]>
git.saurik.com Git - apple/xnu.git/blob - libkern/zlib/z_crc32.c
2 * Copyright (c) 2008-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* crc32.c -- compute the CRC-32 of a data stream
29 * Copyright (C) 1995-2005 Mark Adler
30 * For conditions of distribution and use, see copyright notice in zlib.h
32 * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
33 * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
34 * tables for updating the shift register in one step with three exclusive-ors
35 * instead of four steps with four exclusive-ors. This results in about a
36 * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
42 Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
43 protection on the static variables used to control the first-use generation
44 of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
45 first call get_crc_table() to initialize the tables before allowing more than
46 one thread to use crc32().
52 # ifndef DYNAMIC_CRC_TABLE
53 # define DYNAMIC_CRC_TABLE
54 # endif /* !DYNAMIC_CRC_TABLE */
57 #include "zutil.h" /* for STDC and FAR definitions */
61 /* Find a four-byte integer type for crc32_little() and crc32_big(). */
63 # ifdef STDC /* need ANSI C limits.h to determine sizes */
64 # include <machine/limits.h>
66 # if (UINT_MAX == 0xffffffffUL)
67 typedef unsigned int u4
;
69 # if (ULONG_MAX == 0xffffffffUL)
70 typedef unsigned long u4
;
72 # if (USHRT_MAX == 0xffffffffUL)
73 typedef unsigned short u4
;
75 # undef BYFOUR /* can't find a four-byte integer type! */
80 #endif /* !NOBYFOUR */
82 /* Definitions for doing the crc four data bytes at a time. */
84 # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \
85 (((w)&0xff00)<<8)+(((w)&0xff)<<24))
86 local
unsigned long crc32_little
OF((unsigned long,
87 const unsigned char FAR
*, unsigned));
88 local
unsigned long crc32_big
OF((unsigned long,
89 const unsigned char FAR
*, unsigned));
95 /* Local functions for crc concatenation */
96 local
unsigned long gf2_matrix_times
OF((unsigned long *mat
,
98 local
void gf2_matrix_square
OF((unsigned long *square
, unsigned long *mat
));
100 #ifdef DYNAMIC_CRC_TABLE
102 local
volatile int crc_table_empty
= 1;
103 local
unsigned long FAR crc_table
[TBLS
][256];
104 local
void make_crc_table
OF((void));
106 local
void write_table
OF((FILE *, const unsigned long FAR
*));
107 #endif /* MAKECRCH */
109 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
110 x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
112 Polynomials over GF(2) are represented in binary, one bit per coefficient,
113 with the lowest powers in the most significant bit. Then adding polynomials
114 is just exclusive-or, and multiplying a polynomial by x is a right shift by
115 one. If we call the above polynomial p, and represent a byte as the
116 polynomial q, also with the lowest power in the most significant bit (so the
117 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
118 where a mod b means the remainder after dividing a by b.
120 This calculation is done using the shift-register method of multiplying and
121 taking the remainder. The register is initialized to zero, and for each
122 incoming bit, x^32 is added mod p to the register if the bit is a one (where
123 x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
124 x (which is shifting right by one and adding x^32 mod p if the bit shifted
125 out is a one). We start with the highest power (least significant bit) of
126 q and repeat for all eight bits of q.
128 The first table is simply the CRC of all possible eight bit values. This is
129 all the information needed to generate CRCs on data a byte at a time for all
130 combinations of CRC register values and incoming bytes. The remaining tables
131 allow for word-at-a-time CRC calculation for both big-endian and little-
132 endian machines, where a word is four bytes.
139 unsigned long poly
; /* polynomial exclusive-or pattern */
140 /* terms of polynomial defining this crc (except x^32): */
141 static volatile int first
= 1; /* flag to limit concurrent making */
142 static const unsigned char p
[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
144 /* See if another task is already doing this (not thread-safe, but better
145 than nothing -- significantly reduces duration of vulnerability in
146 case the advice about DYNAMIC_CRC_TABLE is ignored) */
150 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
152 for (n
= 0; n
< sizeof(p
)/sizeof(unsigned char); n
++)
153 poly
|= 1UL << (31 - p
[n
]);
155 /* generate a crc for every 8-bit value */
156 for (n
= 0; n
< 256; n
++) {
157 c
= (unsigned long)n
;
158 for (k
= 0; k
< 8; k
++)
159 c
= c
& 1 ? poly
^ (c
>> 1) : c
>> 1;
164 /* generate crc for each value followed by one, two, and three zeros,
165 and then the byte reversal of those as well as the first table */
166 for (n
= 0; n
< 256; n
++) {
168 crc_table
[4][n
] = REV(c
);
169 for (k
= 1; k
< 4; k
++) {
170 c
= crc_table
[0][c
& 0xff] ^ (c
>> 8);
172 crc_table
[k
+ 4][n
] = REV(c
);
179 else { /* not first */
180 /* wait for the other guy to finish (not efficient, but rare) */
181 while (crc_table_empty
)
186 /* write out CRC tables to crc32.h */
190 out
= fopen("crc32.h", "w");
191 if (out
== NULL
) return;
192 fprintf(out
, "/* crc32.h -- tables for rapid CRC calculation\n");
193 fprintf(out
, " * Generated automatically by crc32.c\n */\n\n");
194 fprintf(out
, "local const unsigned long FAR ");
195 fprintf(out
, "crc_table[TBLS][256] =\n{\n {\n");
196 write_table(out
, crc_table
[0]);
198 fprintf(out
, "#ifdef BYFOUR\n");
199 for (k
= 1; k
< 8; k
++) {
200 fprintf(out
, " },\n {\n");
201 write_table(out
, crc_table
[k
]);
203 fprintf(out
, "#endif\n");
205 fprintf(out
, " }\n};\n");
208 #endif /* MAKECRCH */
213 write_table(FILE *out
, const unsigned long FAR
*table
)
217 for (n
= 0; n
< 256; n
++)
218 fprintf(out
, "%s0x%08lxUL%s", n
% 5 ? "" : " ", table
[n
],
219 n
== 255 ? "\n" : (n
% 5 == 4 ? ",\n" : ", "));
221 #endif /* MAKECRCH */
223 #else /* !DYNAMIC_CRC_TABLE */
224 /* ========================================================================
225 * Tables of CRC-32s of all single-byte values, made by make_crc_table().
228 #endif /* DYNAMIC_CRC_TABLE */
230 /* =========================================================================
231 * This function can be used by asm versions of crc32()
233 const unsigned long FAR
* ZEXPORT
236 #ifdef DYNAMIC_CRC_TABLE
239 #endif /* DYNAMIC_CRC_TABLE */
240 return (const unsigned long FAR
*)crc_table
;
243 /* ========================================================================= */
244 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
245 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
247 /* ========================================================================= */
248 unsigned long ZEXPORT
249 z_crc32(unsigned long crc
, const unsigned char FAR
*buf
, unsigned len
)
251 if (buf
== Z_NULL
) return 0UL;
253 #ifdef DYNAMIC_CRC_TABLE
256 #endif /* DYNAMIC_CRC_TABLE */
259 if (sizeof(void *) == sizeof(ptrdiff_t)) {
263 if (*((unsigned char *)(&endian
)))
264 return crc32_little(crc
, buf
, len
);
266 return crc32_big(crc
, buf
, len
);
269 crc
= crc
^ 0xffffffffUL
;
277 return crc
^ 0xffffffffUL
;
282 /* ========================================================================= */
283 #define DOLIT4 c ^= *buf4++; \
284 c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
285 crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
286 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
288 /* ========================================================================= */
290 crc32_little(unsigned long crc
, const unsigned char FAR
*buf
, unsigned len
)
297 while (len
&& ((ptrdiff_t)buf
& 3)) {
298 c
= crc_table
[0][(c
^ *buf
++) & 0xff] ^ (c
>> 8);
302 buf4
= (const u4 FAR
*)(const void FAR
*)buf
;
311 buf
= (const unsigned char FAR
*)buf4
;
314 c
= crc_table
[0][(c
^ *buf
++) & 0xff] ^ (c
>> 8);
317 return (unsigned long)c
;
320 /* ========================================================================= */
321 #define DOBIG4 c ^= *++buf4; \
322 c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
323 crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
324 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
326 /* ========================================================================= */
328 crc32_big(unsigned long crc
, const unsigned char FAR
*buf
, unsigned len
)
335 while (len
&& ((ptrdiff_t)buf
& 3)) {
336 c
= crc_table
[4][(c
>> 24) ^ *buf
++] ^ (c
<< 8);
340 buf4
= (const u4 FAR
*)(const void FAR
*)buf
;
351 buf
= (const unsigned char FAR
*)buf4
;
354 c
= crc_table
[4][(c
>> 24) ^ *buf
++] ^ (c
<< 8);
357 return (unsigned long)(REV(c
));
362 #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
364 /* ========================================================================= */
366 gf2_matrix_times(unsigned long *mat
, unsigned long vec
)
380 /* ========================================================================= */
382 gf2_matrix_square(unsigned long *square
, unsigned long *mat
)
386 for (n
= 0; n
< GF2_DIM
; n
++)
387 square
[n
] = gf2_matrix_times(mat
, mat
[n
]);
390 /* ========================================================================= */
392 z_crc32_combine(uLong crc1
, uLong crc2
, z_off_t len2
)
396 unsigned long even
[GF2_DIM
]; /* even-power-of-two zeros operator */
397 unsigned long odd
[GF2_DIM
]; /* odd-power-of-two zeros operator */
399 /* degenerate case */
403 /* put operator for one zero bit in odd */
404 odd
[0] = 0xedb88320L
; /* CRC-32 polynomial */
406 for (n
= 1; n
< GF2_DIM
; n
++) {
411 /* put operator for two zero bits in even */
412 gf2_matrix_square(even
, odd
);
414 /* put operator for four zero bits in odd */
415 gf2_matrix_square(odd
, even
);
417 /* apply len2 zeros to crc1 (first square will put the operator for one
418 zero byte, eight zero bits, in even) */
420 /* apply zeros operator for this bit of len2 */
421 gf2_matrix_square(even
, odd
);
423 crc1
= gf2_matrix_times(even
, crc1
);
426 /* if no more bits set, then done */
430 /* another iteration of the loop with odd and even swapped */
431 gf2_matrix_square(odd
, even
);
433 crc1
= gf2_matrix_times(odd
, crc1
);
436 /* if no more bits set, then done */
439 /* return combined crc */