]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/processor.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / osfmk / kern / processor.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * processor.c: processor and processor_set manipulation routines.
61 */
62
63 #include <mach/boolean.h>
64 #include <mach/policy.h>
65 #include <mach/processor.h>
66 #include <mach/processor_info.h>
67 #include <mach/vm_param.h>
68 #include <kern/cpu_number.h>
69 #include <kern/host.h>
70 #include <kern/machine.h>
71 #include <kern/misc_protos.h>
72 #include <kern/processor.h>
73 #include <kern/sched.h>
74 #include <kern/task.h>
75 #include <kern/thread.h>
76 #include <kern/ipc_host.h>
77 #include <kern/ipc_tt.h>
78 #include <ipc/ipc_port.h>
79 #include <kern/kalloc.h>
80
81 #include <security/mac_mach_internal.h>
82
83 #if defined(CONFIG_XNUPOST)
84
85 #include <tests/xnupost.h>
86
87 #endif /* CONFIG_XNUPOST */
88
89 /*
90 * Exported interface
91 */
92 #include <mach/mach_host_server.h>
93 #include <mach/processor_set_server.h>
94
95 struct processor_set pset0;
96 struct pset_node pset_node0;
97 decl_simple_lock_data(static,pset_node_lock)
98
99 queue_head_t tasks;
100 queue_head_t terminated_tasks; /* To be used ONLY for stackshot. */
101 queue_head_t corpse_tasks;
102 int tasks_count;
103 int terminated_tasks_count;
104 queue_head_t threads;
105 int threads_count;
106 decl_lck_mtx_data(,tasks_threads_lock)
107 decl_lck_mtx_data(,tasks_corpse_lock)
108
109 processor_t processor_list;
110 unsigned int processor_count;
111 static processor_t processor_list_tail;
112 decl_simple_lock_data(,processor_list_lock)
113
114 uint32_t processor_avail_count;
115
116 processor_t master_processor;
117 int master_cpu = 0;
118 boolean_t sched_stats_active = FALSE;
119
120 processor_t processor_array[MAX_SCHED_CPUS] = { 0 };
121
122 #if defined(CONFIG_XNUPOST)
123 kern_return_t ipi_test(void);
124 extern void arm64_ipi_test(void);
125
126 kern_return_t
127 ipi_test()
128 {
129 #if __arm64__
130 processor_t p;
131
132 for (p = processor_list; p != NULL; p = p->processor_list) {
133 thread_bind(p);
134 thread_block(THREAD_CONTINUE_NULL);
135 kprintf("Running IPI test on cpu %d\n", p->cpu_id);
136 arm64_ipi_test();
137 }
138
139 /* unbind thread from specific cpu */
140 thread_bind(PROCESSOR_NULL);
141 thread_block(THREAD_CONTINUE_NULL);
142
143 T_PASS("Done running IPI tests");
144 #else
145 T_PASS("Unsupported platform. Not running IPI tests");
146
147 #endif /* __arm64__ */
148
149 return KERN_SUCCESS;
150 }
151 #endif /* defined(CONFIG_XNUPOST) */
152
153
154 void
155 processor_bootstrap(void)
156 {
157 pset_init(&pset0, &pset_node0);
158 pset_node0.psets = &pset0;
159
160 simple_lock_init(&pset_node_lock, 0);
161
162 queue_init(&tasks);
163 queue_init(&terminated_tasks);
164 queue_init(&threads);
165 queue_init(&corpse_tasks);
166
167 simple_lock_init(&processor_list_lock, 0);
168
169 master_processor = cpu_to_processor(master_cpu);
170
171 processor_init(master_processor, master_cpu, &pset0);
172 }
173
174 /*
175 * Initialize the given processor for the cpu
176 * indicated by cpu_id, and assign to the
177 * specified processor set.
178 */
179 void
180 processor_init(
181 processor_t processor,
182 int cpu_id,
183 processor_set_t pset)
184 {
185 spl_t s;
186
187 if (processor != master_processor) {
188 /* Scheduler state for master_processor initialized in sched_init() */
189 SCHED(processor_init)(processor);
190 }
191
192 assert(cpu_id < MAX_SCHED_CPUS);
193
194 processor->state = PROCESSOR_OFF_LINE;
195 processor->active_thread = processor->next_thread = processor->idle_thread = THREAD_NULL;
196 processor->processor_set = pset;
197 processor_state_update_idle(processor);
198 processor->starting_pri = MINPRI;
199 processor->cpu_id = cpu_id;
200 timer_call_setup(&processor->quantum_timer, thread_quantum_expire, processor);
201 processor->quantum_end = UINT64_MAX;
202 processor->deadline = UINT64_MAX;
203 processor->first_timeslice = FALSE;
204 processor->processor_primary = processor; /* no SMT relationship known at this point */
205 processor->processor_secondary = NULL;
206 processor->is_SMT = FALSE;
207 processor->is_recommended = (pset->recommended_bitmask & (1ULL << cpu_id)) ? TRUE : FALSE;
208 processor->processor_self = IP_NULL;
209 processor_data_init(processor);
210 processor->processor_list = NULL;
211 processor->cpu_quiesce_state = CPU_QUIESCE_COUNTER_NONE;
212 processor->cpu_quiesce_last_checkin = 0;
213
214 s = splsched();
215 pset_lock(pset);
216 bit_set(pset->cpu_bitmask, cpu_id);
217 if (pset->cpu_set_count++ == 0)
218 pset->cpu_set_low = pset->cpu_set_hi = cpu_id;
219 else {
220 pset->cpu_set_low = (cpu_id < pset->cpu_set_low)? cpu_id: pset->cpu_set_low;
221 pset->cpu_set_hi = (cpu_id > pset->cpu_set_hi)? cpu_id: pset->cpu_set_hi;
222 }
223 pset_unlock(pset);
224 splx(s);
225
226 simple_lock(&processor_list_lock);
227 if (processor_list == NULL)
228 processor_list = processor;
229 else
230 processor_list_tail->processor_list = processor;
231 processor_list_tail = processor;
232 processor_count++;
233 processor_array[cpu_id] = processor;
234 simple_unlock(&processor_list_lock);
235 }
236
237 void
238 processor_set_primary(
239 processor_t processor,
240 processor_t primary)
241 {
242 assert(processor->processor_primary == primary || processor->processor_primary == processor);
243 /* Re-adjust primary point for this (possibly) secondary processor */
244 processor->processor_primary = primary;
245
246 assert(primary->processor_secondary == NULL || primary->processor_secondary == processor);
247 if (primary != processor) {
248 /* Link primary to secondary, assumes a 2-way SMT model
249 * We'll need to move to a queue if any future architecture
250 * requires otherwise.
251 */
252 assert(processor->processor_secondary == NULL);
253 primary->processor_secondary = processor;
254 /* Mark both processors as SMT siblings */
255 primary->is_SMT = TRUE;
256 processor->is_SMT = TRUE;
257
258 processor_set_t pset = processor->processor_set;
259 atomic_bit_clear(&pset->primary_map, processor->cpu_id, memory_order_relaxed);
260 }
261 }
262
263 processor_set_t
264 processor_pset(
265 processor_t processor)
266 {
267 return (processor->processor_set);
268 }
269
270 void
271 processor_state_update_idle(processor_t processor)
272 {
273 processor->current_pri = IDLEPRI;
274 processor->current_sfi_class = SFI_CLASS_KERNEL;
275 processor->current_recommended_pset_type = PSET_SMP;
276 processor->current_perfctl_class = PERFCONTROL_CLASS_IDLE;
277 }
278
279 void
280 processor_state_update_from_thread(processor_t processor, thread_t thread)
281 {
282 processor->current_pri = thread->sched_pri;
283 processor->current_sfi_class = thread->sfi_class;
284 processor->current_recommended_pset_type = recommended_pset_type(thread);
285 processor->current_perfctl_class = thread_get_perfcontrol_class(thread);
286 }
287
288 void
289 processor_state_update_explicit(processor_t processor, int pri, sfi_class_id_t sfi_class,
290 pset_cluster_type_t pset_type, perfcontrol_class_t perfctl_class)
291 {
292 processor->current_pri = pri;
293 processor->current_sfi_class = sfi_class;
294 processor->current_recommended_pset_type = pset_type;
295 processor->current_perfctl_class = perfctl_class;
296 }
297
298 pset_node_t
299 pset_node_root(void)
300 {
301 return &pset_node0;
302 }
303
304 processor_set_t
305 pset_create(
306 pset_node_t node)
307 {
308 /* some schedulers do not support multiple psets */
309 if (SCHED(multiple_psets_enabled) == FALSE)
310 return processor_pset(master_processor);
311
312 processor_set_t *prev, pset = kalloc(sizeof (*pset));
313
314 if (pset != PROCESSOR_SET_NULL) {
315 pset_init(pset, node);
316
317 simple_lock(&pset_node_lock);
318
319 prev = &node->psets;
320 while (*prev != PROCESSOR_SET_NULL)
321 prev = &(*prev)->pset_list;
322
323 *prev = pset;
324
325 simple_unlock(&pset_node_lock);
326 }
327
328 return (pset);
329 }
330
331 /*
332 * Find processor set in specified node with specified cluster_id.
333 * Returns default_pset if not found.
334 */
335 processor_set_t
336 pset_find(
337 uint32_t cluster_id,
338 processor_set_t default_pset)
339 {
340 simple_lock(&pset_node_lock);
341 pset_node_t node = &pset_node0;
342 processor_set_t pset = NULL;
343
344 do {
345 pset = node->psets;
346 while (pset != NULL) {
347 if (pset->pset_cluster_id == cluster_id)
348 break;
349 pset = pset->pset_list;
350 }
351 } while ((node = node->node_list) != NULL);
352 simple_unlock(&pset_node_lock);
353 if (pset == NULL)
354 return default_pset;
355 return (pset);
356 }
357
358 /*
359 * Initialize the given processor_set structure.
360 */
361 void
362 pset_init(
363 processor_set_t pset,
364 pset_node_t node)
365 {
366 if (pset != &pset0) {
367 /* Scheduler state for pset0 initialized in sched_init() */
368 SCHED(pset_init)(pset);
369 SCHED(rt_init)(pset);
370 }
371
372 pset->online_processor_count = 0;
373 pset->load_average = 0;
374 pset->cpu_set_low = pset->cpu_set_hi = 0;
375 pset->cpu_set_count = 0;
376 pset->last_chosen = -1;
377 pset->cpu_bitmask = 0;
378 pset->recommended_bitmask = ~0ULL;
379 pset->primary_map = ~0ULL;
380 pset->cpu_state_map[PROCESSOR_OFF_LINE] = ~0ULL;
381 for (uint i = PROCESSOR_SHUTDOWN; i < PROCESSOR_STATE_LEN; i++) {
382 pset->cpu_state_map[i] = 0;
383 }
384 pset->pending_AST_cpu_mask = 0;
385 #if defined(CONFIG_SCHED_DEFERRED_AST)
386 pset->pending_deferred_AST_cpu_mask = 0;
387 #endif
388 pset->pending_spill_cpu_mask = 0;
389 pset_lock_init(pset);
390 pset->pset_self = IP_NULL;
391 pset->pset_name_self = IP_NULL;
392 pset->pset_list = PROCESSOR_SET_NULL;
393 pset->node = node;
394 pset->pset_cluster_type = PSET_SMP;
395 pset->pset_cluster_id = 0;
396 }
397
398 kern_return_t
399 processor_info_count(
400 processor_flavor_t flavor,
401 mach_msg_type_number_t *count)
402 {
403 switch (flavor) {
404
405 case PROCESSOR_BASIC_INFO:
406 *count = PROCESSOR_BASIC_INFO_COUNT;
407 break;
408
409 case PROCESSOR_CPU_LOAD_INFO:
410 *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
411 break;
412
413 default:
414 return (cpu_info_count(flavor, count));
415 }
416
417 return (KERN_SUCCESS);
418 }
419
420
421 kern_return_t
422 processor_info(
423 processor_t processor,
424 processor_flavor_t flavor,
425 host_t *host,
426 processor_info_t info,
427 mach_msg_type_number_t *count)
428 {
429 int cpu_id, state;
430 kern_return_t result;
431
432 if (processor == PROCESSOR_NULL)
433 return (KERN_INVALID_ARGUMENT);
434
435 cpu_id = processor->cpu_id;
436
437 switch (flavor) {
438
439 case PROCESSOR_BASIC_INFO:
440 {
441 processor_basic_info_t basic_info;
442
443 if (*count < PROCESSOR_BASIC_INFO_COUNT)
444 return (KERN_FAILURE);
445
446 basic_info = (processor_basic_info_t) info;
447 basic_info->cpu_type = slot_type(cpu_id);
448 basic_info->cpu_subtype = slot_subtype(cpu_id);
449 state = processor->state;
450 if (state == PROCESSOR_OFF_LINE)
451 basic_info->running = FALSE;
452 else
453 basic_info->running = TRUE;
454 basic_info->slot_num = cpu_id;
455 if (processor == master_processor)
456 basic_info->is_master = TRUE;
457 else
458 basic_info->is_master = FALSE;
459
460 *count = PROCESSOR_BASIC_INFO_COUNT;
461 *host = &realhost;
462
463 return (KERN_SUCCESS);
464 }
465
466 case PROCESSOR_CPU_LOAD_INFO:
467 {
468 processor_cpu_load_info_t cpu_load_info;
469 timer_t idle_state;
470 uint64_t idle_time_snapshot1, idle_time_snapshot2;
471 uint64_t idle_time_tstamp1, idle_time_tstamp2;
472
473 /*
474 * We capture the accumulated idle time twice over
475 * the course of this function, as well as the timestamps
476 * when each were last updated. Since these are
477 * all done using non-atomic racy mechanisms, the
478 * most we can infer is whether values are stable.
479 * timer_grab() is the only function that can be
480 * used reliably on another processor's per-processor
481 * data.
482 */
483
484 if (*count < PROCESSOR_CPU_LOAD_INFO_COUNT)
485 return (KERN_FAILURE);
486
487 cpu_load_info = (processor_cpu_load_info_t) info;
488 if (precise_user_kernel_time) {
489 cpu_load_info->cpu_ticks[CPU_STATE_USER] =
490 (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, user_state)) / hz_tick_interval);
491 cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] =
492 (uint32_t)(timer_grab(&PROCESSOR_DATA(processor, system_state)) / hz_tick_interval);
493 } else {
494 uint64_t tval = timer_grab(&PROCESSOR_DATA(processor, user_state)) +
495 timer_grab(&PROCESSOR_DATA(processor, system_state));
496
497 cpu_load_info->cpu_ticks[CPU_STATE_USER] = (uint32_t)(tval / hz_tick_interval);
498 cpu_load_info->cpu_ticks[CPU_STATE_SYSTEM] = 0;
499 }
500
501 idle_state = &PROCESSOR_DATA(processor, idle_state);
502 idle_time_snapshot1 = timer_grab(idle_state);
503 idle_time_tstamp1 = idle_state->tstamp;
504
505 /*
506 * Idle processors are not continually updating their
507 * per-processor idle timer, so it may be extremely
508 * out of date, resulting in an over-representation
509 * of non-idle time between two measurement
510 * intervals by e.g. top(1). If we are non-idle, or
511 * have evidence that the timer is being updated
512 * concurrently, we consider its value up-to-date.
513 */
514 if (PROCESSOR_DATA(processor, current_state) != idle_state) {
515 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
516 (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
517 } else if ((idle_time_snapshot1 != (idle_time_snapshot2 = timer_grab(idle_state))) ||
518 (idle_time_tstamp1 != (idle_time_tstamp2 = idle_state->tstamp))){
519 /* Idle timer is being updated concurrently, second stamp is good enough */
520 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
521 (uint32_t)(idle_time_snapshot2 / hz_tick_interval);
522 } else {
523 /*
524 * Idle timer may be very stale. Fortunately we have established
525 * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
526 */
527 idle_time_snapshot1 += mach_absolute_time() - idle_time_tstamp1;
528
529 cpu_load_info->cpu_ticks[CPU_STATE_IDLE] =
530 (uint32_t)(idle_time_snapshot1 / hz_tick_interval);
531 }
532
533 cpu_load_info->cpu_ticks[CPU_STATE_NICE] = 0;
534
535 *count = PROCESSOR_CPU_LOAD_INFO_COUNT;
536 *host = &realhost;
537
538 return (KERN_SUCCESS);
539 }
540
541 default:
542 result = cpu_info(flavor, cpu_id, info, count);
543 if (result == KERN_SUCCESS)
544 *host = &realhost;
545
546 return (result);
547 }
548 }
549
550 kern_return_t
551 processor_start(
552 processor_t processor)
553 {
554 processor_set_t pset;
555 thread_t thread;
556 kern_return_t result;
557 spl_t s;
558
559 if (processor == PROCESSOR_NULL || processor->processor_set == PROCESSOR_SET_NULL)
560 return (KERN_INVALID_ARGUMENT);
561
562 if (processor == master_processor) {
563 processor_t prev;
564
565 prev = thread_bind(processor);
566 thread_block(THREAD_CONTINUE_NULL);
567
568 result = cpu_start(processor->cpu_id);
569
570 thread_bind(prev);
571
572 return (result);
573 }
574
575 s = splsched();
576 pset = processor->processor_set;
577 pset_lock(pset);
578 if (processor->state != PROCESSOR_OFF_LINE) {
579 pset_unlock(pset);
580 splx(s);
581
582 return (KERN_FAILURE);
583 }
584
585 pset_update_processor_state(pset, processor, PROCESSOR_START);
586 pset_unlock(pset);
587 splx(s);
588
589 /*
590 * Create the idle processor thread.
591 */
592 if (processor->idle_thread == THREAD_NULL) {
593 result = idle_thread_create(processor);
594 if (result != KERN_SUCCESS) {
595 s = splsched();
596 pset_lock(pset);
597 pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
598 pset_unlock(pset);
599 splx(s);
600
601 return (result);
602 }
603 }
604
605 /*
606 * If there is no active thread, the processor
607 * has never been started. Create a dedicated
608 * start up thread.
609 */
610 if ( processor->active_thread == THREAD_NULL &&
611 processor->next_thread == THREAD_NULL ) {
612 result = kernel_thread_create((thread_continue_t)processor_start_thread, NULL, MAXPRI_KERNEL, &thread);
613 if (result != KERN_SUCCESS) {
614 s = splsched();
615 pset_lock(pset);
616 pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
617 pset_unlock(pset);
618 splx(s);
619
620 return (result);
621 }
622
623 s = splsched();
624 thread_lock(thread);
625 thread->bound_processor = processor;
626 processor->next_thread = thread;
627 thread->state = TH_RUN;
628 thread->last_made_runnable_time = mach_absolute_time();
629 thread_unlock(thread);
630 splx(s);
631
632 thread_deallocate(thread);
633 }
634
635 if (processor->processor_self == IP_NULL)
636 ipc_processor_init(processor);
637
638 result = cpu_start(processor->cpu_id);
639 if (result != KERN_SUCCESS) {
640 s = splsched();
641 pset_lock(pset);
642 pset_update_processor_state(pset, processor, PROCESSOR_OFF_LINE);
643 pset_unlock(pset);
644 splx(s);
645
646 return (result);
647 }
648
649 ipc_processor_enable(processor);
650
651 return (KERN_SUCCESS);
652 }
653
654 kern_return_t
655 processor_exit(
656 processor_t processor)
657 {
658 if (processor == PROCESSOR_NULL)
659 return(KERN_INVALID_ARGUMENT);
660
661 return(processor_shutdown(processor));
662 }
663
664 kern_return_t
665 processor_control(
666 processor_t processor,
667 processor_info_t info,
668 mach_msg_type_number_t count)
669 {
670 if (processor == PROCESSOR_NULL)
671 return(KERN_INVALID_ARGUMENT);
672
673 return(cpu_control(processor->cpu_id, info, count));
674 }
675
676 kern_return_t
677 processor_set_create(
678 __unused host_t host,
679 __unused processor_set_t *new_set,
680 __unused processor_set_t *new_name)
681 {
682 return(KERN_FAILURE);
683 }
684
685 kern_return_t
686 processor_set_destroy(
687 __unused processor_set_t pset)
688 {
689 return(KERN_FAILURE);
690 }
691
692 kern_return_t
693 processor_get_assignment(
694 processor_t processor,
695 processor_set_t *pset)
696 {
697 int state;
698
699 if (processor == PROCESSOR_NULL)
700 return(KERN_INVALID_ARGUMENT);
701
702 state = processor->state;
703 if (state == PROCESSOR_SHUTDOWN || state == PROCESSOR_OFF_LINE)
704 return(KERN_FAILURE);
705
706 *pset = &pset0;
707
708 return(KERN_SUCCESS);
709 }
710
711 kern_return_t
712 processor_set_info(
713 processor_set_t pset,
714 int flavor,
715 host_t *host,
716 processor_set_info_t info,
717 mach_msg_type_number_t *count)
718 {
719 if (pset == PROCESSOR_SET_NULL)
720 return(KERN_INVALID_ARGUMENT);
721
722 if (flavor == PROCESSOR_SET_BASIC_INFO) {
723 processor_set_basic_info_t basic_info;
724
725 if (*count < PROCESSOR_SET_BASIC_INFO_COUNT)
726 return(KERN_FAILURE);
727
728 basic_info = (processor_set_basic_info_t) info;
729 basic_info->processor_count = processor_avail_count;
730 basic_info->default_policy = POLICY_TIMESHARE;
731
732 *count = PROCESSOR_SET_BASIC_INFO_COUNT;
733 *host = &realhost;
734 return(KERN_SUCCESS);
735 }
736 else if (flavor == PROCESSOR_SET_TIMESHARE_DEFAULT) {
737 policy_timeshare_base_t ts_base;
738
739 if (*count < POLICY_TIMESHARE_BASE_COUNT)
740 return(KERN_FAILURE);
741
742 ts_base = (policy_timeshare_base_t) info;
743 ts_base->base_priority = BASEPRI_DEFAULT;
744
745 *count = POLICY_TIMESHARE_BASE_COUNT;
746 *host = &realhost;
747 return(KERN_SUCCESS);
748 }
749 else if (flavor == PROCESSOR_SET_FIFO_DEFAULT) {
750 policy_fifo_base_t fifo_base;
751
752 if (*count < POLICY_FIFO_BASE_COUNT)
753 return(KERN_FAILURE);
754
755 fifo_base = (policy_fifo_base_t) info;
756 fifo_base->base_priority = BASEPRI_DEFAULT;
757
758 *count = POLICY_FIFO_BASE_COUNT;
759 *host = &realhost;
760 return(KERN_SUCCESS);
761 }
762 else if (flavor == PROCESSOR_SET_RR_DEFAULT) {
763 policy_rr_base_t rr_base;
764
765 if (*count < POLICY_RR_BASE_COUNT)
766 return(KERN_FAILURE);
767
768 rr_base = (policy_rr_base_t) info;
769 rr_base->base_priority = BASEPRI_DEFAULT;
770 rr_base->quantum = 1;
771
772 *count = POLICY_RR_BASE_COUNT;
773 *host = &realhost;
774 return(KERN_SUCCESS);
775 }
776 else if (flavor == PROCESSOR_SET_TIMESHARE_LIMITS) {
777 policy_timeshare_limit_t ts_limit;
778
779 if (*count < POLICY_TIMESHARE_LIMIT_COUNT)
780 return(KERN_FAILURE);
781
782 ts_limit = (policy_timeshare_limit_t) info;
783 ts_limit->max_priority = MAXPRI_KERNEL;
784
785 *count = POLICY_TIMESHARE_LIMIT_COUNT;
786 *host = &realhost;
787 return(KERN_SUCCESS);
788 }
789 else if (flavor == PROCESSOR_SET_FIFO_LIMITS) {
790 policy_fifo_limit_t fifo_limit;
791
792 if (*count < POLICY_FIFO_LIMIT_COUNT)
793 return(KERN_FAILURE);
794
795 fifo_limit = (policy_fifo_limit_t) info;
796 fifo_limit->max_priority = MAXPRI_KERNEL;
797
798 *count = POLICY_FIFO_LIMIT_COUNT;
799 *host = &realhost;
800 return(KERN_SUCCESS);
801 }
802 else if (flavor == PROCESSOR_SET_RR_LIMITS) {
803 policy_rr_limit_t rr_limit;
804
805 if (*count < POLICY_RR_LIMIT_COUNT)
806 return(KERN_FAILURE);
807
808 rr_limit = (policy_rr_limit_t) info;
809 rr_limit->max_priority = MAXPRI_KERNEL;
810
811 *count = POLICY_RR_LIMIT_COUNT;
812 *host = &realhost;
813 return(KERN_SUCCESS);
814 }
815 else if (flavor == PROCESSOR_SET_ENABLED_POLICIES) {
816 int *enabled;
817
818 if (*count < (sizeof(*enabled)/sizeof(int)))
819 return(KERN_FAILURE);
820
821 enabled = (int *) info;
822 *enabled = POLICY_TIMESHARE | POLICY_RR | POLICY_FIFO;
823
824 *count = sizeof(*enabled)/sizeof(int);
825 *host = &realhost;
826 return(KERN_SUCCESS);
827 }
828
829
830 *host = HOST_NULL;
831 return(KERN_INVALID_ARGUMENT);
832 }
833
834 /*
835 * processor_set_statistics
836 *
837 * Returns scheduling statistics for a processor set.
838 */
839 kern_return_t
840 processor_set_statistics(
841 processor_set_t pset,
842 int flavor,
843 processor_set_info_t info,
844 mach_msg_type_number_t *count)
845 {
846 if (pset == PROCESSOR_SET_NULL || pset != &pset0)
847 return (KERN_INVALID_PROCESSOR_SET);
848
849 if (flavor == PROCESSOR_SET_LOAD_INFO) {
850 processor_set_load_info_t load_info;
851
852 if (*count < PROCESSOR_SET_LOAD_INFO_COUNT)
853 return(KERN_FAILURE);
854
855 load_info = (processor_set_load_info_t) info;
856
857 load_info->mach_factor = sched_mach_factor;
858 load_info->load_average = sched_load_average;
859
860 load_info->task_count = tasks_count;
861 load_info->thread_count = threads_count;
862
863 *count = PROCESSOR_SET_LOAD_INFO_COUNT;
864 return(KERN_SUCCESS);
865 }
866
867 return(KERN_INVALID_ARGUMENT);
868 }
869
870 /*
871 * processor_set_max_priority:
872 *
873 * Specify max priority permitted on processor set. This affects
874 * newly created and assigned threads. Optionally change existing
875 * ones.
876 */
877 kern_return_t
878 processor_set_max_priority(
879 __unused processor_set_t pset,
880 __unused int max_priority,
881 __unused boolean_t change_threads)
882 {
883 return (KERN_INVALID_ARGUMENT);
884 }
885
886 /*
887 * processor_set_policy_enable:
888 *
889 * Allow indicated policy on processor set.
890 */
891
892 kern_return_t
893 processor_set_policy_enable(
894 __unused processor_set_t pset,
895 __unused int policy)
896 {
897 return (KERN_INVALID_ARGUMENT);
898 }
899
900 /*
901 * processor_set_policy_disable:
902 *
903 * Forbid indicated policy on processor set. Time sharing cannot
904 * be forbidden.
905 */
906 kern_return_t
907 processor_set_policy_disable(
908 __unused processor_set_t pset,
909 __unused int policy,
910 __unused boolean_t change_threads)
911 {
912 return (KERN_INVALID_ARGUMENT);
913 }
914
915 /*
916 * processor_set_things:
917 *
918 * Common internals for processor_set_{threads,tasks}
919 */
920 kern_return_t
921 processor_set_things(
922 processor_set_t pset,
923 void **thing_list,
924 mach_msg_type_number_t *count,
925 int type)
926 {
927 unsigned int i;
928 task_t task;
929 thread_t thread;
930
931 task_t *task_list;
932 unsigned int actual_tasks;
933 vm_size_t task_size, task_size_needed;
934
935 thread_t *thread_list;
936 unsigned int actual_threads;
937 vm_size_t thread_size, thread_size_needed;
938
939 void *addr, *newaddr;
940 vm_size_t size, size_needed;
941
942 if (pset == PROCESSOR_SET_NULL || pset != &pset0)
943 return (KERN_INVALID_ARGUMENT);
944
945 task_size = 0;
946 task_size_needed = 0;
947 task_list = NULL;
948 actual_tasks = 0;
949
950 thread_size = 0;
951 thread_size_needed = 0;
952 thread_list = NULL;
953 actual_threads = 0;
954
955 for (;;) {
956 lck_mtx_lock(&tasks_threads_lock);
957
958 /* do we have the memory we need? */
959 if (type == PSET_THING_THREAD)
960 thread_size_needed = threads_count * sizeof(void *);
961 #if !CONFIG_MACF
962 else
963 #endif
964 task_size_needed = tasks_count * sizeof(void *);
965
966 if (task_size_needed <= task_size &&
967 thread_size_needed <= thread_size)
968 break;
969
970 /* unlock and allocate more memory */
971 lck_mtx_unlock(&tasks_threads_lock);
972
973 /* grow task array */
974 if (task_size_needed > task_size) {
975 if (task_size != 0)
976 kfree(task_list, task_size);
977
978 assert(task_size_needed > 0);
979 task_size = task_size_needed;
980
981 task_list = (task_t *)kalloc(task_size);
982 if (task_list == NULL) {
983 if (thread_size != 0)
984 kfree(thread_list, thread_size);
985 return (KERN_RESOURCE_SHORTAGE);
986 }
987 }
988
989 /* grow thread array */
990 if (thread_size_needed > thread_size) {
991 if (thread_size != 0)
992 kfree(thread_list, thread_size);
993
994 assert(thread_size_needed > 0);
995 thread_size = thread_size_needed;
996
997 thread_list = (thread_t *)kalloc(thread_size);
998 if (thread_list == 0) {
999 if (task_size != 0)
1000 kfree(task_list, task_size);
1001 return (KERN_RESOURCE_SHORTAGE);
1002 }
1003 }
1004 }
1005
1006 /* OK, have memory and the list locked */
1007
1008 /* If we need it, get the thread list */
1009 if (type == PSET_THING_THREAD) {
1010 for (thread = (thread_t)queue_first(&threads);
1011 !queue_end(&threads, (queue_entry_t)thread);
1012 thread = (thread_t)queue_next(&thread->threads)) {
1013 #if defined(SECURE_KERNEL)
1014 if (thread->task != kernel_task) {
1015 #endif
1016 thread_reference_internal(thread);
1017 thread_list[actual_threads++] = thread;
1018 #if defined(SECURE_KERNEL)
1019 }
1020 #endif
1021 }
1022 }
1023 #if !CONFIG_MACF
1024 else {
1025 #endif
1026 /* get a list of the tasks */
1027 for (task = (task_t)queue_first(&tasks);
1028 !queue_end(&tasks, (queue_entry_t)task);
1029 task = (task_t)queue_next(&task->tasks)) {
1030 #if defined(SECURE_KERNEL)
1031 if (task != kernel_task) {
1032 #endif
1033 task_reference_internal(task);
1034 task_list[actual_tasks++] = task;
1035 #if defined(SECURE_KERNEL)
1036 }
1037 #endif
1038 }
1039 #if !CONFIG_MACF
1040 }
1041 #endif
1042
1043 lck_mtx_unlock(&tasks_threads_lock);
1044
1045 #if CONFIG_MACF
1046 unsigned int j, used;
1047
1048 /* for each task, make sure we are allowed to examine it */
1049 for (i = used = 0; i < actual_tasks; i++) {
1050 if (mac_task_check_expose_task(task_list[i])) {
1051 task_deallocate(task_list[i]);
1052 continue;
1053 }
1054 task_list[used++] = task_list[i];
1055 }
1056 actual_tasks = used;
1057 task_size_needed = actual_tasks * sizeof(void *);
1058
1059 if (type == PSET_THING_THREAD) {
1060
1061 /* for each thread (if any), make sure it's task is in the allowed list */
1062 for (i = used = 0; i < actual_threads; i++) {
1063 boolean_t found_task = FALSE;
1064
1065 task = thread_list[i]->task;
1066 for (j = 0; j < actual_tasks; j++) {
1067 if (task_list[j] == task) {
1068 found_task = TRUE;
1069 break;
1070 }
1071 }
1072 if (found_task)
1073 thread_list[used++] = thread_list[i];
1074 else
1075 thread_deallocate(thread_list[i]);
1076 }
1077 actual_threads = used;
1078 thread_size_needed = actual_threads * sizeof(void *);
1079
1080 /* done with the task list */
1081 for (i = 0; i < actual_tasks; i++)
1082 task_deallocate(task_list[i]);
1083 kfree(task_list, task_size);
1084 task_size = 0;
1085 actual_tasks = 0;
1086 task_list = NULL;
1087 }
1088 #endif
1089
1090 if (type == PSET_THING_THREAD) {
1091 if (actual_threads == 0) {
1092 /* no threads available to return */
1093 assert(task_size == 0);
1094 if (thread_size != 0)
1095 kfree(thread_list, thread_size);
1096 *thing_list = NULL;
1097 *count = 0;
1098 return KERN_SUCCESS;
1099 }
1100 size_needed = actual_threads * sizeof(void *);
1101 size = thread_size;
1102 addr = thread_list;
1103 } else {
1104 if (actual_tasks == 0) {
1105 /* no tasks available to return */
1106 assert(thread_size == 0);
1107 if (task_size != 0)
1108 kfree(task_list, task_size);
1109 *thing_list = NULL;
1110 *count = 0;
1111 return KERN_SUCCESS;
1112 }
1113 size_needed = actual_tasks * sizeof(void *);
1114 size = task_size;
1115 addr = task_list;
1116 }
1117
1118 /* if we allocated too much, must copy */
1119 if (size_needed < size) {
1120 newaddr = kalloc(size_needed);
1121 if (newaddr == 0) {
1122 for (i = 0; i < actual_tasks; i++) {
1123 if (type == PSET_THING_THREAD)
1124 thread_deallocate(thread_list[i]);
1125 else
1126 task_deallocate(task_list[i]);
1127 }
1128 if (size)
1129 kfree(addr, size);
1130 return (KERN_RESOURCE_SHORTAGE);
1131 }
1132
1133 bcopy((void *) addr, (void *) newaddr, size_needed);
1134 kfree(addr, size);
1135
1136 addr = newaddr;
1137 size = size_needed;
1138 }
1139
1140 *thing_list = (void **)addr;
1141 *count = (unsigned int)size / sizeof(void *);
1142
1143 return (KERN_SUCCESS);
1144 }
1145
1146
1147 /*
1148 * processor_set_tasks:
1149 *
1150 * List all tasks in the processor set.
1151 */
1152 kern_return_t
1153 processor_set_tasks(
1154 processor_set_t pset,
1155 task_array_t *task_list,
1156 mach_msg_type_number_t *count)
1157 {
1158 kern_return_t ret;
1159 mach_msg_type_number_t i;
1160
1161 ret = processor_set_things(pset, (void **)task_list, count, PSET_THING_TASK);
1162 if (ret != KERN_SUCCESS)
1163 return ret;
1164
1165 /* do the conversion that Mig should handle */
1166 for (i = 0; i < *count; i++)
1167 (*task_list)[i] = (task_t)convert_task_to_port((*task_list)[i]);
1168 return KERN_SUCCESS;
1169 }
1170
1171 /*
1172 * processor_set_threads:
1173 *
1174 * List all threads in the processor set.
1175 */
1176 #if defined(SECURE_KERNEL)
1177 kern_return_t
1178 processor_set_threads(
1179 __unused processor_set_t pset,
1180 __unused thread_array_t *thread_list,
1181 __unused mach_msg_type_number_t *count)
1182 {
1183 return KERN_FAILURE;
1184 }
1185 #elif defined(CONFIG_EMBEDDED)
1186 kern_return_t
1187 processor_set_threads(
1188 __unused processor_set_t pset,
1189 __unused thread_array_t *thread_list,
1190 __unused mach_msg_type_number_t *count)
1191 {
1192 return KERN_NOT_SUPPORTED;
1193 }
1194 #else
1195 kern_return_t
1196 processor_set_threads(
1197 processor_set_t pset,
1198 thread_array_t *thread_list,
1199 mach_msg_type_number_t *count)
1200 {
1201 kern_return_t ret;
1202 mach_msg_type_number_t i;
1203
1204 ret = processor_set_things(pset, (void **)thread_list, count, PSET_THING_THREAD);
1205 if (ret != KERN_SUCCESS)
1206 return ret;
1207
1208 /* do the conversion that Mig should handle */
1209 for (i = 0; i < *count; i++)
1210 (*thread_list)[i] = (thread_t)convert_thread_to_port((*thread_list)[i]);
1211 return KERN_SUCCESS;
1212 }
1213 #endif
1214
1215 /*
1216 * processor_set_policy_control
1217 *
1218 * Controls the scheduling attributes governing the processor set.
1219 * Allows control of enabled policies, and per-policy base and limit
1220 * priorities.
1221 */
1222 kern_return_t
1223 processor_set_policy_control(
1224 __unused processor_set_t pset,
1225 __unused int flavor,
1226 __unused processor_set_info_t policy_info,
1227 __unused mach_msg_type_number_t count,
1228 __unused boolean_t change)
1229 {
1230 return (KERN_INVALID_ARGUMENT);
1231 }
1232
1233 #undef pset_deallocate
1234 void pset_deallocate(processor_set_t pset);
1235 void
1236 pset_deallocate(
1237 __unused processor_set_t pset)
1238 {
1239 return;
1240 }
1241
1242 #undef pset_reference
1243 void pset_reference(processor_set_t pset);
1244 void
1245 pset_reference(
1246 __unused processor_set_t pset)
1247 {
1248 return;
1249 }
1250
1251 pset_cluster_type_t
1252 recommended_pset_type(thread_t thread)
1253 {
1254 (void)thread;
1255 return PSET_SMP;
1256 }