]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/i386_timer.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / osfmk / i386 / i386_timer.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34 /*
35 * File: timer.c
36 * Purpose: Routines for handling the machine independent timer.
37 */
38
39 #include <mach/mach_types.h>
40
41 #include <kern/timer_queue.h>
42 #include <kern/timer_call.h>
43 #include <kern/clock.h>
44 #include <kern/thread.h>
45 #include <kern/processor.h>
46 #include <kern/macro_help.h>
47 #include <kern/spl.h>
48 #include <kern/timer_queue.h>
49 #include <kern/pms.h>
50
51 #include <machine/commpage.h>
52 #include <machine/machine_routines.h>
53
54 #include <sys/kdebug.h>
55 #include <i386/cpu_data.h>
56 #include <i386/cpu_topology.h>
57 #include <i386/cpu_threads.h>
58
59 uint32_t spurious_timers;
60
61 /*
62 * Event timer interrupt.
63 *
64 * XXX a drawback of this implementation is that events serviced earlier must not set deadlines
65 * that occur before the entire chain completes.
66 *
67 * XXX a better implementation would use a set of generic callouts and iterate over them
68 */
69 void
70 timer_intr(int user_mode,
71 uint64_t rip)
72 {
73 uint64_t abstime;
74 rtclock_timer_t *mytimer;
75 cpu_data_t *pp;
76 int64_t latency;
77 uint64_t pmdeadline;
78 boolean_t timer_processed = FALSE;
79
80 pp = current_cpu_datap();
81
82 SCHED_STATS_TIMER_POP(current_processor());
83
84 abstime = mach_absolute_time(); /* Get the time now */
85
86 /* has a pending clock timer expired? */
87 mytimer = &pp->rtclock_timer; /* Point to the event timer */
88
89 if ((timer_processed = ((mytimer->deadline <= abstime) ||
90 (abstime >= (mytimer->queue.earliest_soft_deadline))))) {
91 /*
92 * Log interrupt service latency (-ve value expected by tool)
93 * a non-PM event is expected next.
94 * The requested deadline may be earlier than when it was set
95 * - use MAX to avoid reporting bogus latencies.
96 */
97 latency = (int64_t) (abstime - MAX(mytimer->deadline,
98 mytimer->when_set));
99 /* Log zero timer latencies when opportunistically processing
100 * coalesced timers.
101 */
102 if (latency < 0) {
103 TCOAL_DEBUG(0xEEEE0000, abstime, mytimer->queue.earliest_soft_deadline, abstime - mytimer->queue.earliest_soft_deadline, 0, 0);
104 latency = 0;
105 }
106
107 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
108 DECR_TRAP_LATENCY | DBG_FUNC_NONE,
109 -latency,
110 ((user_mode != 0) ? rip : VM_KERNEL_UNSLIDE(rip)),
111 user_mode, 0, 0);
112
113 mytimer->has_expired = TRUE; /* Remember that we popped */
114 mytimer->deadline = timer_queue_expire(&mytimer->queue, abstime);
115 mytimer->has_expired = FALSE;
116
117 /* Get the time again since we ran a bit */
118 abstime = mach_absolute_time();
119 mytimer->when_set = abstime;
120 }
121
122 /* is it time for power management state change? */
123 if ((pmdeadline = pmCPUGetDeadline(pp)) && (pmdeadline <= abstime)) {
124 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
125 DECR_PM_DEADLINE | DBG_FUNC_START,
126 0, 0, 0, 0, 0);
127 pmCPUDeadline(pp);
128 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
129 DECR_PM_DEADLINE | DBG_FUNC_END,
130 0, 0, 0, 0, 0);
131 timer_processed = TRUE;
132 abstime = mach_absolute_time(); /* Get the time again since we ran a bit */
133 }
134
135 uint64_t quantum_deadline = pp->quantum_timer_deadline;
136 /* is it the quantum timer expiration? */
137 if ((quantum_deadline <= abstime) && (quantum_deadline > 0)) {
138 pp->quantum_timer_deadline = 0;
139 quantum_timer_expire(abstime);
140 }
141
142 /* schedule our next deadline */
143 x86_lcpu()->rtcDeadline = EndOfAllTime;
144 timer_resync_deadlines();
145
146 if (__improbable(timer_processed == FALSE))
147 spurious_timers++;
148 }
149
150 /*
151 * Set the clock deadline.
152 */
153 void timer_set_deadline(uint64_t deadline)
154 {
155 rtclock_timer_t *mytimer;
156 spl_t s;
157 cpu_data_t *pp;
158
159 s = splclock(); /* no interruptions */
160 pp = current_cpu_datap();
161
162 mytimer = &pp->rtclock_timer; /* Point to the timer itself */
163 mytimer->deadline = deadline; /* Set new expiration time */
164 mytimer->when_set = mach_absolute_time();
165
166 timer_resync_deadlines();
167
168 splx(s);
169 }
170
171 void
172 quantum_timer_set_deadline(uint64_t deadline)
173 {
174 cpu_data_t *pp;
175 /* We should've only come into this path with interrupts disabled */
176 assert(ml_get_interrupts_enabled() == FALSE);
177
178 pp = current_cpu_datap();
179 pp->quantum_timer_deadline = deadline;
180 timer_resync_deadlines();
181 }
182
183 /*
184 * Re-evaluate the outstanding deadlines and select the most proximate.
185 *
186 * Should be called at splclock.
187 */
188 void
189 timer_resync_deadlines(void)
190 {
191 uint64_t deadline = EndOfAllTime;
192 uint64_t pmdeadline;
193 uint64_t quantum_deadline;
194 rtclock_timer_t *mytimer;
195 spl_t s = splclock();
196 cpu_data_t *pp;
197 uint32_t decr;
198
199 pp = current_cpu_datap();
200 if (!pp->cpu_running)
201 /* There's really nothing to do if this processor is down */
202 return;
203
204 /*
205 * If we have a clock timer set, pick that.
206 */
207 mytimer = &pp->rtclock_timer;
208 if (!mytimer->has_expired &&
209 0 < mytimer->deadline && mytimer->deadline < EndOfAllTime)
210 deadline = mytimer->deadline;
211
212 /*
213 * If we have a power management deadline, see if that's earlier.
214 */
215 pmdeadline = pmCPUGetDeadline(pp);
216 if (0 < pmdeadline && pmdeadline < deadline)
217 deadline = pmdeadline;
218
219 /* If we have the quantum timer setup, check that */
220 quantum_deadline = pp->quantum_timer_deadline;
221 if ((quantum_deadline > 0) &&
222 (quantum_deadline < deadline))
223 deadline = quantum_deadline;
224
225
226 /*
227 * Go and set the "pop" event.
228 */
229 decr = (uint32_t) setPop(deadline);
230
231 /* Record non-PM deadline for latency tool */
232 if (decr != 0 && deadline != pmdeadline) {
233 uint64_t queue_count = 0;
234 if (deadline != quantum_deadline) {
235 /*
236 * For non-quantum timer put the queue count
237 * in the tracepoint.
238 */
239 queue_count = mytimer->queue.count;
240 }
241 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
242 DECR_SET_DEADLINE | DBG_FUNC_NONE,
243 decr, 2,
244 deadline,
245 queue_count, 0);
246 }
247 splx(s);
248 }
249
250 void
251 timer_queue_expire_local(
252 __unused void *arg)
253 {
254 rtclock_timer_t *mytimer;
255 uint64_t abstime;
256 cpu_data_t *pp;
257
258 pp = current_cpu_datap();
259
260 mytimer = &pp->rtclock_timer;
261 abstime = mach_absolute_time();
262
263 mytimer->has_expired = TRUE;
264 mytimer->deadline = timer_queue_expire(&mytimer->queue, abstime);
265 mytimer->has_expired = FALSE;
266 mytimer->when_set = mach_absolute_time();
267
268 timer_resync_deadlines();
269 }
270
271 void
272 timer_queue_expire_rescan(
273 __unused void *arg)
274 {
275 rtclock_timer_t *mytimer;
276 uint64_t abstime;
277 cpu_data_t *pp;
278
279 assert(ml_get_interrupts_enabled() == FALSE);
280 pp = current_cpu_datap();
281
282 mytimer = &pp->rtclock_timer;
283 abstime = mach_absolute_time();
284
285 mytimer->has_expired = TRUE;
286 mytimer->deadline = timer_queue_expire_with_options(&mytimer->queue, abstime, TRUE);
287 mytimer->has_expired = FALSE;
288 mytimer->when_set = mach_absolute_time();
289
290 timer_resync_deadlines();
291 }
292
293 #define TIMER_RESORT_THRESHOLD_ABSTIME (50 * NSEC_PER_MSEC)
294
295 #if TCOAL_PRIO_STATS
296 int32_t nc_tcl, rt_tcl, bg_tcl, kt_tcl, fp_tcl, ts_tcl, qos_tcl;
297 #define TCOAL_PRIO_STAT(x) (x++)
298 #else
299 #define TCOAL_PRIO_STAT(x)
300 #endif
301
302 boolean_t
303 timer_resort_threshold(uint64_t skew) {
304 if (skew >= TIMER_RESORT_THRESHOLD_ABSTIME)
305 return TRUE;
306 else
307 return FALSE;
308 }
309
310 /*
311 * Return the local timer queue for a running processor
312 * else return the boot processor's timer queue.
313 */
314 mpqueue_head_t *
315 timer_queue_assign(
316 uint64_t deadline)
317 {
318 cpu_data_t *cdp = current_cpu_datap();
319 mpqueue_head_t *queue;
320
321 if (cdp->cpu_running) {
322 queue = &cdp->rtclock_timer.queue;
323
324 if (deadline < cdp->rtclock_timer.deadline)
325 timer_set_deadline(deadline);
326 }
327 else
328 queue = &cpu_datap(master_cpu)->rtclock_timer.queue;
329
330 return (queue);
331 }
332
333 void
334 timer_queue_cancel(
335 mpqueue_head_t *queue,
336 uint64_t deadline,
337 uint64_t new_deadline)
338 {
339 if (queue == &current_cpu_datap()->rtclock_timer.queue) {
340 if (deadline < new_deadline)
341 timer_set_deadline(new_deadline);
342 }
343 }
344
345 /*
346 * timer_queue_migrate_cpu() is called from the Power-Management kext
347 * when a logical processor goes idle (in a deep C-state) with a distant
348 * deadline so that it's timer queue can be moved to another processor.
349 * This target processor should be the least idle (most busy) --
350 * currently this is the primary processor for the calling thread's package.
351 * Locking restrictions demand that the target cpu must be the boot cpu.
352 */
353 uint32_t
354 timer_queue_migrate_cpu(int target_cpu)
355 {
356 cpu_data_t *target_cdp = cpu_datap(target_cpu);
357 cpu_data_t *cdp = current_cpu_datap();
358 int ntimers_moved;
359
360 assert(!ml_get_interrupts_enabled());
361 assert(target_cpu != cdp->cpu_number);
362 assert(target_cpu == master_cpu);
363
364 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
365 DECR_TIMER_MIGRATE | DBG_FUNC_START,
366 target_cpu,
367 cdp->rtclock_timer.deadline, (cdp->rtclock_timer.deadline >>32),
368 0, 0);
369
370 /*
371 * Move timer requests from the local queue to the target processor's.
372 * The return value is the number of requests moved. If this is 0,
373 * it indicates that the first (i.e. earliest) timer is earlier than
374 * the earliest for the target processor. Since this would force a
375 * resync, the move of this and all later requests is aborted.
376 */
377 ntimers_moved = timer_queue_migrate(&cdp->rtclock_timer.queue,
378 &target_cdp->rtclock_timer.queue);
379
380 /*
381 * Assuming we moved stuff, clear local deadline.
382 */
383 if (ntimers_moved > 0) {
384 cdp->rtclock_timer.deadline = EndOfAllTime;
385 setPop(EndOfAllTime);
386 }
387
388 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
389 DECR_TIMER_MIGRATE | DBG_FUNC_END,
390 target_cpu, ntimers_moved, 0, 0, 0);
391
392 return ntimers_moved;
393 }
394
395 mpqueue_head_t *
396 timer_queue_cpu(int cpu)
397 {
398 return &cpu_datap(cpu)->rtclock_timer.queue;
399 }
400
401 void
402 timer_call_cpu(int cpu, void (*fn)(void *), void *arg)
403 {
404 mp_cpus_call(cpu_to_cpumask(cpu), SYNC, fn, arg);
405 }
406
407 void
408 timer_call_nosync_cpu(int cpu, void (*fn)(void *), void *arg)
409 {
410 /* XXX Needs error checking and retry */
411 mp_cpus_call(cpu_to_cpumask(cpu), NOSYNC, fn, arg);
412 }
413
414
415 static timer_coalescing_priority_params_ns_t tcoal_prio_params_init =
416 {
417 .idle_entry_timer_processing_hdeadline_threshold_ns = 5000ULL * NSEC_PER_USEC,
418 .interrupt_timer_coalescing_ilat_threshold_ns = 30ULL * NSEC_PER_USEC,
419 .timer_resort_threshold_ns = 50 * NSEC_PER_MSEC,
420 .timer_coalesce_rt_shift = 0,
421 .timer_coalesce_bg_shift = -5,
422 .timer_coalesce_kt_shift = 3,
423 .timer_coalesce_fp_shift = 3,
424 .timer_coalesce_ts_shift = 3,
425 .timer_coalesce_rt_ns_max = 0ULL,
426 .timer_coalesce_bg_ns_max = 100 * NSEC_PER_MSEC,
427 .timer_coalesce_kt_ns_max = 1 * NSEC_PER_MSEC,
428 .timer_coalesce_fp_ns_max = 1 * NSEC_PER_MSEC,
429 .timer_coalesce_ts_ns_max = 1 * NSEC_PER_MSEC,
430 .latency_qos_scale = {3, 2, 1, -2, -15, -15},
431 .latency_qos_ns_max ={1 * NSEC_PER_MSEC, 5 * NSEC_PER_MSEC, 20 * NSEC_PER_MSEC,
432 75 * NSEC_PER_MSEC, 10000 * NSEC_PER_MSEC, 10000 * NSEC_PER_MSEC},
433 .latency_tier_rate_limited = {FALSE, FALSE, FALSE, FALSE, TRUE, TRUE},
434 };
435
436 timer_coalescing_priority_params_ns_t * timer_call_get_priority_params(void)
437 {
438 return &tcoal_prio_params_init;
439 }