE
;
1261 pend_token
->tpt_update_coal_sfi
= 1;
1262 return sfi_transition
;
1265 #if CONFIG_SCHED_SFI
1267 /* coalition object is locked */
1269 task_sfi_reevaluate_cb(coalition_t coal
, void *ctx
, task_t task
)
1273 /* unused for now */
1276 /* skip the task we're re-evaluating on behalf of: it's already updated */
1277 if (task
== (task_t
)ctx
)
1282 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1283 sfi_reevaluate(thread
);
1288 #endif /* CONFIG_SCHED_SFI */
1291 * Called with task unlocked to do things that can't be done while holding the task lock
1294 task_policy_update_complete_unlocked(task_t task
, task_pend_token_t pend_token
)
1297 if (pend_token
->tpt_update_sockets
)
1298 proc_apply_task_networkbg(task
->bsd_info
, THREAD_NULL
);
1299 #endif /* MACH_BSD */
1301 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1302 if (pend_token
->tpt_update_timers
)
1303 ml_timer_evaluate();
1306 if (pend_token
->tpt_update_watchers
)
1307 apply_appstate_watchers(task
);
1308 #endif /* CONFIG_EMBEDDED */
1310 if (pend_token
->tpt_update_live_donor
)
1311 task_importance_update_live_donor(task
);
1313 #if CONFIG_SCHED_SFI
1314 /* use the resource coalition for SFI re-evaluation */
1315 if (pend_token
->tpt_update_coal_sfi
)
1316 coalition_for_each_task(task
->coalition
[COALITION_TYPE_RESOURCE
],
1317 (void *)task
, task_sfi_reevaluate_cb
);
1318 #endif /* CONFIG_SCHED_SFI */
1323 * Initiate a task policy state transition
1325 * Everything that modifies requested except functions that need to hold the task lock
1326 * should use this function
1328 * Argument validation should be performed before reaching this point.
1330 * TODO: Do we need to check task->active?
1333 proc_set_task_policy(task_t task
,
1338 struct task_pend_token pend_token
= {};
1342 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1343 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1344 task_pid(task
), trequested_0(task
),
1345 trequested_1(task
), value
, 0);
1347 proc_set_task_policy_locked(task
, category
, flavor
, value
, 0);
1349 task_policy_update_locked(task
, &pend_token
);
1352 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1353 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1354 task_pid(task
), trequested_0(task
),
1355 trequested_1(task
), tpending(&pend_token
), 0);
1359 task_policy_update_complete_unlocked(task
, &pend_token
);
1363 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1364 * Same locking rules apply.
1367 proc_set_task_policy2(task_t task
,
1373 struct task_pend_token pend_token
= {};
1377 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1378 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1379 task_pid(task
), trequested_0(task
),
1380 trequested_1(task
), value
, 0);
1382 proc_set_task_policy_locked(task
, category
, flavor
, value
, value2
);
1384 task_policy_update_locked(task
, &pend_token
);
1386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1387 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1388 task_pid(task
), trequested_0(task
),
1389 trequested_1(task
), tpending(&pend_token
), 0);
1393 task_policy_update_complete_unlocked(task
, &pend_token
);
1397 * Set the requested state for a specific flavor to a specific value.
1400 * Verify that arguments to non iopol things are 1 or 0
1403 proc_set_task_policy_locked(task_t task
,
1411 struct task_requested_policy requested
= task
->requested_policy
;
1415 /* Category: EXTERNAL and INTERNAL */
1417 case TASK_POLICY_DARWIN_BG
:
1418 if (category
== TASK_POLICY_EXTERNAL
)
1419 requested
.trp_ext_darwinbg
= value
;
1421 requested
.trp_int_darwinbg
= value
;
1424 case TASK_POLICY_IOPOL
:
1425 proc_iopol_to_tier(value
, &tier
, &passive
);
1426 if (category
== TASK_POLICY_EXTERNAL
) {
1427 requested
.trp_ext_iotier
= tier
;
1428 requested
.trp_ext_iopassive
= passive
;
1430 requested
.trp_int_iotier
= tier
;
1431 requested
.trp_int_iopassive
= passive
;
1435 case TASK_POLICY_IO
:
1436 if (category
== TASK_POLICY_EXTERNAL
)
1437 requested
.trp_ext_iotier
= value
;
1439 requested
.trp_int_iotier
= value
;
1442 case TASK_POLICY_PASSIVE_IO
:
1443 if (category
== TASK_POLICY_EXTERNAL
)
1444 requested
.trp_ext_iopassive
= value
;
1446 requested
.trp_int_iopassive
= value
;
1449 /* Category: INTERNAL */
1451 case TASK_POLICY_DARWIN_BG_IOPOL
:
1452 assert(category
== TASK_POLICY_INTERNAL
);
1453 proc_iopol_to_tier(value
, &tier
, &passive
);
1454 requested
.trp_bg_iotier
= tier
;
1457 /* Category: ATTRIBUTE */
1459 case TASK_POLICY_TAL
:
1460 assert(category
== TASK_POLICY_ATTRIBUTE
);
1461 requested
.trp_tal_enabled
= value
;
1464 case TASK_POLICY_BOOST
:
1465 assert(category
== TASK_POLICY_ATTRIBUTE
);
1466 requested
.trp_boosted
= value
;
1469 case TASK_POLICY_ROLE
:
1470 assert(category
== TASK_POLICY_ATTRIBUTE
);
1471 requested
.trp_role
= value
;
1474 case TASK_POLICY_TERMINATED
:
1475 assert(category
== TASK_POLICY_ATTRIBUTE
);
1476 requested
.trp_terminated
= value
;
1479 case TASK_BASE_LATENCY_QOS_POLICY
:
1480 assert(category
== TASK_POLICY_ATTRIBUTE
);
1481 requested
.trp_base_latency_qos
= value
;
1484 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
1485 assert(category
== TASK_POLICY_ATTRIBUTE
);
1486 requested
.trp_base_through_qos
= value
;
1489 case TASK_POLICY_SFI_MANAGED
:
1490 assert(category
== TASK_POLICY_ATTRIBUTE
);
1491 requested
.trp_sfi_managed
= value
;
1494 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1495 assert(category
== TASK_POLICY_ATTRIBUTE
);
1496 requested
.trp_base_latency_qos
= value
;
1497 requested
.trp_base_through_qos
= value2
;
1500 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1501 assert(category
== TASK_POLICY_ATTRIBUTE
);
1502 requested
.trp_over_latency_qos
= value
;
1503 requested
.trp_over_through_qos
= value2
;
1507 panic("unknown task policy: %d %d %d %d", category
, flavor
, value
, value2
);
1511 task
->requested_policy
= requested
;
1515 * Gets what you set. Effective values may be different.
1518 proc_get_task_policy(task_t task
,
1526 struct task_requested_policy requested
= task
->requested_policy
;
1529 case TASK_POLICY_DARWIN_BG
:
1530 if (category
== TASK_POLICY_EXTERNAL
)
1531 value
= requested
.trp_ext_darwinbg
;
1533 value
= requested
.trp_int_darwinbg
;
1535 case TASK_POLICY_IOPOL
:
1536 if (category
== TASK_POLICY_EXTERNAL
)
1537 value
= proc_tier_to_iopol(requested
.trp_ext_iotier
,
1538 requested
.trp_ext_iopassive
);
1540 value
= proc_tier_to_iopol(requested
.trp_int_iotier
,
1541 requested
.trp_int_iopassive
);
1543 case TASK_POLICY_IO
:
1544 if (category
== TASK_POLICY_EXTERNAL
)
1545 value
= requested
.trp_ext_iotier
;
1547 value
= requested
.trp_int_iotier
;
1549 case TASK_POLICY_PASSIVE_IO
:
1550 if (category
== TASK_POLICY_EXTERNAL
)
1551 value
= requested
.trp_ext_iopassive
;
1553 value
= requested
.trp_int_iopassive
;
1555 case TASK_POLICY_DARWIN_BG_IOPOL
:
1556 assert(category
== TASK_POLICY_ATTRIBUTE
);
1557 value
= proc_tier_to_iopol(requested
.trp_bg_iotier
, 0);
1559 case TASK_POLICY_ROLE
:
1560 assert(category
== TASK_POLICY_ATTRIBUTE
);
1561 value
= requested
.trp_role
;
1563 case TASK_POLICY_SFI_MANAGED
:
1564 assert(category
== TASK_POLICY_ATTRIBUTE
);
1565 value
= requested
.trp_sfi_managed
;
1568 panic("unknown policy_flavor %d", flavor
);
1578 * Variant of proc_get_task_policy() that returns two scalar outputs.
1581 proc_get_task_policy2(task_t task
,
1582 __assert_only
int category
,
1589 struct task_requested_policy requested
= task
->requested_policy
;
1592 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1593 assert(category
== TASK_POLICY_ATTRIBUTE
);
1594 *value1
= requested
.trp_base_latency_qos
;
1595 *value2
= requested
.trp_base_through_qos
;
1598 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1599 assert(category
== TASK_POLICY_ATTRIBUTE
);
1600 *value1
= requested
.trp_over_latency_qos
;
1601 *value2
= requested
.trp_over_through_qos
;
1605 panic("unknown policy_flavor %d", flavor
);
1613 * Function for querying effective state for relevant subsystems
1614 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1616 * ONLY the relevant subsystem should query this.
1617 * NEVER take a value from the 'effective' function and stuff it into a setter.
1619 * NOTE: This accessor does not take the task lock.
1620 * Notifications of state updates need to be externally synchronized with state queries.
1621 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1622 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1625 proc_get_effective_task_policy(task_t task
,
1631 case TASK_POLICY_DARWIN_BG
:
1633 * This backs the KPI call proc_pidbackgrounded to find
1634 * out if a pid is backgrounded.
1635 * It is used to communicate state to the VM system, as well as
1636 * prioritizing requests to the graphics system.
1637 * Returns 1 for background mode, 0 for normal mode
1639 value
= task
->effective_policy
.tep_darwinbg
;
1641 case TASK_POLICY_ALL_SOCKETS_BG
:
1643 * do_background_socket() calls this to determine what it should do to the proc's sockets
1644 * Returns 1 for background mode, 0 for normal mode
1646 * This consults both thread and task so un-DBGing a thread while the task is BG
1647 * doesn't get you out of the network throttle.
1649 value
= task
->effective_policy
.tep_all_sockets_bg
;
1651 case TASK_POLICY_LATENCY_QOS
:
1653 * timer arming calls into here to find out the timer coalescing level
1654 * Returns a QoS tier (0-6)
1656 value
= task
->effective_policy
.tep_latency_qos
;
1658 case TASK_POLICY_THROUGH_QOS
:
1660 * This value is passed into the urgency callout from the scheduler
1661 * to the performance management subsystem.
1662 * Returns a QoS tier (0-6)
1664 value
= task
->effective_policy
.tep_through_qos
;
1666 case TASK_POLICY_ROLE
:
1668 * This controls various things that ask whether a process is foreground,
1669 * like SFI, VM, access to GPU, etc
1671 value
= task
->effective_policy
.tep_role
;
1673 case TASK_POLICY_WATCHERS_BG
:
1675 * This controls whether or not a thread watching this process should be BG.
1677 value
= task
->effective_policy
.tep_watchers_bg
;
1679 case TASK_POLICY_SFI_MANAGED
:
1681 * This controls whether or not a process is targeted for specific control by thermald.
1683 value
= task
->effective_policy
.tep_sfi_managed
;
1686 panic("unknown policy_flavor %d", flavor
);
1694 * Convert from IOPOL_* values to throttle tiers.
1696 * TODO: Can this be made more compact, like an array lookup
1697 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1701 proc_iopol_to_tier(int iopolicy
, int *tier
, int *passive
)
1706 case IOPOL_IMPORTANT
:
1707 *tier
= THROTTLE_LEVEL_TIER0
;
1710 *tier
= THROTTLE_LEVEL_TIER0
;
1713 case IOPOL_STANDARD
:
1714 *tier
= THROTTLE_LEVEL_TIER1
;
1717 *tier
= THROTTLE_LEVEL_TIER2
;
1719 case IOPOL_THROTTLE
:
1720 *tier
= THROTTLE_LEVEL_TIER3
;
1723 panic("unknown I/O policy %d", iopolicy
);
1729 proc_tier_to_iopol(int tier
, int passive
)
1733 case THROTTLE_LEVEL_TIER0
:
1734 return IOPOL_PASSIVE
;
1736 panic("unknown passive tier %d", tier
);
1737 return IOPOL_DEFAULT
;
1741 case THROTTLE_LEVEL_NONE
:
1742 case THROTTLE_LEVEL_TIER0
:
1743 return IOPOL_DEFAULT
;
1744 case THROTTLE_LEVEL_TIER1
:
1745 return IOPOL_STANDARD
;
1746 case THROTTLE_LEVEL_TIER2
:
1747 return IOPOL_UTILITY
;
1748 case THROTTLE_LEVEL_TIER3
:
1749 return IOPOL_THROTTLE
;
1751 panic("unknown tier %d", tier
);
1752 return IOPOL_DEFAULT
;
1758 proc_darwin_role_to_task_role(int darwin_role
, int* task_role
)
1760 integer_t role
= TASK_UNSPECIFIED
;
1762 switch (darwin_role
) {
1763 case PRIO_DARWIN_ROLE_DEFAULT
:
1764 role
= TASK_UNSPECIFIED
;
1766 case PRIO_DARWIN_ROLE_UI_FOCAL
:
1767 role
= TASK_FOREGROUND_APPLICATION
;
1769 case PRIO_DARWIN_ROLE_UI
:
1770 role
= TASK_DEFAULT_APPLICATION
;
1772 case PRIO_DARWIN_ROLE_NON_UI
:
1773 role
= TASK_NONUI_APPLICATION
;
1775 case PRIO_DARWIN_ROLE_UI_NON_FOCAL
:
1776 role
= TASK_BACKGROUND_APPLICATION
;
1778 case PRIO_DARWIN_ROLE_TAL_LAUNCH
:
1779 role
= TASK_THROTTLE_APPLICATION
;
1781 case PRIO_DARWIN_ROLE_DARWIN_BG
:
1782 role
= TASK_DARWINBG_APPLICATION
;
1794 proc_task_role_to_darwin_role(int task_role
)
1796 switch (task_role
) {
1797 case TASK_FOREGROUND_APPLICATION
:
1798 return PRIO_DARWIN_ROLE_UI_FOCAL
;
1799 case TASK_BACKGROUND_APPLICATION
:
1800 return PRIO_DARWIN_ROLE_UI_NON_FOCAL
;
1801 case TASK_NONUI_APPLICATION
:
1802 return PRIO_DARWIN_ROLE_NON_UI
;
1803 case TASK_DEFAULT_APPLICATION
:
1804 return PRIO_DARWIN_ROLE_UI
;
1805 case TASK_THROTTLE_APPLICATION
:
1806 return PRIO_DARWIN_ROLE_TAL_LAUNCH
;
1807 case TASK_DARWINBG_APPLICATION
:
1808 return PRIO_DARWIN_ROLE_DARWIN_BG
;
1809 case TASK_UNSPECIFIED
:
1811 return PRIO_DARWIN_ROLE_DEFAULT
;
1816 /* TODO: remove this variable when interactive daemon audit period is over */
1817 extern boolean_t ipc_importance_interactive_receiver
;
1820 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1822 * TODO: Make this function more table-driven instead of ad-hoc
1825 proc_set_task_spawnpolicy(task_t task
, int apptype
, int qos_clamp
, int role
,
1826 ipc_port_t
* portwatch_ports
, int portwatch_count
)
1828 struct task_pend_token pend_token
= {};
1830 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1831 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_START
,
1832 task_pid(task
), trequested_0(task
), trequested_1(task
),
1836 case TASK_APPTYPE_APP_TAL
:
1837 case TASK_APPTYPE_APP_DEFAULT
:
1838 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1839 task_importance_mark_donor(task
, FALSE
);
1840 task_importance_mark_live_donor(task
, TRUE
);
1841 task_importance_mark_receiver(task
, FALSE
);
1843 task_importance_mark_denap_receiver(task
, FALSE
);
1845 /* Apps are de-nap recievers on desktop for suppression behaviors */
1846 task_importance_mark_denap_receiver(task
, TRUE
);
1847 #endif /* CONFIG_EMBEDDED */
1850 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1851 task_importance_mark_donor(task
, TRUE
);
1852 task_importance_mark_live_donor(task
, FALSE
);
1855 * A boot arg controls whether interactive daemons are importance receivers.
1856 * Normally, they are not. But for testing their behavior as an adaptive
1857 * daemon, the boot-arg can be set.
1859 * TODO: remove this when the interactive daemon audit period is over.
1861 task_importance_mark_receiver(task
, /* FALSE */ ipc_importance_interactive_receiver
);
1862 task_importance_mark_denap_receiver(task
, FALSE
);
1865 case TASK_APPTYPE_DAEMON_STANDARD
:
1866 task_importance_mark_donor(task
, TRUE
);
1867 task_importance_mark_live_donor(task
, FALSE
);
1868 task_importance_mark_receiver(task
, FALSE
);
1869 task_importance_mark_denap_receiver(task
, FALSE
);
1872 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1873 task_importance_mark_donor(task
, FALSE
);
1874 task_importance_mark_live_donor(task
, FALSE
);
1875 task_importance_mark_receiver(task
, TRUE
);
1876 task_importance_mark_denap_receiver(task
, FALSE
);
1879 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1880 task_importance_mark_donor(task
, FALSE
);
1881 task_importance_mark_live_donor(task
, FALSE
);
1882 task_importance_mark_receiver(task
, FALSE
);
1883 task_importance_mark_denap_receiver(task
, FALSE
);
1886 case TASK_APPTYPE_NONE
:
1890 if (portwatch_ports
!= NULL
&& apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
1891 int portwatch_boosts
= 0;
1893 for (int i
= 0; i
< portwatch_count
; i
++) {
1894 ipc_port_t port
= NULL
;
1896 if ((port
= portwatch_ports
[i
]) != NULL
) {
1898 task_add_importance_watchport(task
, port
, &boost
);
1899 portwatch_boosts
+= boost
;
1903 if (portwatch_boosts
> 0) {
1904 task_importance_hold_internal_assertion(task
, portwatch_boosts
);
1910 if (apptype
== TASK_APPTYPE_APP_TAL
) {
1911 /* TAL starts off enabled by default */
1912 task
->requested_policy
.trp_tal_enabled
= 1;
1915 if (apptype
!= TASK_APPTYPE_NONE
) {
1916 task
->requested_policy
.trp_apptype
= apptype
;
1920 /* Remove this after launchd starts setting it properly */
1921 if (apptype
== TASK_APPTYPE_APP_DEFAULT
&& role
== TASK_UNSPECIFIED
) {
1922 task
->requested_policy
.trp_role
= TASK_FOREGROUND_APPLICATION
;
1925 if (role
!= TASK_UNSPECIFIED
) {
1926 task
->requested_policy
.trp_role
= role
;
1929 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1930 task
->requested_policy
.trp_qos_clamp
= qos_clamp
;
1933 task_policy_update_locked(task
, &pend_token
);
1937 /* Ensure the donor bit is updated to be in sync with the new live donor status */
1938 pend_token
.tpt_update_live_donor
= 1;
1940 task_policy_update_complete_unlocked(task
, &pend_token
);
1942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1943 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_END
,
1944 task_pid(task
), trequested_0(task
), trequested_1(task
),
1945 task_is_importance_receiver(task
), 0);
1949 * Inherit task role across exec
1952 proc_inherit_task_role(task_t new_task
,
1957 /* inherit the role from old task to new task */
1958 role
= proc_get_task_policy(old_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
1959 proc_set_task_policy(new_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
, role
);
1962 extern void *initproc
;
1965 * Compute the default main thread qos for a task
1968 task_compute_main_thread_qos(task_t task
)
1970 int primordial_qos
= THREAD_QOS_UNSPECIFIED
;
1972 int qos_clamp
= task
->requested_policy
.trp_qos_clamp
;
1974 switch (task
->requested_policy
.trp_apptype
) {
1975 case TASK_APPTYPE_APP_TAL
:
1976 case TASK_APPTYPE_APP_DEFAULT
:
1977 primordial_qos
= THREAD_QOS_USER_INTERACTIVE
;
1980 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1981 case TASK_APPTYPE_DAEMON_STANDARD
:
1982 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1983 primordial_qos
= THREAD_QOS_LEGACY
;
1986 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1987 primordial_qos
= THREAD_QOS_BACKGROUND
;
1991 if (task
->bsd_info
== initproc
) {
1992 /* PID 1 gets a special case */
1993 primordial_qos
= MAX(primordial_qos
, THREAD_QOS_USER_INITIATED
);
1996 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1997 if (primordial_qos
!= THREAD_QOS_UNSPECIFIED
) {
1998 primordial_qos
= MIN(qos_clamp
, primordial_qos
);
2000 primordial_qos
= qos_clamp
;
2004 return primordial_qos
;
2008 /* for process_policy to check before attempting to set */
2010 proc_task_is_tal(task_t task
)
2012 return (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) ? TRUE
: FALSE
;
2016 task_get_apptype(task_t task
)
2018 return task
->requested_policy
.trp_apptype
;
2022 task_is_daemon(task_t task
)
2024 switch (task
->requested_policy
.trp_apptype
) {
2025 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2026 case TASK_APPTYPE_DAEMON_STANDARD
:
2027 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2028 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2036 task_is_app(task_t task
)
2038 switch (task
->requested_policy
.trp_apptype
) {
2039 case TASK_APPTYPE_APP_DEFAULT
:
2040 case TASK_APPTYPE_APP_TAL
:
2049 task_grab_latency_qos(task_t task
)
2051 return qos_latency_policy_package(proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
));
2054 /* update the darwin background action state in the flags field for libproc */
2056 proc_get_darwinbgstate(task_t task
, uint32_t * flagsp
)
2058 if (task
->requested_policy
.trp_ext_darwinbg
)
2059 *flagsp
|= PROC_FLAG_EXT_DARWINBG
;
2061 if (task
->requested_policy
.trp_int_darwinbg
)
2062 *flagsp
|= PROC_FLAG_DARWINBG
;
2065 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
)
2066 *flagsp
|= PROC_FLAG_IOS_APPLEDAEMON
;
2068 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
)
2069 *flagsp
|= PROC_FLAG_IOS_IMPPROMOTION
;
2070 #endif /* CONFIG_EMBEDDED */
2072 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
2073 task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
)
2074 *flagsp
|= PROC_FLAG_APPLICATION
;
2076 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
)
2077 *flagsp
|= PROC_FLAG_ADAPTIVE
;
2079 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
2080 task
->requested_policy
.trp_boosted
== 1)
2081 *flagsp
|= PROC_FLAG_ADAPTIVE_IMPORTANT
;
2083 if (task_is_importance_donor(task
))
2084 *flagsp
|= PROC_FLAG_IMPORTANCE_DONOR
;
2086 if (task
->effective_policy
.tep_sup_active
)
2087 *flagsp
|= PROC_FLAG_SUPPRESSED
;
2093 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2094 * The current scheme packs as much data into a single tracepoint as it can.
2096 * Each task/thread requested/effective structure is 64 bits in size. Any
2097 * given tracepoint will emit either requested or effective data, but not both.
2099 * A tracepoint may emit any of task, thread, or task & thread data.
2101 * The type of data emitted varies with pointer size. Where possible, both
2102 * task and thread data are emitted. In LP32 systems, the first and second
2103 * halves of either the task or thread data is emitted.
2105 * The code uses uintptr_t array indexes instead of high/low to avoid
2106 * confusion WRT big vs little endian.
2108 * The truth table for the tracepoint data functions is below, and has the
2109 * following invariants:
2111 * 1) task and thread are uintptr_t*
2112 * 2) task may never be NULL
2116 * trequested_0(task, NULL) task[0] task[0]
2117 * trequested_1(task, NULL) task[1] NULL
2118 * trequested_0(task, thread) thread[0] task[0]
2119 * trequested_1(task, thread) thread[1] thread[0]
2121 * Basically, you get a full task or thread on LP32, and both on LP64.
2123 * The uintptr_t munging here is squicky enough to deserve a comment.
2125 * The variables we are accessing are laid out in memory like this:
2127 * [ LP64 uintptr_t 0 ]
2128 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2135 trequested_0(task_t task
)
2137 static_assert(sizeof(struct task_requested_policy
) == sizeof(uint64_t), "size invariant violated");
2139 uintptr_t* raw
= (uintptr_t*)&task
->requested_policy
;
2145 trequested_1(task_t task
)
2147 #if defined __LP64__
2151 uintptr_t* raw
= (uintptr_t*)(&task
->requested_policy
);
2157 teffective_0(task_t task
)
2159 uintptr_t* raw
= (uintptr_t*)&task
->effective_policy
;
2165 teffective_1(task_t task
)
2167 #if defined __LP64__
2171 uintptr_t* raw
= (uintptr_t*)(&task
->effective_policy
);
2176 /* dump pending for tracepoint */
2177 uint32_t tpending(task_pend_token_t pend_token
) { return *(uint32_t*)(void*)(pend_token
); }
2180 task_requested_bitfield(task_t task
)
2183 struct task_requested_policy requested
= task
->requested_policy
;
2185 bits
|= (requested
.trp_int_darwinbg
? POLICY_REQ_INT_DARWIN_BG
: 0);
2186 bits
|= (requested
.trp_ext_darwinbg
? POLICY_REQ_EXT_DARWIN_BG
: 0);
2187 bits
|= (requested
.trp_int_iotier
? (((uint64_t)requested
.trp_int_iotier
) << POLICY_REQ_INT_IO_TIER_SHIFT
) : 0);
2188 bits
|= (requested
.trp_ext_iotier
? (((uint64_t)requested
.trp_ext_iotier
) << POLICY_REQ_EXT_IO_TIER_SHIFT
) : 0);
2189 bits
|= (requested
.trp_int_iopassive
? POLICY_REQ_INT_PASSIVE_IO
: 0);
2190 bits
|= (requested
.trp_ext_iopassive
? POLICY_REQ_EXT_PASSIVE_IO
: 0);
2191 bits
|= (requested
.trp_bg_iotier
? (((uint64_t)requested
.trp_bg_iotier
) << POLICY_REQ_BG_IOTIER_SHIFT
) : 0);
2192 bits
|= (requested
.trp_terminated
? POLICY_REQ_TERMINATED
: 0);
2194 bits
|= (requested
.trp_boosted
? POLICY_REQ_BOOSTED
: 0);
2195 bits
|= (requested
.trp_tal_enabled
? POLICY_REQ_TAL_ENABLED
: 0);
2196 bits
|= (requested
.trp_apptype
? (((uint64_t)requested
.trp_apptype
) << POLICY_REQ_APPTYPE_SHIFT
) : 0);
2197 bits
|= (requested
.trp_role
? (((uint64_t)requested
.trp_role
) << POLICY_REQ_ROLE_SHIFT
) : 0);
2199 bits
|= (requested
.trp_sup_active
? POLICY_REQ_SUP_ACTIVE
: 0);
2200 bits
|= (requested
.trp_sup_lowpri_cpu
? POLICY_REQ_SUP_LOWPRI_CPU
: 0);
2201 bits
|= (requested
.trp_sup_cpu
? POLICY_REQ_SUP_CPU
: 0);
2202 bits
|= (requested
.trp_sup_timer
? (((uint64_t)requested
.trp_sup_timer
) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT
) : 0);
2203 bits
|= (requested
.trp_sup_throughput
? (((uint64_t)requested
.trp_sup_throughput
) << POLICY_REQ_SUP_THROUGHPUT_SHIFT
) : 0);
2204 bits
|= (requested
.trp_sup_disk
? POLICY_REQ_SUP_DISK_THROTTLE
: 0);
2205 bits
|= (requested
.trp_sup_bg_sockets
? POLICY_REQ_SUP_BG_SOCKETS
: 0);
2207 bits
|= (requested
.trp_base_latency_qos
? (((uint64_t)requested
.trp_base_latency_qos
) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT
) : 0);
2208 bits
|= (requested
.trp_over_latency_qos
? (((uint64_t)requested
.trp_over_latency_qos
) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT
) : 0);
2209 bits
|= (requested
.trp_base_through_qos
? (((uint64_t)requested
.trp_base_through_qos
) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT
) : 0);
2210 bits
|= (requested
.trp_over_through_qos
? (((uint64_t)requested
.trp_over_through_qos
) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT
) : 0);
2211 bits
|= (requested
.trp_sfi_managed
? POLICY_REQ_SFI_MANAGED
: 0);
2212 bits
|= (requested
.trp_qos_clamp
? (((uint64_t)requested
.trp_qos_clamp
) << POLICY_REQ_QOS_CLAMP_SHIFT
) : 0);
2218 task_effective_bitfield(task_t task
)
2221 struct task_effective_policy effective
= task
->effective_policy
;
2223 bits
|= (effective
.tep_io_tier
? (((uint64_t)effective
.tep_io_tier
) << POLICY_EFF_IO_TIER_SHIFT
) : 0);
2224 bits
|= (effective
.tep_io_passive
? POLICY_EFF_IO_PASSIVE
: 0);
2225 bits
|= (effective
.tep_darwinbg
? POLICY_EFF_DARWIN_BG
: 0);
2226 bits
|= (effective
.tep_lowpri_cpu
? POLICY_EFF_LOWPRI_CPU
: 0);
2227 bits
|= (effective
.tep_terminated
? POLICY_EFF_TERMINATED
: 0);
2228 bits
|= (effective
.tep_all_sockets_bg
? POLICY_EFF_ALL_SOCKETS_BG
: 0);
2229 bits
|= (effective
.tep_new_sockets_bg
? POLICY_EFF_NEW_SOCKETS_BG
: 0);
2230 bits
|= (effective
.tep_bg_iotier
? (((uint64_t)effective
.tep_bg_iotier
) << POLICY_EFF_BG_IOTIER_SHIFT
) : 0);
2231 bits
|= (effective
.tep_qos_ui_is_urgent
? POLICY_EFF_QOS_UI_IS_URGENT
: 0);
2233 bits
|= (effective
.tep_tal_engaged
? POLICY_EFF_TAL_ENGAGED
: 0);
2234 bits
|= (effective
.tep_watchers_bg
? POLICY_EFF_WATCHERS_BG
: 0);
2235 bits
|= (effective
.tep_sup_active
? POLICY_EFF_SUP_ACTIVE
: 0);
2236 bits
|= (effective
.tep_suppressed_cpu
? POLICY_EFF_SUP_CPU
: 0);
2237 bits
|= (effective
.tep_role
? (((uint64_t)effective
.tep_role
) << POLICY_EFF_ROLE_SHIFT
) : 0);
2238 bits
|= (effective
.tep_latency_qos
? (((uint64_t)effective
.tep_latency_qos
) << POLICY_EFF_LATENCY_QOS_SHIFT
) : 0);
2239 bits
|= (effective
.tep_through_qos
? (((uint64_t)effective
.tep_through_qos
) << POLICY_EFF_THROUGH_QOS_SHIFT
) : 0);
2240 bits
|= (effective
.tep_sfi_managed
? POLICY_EFF_SFI_MANAGED
: 0);
2241 bits
|= (effective
.tep_qos_ceiling
? (((uint64_t)effective
.tep_qos_ceiling
) << POLICY_EFF_QOS_CEILING_SHIFT
) : 0);
2248 * Resource usage and CPU related routines
2252 proc_get_task_ruse_cpu(task_t task
, uint32_t *policyp
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
)
2261 error
= task_get_cpuusage(task
, percentagep
, intervalp
, deadlinep
, &scope
);
2265 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2267 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2268 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
;
2269 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2270 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
;
2271 } else if (scope
== TASK_RUSECPU_FLAGS_DEADLINE
) {
2272 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2279 * Configure the default CPU usage monitor parameters.
2281 * For tasks which have this mechanism activated: if any thread in the
2282 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2285 proc_init_cpumon_params(void)
2288 * The max CPU percentage can be configured via the boot-args and
2289 * a key in the device tree. The boot-args are honored first, then the
2292 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage
,
2293 sizeof (proc_max_cpumon_percentage
)))
2295 uint64_t max_percentage
= 0ULL;
2297 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage
,
2298 sizeof(max_percentage
)))
2300 max_percentage
= DEFAULT_CPUMON_PERCENTAGE
;
2303 assert(max_percentage
<= UINT8_MAX
);
2304 proc_max_cpumon_percentage
= (uint8_t) max_percentage
;
2307 if (proc_max_cpumon_percentage
> 100) {
2308 proc_max_cpumon_percentage
= 100;
2312 * The interval should be specified in seconds.
2314 * Like the max CPU percentage, the max CPU interval can be configured
2315 * via boot-args and the device tree.
2317 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval
,
2318 sizeof (proc_max_cpumon_interval
)))
2320 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval
,
2321 sizeof(proc_max_cpumon_interval
)))
2323 proc_max_cpumon_interval
= DEFAULT_CPUMON_INTERVAL
;
2327 proc_max_cpumon_interval
*= NSEC_PER_SEC
;
2329 /* TEMPORARY boot arg to control App suppression */
2330 PE_parse_boot_argn("task_policy_suppression_flags",
2331 &task_policy_suppression_flags
,
2332 sizeof(task_policy_suppression_flags
));
2334 /* adjust suppression disk policy if called for in boot arg */
2335 if (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_IOTIER2
) {
2336 proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER2
;
2341 * Currently supported configurations for CPU limits.
2343 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2344 * -------------------------------------+--------------------------+------------------------------
2345 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2346 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2347 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2348 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2349 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2351 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2352 * after the specified amount of wallclock time has elapsed.
2354 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2355 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2356 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2357 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2359 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2360 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2361 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2362 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2364 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2365 * CPU limit. All other types of notifications force task-wide scope for the limit.
2368 proc_set_task_ruse_cpu(task_t task
, uint32_t policy
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
,
2369 int cpumon_entitled
)
2375 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2378 // If no policy is explicitly given, the default is to throttle.
2379 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
:
2380 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
:
2383 scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2385 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND
:
2386 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE
:
2387 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ
:
2388 if (percentage
!= 0)
2390 scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2392 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
:
2395 scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2396 #ifdef CONFIG_NOMONITORS
2398 #endif /* CONFIG_NOMONITORS */
2405 if (task
!= current_task()) {
2406 task
->policy_ru_cpu_ext
= policy
;
2408 task
->policy_ru_cpu
= policy
;
2410 error
= task_set_cpuusage(task
, percentage
, interval
, deadline
, scope
, cpumon_entitled
);
2415 /* TODO: get rid of these */
2416 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2417 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2418 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2419 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2420 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2421 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2423 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2426 proc_clear_task_ruse_cpu(task_t task
, int cpumon_entitled
)
2430 void * bsdinfo
= NULL
;
2433 if (task
!= current_task()) {
2434 task
->policy_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2436 task
->policy_ru_cpu
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2439 error
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2443 action
= task
->applied_ru_cpu
;
2444 if (task
->applied_ru_cpu_ext
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2446 task
->applied_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2448 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2449 bsdinfo
= task
->bsd_info
;
2451 proc_restore_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2462 /* used to apply resource limit related actions */
2464 task_apply_resource_actions(task_t task
, int type
)
2466 int action
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2467 void * bsdinfo
= NULL
;
2470 case TASK_POLICY_CPU_RESOURCE_USAGE
:
2472 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE
:
2473 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE
:
2474 case TASK_POLICY_DISK_RESOURCE_USAGE
:
2475 case TASK_POLICY_NETWORK_RESOURCE_USAGE
:
2476 case TASK_POLICY_POWER_RESOURCE_USAGE
:
2483 /* only cpu actions for now */
2486 if (task
->applied_ru_cpu_ext
== TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2488 task
->applied_ru_cpu_ext
= task
->policy_ru_cpu_ext
;
2489 action
= task
->applied_ru_cpu_ext
;
2491 action
= task
->applied_ru_cpu_ext
;
2494 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2495 bsdinfo
= task
->bsd_info
;
2497 proc_apply_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2505 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2506 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2507 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2508 * to the caller, and prefer that, but there's no need for that at the moment.
2511 task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
)
2517 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) != 0) {
2518 *scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2519 *percentagep
= task
->rusage_cpu_perthr_percentage
;
2520 *intervalp
= task
->rusage_cpu_perthr_interval
;
2521 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) != 0) {
2522 *scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2523 *percentagep
= task
->rusage_cpu_percentage
;
2524 *intervalp
= task
->rusage_cpu_interval
;
2525 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) != 0) {
2526 *scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2527 *deadlinep
= task
->rusage_cpu_deadline
;
2536 * Suspend the CPU usage monitor for the task. Return value indicates
2537 * if the mechanism was actually enabled.
2540 task_suspend_cpumon(task_t task
)
2544 task_lock_assert_owned(task
);
2546 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) == 0) {
2547 return KERN_INVALID_ARGUMENT
;
2550 #if CONFIG_TELEMETRY
2552 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2553 * monitor's warning zone.
2555 telemetry_task_ctl_locked(task
, TF_CPUMON_WARNING
, 0);
2559 * Suspend monitoring for the task, and propagate that change to each thread.
2561 task
->rusage_cpu_flags
&= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT
| TASK_RUSECPU_FLAGS_FATAL_CPUMON
);
2562 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2563 act_set_astledger(thread
);
2566 return KERN_SUCCESS
;
2570 * Remove all traces of the CPU monitor.
2573 task_disable_cpumon(task_t task
)
2577 task_lock_assert_owned(task
);
2579 kret
= task_suspend_cpumon(task
);
2580 if (kret
) return kret
;
2582 /* Once we clear these values, the monitor can't be resumed */
2583 task
->rusage_cpu_perthr_percentage
= 0;
2584 task
->rusage_cpu_perthr_interval
= 0;
2586 return (KERN_SUCCESS
);
2591 task_enable_cpumon_locked(task_t task
)
2594 task_lock_assert_owned(task
);
2596 if (task
->rusage_cpu_perthr_percentage
== 0 ||
2597 task
->rusage_cpu_perthr_interval
== 0) {
2598 return KERN_INVALID_ARGUMENT
;
2601 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2602 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2603 act_set_astledger(thread
);
2606 return KERN_SUCCESS
;
2610 task_resume_cpumon(task_t task
)
2619 kret
= task_enable_cpumon_locked(task
);
2626 /* duplicate values from bsd/sys/process_policy.h */
2627 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2628 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2631 task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int cpumon_entitled
)
2633 uint64_t abstime
= 0;
2634 uint64_t limittime
= 0;
2636 lck_mtx_assert(&task
->lock
, LCK_MTX_ASSERT_OWNED
);
2638 /* By default, refill once per second */
2640 interval
= NSEC_PER_SEC
;
2642 if (percentage
!= 0) {
2643 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2644 boolean_t warn
= FALSE
;
2647 * A per-thread CPU limit on a task generates an exception
2648 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2649 * exceeds the limit.
2652 if (percentage
== PROC_POLICY_CPUMON_DISABLE
) {
2653 if (cpumon_entitled
) {
2654 /* 25095698 - task_disable_cpumon() should be reliable */
2655 task_disable_cpumon(task
);
2660 * This task wishes to disable the CPU usage monitor, but it's
2661 * missing the required entitlement:
2662 * com.apple.private.kernel.override-cpumon
2664 * Instead, treat this as a request to reset its params
2665 * back to the defaults.
2668 percentage
= PROC_POLICY_CPUMON_DEFAULTS
;
2671 if (percentage
== PROC_POLICY_CPUMON_DEFAULTS
) {
2672 percentage
= proc_max_cpumon_percentage
;
2673 interval
= proc_max_cpumon_interval
;
2676 if (percentage
> 100) {
2681 * Passing in an interval of -1 means either:
2682 * - Leave the interval as-is, if there's already a per-thread
2684 * - Use the system default.
2686 if (interval
== -1ULL) {
2687 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2688 interval
= task
->rusage_cpu_perthr_interval
;
2690 interval
= proc_max_cpumon_interval
;
2695 * Enforce global caps on CPU usage monitor here if the process is not
2696 * entitled to escape the global caps.
2698 if ((percentage
> proc_max_cpumon_percentage
) && (cpumon_entitled
== 0)) {
2700 percentage
= proc_max_cpumon_percentage
;
2703 if ((interval
> proc_max_cpumon_interval
) && (cpumon_entitled
== 0)) {
2705 interval
= proc_max_cpumon_interval
;
2710 const char *procname
= "unknown";
2713 pid
= proc_selfpid();
2714 if (current_task()->bsd_info
!= NULL
) {
2715 procname
= proc_name_address(current_task()->bsd_info
);
2719 printf("process %s[%d] denied attempt to escape CPU monitor"
2720 " (missing required entitlement).\n", procname
, pid
);
2723 /* configure the limit values */
2724 task
->rusage_cpu_perthr_percentage
= percentage
;
2725 task
->rusage_cpu_perthr_interval
= interval
;
2727 /* and enable the CPU monitor */
2728 (void)task_enable_cpumon_locked(task
);
2729 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2731 * Currently, a proc-wide CPU limit always blocks if the limit is
2732 * exceeded (LEDGER_ACTION_BLOCK).
2734 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2735 task
->rusage_cpu_percentage
= percentage
;
2736 task
->rusage_cpu_interval
= interval
;
2738 limittime
= (interval
* percentage
) / 100;
2739 nanoseconds_to_absolutetime(limittime
, &abstime
);
2741 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, abstime
, 0);
2742 ledger_set_period(task
->ledger
, task_ledgers
.cpu_time
, interval
);
2743 ledger_set_action(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_ACTION_BLOCK
);
2747 if (deadline
!= 0) {
2748 assert(scope
== TASK_RUSECPU_FLAGS_DEADLINE
);
2750 /* if already in use, cancel and wait for it to cleanout */
2751 if (task
->rusage_cpu_callt
!= NULL
) {
2753 thread_call_cancel_wait(task
->rusage_cpu_callt
);
2756 if (task
->rusage_cpu_callt
== NULL
) {
2757 task
->rusage_cpu_callt
= thread_call_allocate_with_priority(task_action_cpuusage
, (thread_call_param_t
)task
, THREAD_CALL_PRIORITY_KERNEL
);
2760 if (task
->rusage_cpu_callt
!= 0) {
2761 uint64_t save_abstime
= 0;
2763 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_DEADLINE
;
2764 task
->rusage_cpu_deadline
= deadline
;
2766 nanoseconds_to_absolutetime(deadline
, &abstime
);
2767 save_abstime
= abstime
;
2768 clock_absolutetime_interval_to_deadline(save_abstime
, &abstime
);
2769 thread_call_enter_delayed(task
->rusage_cpu_callt
, abstime
);
2777 task_clear_cpuusage(task_t task
, int cpumon_entitled
)
2782 retval
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2789 task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
)
2791 thread_call_t savecallt
;
2793 /* cancel percentage handling if set */
2794 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2795 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2796 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_LIMIT_INFINITY
, 0);
2797 task
->rusage_cpu_percentage
= 0;
2798 task
->rusage_cpu_interval
= 0;
2802 * Disable the CPU usage monitor.
2804 if (cpumon_entitled
) {
2805 task_disable_cpumon(task
);
2808 /* cancel deadline handling if set */
2809 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) {
2810 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_DEADLINE
;
2811 if (task
->rusage_cpu_callt
!= 0) {
2812 savecallt
= task
->rusage_cpu_callt
;
2813 task
->rusage_cpu_callt
= NULL
;
2814 task
->rusage_cpu_deadline
= 0;
2816 thread_call_cancel_wait(savecallt
);
2817 thread_call_free(savecallt
);
2824 /* called by ledger unit to enforce action due to resource usage criteria being met */
2826 task_action_cpuusage(thread_call_param_t param0
, __unused thread_call_param_t param1
)
2828 task_t task
= (task_t
)param0
;
2829 (void)task_apply_resource_actions(task
, TASK_POLICY_CPU_RESOURCE_USAGE
);
2835 * Routines for taskwatch and pidbind
2840 lck_mtx_t task_watch_mtx
;
2843 task_watch_init(void)
2845 lck_mtx_init(&task_watch_mtx
, &task_lck_grp
, &task_lck_attr
);
2849 task_watch_lock(void)
2851 lck_mtx_lock(&task_watch_mtx
);
2855 task_watch_unlock(void)
2857 lck_mtx_unlock(&task_watch_mtx
);
2861 add_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2863 queue_enter(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2864 task
->num_taskwatchers
++;
2869 remove_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2871 queue_remove(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2872 task
->num_taskwatchers
--;
2877 proc_lf_pidbind(task_t curtask
, uint64_t tid
, task_t target_task
, int bind
)
2879 thread_t target_thread
= NULL
;
2880 int ret
= 0, setbg
= 0;
2881 task_watch_t
*twp
= NULL
;
2882 task_t task
= TASK_NULL
;
2884 target_thread
= task_findtid(curtask
, tid
);
2885 if (target_thread
== NULL
)
2887 /* holds thread reference */
2890 /* task is still active ? */
2891 task_lock(target_task
);
2892 if (target_task
->active
== 0) {
2893 task_unlock(target_task
);
2897 task_unlock(target_task
);
2899 twp
= (task_watch_t
*)kalloc(sizeof(task_watch_t
));
2901 task_watch_unlock();
2906 bzero(twp
, sizeof(task_watch_t
));
2910 if (target_thread
->taskwatch
!= NULL
){
2911 /* already bound to another task */
2912 task_watch_unlock();
2914 kfree(twp
, sizeof(task_watch_t
));
2919 task_reference(target_task
);
2921 setbg
= proc_get_effective_task_policy(target_task
, TASK_POLICY_WATCHERS_BG
);
2923 twp
->tw_task
= target_task
; /* holds the task reference */
2924 twp
->tw_thread
= target_thread
; /* holds the thread reference */
2925 twp
->tw_state
= setbg
;
2926 twp
->tw_importance
= target_thread
->importance
;
2928 add_taskwatch_locked(target_task
, twp
);
2930 target_thread
->taskwatch
= twp
;
2932 task_watch_unlock();
2935 set_thread_appbg(target_thread
, setbg
, INT_MIN
);
2937 /* retain the thread reference as it is in twp */
2938 target_thread
= NULL
;
2942 if ((twp
= target_thread
->taskwatch
) != NULL
) {
2943 task
= twp
->tw_task
;
2944 target_thread
->taskwatch
= NULL
;
2945 remove_taskwatch_locked(task
, twp
);
2947 task_watch_unlock();
2949 task_deallocate(task
); /* drop task ref in twp */
2950 set_thread_appbg(target_thread
, 0, twp
->tw_importance
);
2951 thread_deallocate(target_thread
); /* drop thread ref in twp */
2952 kfree(twp
, sizeof(task_watch_t
));
2954 task_watch_unlock();
2955 ret
= 0; /* return success if it not alredy bound */
2960 thread_deallocate(target_thread
); /* drop thread ref acquired in this routine */
2965 set_thread_appbg(thread_t thread
, int setbg
, __unused
int importance
)
2967 int enable
= (setbg
? TASK_POLICY_ENABLE
: TASK_POLICY_DISABLE
);
2969 proc_set_thread_policy(thread
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_PIDBIND_BG
, enable
);
2973 apply_appstate_watchers(task_t task
)
2975 int numwatchers
= 0, i
, j
, setbg
;
2976 thread_watchlist_t
* threadlist
;
2980 /* if no watchers on the list return */
2981 if ((numwatchers
= task
->num_taskwatchers
) == 0)
2984 threadlist
= (thread_watchlist_t
*)kalloc(numwatchers
*sizeof(thread_watchlist_t
));
2985 if (threadlist
== NULL
)
2988 bzero(threadlist
, numwatchers
*sizeof(thread_watchlist_t
));
2991 /*serialize application of app state changes */
2993 if (task
->watchapplying
!= 0) {
2994 lck_mtx_sleep(&task_watch_mtx
, LCK_SLEEP_DEFAULT
, &task
->watchapplying
, THREAD_UNINT
);
2995 task_watch_unlock();
2996 kfree(threadlist
, numwatchers
*sizeof(thread_watchlist_t
));
3000 if (numwatchers
!= task
->num_taskwatchers
) {
3001 task_watch_unlock();
3002 kfree(threadlist
, numwatchers
*sizeof(thread_watchlist_t
));
3006 setbg
= proc_get_effective_task_policy(task
, TASK_POLICY_WATCHERS_BG
);
3008 task
->watchapplying
= 1;
3010 queue_iterate(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
) {
3012 threadlist
[i
].thread
= twp
->tw_thread
;
3013 thread_reference(threadlist
[i
].thread
);
3015 twp
->tw_importance
= twp
->tw_thread
->importance
;
3016 threadlist
[i
].importance
= INT_MIN
;
3018 threadlist
[i
].importance
= twp
->tw_importance
;
3020 if (i
> numwatchers
)
3024 task_watch_unlock();
3026 for (j
= 0; j
< i
; j
++) {
3027 set_thread_appbg(threadlist
[j
].thread
, setbg
, threadlist
[j
].importance
);
3028 thread_deallocate(threadlist
[j
].thread
);
3030 kfree(threadlist
, numwatchers
*sizeof(thread_watchlist_t
));
3034 task
->watchapplying
= 0;
3035 thread_wakeup_one(&task
->watchapplying
);
3036 task_watch_unlock();
3040 thead_remove_taskwatch(thread_t thread
)
3046 if ((twp
= thread
->taskwatch
) != NULL
) {
3047 thread
->taskwatch
= NULL
;
3048 remove_taskwatch_locked(twp
->tw_task
, twp
);
3050 task_watch_unlock();
3052 thread_deallocate(twp
->tw_thread
);
3053 task_deallocate(twp
->tw_task
);
3054 importance
= twp
->tw_importance
;
3055 kfree(twp
, sizeof(task_watch_t
));
3056 /* remove the thread and networkbg */
3057 set_thread_appbg(thread
, 0, importance
);
3062 task_removewatchers(task_t task
)
3064 int numwatchers
= 0, i
, j
;
3065 task_watch_t
** twplist
= NULL
;
3066 task_watch_t
* twp
= NULL
;
3069 if ((numwatchers
= task
->num_taskwatchers
) == 0)
3072 twplist
= (task_watch_t
**)kalloc(numwatchers
*sizeof(task_watch_t
*));
3073 if (twplist
== NULL
)
3076 bzero(twplist
, numwatchers
*sizeof(task_watch_t
*));
3079 if (task
->num_taskwatchers
== 0) {
3080 task_watch_unlock();
3084 if (numwatchers
!= task
->num_taskwatchers
) {
3085 task_watch_unlock();
3086 kfree(twplist
, numwatchers
*sizeof(task_watch_t
*));
3092 while((twp
= (task_watch_t
*)dequeue_head(&task
->task_watchers
)) != NULL
)
3095 task
->num_taskwatchers
--;
3098 * Since the linkage is removed and thead state cleanup is already set up,
3099 * remove the refernce from the thread.
3101 twp
->tw_thread
->taskwatch
= NULL
; /* removed linkage, clear thread holding ref */
3103 if ((task
->num_taskwatchers
== 0) || (i
> numwatchers
))
3107 task_watch_unlock();
3109 for (j
= 0; j
< i
; j
++) {
3112 /* remove thread and network bg */
3113 set_thread_appbg(twp
->tw_thread
, 0, twp
->tw_importance
);
3114 thread_deallocate(twp
->tw_thread
);
3115 task_deallocate(twp
->tw_task
);
3116 kfree(twp
, sizeof(task_watch_t
));
3120 kfree(twplist
, numwatchers
*sizeof(task_watch_t
*));
3123 #endif /* CONFIG_EMBEDDED */
3126 * Routines for importance donation/inheritance/boosting
3130 task_importance_update_live_donor(task_t target_task
)
3132 #if IMPORTANCE_INHERITANCE
3134 ipc_importance_task_t task_imp
;
3136 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3137 if (IIT_NULL
!= task_imp
) {
3138 ipc_importance_task_update_live_donor(task_imp
);
3139 ipc_importance_task_release(task_imp
);
3141 #endif /* IMPORTANCE_INHERITANCE */
3145 task_importance_mark_donor(task_t task
, boolean_t donating
)
3147 #if IMPORTANCE_INHERITANCE
3148 ipc_importance_task_t task_imp
;
3150 task_imp
= ipc_importance_for_task(task
, FALSE
);
3151 if (IIT_NULL
!= task_imp
) {
3152 ipc_importance_task_mark_donor(task_imp
, donating
);
3153 ipc_importance_task_release(task_imp
);
3155 #endif /* IMPORTANCE_INHERITANCE */
3159 task_importance_mark_live_donor(task_t task
, boolean_t live_donating
)
3161 #if IMPORTANCE_INHERITANCE
3162 ipc_importance_task_t task_imp
;
3164 task_imp
= ipc_importance_for_task(task
, FALSE
);
3165 if (IIT_NULL
!= task_imp
) {
3166 ipc_importance_task_mark_live_donor(task_imp
, live_donating
);
3167 ipc_importance_task_release(task_imp
);
3169 #endif /* IMPORTANCE_INHERITANCE */
3173 task_importance_mark_receiver(task_t task
, boolean_t receiving
)
3175 #if IMPORTANCE_INHERITANCE
3176 ipc_importance_task_t task_imp
;
3178 task_imp
= ipc_importance_for_task(task
, FALSE
);
3179 if (IIT_NULL
!= task_imp
) {
3180 ipc_importance_task_mark_receiver(task_imp
, receiving
);
3181 ipc_importance_task_release(task_imp
);
3183 #endif /* IMPORTANCE_INHERITANCE */
3187 task_importance_mark_denap_receiver(task_t task
, boolean_t denap
)
3189 #if IMPORTANCE_INHERITANCE
3190 ipc_importance_task_t task_imp
;
3192 task_imp
= ipc_importance_for_task(task
, FALSE
);
3193 if (IIT_NULL
!= task_imp
) {
3194 ipc_importance_task_mark_denap_receiver(task_imp
, denap
);
3195 ipc_importance_task_release(task_imp
);
3197 #endif /* IMPORTANCE_INHERITANCE */
3201 task_importance_reset(__imp_only task_t task
)
3203 #if IMPORTANCE_INHERITANCE
3204 ipc_importance_task_t task_imp
;
3206 /* TODO: Lower importance downstream before disconnect */
3207 task_imp
= task
->task_imp_base
;
3208 ipc_importance_reset(task_imp
, FALSE
);
3209 task_importance_update_live_donor(task
);
3210 #endif /* IMPORTANCE_INHERITANCE */
3214 task_importance_init_from_parent(__imp_only task_t new_task
, __imp_only task_t parent_task
)
3216 #if IMPORTANCE_INHERITANCE
3217 ipc_importance_task_t new_task_imp
= IIT_NULL
;
3219 new_task
->task_imp_base
= NULL
;
3220 if (!parent_task
) return;
3222 if (task_is_marked_importance_donor(parent_task
)) {
3223 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3224 assert(IIT_NULL
!= new_task_imp
);
3225 ipc_importance_task_mark_donor(new_task_imp
, TRUE
);
3227 if (task_is_marked_live_importance_donor(parent_task
)) {
3228 if (IIT_NULL
== new_task_imp
)
3229 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3230 assert(IIT_NULL
!= new_task_imp
);
3231 ipc_importance_task_mark_live_donor(new_task_imp
, TRUE
);
3233 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3234 if (task_is_exec_copy(new_task
) &&
3235 task_is_marked_importance_receiver(parent_task
)) {
3236 if (IIT_NULL
== new_task_imp
)
3237 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3238 assert(IIT_NULL
!= new_task_imp
);
3239 ipc_importance_task_mark_receiver(new_task_imp
, TRUE
);
3241 if (task_is_marked_importance_denap_receiver(parent_task
)) {
3242 if (IIT_NULL
== new_task_imp
)
3243 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3244 assert(IIT_NULL
!= new_task_imp
);
3245 ipc_importance_task_mark_denap_receiver(new_task_imp
, TRUE
);
3247 if (IIT_NULL
!= new_task_imp
) {
3248 assert(new_task
->task_imp_base
== new_task_imp
);
3249 ipc_importance_task_release(new_task_imp
);
3251 #endif /* IMPORTANCE_INHERITANCE */
3254 #if IMPORTANCE_INHERITANCE
3256 * Sets the task boost bit to the provided value. Does NOT run the update function.
3258 * Task lock must be held.
3261 task_set_boost_locked(task_t task
, boolean_t boost_active
)
3263 #if IMPORTANCE_TRACE
3264 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_START
),
3265 proc_selfpid(), task_pid(task
), trequested_0(task
), trequested_1(task
), 0);
3266 #endif /* IMPORTANCE_TRACE */
3268 task
->requested_policy
.trp_boosted
= boost_active
;
3270 #if IMPORTANCE_TRACE
3271 if (boost_active
== TRUE
){
3272 DTRACE_BOOST2(boost
, task_t
, task
, int, task_pid(task
));
3274 DTRACE_BOOST2(unboost
, task_t
, task
, int, task_pid(task
));
3276 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_END
),
3277 proc_selfpid(), task_pid(task
),
3278 trequested_0(task
), trequested_1(task
), 0);
3279 #endif /* IMPORTANCE_TRACE */
3283 * Sets the task boost bit to the provided value and applies the update.
3285 * Task lock must be held. Must call update complete after unlocking the task.
3288 task_update_boost_locked(task_t task
, boolean_t boost_active
, task_pend_token_t pend_token
)
3290 task_set_boost_locked(task
, boost_active
);
3292 task_policy_update_locked(task
, pend_token
);
3296 * Check if this task should donate importance.
3298 * May be called without taking the task lock. In that case, donor status can change
3299 * so you must check only once for each donation event.
3302 task_is_importance_donor(task_t task
)
3304 if (task
->task_imp_base
== IIT_NULL
)
3306 return ipc_importance_task_is_donor(task
->task_imp_base
);
3310 * Query the status of the task's donor mark.
3313 task_is_marked_importance_donor(task_t task
)
3315 if (task
->task_imp_base
== IIT_NULL
)
3317 return ipc_importance_task_is_marked_donor(task
->task_imp_base
);
3321 * Query the status of the task's live donor and donor mark.
3324 task_is_marked_live_importance_donor(task_t task
)
3326 if (task
->task_imp_base
== IIT_NULL
)
3328 return ipc_importance_task_is_marked_live_donor(task
->task_imp_base
);
3333 * This routine may be called without holding task lock
3334 * since the value of imp_receiver can never be unset.
3337 task_is_importance_receiver(task_t task
)
3339 if (task
->task_imp_base
== IIT_NULL
)
3341 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3345 * Query the task's receiver mark.
3348 task_is_marked_importance_receiver(task_t task
)
3350 if (task
->task_imp_base
== IIT_NULL
)
3352 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3356 * This routine may be called without holding task lock
3357 * since the value of de-nap receiver can never be unset.
3360 task_is_importance_denap_receiver(task_t task
)
3362 if (task
->task_imp_base
== IIT_NULL
)
3364 return ipc_importance_task_is_denap_receiver(task
->task_imp_base
);
3368 * Query the task's de-nap receiver mark.
3371 task_is_marked_importance_denap_receiver(task_t task
)
3373 if (task
->task_imp_base
== IIT_NULL
)
3375 return ipc_importance_task_is_marked_denap_receiver(task
->task_imp_base
);
3379 * This routine may be called without holding task lock
3380 * since the value of imp_receiver can never be unset.
3383 task_is_importance_receiver_type(task_t task
)
3385 if (task
->task_imp_base
== IIT_NULL
)
3387 return (task_is_importance_receiver(task
) ||
3388 task_is_importance_denap_receiver(task
));
3392 * External importance assertions are managed by the process in userspace
3393 * Internal importance assertions are the responsibility of the kernel
3394 * Assertions are changed from internal to external via task_importance_externalize_assertion
3398 task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
)
3400 ipc_importance_task_t task_imp
;
3403 /* may be first time, so allow for possible importance setup */
3404 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3405 if (IIT_NULL
== task_imp
) {
3408 ret
= ipc_importance_task_hold_internal_assertion(task_imp
, count
);
3409 ipc_importance_task_release(task_imp
);
3411 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3415 task_importance_hold_file_lock_assertion(task_t target_task
, uint32_t count
)
3417 ipc_importance_task_t task_imp
;
3420 /* may be first time, so allow for possible importance setup */
3421 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3422 if (IIT_NULL
== task_imp
) {
3425 ret
= ipc_importance_task_hold_file_lock_assertion(task_imp
, count
);
3426 ipc_importance_task_release(task_imp
);
3428 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3432 task_importance_hold_legacy_external_assertion(task_t target_task
, uint32_t count
)
3434 ipc_importance_task_t task_imp
;
3437 /* must already have set up an importance */
3438 task_imp
= target_task
->task_imp_base
;
3439 if (IIT_NULL
== task_imp
) {
3442 ret
= ipc_importance_task_hold_legacy_external_assertion(task_imp
, count
);
3443 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3447 task_importance_drop_file_lock_assertion(task_t target_task
, uint32_t count
)
3449 ipc_importance_task_t task_imp
;
3452 /* must already have set up an importance */
3453 task_imp
= target_task
->task_imp_base
;
3454 if (IIT_NULL
== task_imp
) {
3457 ret
= ipc_importance_task_drop_file_lock_assertion(target_task
->task_imp_base
, count
);
3458 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3462 task_importance_drop_legacy_external_assertion(task_t target_task
, uint32_t count
)
3464 ipc_importance_task_t task_imp
;
3467 /* must already have set up an importance */
3468 task_imp
= target_task
->task_imp_base
;
3469 if (IIT_NULL
== task_imp
) {
3472 ret
= ipc_importance_task_drop_legacy_external_assertion(task_imp
, count
);
3473 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3477 task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
)
3481 __imptrace_only
int released_pid
= 0;
3482 __imptrace_only
int pid
= task_pid(task
);
3484 ipc_importance_task_t release_imp_task
= IIT_NULL
;
3486 if (IP_VALID(port
) != 0) {
3487 ipc_importance_task_t new_imp_task
= ipc_importance_for_task(task
, FALSE
);
3492 * The port must have been marked tempowner already.
3493 * This also filters out ports whose receive rights
3494 * are already enqueued in a message, as you can't
3495 * change the right's destination once it's already
3498 if (port
->ip_tempowner
!= 0) {
3499 assert(port
->ip_impdonation
!= 0);
3501 boost
= port
->ip_impcount
;
3502 if (IIT_NULL
!= port
->ip_imp_task
) {
3504 * if this port is already bound to a task,
3505 * release the task reference and drop any
3506 * watchport-forwarded boosts
3508 release_imp_task
= port
->ip_imp_task
;
3509 port
->ip_imp_task
= IIT_NULL
;
3512 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3513 if (ipc_importance_task_is_marked_receiver(new_imp_task
)) {
3514 port
->ip_imp_task
= new_imp_task
;
3515 new_imp_task
= IIT_NULL
;
3520 if (IIT_NULL
!= new_imp_task
) {
3521 ipc_importance_task_release(new_imp_task
);
3524 if (IIT_NULL
!= release_imp_task
) {
3526 ipc_importance_task_drop_internal_assertion(release_imp_task
, boost
);
3528 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3529 ipc_importance_task_release(release_imp_task
);
3531 #if IMPORTANCE_TRACE
3532 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_WATCHPORT
, 0)) | DBG_FUNC_NONE
,
3533 proc_selfpid(), pid
, boost
, released_pid
, 0);
3534 #endif /* IMPORTANCE_TRACE */
3541 #endif /* IMPORTANCE_INHERITANCE */
3544 * Routines for VM to query task importance
3549 * Order to be considered while estimating importance
3550 * for low memory notification and purging purgeable memory.
3552 #define TASK_IMPORTANCE_FOREGROUND 4
3553 #define TASK_IMPORTANCE_NOTDARWINBG 1
3557 * (Un)Mark the task as a privileged listener for memory notifications.
3558 * if marked, this task will be among the first to be notified amongst
3559 * the bulk of all other tasks when the system enters a pressure level
3560 * of interest to this task.
3563 task_low_mem_privileged_listener(task_t task
, boolean_t new_value
, boolean_t
*old_value
)
3565 if (old_value
!= NULL
) {
3566 *old_value
= (boolean_t
)task
->low_mem_privileged_listener
;
3569 task
->low_mem_privileged_listener
= (uint32_t)new_value
;
3577 * Checks if the task is already notified.
3579 * Condition: task lock should be held while calling this function.
3582 task_has_been_notified(task_t task
, int pressurelevel
)
3588 if (pressurelevel
== kVMPressureWarning
)
3589 return (task
->low_mem_notified_warn
? TRUE
: FALSE
);
3590 else if (pressurelevel
== kVMPressureCritical
)
3591 return (task
->low_mem_notified_critical
? TRUE
: FALSE
);
3598 * Checks if the task is used for purging.
3600 * Condition: task lock should be held while calling this function.
3603 task_used_for_purging(task_t task
, int pressurelevel
)
3609 if (pressurelevel
== kVMPressureWarning
)
3610 return (task
->purged_memory_warn
? TRUE
: FALSE
);
3611 else if (pressurelevel
== kVMPressureCritical
)
3612 return (task
->purged_memory_critical
? TRUE
: FALSE
);
3619 * Mark the task as notified with memory notification.
3621 * Condition: task lock should be held while calling this function.
3624 task_mark_has_been_notified(task_t task
, int pressurelevel
)
3630 if (pressurelevel
== kVMPressureWarning
)
3631 task
->low_mem_notified_warn
= 1;
3632 else if (pressurelevel
== kVMPressureCritical
)
3633 task
->low_mem_notified_critical
= 1;
3638 * Mark the task as purged.
3640 * Condition: task lock should be held while calling this function.
3643 task_mark_used_for_purging(task_t task
, int pressurelevel
)
3649 if (pressurelevel
== kVMPressureWarning
)
3650 task
->purged_memory_warn
= 1;
3651 else if (pressurelevel
== kVMPressureCritical
)
3652 task
->purged_memory_critical
= 1;
3657 * Mark the task eligible for low memory notification.
3659 * Condition: task lock should be held while calling this function.
3662 task_clear_has_been_notified(task_t task
, int pressurelevel
)
3668 if (pressurelevel
== kVMPressureWarning
)
3669 task
->low_mem_notified_warn
= 0;
3670 else if (pressurelevel
== kVMPressureCritical
)
3671 task
->low_mem_notified_critical
= 0;
3676 * Mark the task eligible for purging its purgeable memory.
3678 * Condition: task lock should be held while calling this function.
3681 task_clear_used_for_purging(task_t task
)
3687 task
->purged_memory_warn
= 0;
3688 task
->purged_memory_critical
= 0;
3693 * Estimate task importance for purging its purgeable memory
3694 * and low memory notification.
3696 * Importance is calculated in the following order of criteria:
3697 * -Task role : Background vs Foreground
3698 * -Boost status: Not boosted vs Boosted
3699 * -Darwin BG status.
3701 * Returns: Estimated task importance. Less important task will have lower
3702 * estimated importance.
3705 task_importance_estimate(task_t task
)
3707 int task_importance
= 0;
3713 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) == TASK_FOREGROUND_APPLICATION
)
3714 task_importance
+= TASK_IMPORTANCE_FOREGROUND
;
3716 if (proc_get_effective_task_policy(task
, TASK_POLICY_DARWIN_BG
) == 0)
3717 task_importance
+= TASK_IMPORTANCE_NOTDARWINBG
;
3719 return task_importance
;
3723 task_has_assertions(task_t task
)
3725 return (task
->task_imp_base
->iit_assertcnt
? TRUE
: FALSE
);
3730 send_resource_violation(typeof(send_cpu_usage_violation
) sendfunc
,
3732 struct ledger_entry_info
*linfo
,
3733 resource_notify_flags_t flags
)
3736 return KERN_NOT_SUPPORTED
;
3738 kern_return_t kr
= KERN_SUCCESS
;
3740 posix_path_t proc_path
= "";
3741 proc_name_t procname
= "<unknown>";
3745 mach_timespec_t timestamp
;
3746 thread_t curthread
= current_thread();
3747 ipc_port_t dstport
= MACH_PORT_NULL
;
3750 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3753 /* extract violator information */
3754 task_lock(violator
);
3755 if (!(proc
= get_bsdtask_info(violator
))) {
3756 task_unlock(violator
);
3757 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3759 (void)mig_strncpy(procname
, proc_best_name(proc
), sizeof(procname
));
3760 pid
= task_pid(violator
);
3761 if (flags
& kRNFatalLimitFlag
) {
3762 kr
= proc_pidpathinfo_internal(proc
, 0, proc_path
,
3763 sizeof(proc_path
), NULL
);
3765 task_unlock(violator
);
3766 if (kr
) goto finish
;
3768 /* violation time ~ now */
3769 clock_get_calendar_nanotime(&secs
, &nsecs
);
3770 timestamp
.tv_sec
= (int32_t)secs
;
3771 timestamp
.tv_nsec
= (int32_t)nsecs
;
3772 /* 25567702 tracks widening mach_timespec_t */
3775 kr
= host_get_special_port(host_priv_self(), HOST_LOCAL_NODE
,
3776 HOST_RESOURCE_NOTIFY_PORT
, &dstport
);
3777 if (kr
) goto finish
;
3779 thread_set_honor_qlimit(curthread
);
3780 kr
= sendfunc(dstport
,
3781 procname
, pid
, proc_path
, timestamp
,
3782 linfo
->lei_balance
, linfo
->lei_last_refill
,
3783 linfo
->lei_limit
, linfo
->lei_refill_period
,
3785 thread_clear_honor_qlimit(curthread
);
3787 ipc_port_release_send(dstport
);
3791 #endif /* MACH_BSD */
3796 * Resource violations trace four 64-bit integers. For K32, two additional
3797 * codes are allocated, the first with the low nibble doubled. So if the K64
3798 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3802 trace_resource_violation(uint16_t code
,
3803 struct ledger_entry_info
*linfo
)
3805 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, code
),
3806 linfo
->lei_balance
, linfo
->lei_last_refill
,
3807 linfo
->lei_limit
, linfo
->lei_refill_period
);
3810 /* TODO: create/find a trace_two_LLs() for K32 systems */
3811 #define MASK32 0xffffffff
3813 trace_resource_violation(uint16_t code
,
3814 struct ledger_entry_info
*linfo
)
3816 int8_t lownibble
= (code
& 0x3) * 2;
3817 int16_t codeA
= (code
& 0xffc) | lownibble
;
3818 int16_t codeB
= codeA
+ 1;
3820 int32_t balance_high
= (linfo
->lei_balance
>> 32) & MASK32
;
3821 int32_t balance_low
= linfo
->lei_balance
& MASK32
;
3822 int32_t last_refill_high
= (linfo
->lei_last_refill
>> 32) & MASK32
;
3823 int32_t last_refill_low
= linfo
->lei_last_refill
& MASK32
;
3825 int32_t limit_high
= (linfo
->lei_limit
>> 32) & MASK32
;
3826 int32_t limit_low
= linfo
->lei_limit
& MASK32
;
3827 int32_t refill_period_high
= (linfo
->lei_refill_period
>> 32) & MASK32
;
3828 int32_t refill_period_low
= linfo
->lei_refill_period
& MASK32
;
3830 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeA
),
3831 balance_high
, balance_low
,
3832 last_refill_high
, last_refill_low
);
3833 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeB
),
3834 limit_high
, limit_low
,
3835 refill_period_high
, refill_period_low
);
3837 #endif /* K64/K32 */