2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
98 #include <net/net_perf.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/kpi_ipfilter_var.h>
107 #include <netinet/in_tclass.h>
108 #include <netinet/udp.h>
110 #include <netinet6/nd6.h>
113 #include <security/mac_framework.h>
114 #endif /* CONFIG_MACF_NET */
116 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
117 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
118 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
119 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
122 #include <netinet6/ipsec.h>
123 #include <netkey/key.h>
125 #include <netkey/key_debug.h>
127 #define KEYDEBUG(lev, arg)
132 #include <net/necp.h>
136 #include <netinet/ip_fw.h>
138 #include <netinet/ip_divert.h>
139 #endif /* IPDIVERT */
140 #endif /* IPFIREWALL */
143 #include <netinet/ip_dummynet.h>
147 #include <net/pfvar.h>
150 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
151 #define print_ip(a) \
152 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
153 (ntohl(a.s_addr) >> 16) & 0xFF, \
154 (ntohl(a.s_addr) >> 8) & 0xFF, \
155 (ntohl(a.s_addr)) & 0xFF);
156 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
160 static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
;
161 static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
;
162 static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
;
163 static void ip_out_cksum_stats(int, u_int32_t
);
164 static struct mbuf
*ip_insertoptions(struct mbuf
*, struct mbuf
*, int *);
165 static int ip_optcopy(struct ip
*, struct ip
*);
166 static int ip_pcbopts(int, struct mbuf
**, struct mbuf
*);
167 static void imo_trace(struct ip_moptions
*, int);
168 static void ip_mloopback(struct ifnet
*, struct ifnet
*, struct mbuf
*,
169 struct sockaddr_in
*, int);
170 static struct ifaddr
*in_selectsrcif(struct ip
*, struct route
*, unsigned int);
172 extern struct ip_linklocal_stat ip_linklocal_stat
;
174 /* temporary: for testing */
176 extern int ipsec_bypass
;
179 static int ip_maxchainsent
= 0;
180 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxchainsent
,
181 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_maxchainsent
, 0,
182 "use dlil_output_list");
184 static int forge_ce
= 0;
185 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, forge_ce
,
186 CTLFLAG_RW
| CTLFLAG_LOCKED
, &forge_ce
, 0,
190 static int ip_select_srcif_debug
= 0;
191 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, select_srcif_debug
,
192 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_select_srcif_debug
, 0,
193 "log source interface selection debug info");
195 static int ip_output_measure
= 0;
196 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf
,
197 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ip_output_measure
, 0, sysctl_reset_ip_output_stats
, "I",
199 "Do time measurement");
201 static uint64_t ip_output_measure_bins
= 0;
202 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_bins
,
203 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_output_measure_bins
, 0,
204 sysctl_ip_output_measure_bins
, "I",
205 "bins for chaining performance data histogram");
207 static net_perf_t net_perf
;
208 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_data
,
209 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
210 0, 0, sysctl_ip_output_getperf
, "S,net_perf",
211 "IP output performance data (struct net_perf, net/net_perf.h)");
213 __private_extern__
int rfc6864
= 1;
214 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, rfc6864
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
215 &rfc6864
, 0, "updated ip id field behavior");
217 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
220 __private_extern__
unsigned int imo_trace_hist_size
= IMO_TRACE_HIST_SIZE
;
222 struct ip_moptions_dbg
{
223 struct ip_moptions imo
; /* ip_moptions */
224 u_int16_t imo_refhold_cnt
; /* # of IMO_ADDREF */
225 u_int16_t imo_refrele_cnt
; /* # of IMO_REMREF */
227 * Alloc and free callers.
232 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
234 ctrace_t imo_refhold
[IMO_TRACE_HIST_SIZE
];
235 ctrace_t imo_refrele
[IMO_TRACE_HIST_SIZE
];
239 static unsigned int imo_debug
= 1; /* debugging (enabled) */
241 static unsigned int imo_debug
; /* debugging (disabled) */
243 static unsigned int imo_size
; /* size of zone element */
244 static struct zone
*imo_zone
; /* zone for ip_moptions */
246 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
247 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
250 * IP output. The packet in mbuf chain m contains a skeletal IP
251 * header (with len, off, ttl, proto, tos, src, dst).
252 * The mbuf chain containing the packet will be freed.
253 * The mbuf opt, if present, will not be freed.
256 ip_output(struct mbuf
*m0
, struct mbuf
*opt
, struct route
*ro
, int flags
,
257 struct ip_moptions
*imo
, struct ip_out_args
*ipoa
)
259 return (ip_output_list(m0
, 0, opt
, ro
, flags
, imo
, ipoa
));
263 * IP output. The packet in mbuf chain m contains a skeletal IP
264 * header (with len, off, ttl, proto, tos, src, dst).
265 * The mbuf chain containing the packet will be freed.
266 * The mbuf opt, if present, will not be freed.
268 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
269 * skipped and ro->ro_rt would be used. Otherwise the result of route
270 * lookup is stored in ro->ro_rt.
272 * In the IP forwarding case, the packet will arrive with options already
273 * inserted, so must have a NULL opt pointer.
276 ip_output_list(struct mbuf
*m0
, int packetchain
, struct mbuf
*opt
,
277 struct route
*ro
, int flags
, struct ip_moptions
*imo
,
278 struct ip_out_args
*ipoa
)
281 struct ifnet
*ifp
= NULL
; /* not refcnt'd */
282 struct mbuf
*m
= m0
, *prevnxt
= NULL
, **mppn
= &prevnxt
;
283 int hlen
= sizeof (struct ip
);
284 int len
= 0, error
= 0;
285 struct sockaddr_in
*dst
= NULL
;
286 struct in_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
287 struct in_addr pkt_dst
;
288 struct ipf_pktopts
*ippo
= NULL
;
289 ipfilter_t inject_filter_ref
= NULL
;
290 struct mbuf
*packetlist
;
291 uint32_t sw_csum
, pktcnt
= 0, scnt
= 0, bytecnt
= 0;
292 uint32_t packets_processed
= 0;
293 unsigned int ifscope
= IFSCOPE_NONE
;
294 struct flowadv
*adv
= NULL
;
295 struct timeval start_tv
;
297 struct socket
*so
= NULL
;
298 struct secpolicy
*sp
= NULL
;
301 necp_kernel_policy_result necp_result
= 0;
302 necp_kernel_policy_result_parameter necp_result_parameter
;
303 necp_kernel_policy_id necp_matched_policy_id
= 0;
307 struct sockaddr_in
*next_hop_from_ipfwd_tag
= NULL
;
308 #endif /* IPFIREWALL */
309 #if IPFIREWALL || DUMMYNET
311 #endif /* IPFIREWALL || DUMMYNET */
313 struct ip_out_args saved_ipoa
;
314 struct sockaddr_in dst_buf
;
315 #endif /* DUMMYNET */
318 struct ipsec_output_state ipsec_state
;
321 struct route necp_route
;
323 #if IPFIREWALL || DUMMYNET
324 struct ip_fw_args args
;
325 #endif /* IPFIREWALL || DUMMYNET */
326 #if IPFIREWALL_FORWARD
327 struct route sro_fwd
;
328 #endif /* IPFIREWALL_FORWARD */
330 struct route saved_route
;
331 #endif /* DUMMYNET */
332 struct ipf_pktopts ipf_pktopts
;
334 #define ipsec_state ipobz.ipsec_state
335 #define necp_route ipobz.necp_route
336 #define args ipobz.args
337 #define sro_fwd ipobz.sro_fwd
338 #define saved_route ipobz.saved_route
339 #define ipf_pktopts ipobz.ipf_pktopts
342 boolean_t select_srcif
: 1; /* set once */
343 boolean_t srcbound
: 1; /* set once */
344 boolean_t nocell
: 1; /* set once */
345 boolean_t isbroadcast
: 1;
346 boolean_t didfilter
: 1;
347 boolean_t noexpensive
: 1; /* set once */
348 boolean_t awdl_unrestricted
: 1; /* set once */
349 #if IPFIREWALL_FORWARD
350 boolean_t fwd_rewrite_src
: 1;
351 #endif /* IPFIREWALL_FORWARD */
354 } ipobf
= { .raw
= 0 };
356 int interface_mtu
= 0;
359 * Here we check for restrictions when sending frames.
360 * N.B.: IPv4 over internal co-processor interfaces is not allowed.
362 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
363 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
364 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
365 (IFNET_IS_INTCOPROC(_ifp)) || \
366 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
368 if (ip_output_measure
)
369 net_perf_start_time(&net_perf
, &start_tv
);
370 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
372 VERIFY(m0
->m_flags
& M_PKTHDR
);
375 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
376 bzero(&ipobz
, sizeof (ipobz
));
379 #if IPFIREWALL || DUMMYNET
380 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
383 /* Grab info from mtags prepended to the chain */
385 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
386 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
387 struct dn_pkt_tag
*dn_tag
;
389 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
390 args
.fwa_ipfw_rule
= dn_tag
->dn_ipfw_rule
;
391 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
393 saved_route
= dn_tag
->dn_ro
;
397 bcopy(&dn_tag
->dn_dst
, &dst_buf
, sizeof (dst_buf
));
399 ifp
= dn_tag
->dn_ifp
;
400 flags
= dn_tag
->dn_flags
;
401 if ((dn_tag
->dn_flags
& IP_OUTARGS
)) {
402 saved_ipoa
= dn_tag
->dn_ipoa
;
406 m_tag_delete(m0
, tag
);
408 #endif /* DUMMYNET */
411 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
412 KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
413 struct divert_tag
*div_tag
;
415 div_tag
= (struct divert_tag
*)(tag
+1);
416 args
.fwa_divert_rule
= div_tag
->cookie
;
418 m_tag_delete(m0
, tag
);
420 #endif /* IPDIVERT */
423 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
424 KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
425 struct ip_fwd_tag
*ipfwd_tag
;
427 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
428 next_hop_from_ipfwd_tag
= ipfwd_tag
->next_hop
;
430 m_tag_delete(m0
, tag
);
432 #endif /* IPFIREWALL */
435 #endif /* IPFIREWALL || DUMMYNET */
438 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
441 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
442 /* If packet is bound to an interface, check bound policies */
443 if ((flags
& IP_OUTARGS
) && (ipoa
!= NULL
) &&
444 (ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
445 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
446 if (ipsec4_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
447 &flags
, ipoa
, &sp
) != 0)
455 if (flags
& IP_OUTARGS
) {
457 * In the forwarding case, only the ifscope value is used,
458 * as source interface selection doesn't take place.
460 if ((ipobf
.select_srcif
= (!(flags
& IP_FORWARDING
) &&
461 (ipoa
->ipoa_flags
& IPOAF_SELECT_SRCIF
)))) {
462 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
465 if ((ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
466 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
467 ifscope
= ipoa
->ipoa_boundif
;
468 ipf_pktopts
.ippo_flags
|=
469 (IPPOF_BOUND_IF
| (ifscope
<< IPPOF_SHIFT_IFSCOPE
));
472 /* double negation needed for bool bit field */
473 ipobf
.srcbound
= !!(ipoa
->ipoa_flags
& IPOAF_BOUND_SRCADDR
);
475 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
477 ipobf
.select_srcif
= FALSE
;
478 ipobf
.srcbound
= FALSE
;
479 ifscope
= IFSCOPE_NONE
;
480 if (flags
& IP_OUTARGS
) {
481 ipoa
->ipoa_boundif
= IFSCOPE_NONE
;
482 ipoa
->ipoa_flags
&= ~(IPOAF_SELECT_SRCIF
|
483 IPOAF_BOUND_IF
| IPOAF_BOUND_SRCADDR
);
487 if (flags
& IP_OUTARGS
) {
488 if (ipoa
->ipoa_flags
& IPOAF_NO_CELLULAR
) {
490 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
492 if (ipoa
->ipoa_flags
& IPOAF_NO_EXPENSIVE
) {
493 ipobf
.noexpensive
= TRUE
;
494 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
496 if (ipoa
->ipoa_flags
& IPOAF_AWDL_UNRESTRICTED
)
497 ipobf
.awdl_unrestricted
= TRUE
;
498 adv
= &ipoa
->ipoa_flowadv
;
499 adv
->code
= FADV_SUCCESS
;
500 ipoa
->ipoa_retflags
= 0;
504 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
505 so
= ipsec_getsocket(m
);
507 (void) ipsec_setsocket(m
, NULL
);
513 if (args
.fwa_ipfw_rule
!= NULL
|| args
.fwa_pf_rule
!= NULL
) {
514 /* dummynet already saw us */
515 ip
= mtod(m
, struct ip
*);
516 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
517 pkt_dst
= ip
->ip_dst
;
518 if (ro
->ro_rt
!= NULL
) {
519 RT_LOCK_SPIN(ro
->ro_rt
);
520 ia
= (struct in_ifaddr
*)ro
->ro_rt
->rt_ifa
;
522 /* Become a regular mutex */
523 RT_CONVERT_LOCK(ro
->ro_rt
);
524 IFA_ADDREF(&ia
->ia_ifa
);
526 RT_UNLOCK(ro
->ro_rt
);
530 if (args
.fwa_ipfw_rule
!= NULL
)
532 #endif /* IPFIREWALL */
533 if (args
.fwa_pf_rule
!= NULL
)
536 #endif /* DUMMYNET */
540 ipobf
.isbroadcast
= FALSE
;
541 ipobf
.didfilter
= FALSE
;
542 #if IPFIREWALL_FORWARD
543 ipobf
.fwd_rewrite_src
= FALSE
;
544 #endif /* IPFIREWALL_FORWARD */
546 VERIFY(m
->m_flags
& M_PKTHDR
);
548 * No need to proccess packet twice if we've already seen it.
550 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
551 inject_filter_ref
= ipf_get_inject_filter(m
);
553 inject_filter_ref
= NULL
;
556 m
= ip_insertoptions(m
, opt
, &len
);
558 /* Update the chain */
560 if (m0
== packetlist
)
565 ip
= mtod(m
, struct ip
*);
571 * When dealing with a packet chain, we need to reset "next_hop"
572 * because "dst" may have been changed to the gateway address below
573 * for the previous packet of the chain. This could cause the route
574 * to be inavertandly changed to the route to the gateway address
575 * (instead of the route to the destination).
577 args
.fwa_next_hop
= next_hop_from_ipfwd_tag
;
578 pkt_dst
= args
.fwa_next_hop
? args
.fwa_next_hop
->sin_addr
: ip
->ip_dst
;
579 #else /* !IPFIREWALL */
580 pkt_dst
= ip
->ip_dst
;
581 #endif /* !IPFIREWALL */
584 * We must not send if the packet is destined to network zero.
585 * RFC1122 3.2.1.3 (a) and (b).
587 if (IN_ZERONET(ntohl(pkt_dst
.s_addr
))) {
588 error
= EHOSTUNREACH
;
595 if (!(flags
& (IP_FORWARDING
|IP_RAWOUTPUT
))) {
596 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, hlen
>> 2);
598 if (rfc6864
&& IP_OFF_IS_ATOMIC(ip
->ip_off
)) {
599 // Per RFC6864, value of ip_id is undefined for atomic ip packets
602 ip
->ip_id
= ip_randomid();
604 OSAddAtomic(1, &ipstat
.ips_localout
);
606 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
610 /* For debugging, we let the stack forge congestion */
612 ((ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT1
||
613 (ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT0
)) {
614 ip
->ip_tos
= (ip
->ip_tos
& ~IPTOS_ECN_MASK
) | IPTOS_ECN_CE
;
619 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
,
620 ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
622 dst
= SIN(&ro
->ro_dst
);
625 * If there is a cached route,
626 * check that it is to the same destination
627 * and is still up. If not, free it and try again.
628 * The address family should also be checked in case of sharing the
632 if (ro
->ro_rt
!= NULL
) {
633 if (ROUTE_UNUSABLE(ro
) && ip
->ip_src
.s_addr
!= INADDR_ANY
&&
634 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
))) {
635 src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
);
636 if (src_ia
== NULL
) {
637 error
= EADDRNOTAVAIL
;
640 IFA_REMREF(&src_ia
->ia_ifa
);
644 * Test rt_flags without holding rt_lock for performance
645 * reasons; if the route is down it will hopefully be
646 * caught by the layer below (since it uses this route
647 * as a hint) or during the next transmit.
649 if (ROUTE_UNUSABLE(ro
) || dst
->sin_family
!= AF_INET
||
650 dst
->sin_addr
.s_addr
!= pkt_dst
.s_addr
)
654 * If we're doing source interface selection, we may not
655 * want to use this route; only synch up the generation
658 if (!ipobf
.select_srcif
&& ro
->ro_rt
!= NULL
&&
659 RT_GENID_OUTOFSYNC(ro
->ro_rt
))
660 RT_GENID_SYNC(ro
->ro_rt
);
662 if (ro
->ro_rt
== NULL
) {
663 bzero(dst
, sizeof (*dst
));
664 dst
->sin_family
= AF_INET
;
665 dst
->sin_len
= sizeof (*dst
);
666 dst
->sin_addr
= pkt_dst
;
669 * If routing to interface only,
670 * short circuit routing lookup.
672 if (flags
& IP_ROUTETOIF
) {
674 IFA_REMREF(&ia
->ia_ifa
);
675 if ((ia
= ifatoia(ifa_ifwithdstaddr(sintosa(dst
)))) == NULL
) {
676 ia
= ifatoia(ifa_ifwithnet(sintosa(dst
)));
678 OSAddAtomic(1, &ipstat
.ips_noroute
);
680 /* XXX IPv6 APN fallback notification?? */
686 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
688 * For consistency with other cases below. Loopback
689 * multicast case is handled separately by ip_mloopback().
691 if ((ifp
->if_flags
& IFF_LOOPBACK
) &&
692 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
693 m
->m_pkthdr
.rcvif
= ifp
;
694 ip_setsrcifaddr_info(m
, ifp
->if_index
, NULL
);
695 ip_setdstifaddr_info(m
, ifp
->if_index
, NULL
);
697 } else if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) &&
698 imo
!= NULL
&& (ifp
= imo
->imo_multicast_ifp
) != NULL
) {
700 * Bypass the normal routing lookup for multicast
701 * packets if the interface is specified.
703 ipobf
.isbroadcast
= FALSE
;
705 IFA_REMREF(&ia
->ia_ifa
);
707 /* Macro takes reference on ia */
710 struct ifaddr
*ia0
= NULL
;
711 boolean_t cloneok
= FALSE
;
713 * Perform source interface selection; the source IP address
714 * must belong to one of the addresses of the interface used
715 * by the route. For performance reasons, do this only if
716 * there is no route, or if the routing table has changed,
717 * or if we haven't done source interface selection on this
718 * route (for this PCB instance) before.
720 if (ipobf
.select_srcif
&&
721 ip
->ip_src
.s_addr
!= INADDR_ANY
&& (ROUTE_UNUSABLE(ro
) ||
722 !(ro
->ro_flags
& ROF_SRCIF_SELECTED
))) {
723 /* Find the source interface */
724 ia0
= in_selectsrcif(ip
, ro
, ifscope
);
727 * If the source address belongs to a restricted
728 * interface and the caller forbids our using
729 * interfaces of such type, pretend that there is no
733 IP_CHECK_RESTRICTIONS(ia0
->ifa_ifp
, ipobf
)) {
736 error
= EHOSTUNREACH
;
737 if (flags
& IP_OUTARGS
)
738 ipoa
->ipoa_retflags
|= IPOARF_IFDENIED
;
743 * If the source address is spoofed (in the case of
744 * IP_RAWOUTPUT on an unbounded socket), or if this
745 * is destined for local/loopback, just let it go out
746 * using the interface of the route. Otherwise,
747 * there's no interface having such an address,
750 if (ia0
== NULL
&& (!(flags
& IP_RAWOUTPUT
) ||
751 ipobf
.srcbound
) && ifscope
!= lo_ifp
->if_index
) {
752 error
= EADDRNOTAVAIL
;
757 * If the caller didn't explicitly specify the scope,
758 * pick it up from the source interface. If the cached
759 * route was wrong and was blown away as part of source
760 * interface selection, don't mask out RTF_PRCLONING
761 * since that route may have been allocated by the ULP,
762 * unless the IP header was created by the caller or
763 * the destination is IPv4 LLA. The check for the
764 * latter is needed because IPv4 LLAs are never scoped
765 * in the current implementation, and we don't want to
766 * replace the resolved IPv4 LLA route with one whose
767 * gateway points to that of the default gateway on
768 * the primary interface of the system.
771 if (ifscope
== IFSCOPE_NONE
)
772 ifscope
= ia0
->ifa_ifp
->if_index
;
773 cloneok
= (!(flags
& IP_RAWOUTPUT
) &&
774 !(IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))));
779 * If this is the case, we probably don't want to allocate
780 * a protocol-cloned route since we didn't get one from the
781 * ULP. This lets TCP do its thing, while not burdening
782 * forwarding or ICMP with the overhead of cloning a route.
783 * Of course, we still want to do any cloning requested by
784 * the link layer, as this is probably required in all cases
785 * for correct operation (as it is for ARP).
787 if (ro
->ro_rt
== NULL
) {
788 unsigned long ign
= RTF_PRCLONING
;
790 * We make an exception here: if the destination
791 * address is INADDR_BROADCAST, allocate a protocol-
792 * cloned host route so that we end up with a route
793 * marked with the RTF_BROADCAST flag. Otherwise,
794 * we would end up referring to the default route,
795 * instead of creating a cloned host route entry.
796 * That would introduce inconsistencies between ULPs
797 * that allocate a route and those that don't. The
798 * RTF_BROADCAST route is important since we'd want
799 * to send out undirected IP broadcast packets using
800 * link-level broadcast address. Another exception
801 * is for ULP-created routes that got blown away by
802 * source interface selection (see above).
804 * These exceptions will no longer be necessary when
805 * the RTF_PRCLONING scheme is no longer present.
807 if (cloneok
|| dst
->sin_addr
.s_addr
== INADDR_BROADCAST
)
808 ign
&= ~RTF_PRCLONING
;
811 * Loosen the route lookup criteria if the ifscope
812 * corresponds to the loopback interface; this is
813 * needed to support Application Layer Gateways
814 * listening on loopback, in conjunction with packet
815 * filter redirection rules. The final source IP
816 * address will be rewritten by the packet filter
817 * prior to the RFC1122 loopback check below.
819 if (ifscope
== lo_ifp
->if_index
)
820 rtalloc_ign(ro
, ign
);
822 rtalloc_scoped_ign(ro
, ign
, ifscope
);
825 * If the route points to a cellular/expensive interface
826 * and the caller forbids our using interfaces of such type,
827 * pretend that there is no route.
829 if (ro
->ro_rt
!= NULL
) {
830 RT_LOCK_SPIN(ro
->ro_rt
);
831 if (IP_CHECK_RESTRICTIONS(ro
->ro_rt
->rt_ifp
,
833 RT_UNLOCK(ro
->ro_rt
);
835 if (flags
& IP_OUTARGS
) {
836 ipoa
->ipoa_retflags
|=
840 RT_UNLOCK(ro
->ro_rt
);
845 if (ro
->ro_rt
== NULL
) {
846 OSAddAtomic(1, &ipstat
.ips_noroute
);
847 error
= EHOSTUNREACH
;
856 IFA_REMREF(&ia
->ia_ifa
);
857 RT_LOCK_SPIN(ro
->ro_rt
);
858 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
860 /* Become a regular mutex */
861 RT_CONVERT_LOCK(ro
->ro_rt
);
862 IFA_ADDREF(&ia
->ia_ifa
);
865 * Note: ia_ifp may not be the same as rt_ifp; the latter
866 * is what we use for determining outbound i/f, mtu, etc.
868 ifp
= ro
->ro_rt
->rt_ifp
;
870 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
871 dst
= SIN(ro
->ro_rt
->rt_gateway
);
873 if (ro
->ro_rt
->rt_flags
& RTF_HOST
) {
874 /* double negation needed for bool bit field */
876 !!(ro
->ro_rt
->rt_flags
& RTF_BROADCAST
);
878 /* Become a regular mutex */
879 RT_CONVERT_LOCK(ro
->ro_rt
);
880 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
883 * For consistency with IPv6, as well as to ensure that
884 * IP_RECVIF is set correctly for packets that are sent
885 * to one of the local addresses. ia (rt_ifa) would have
886 * been fixed up by rt_setif for local routes. This
887 * would make it appear as if the packet arrives on the
888 * interface which owns the local address. Loopback
889 * multicast case is handled separately by ip_mloopback().
891 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
) &&
892 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
895 m
->m_pkthdr
.rcvif
= ia
->ia_ifa
.ifa_ifp
;
898 srcidx
= ia0
->ifa_ifp
->if_index
;
899 else if ((ro
->ro_flags
& ROF_SRCIF_SELECTED
) &&
900 ro
->ro_srcia
!= NULL
)
901 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
905 ip_setsrcifaddr_info(m
, srcidx
, NULL
);
906 ip_setdstifaddr_info(m
, 0, ia
);
908 RT_UNLOCK(ro
->ro_rt
);
915 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
916 struct ifnet
*srcifp
= NULL
;
917 struct in_multi
*inm
;
919 u_int8_t ttl
= IP_DEFAULT_MULTICAST_TTL
;
920 u_int8_t loop
= IP_DEFAULT_MULTICAST_LOOP
;
922 m
->m_flags
|= M_MCAST
;
924 * IP destination address is multicast. Make sure "dst"
925 * still points to the address in "ro". (It may have been
926 * changed to point to a gateway address, above.)
928 dst
= SIN(&ro
->ro_dst
);
930 * See if the caller provided any multicast options
934 vif
= imo
->imo_multicast_vif
;
935 ttl
= imo
->imo_multicast_ttl
;
936 loop
= imo
->imo_multicast_loop
;
937 if (!(flags
& IP_RAWOUTPUT
))
939 if (imo
->imo_multicast_ifp
!= NULL
)
940 ifp
= imo
->imo_multicast_ifp
;
942 } else if (!(flags
& IP_RAWOUTPUT
)) {
947 * Confirm that the outgoing interface supports multicast.
949 if (imo
== NULL
|| vif
== -1) {
950 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
951 OSAddAtomic(1, &ipstat
.ips_noroute
);
957 * If source address not specified yet, use address
958 * of outgoing interface.
960 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
961 struct in_ifaddr
*ia1
;
962 lck_rw_lock_shared(in_ifaddr_rwlock
);
963 TAILQ_FOREACH(ia1
, &in_ifaddrhead
, ia_link
) {
964 IFA_LOCK_SPIN(&ia1
->ia_ifa
);
965 if (ia1
->ia_ifp
== ifp
) {
966 ip
->ip_src
= IA_SIN(ia1
)->sin_addr
;
968 IFA_UNLOCK(&ia1
->ia_ifa
);
971 IFA_UNLOCK(&ia1
->ia_ifa
);
973 lck_rw_done(in_ifaddr_rwlock
);
974 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
980 in_multihead_lock_shared();
981 IN_LOOKUP_MULTI(&pkt_dst
, ifp
, inm
);
982 in_multihead_lock_done();
983 if (inm
!= NULL
&& (imo
== NULL
|| loop
)) {
985 * If we belong to the destination multicast group
986 * on the outgoing interface, and the caller did not
987 * forbid loopback, loop back a copy.
989 if (!TAILQ_EMPTY(&ipv4_filters
)) {
990 struct ipfilter
*filter
;
991 int seen
= (inject_filter_ref
== NULL
);
994 ipf_pktopts
.ippo_flags
|=
996 ipf_pktopts
.ippo_mcast_ifnet
= ifp
;
997 ipf_pktopts
.ippo_mcast_ttl
= ttl
;
998 ipf_pktopts
.ippo_mcast_loop
= loop
;
1004 * 4135317 - always pass network byte
1007 #if BYTE_ORDER != BIG_ENDIAN
1011 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1013 if ((struct ipfilter
*)
1014 inject_filter_ref
== filter
)
1016 } else if (filter
->ipf_filter
.
1017 ipf_output
!= NULL
) {
1019 result
= filter
->ipf_filter
.
1022 (mbuf_t
*)&m
, ippo
);
1023 if (result
== EJUSTRETURN
) {
1036 /* set back to host byte order */
1037 ip
= mtod(m
, struct ip
*);
1038 #if BYTE_ORDER != BIG_ENDIAN
1043 ipobf
.didfilter
= TRUE
;
1045 ip_mloopback(srcifp
, ifp
, m
, dst
, hlen
);
1050 * Multicasts with a time-to-live of zero may be looped-
1051 * back, above, but must not be transmitted on a network.
1052 * Also, multicasts addressed to the loopback interface
1053 * are not sent -- the above call to ip_mloopback() will
1054 * loop back a copy if this host actually belongs to the
1055 * destination group on the loopback interface.
1057 if (ip
->ip_ttl
== 0 || ifp
->if_flags
& IFF_LOOPBACK
) {
1065 * If source address not specified yet, use address
1066 * of outgoing interface.
1068 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1069 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1070 ip
->ip_src
= IA_SIN(ia
)->sin_addr
;
1071 IFA_UNLOCK(&ia
->ia_ifa
);
1072 #if IPFIREWALL_FORWARD
1074 * Keep note that we did this - if the firewall changes
1075 * the next-hop, our interface may change, changing the
1076 * default source IP. It's a shame so much effort happens
1079 ipobf
.fwd_rewrite_src
= TRUE
;
1080 #endif /* IPFIREWALL_FORWARD */
1084 * Look for broadcast address and
1085 * and verify user is allowed to send
1088 if (ipobf
.isbroadcast
) {
1089 if (!(ifp
->if_flags
& IFF_BROADCAST
)) {
1090 error
= EADDRNOTAVAIL
;
1093 if (!(flags
& IP_ALLOWBROADCAST
)) {
1097 /* don't allow broadcast messages to be fragmented */
1098 if ((u_short
)ip
->ip_len
> ifp
->if_mtu
) {
1102 m
->m_flags
|= M_BCAST
;
1104 m
->m_flags
&= ~M_BCAST
;
1109 /* Invoke outbound packet filter */
1110 if (PF_IS_ENABLED
) {
1113 m0
= m
; /* Save for later */
1116 args
.fwa_next_hop
= dst
;
1120 args
.fwa_oflags
= flags
;
1121 if (flags
& IP_OUTARGS
)
1122 args
.fwa_ipoa
= ipoa
;
1123 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, &args
);
1124 #else /* DUMMYNET */
1125 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, NULL
);
1126 #endif /* DUMMYNET */
1127 if (rc
!= 0 || m
== NULL
) {
1128 /* Move to the next packet */
1131 /* Skip ahead if first packet in list got dropped */
1132 if (packetlist
== m0
)
1137 /* Next packet in the chain */
1139 } else if (packetlist
!= NULL
) {
1140 /* No more packet; send down the chain */
1143 /* Nothing left; we're done */
1147 ip
= mtod(m
, struct ip
*);
1148 pkt_dst
= ip
->ip_dst
;
1149 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1153 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1155 if (IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)) ||
1156 IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))) {
1157 ip_linklocal_stat
.iplls_out_total
++;
1158 if (ip
->ip_ttl
!= MAXTTL
) {
1159 ip_linklocal_stat
.iplls_out_badttl
++;
1160 ip
->ip_ttl
= MAXTTL
;
1164 if (!ipobf
.didfilter
&& !TAILQ_EMPTY(&ipv4_filters
)) {
1165 struct ipfilter
*filter
;
1166 int seen
= (inject_filter_ref
== NULL
);
1167 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1170 * Check that a TSO frame isn't passed to a filter.
1171 * This could happen if a filter is inserted while
1172 * TCP is sending the TSO packet.
1174 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1181 /* 4135317 - always pass network byte order to filter */
1182 #if BYTE_ORDER != BIG_ENDIAN
1186 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1188 if ((struct ipfilter
*)inject_filter_ref
==
1191 } else if (filter
->ipf_filter
.ipf_output
) {
1193 result
= filter
->ipf_filter
.
1194 ipf_output(filter
->ipf_filter
.cookie
,
1195 (mbuf_t
*)&m
, ippo
);
1196 if (result
== EJUSTRETURN
) {
1206 /* set back to host byte order */
1207 ip
= mtod(m
, struct ip
*);
1208 #if BYTE_ORDER != BIG_ENDIAN
1216 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1217 necp_matched_policy_id
= necp_ip_output_find_policy_match (m
,
1218 flags
, (flags
& IP_OUTARGS
) ? ipoa
: NULL
, &necp_result
, &necp_result_parameter
);
1219 if (necp_matched_policy_id
) {
1220 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
1221 switch (necp_result
) {
1222 case NECP_KERNEL_POLICY_RESULT_PASS
:
1223 /* Check if the interface is allowed */
1224 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1225 error
= EHOSTUNREACH
;
1226 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1230 case NECP_KERNEL_POLICY_RESULT_DROP
:
1231 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
1232 /* Flow divert packets should be blocked at the IP layer */
1233 error
= EHOSTUNREACH
;
1234 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1236 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
1237 /* Verify that the packet is being routed to the tunnel */
1238 struct ifnet
*policy_ifp
= necp_get_ifnet_from_result_parameter(&necp_result_parameter
);
1239 if (policy_ifp
== ifp
) {
1240 /* Check if the interface is allowed */
1241 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1242 error
= EHOSTUNREACH
;
1243 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1248 if (necp_packet_can_rebind_to_ifnet(m
, policy_ifp
, &necp_route
, AF_INET
)) {
1249 /* Check if the interface is allowed */
1250 if (!necp_packet_is_allowed_over_interface(m
, policy_ifp
)) {
1251 error
= EHOSTUNREACH
;
1252 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1256 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1261 error
= ENETUNREACH
;
1262 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1271 /* Catch-all to check if the interface is allowed */
1272 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1273 error
= EHOSTUNREACH
;
1274 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1280 if (ipsec_bypass
!= 0 || (flags
& IP_NOIPSEC
))
1283 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1286 /* get SP for this packet */
1288 sp
= ipsec4_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
1291 sp
= ipsec4_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
1295 IPSEC_STAT_INCREMENT(ipsecstat
.out_inval
);
1296 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1305 switch (sp
->policy
) {
1306 case IPSEC_POLICY_DISCARD
:
1307 case IPSEC_POLICY_GENERATE
:
1309 * This packet is just discarded.
1311 IPSEC_STAT_INCREMENT(ipsecstat
.out_polvio
);
1312 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1316 case IPSEC_POLICY_BYPASS
:
1317 case IPSEC_POLICY_NONE
:
1318 /* no need to do IPsec. */
1319 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1323 case IPSEC_POLICY_IPSEC
:
1324 if (sp
->req
== NULL
) {
1325 /* acquire a policy */
1326 error
= key_spdacquire(sp
);
1327 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1332 /* Verify the redirect to ipsec interface */
1333 if (sp
->ipsec_if
== ifp
) {
1340 case IPSEC_POLICY_ENTRUST
:
1342 printf("ip_output: Invalid policy found. %d\n", sp
->policy
);
1346 if (flags
& IP_ROUTETOIF
) {
1347 bzero(&ipsec_state
.ro
, sizeof (ipsec_state
.ro
));
1349 route_copyout((struct route
*)&ipsec_state
.ro
, ro
, sizeof (struct route
));
1351 ipsec_state
.dst
= SA(dst
);
1357 * delayed checksums are not currently compatible with IPsec
1359 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1360 in_delayed_cksum(m
);
1362 #if BYTE_ORDER != BIG_ENDIAN
1367 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1368 struct ip
*, ip
, struct ifnet
*, ifp
,
1369 struct ip
*, ip
, struct ip6_hdr
*, NULL
);
1371 error
= ipsec4_output(&ipsec_state
, sp
, flags
);
1372 if (ipsec_state
.tunneled
== 6) {
1378 m0
= m
= ipsec_state
.m
;
1382 * If we're about to use the route in ipsec_state
1383 * and this came from dummynet, cleaup now.
1385 if (ro
== &saved_route
&&
1386 (!(flags
& IP_ROUTETOIF
) || ipsec_state
.tunneled
))
1388 #endif /* DUMMYNET */
1390 if (flags
& IP_ROUTETOIF
) {
1392 * if we have tunnel mode SA, we may need to ignore
1395 if (ipsec_state
.tunneled
) {
1396 flags
&= ~IP_ROUTETOIF
;
1397 ro
= (struct route
*)&ipsec_state
.ro
;
1400 ro
= (struct route
*)&ipsec_state
.ro
;
1402 dst
= SIN(ipsec_state
.dst
);
1404 /* mbuf is already reclaimed in ipsec4_output. */
1414 printf("ip4_output (ipsec): error code %d\n", error
);
1417 /* don't show these error codes to the user */
1421 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1427 /* be sure to update variables that are affected by ipsec4_output() */
1428 ip
= mtod(m
, struct ip
*);
1431 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1432 #else /* !_IP_VHL */
1433 hlen
= ip
->ip_hl
<< 2;
1434 #endif /* !_IP_VHL */
1435 /* Check that there wasn't a route change and src is still valid */
1436 if (ROUTE_UNUSABLE(ro
)) {
1438 VERIFY(src_ia
== NULL
);
1439 if (ip
->ip_src
.s_addr
!= INADDR_ANY
&&
1440 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
)) &&
1441 (src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
)) == NULL
) {
1442 error
= EADDRNOTAVAIL
;
1443 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1447 if (src_ia
!= NULL
) {
1448 IFA_REMREF(&src_ia
->ia_ifa
);
1453 if (ro
->ro_rt
== NULL
) {
1454 if (!(flags
& IP_ROUTETOIF
)) {
1455 printf("%s: can't update route after "
1456 "IPsec processing\n", __func__
);
1457 error
= EHOSTUNREACH
; /* XXX */
1458 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1464 IFA_REMREF(&ia
->ia_ifa
);
1465 RT_LOCK_SPIN(ro
->ro_rt
);
1466 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1468 /* Become a regular mutex */
1469 RT_CONVERT_LOCK(ro
->ro_rt
);
1470 IFA_ADDREF(&ia
->ia_ifa
);
1472 ifp
= ro
->ro_rt
->rt_ifp
;
1473 RT_UNLOCK(ro
->ro_rt
);
1476 /* make it flipped, again. */
1477 #if BYTE_ORDER != BIG_ENDIAN
1481 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1482 7, 0xff, 0xff, 0xff, 0xff);
1484 /* Pass to filters again */
1485 if (!TAILQ_EMPTY(&ipv4_filters
)) {
1486 struct ipfilter
*filter
;
1488 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1491 * Check that a TSO frame isn't passed to a filter.
1492 * This could happen if a filter is inserted while
1493 * TCP is sending the TSO packet.
1495 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1502 /* 4135317 - always pass network byte order to filter */
1503 #if BYTE_ORDER != BIG_ENDIAN
1507 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1508 if (filter
->ipf_filter
.ipf_output
) {
1510 result
= filter
->ipf_filter
.
1511 ipf_output(filter
->ipf_filter
.cookie
,
1512 (mbuf_t
*)&m
, ippo
);
1513 if (result
== EJUSTRETURN
) {
1523 /* set back to host byte order */
1524 ip
= mtod(m
, struct ip
*);
1525 #if BYTE_ORDER != BIG_ENDIAN
1536 * Check with the firewall...
1537 * but not if we are already being fwd'd from a firewall.
1539 if (fw_enable
&& IPFW_LOADED
&& !args
.fwa_next_hop
) {
1540 struct sockaddr_in
*old
= dst
;
1543 args
.fwa_next_hop
= dst
;
1545 ipfwoff
= ip_fw_chk_ptr(&args
);
1547 dst
= args
.fwa_next_hop
;
1550 * On return we must do the following:
1551 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1552 * 1<=off<= 0xffff -> DIVERT
1553 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1554 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1555 * dst != old -> IPFIREWALL_FORWARD
1556 * off==0, dst==old -> accept
1557 * If some of the above modules is not compiled in, then
1558 * we should't have to check the corresponding condition
1559 * (because the ipfw control socket should not accept
1560 * unsupported rules), but better play safe and drop
1561 * packets in case of doubt.
1564 if ((ipfwoff
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) {
1570 ip
= mtod(m
, struct ip
*);
1572 if (ipfwoff
== 0 && dst
== old
) { /* common case */
1576 if (DUMMYNET_LOADED
&& (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) != 0) {
1578 * pass the pkt to dummynet. Need to include
1579 * pipe number, m, ifp, ro, dst because these are
1580 * not recomputed in the next pass.
1581 * All other parameters have been already used and
1582 * so they are not needed anymore.
1583 * XXX note: if the ifp or ro entry are deleted
1584 * while a pkt is in dummynet, we are in trouble!
1588 args
.fwa_oflags
= flags
;
1589 if (flags
& IP_OUTARGS
)
1590 args
.fwa_ipoa
= ipoa
;
1592 error
= ip_dn_io_ptr(m
, ipfwoff
& 0xffff, DN_TO_IP_OUT
,
1593 &args
, DN_CLIENT_IPFW
);
1596 #endif /* DUMMYNET */
1598 if (ipfwoff
!= 0 && (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) == 0) {
1599 struct mbuf
*clone
= NULL
;
1601 /* Clone packet if we're doing a 'tee' */
1602 if ((ipfwoff
& IP_FW_PORT_TEE_FLAG
) != 0)
1603 clone
= m_dup(m
, M_DONTWAIT
);
1606 * delayed checksums are not currently compatible
1607 * with divert sockets.
1609 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1610 in_delayed_cksum(m
);
1612 /* Restore packet header fields to original values */
1614 #if BYTE_ORDER != BIG_ENDIAN
1619 /* Deliver packet to divert input routine */
1620 divert_packet(m
, 0, ipfwoff
& 0xffff,
1621 args
.fwa_divert_rule
);
1623 /* If 'tee', continue with original packet */
1624 if (clone
!= NULL
) {
1626 ip
= mtod(m
, struct ip
*);
1631 #endif /* IPDIVERT */
1632 #if IPFIREWALL_FORWARD
1634 * Here we check dst to make sure it's directly reachable on
1635 * the interface we previously thought it was.
1636 * If it isn't (which may be likely in some situations) we have
1637 * to re-route it (ie, find a route for the next-hop and the
1638 * associated interface) and set them here. This is nested
1639 * forwarding which in most cases is undesirable, except where
1640 * such control is nigh impossible. So we do it here.
1643 if (ipfwoff
== 0 && old
!= dst
) {
1644 struct in_ifaddr
*ia_fw
;
1645 struct route
*ro_fwd
= &sro_fwd
;
1647 #if IPFIREWALL_FORWARD_DEBUG
1648 printf("IPFIREWALL_FORWARD: New dst ip: ");
1649 print_ip(dst
->sin_addr
);
1651 #endif /* IPFIREWALL_FORWARD_DEBUG */
1653 * We need to figure out if we have been forwarded
1654 * to a local socket. If so then we should somehow
1655 * "loop back" to ip_input, and get directed to the
1656 * PCB as if we had received this packet. This is
1657 * because it may be dificult to identify the packets
1658 * you want to forward until they are being output
1659 * and have selected an interface. (e.g. locally
1660 * initiated packets) If we used the loopback inteface,
1661 * we would not be able to control what happens
1662 * as the packet runs through ip_input() as
1663 * it is done through a ISR.
1665 lck_rw_lock_shared(in_ifaddr_rwlock
);
1666 TAILQ_FOREACH(ia_fw
, &in_ifaddrhead
, ia_link
) {
1668 * If the addr to forward to is one
1669 * of ours, we pretend to
1670 * be the destination for this packet.
1672 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1673 if (IA_SIN(ia_fw
)->sin_addr
.s_addr
==
1674 dst
->sin_addr
.s_addr
) {
1675 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1678 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1680 lck_rw_done(in_ifaddr_rwlock
);
1682 /* tell ip_input "dont filter" */
1683 struct m_tag
*fwd_tag
;
1684 struct ip_fwd_tag
*ipfwd_tag
;
1686 fwd_tag
= m_tag_create(KERNEL_MODULE_TAG_ID
,
1687 KERNEL_TAG_TYPE_IPFORWARD
,
1688 sizeof (*ipfwd_tag
), M_NOWAIT
, m
);
1689 if (fwd_tag
== NULL
) {
1694 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1695 ipfwd_tag
->next_hop
= args
.fwa_next_hop
;
1697 m_tag_prepend(m
, fwd_tag
);
1699 if (m
->m_pkthdr
.rcvif
== NULL
)
1700 m
->m_pkthdr
.rcvif
= lo_ifp
;
1702 #if BYTE_ORDER != BIG_ENDIAN
1706 mbuf_outbound_finalize(m
, PF_INET
, 0);
1709 * we need to call dlil_output to run filters
1710 * and resync to avoid recursion loops.
1713 dlil_output(lo_ifp
, PF_INET
, m
, NULL
,
1716 printf("%s: no loopback ifp for "
1717 "forwarding!!!\n", __func__
);
1722 * Some of the logic for this was nicked from above.
1724 * This rewrites the cached route in a local PCB.
1725 * Is this what we want to do?
1727 ROUTE_RELEASE(ro_fwd
);
1728 bcopy(dst
, &ro_fwd
->ro_dst
, sizeof (*dst
));
1730 rtalloc_ign(ro_fwd
, RTF_PRCLONING
, false);
1732 if (ro_fwd
->ro_rt
== NULL
) {
1733 OSAddAtomic(1, &ipstat
.ips_noroute
);
1734 error
= EHOSTUNREACH
;
1738 RT_LOCK_SPIN(ro_fwd
->ro_rt
);
1739 ia_fw
= ifatoia(ro_fwd
->ro_rt
->rt_ifa
);
1740 if (ia_fw
!= NULL
) {
1741 /* Become a regular mutex */
1742 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1743 IFA_ADDREF(&ia_fw
->ia_ifa
);
1745 ifp
= ro_fwd
->ro_rt
->rt_ifp
;
1746 ro_fwd
->ro_rt
->rt_use
++;
1747 if (ro_fwd
->ro_rt
->rt_flags
& RTF_GATEWAY
)
1748 dst
= SIN(ro_fwd
->ro_rt
->rt_gateway
);
1749 if (ro_fwd
->ro_rt
->rt_flags
& RTF_HOST
) {
1750 /* double negation needed for bool bit field */
1752 !!(ro_fwd
->ro_rt
->rt_flags
& RTF_BROADCAST
);
1754 /* Become a regular mutex */
1755 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1757 in_broadcast(dst
->sin_addr
, ifp
);
1759 RT_UNLOCK(ro_fwd
->ro_rt
);
1761 ro
->ro_rt
= ro_fwd
->ro_rt
;
1762 ro_fwd
->ro_rt
= NULL
;
1763 dst
= SIN(&ro_fwd
->ro_dst
);
1766 * If we added a default src ip earlier,
1767 * which would have been gotten from the-then
1768 * interface, do it again, from the new one.
1770 if (ia_fw
!= NULL
) {
1771 if (ipobf
.fwd_rewrite_src
) {
1772 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1773 ip
->ip_src
= IA_SIN(ia_fw
)->sin_addr
;
1774 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1776 IFA_REMREF(&ia_fw
->ia_ifa
);
1780 #endif /* IPFIREWALL_FORWARD */
1782 * if we get here, none of the above matches, and
1783 * we have to drop the pkt
1786 error
= EACCES
; /* not sure this is the right error msg */
1791 #endif /* IPFIREWALL */
1793 /* 127/8 must not appear on wire - RFC1122 */
1794 if (!(ifp
->if_flags
& IFF_LOOPBACK
) &&
1795 ((ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
1796 (ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
)) {
1797 OSAddAtomic(1, &ipstat
.ips_badaddr
);
1798 error
= EADDRNOTAVAIL
;
1803 u_int8_t dscp
= ip
->ip_tos
>> IPTOS_DSCP_SHIFT
;
1805 error
= set_packet_qos(m
, ifp
,
1806 ipoa
->ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1807 ipoa
->ipoa_sotc
, ipoa
->ipoa_netsvctype
, &dscp
);
1809 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1810 ip
->ip_tos
|= dscp
<< IPTOS_DSCP_SHIFT
;
1812 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1818 * Some Wi-Fi AP implementations do not correctly handle multicast IP
1819 * packets with DSCP bits set -- see radr://9331522 -- so as a
1820 * workaround we clear the DSCP bits and set the service class to BE
1822 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) && IFNET_IS_WIFI_INFRA(ifp
)) {
1823 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1824 mbuf_set_service_class(m
, MBUF_SC_BE
);
1827 ip_output_checksum(ifp
, m
, (IP_VHL_HL(ip
->ip_vhl
) << 2),
1828 ip
->ip_len
, &sw_csum
);
1830 interface_mtu
= ifp
->if_mtu
;
1832 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
1833 interface_mtu
= IN6_LINKMTU(ifp
);
1834 /* Further adjust the size for CLAT46 expansion */
1835 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
1839 * If small enough for interface, or the interface will take
1840 * care of the fragmentation for us, can just send directly.
1842 if ((u_short
)ip
->ip_len
<= interface_mtu
|| TSO_IPV4_OK(ifp
, m
) ||
1843 (!(ip
->ip_off
& IP_DF
) && (ifp
->if_hwassist
& CSUM_FRAGMENT
))) {
1844 #if BYTE_ORDER != BIG_ENDIAN
1850 if (sw_csum
& CSUM_DELAY_IP
) {
1851 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
1852 sw_csum
&= ~CSUM_DELAY_IP
;
1853 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
1857 /* clean ipsec history once it goes out of the node */
1858 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
1861 if ((m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) &&
1862 (m
->m_pkthdr
.tso_segsz
> 0))
1863 scnt
+= m
->m_pkthdr
.len
/ m
->m_pkthdr
.tso_segsz
;
1867 if (packetchain
== 0) {
1868 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1869 nstat_route_tx(ro
->ro_rt
, scnt
,
1870 m
->m_pkthdr
.len
, 0);
1872 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1874 if (dlil_verbose
&& error
) {
1875 printf("dlil_output error on interface %s: %d\n",
1876 ifp
->if_xname
, error
);
1882 * packet chaining allows us to reuse the
1883 * route for all packets
1885 bytecnt
+= m
->m_pkthdr
.len
;
1886 mppn
= &m
->m_nextpkt
;
1892 if (pktcnt
> ip_maxchainsent
)
1893 ip_maxchainsent
= pktcnt
;
1894 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1895 nstat_route_tx(ro
->ro_rt
, scnt
,
1898 error
= dlil_output(ifp
, PF_INET
, packetlist
,
1899 ro
->ro_rt
, SA(dst
), 0, adv
);
1900 if (dlil_verbose
&& error
) {
1901 printf("dlil_output error on interface %s: %d\n",
1902 ifp
->if_xname
, error
);
1916 VERIFY(interface_mtu
!= 0);
1918 * Too large for interface; fragment if possible.
1919 * Must be able to put at least 8 bytes per fragment.
1920 * Balk when DF bit is set or the interface didn't support TSO.
1922 if ((ip
->ip_off
& IP_DF
) || pktcnt
> 0 ||
1923 (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
)) {
1926 * This case can happen if the user changed the MTU
1927 * of an interface after enabling IP on it. Because
1928 * most netifs don't keep track of routes pointing to
1929 * them, there is no way for one to update all its
1930 * routes when the MTU is changed.
1933 RT_LOCK_SPIN(ro
->ro_rt
);
1934 if ((ro
->ro_rt
->rt_flags
& (RTF_UP
| RTF_HOST
)) &&
1935 !(ro
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
) &&
1936 (ro
->ro_rt
->rt_rmx
.rmx_mtu
> interface_mtu
)) {
1937 ro
->ro_rt
->rt_rmx
.rmx_mtu
= interface_mtu
;
1939 RT_UNLOCK(ro
->ro_rt
);
1944 OSAddAtomic(1, &ipstat
.ips_cantfrag
);
1949 * XXX Only TCP seems to be passing a list of packets here.
1950 * The following issue is limited to UDP datagrams with 0 checksum.
1951 * For now limit it to the case when single packet is passed down.
1953 if (packetchain
== 0 && IS_INTF_CLAT46(ifp
)) {
1955 * If it is a UDP packet that has checksum set to 0
1956 * and is also not being offloaded, compute a full checksum
1957 * and update the UDP checksum.
1959 if (ip
->ip_p
== IPPROTO_UDP
&&
1960 !(m
->m_pkthdr
.csum_flags
& (CSUM_UDP
| CSUM_PARTIAL
))) {
1961 struct udphdr
*uh
= NULL
;
1963 if (m
->m_len
< hlen
+ sizeof (struct udphdr
)) {
1964 m
= m_pullup(m
, hlen
+ sizeof (struct udphdr
));
1971 ip
= mtod(m
, struct ip
*);
1974 * Get UDP header and if checksum is 0, then compute the full
1977 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ hlen
);
1978 if (uh
->uh_sum
== 0) {
1979 uh
->uh_sum
= inet_cksum(m
, IPPROTO_UDP
, hlen
,
1981 if (uh
->uh_sum
== 0)
1982 uh
->uh_sum
= 0xffff;
1987 error
= ip_fragment(m
, ifp
, interface_mtu
, sw_csum
);
1993 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1994 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1996 for (m
= m0
; m
; m
= m0
) {
2000 /* clean ipsec history once it goes out of the node */
2001 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
2005 if ((packetchain
!= 0) && (pktcnt
> 0)) {
2006 panic("%s: mix of packet in packetlist is "
2007 "wrong=%p", __func__
, packetlist
);
2010 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
2011 nstat_route_tx(ro
->ro_rt
, 1,
2012 m
->m_pkthdr
.len
, 0);
2014 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
2016 if (dlil_verbose
&& error
) {
2017 printf("dlil_output error on interface %s: %d\n",
2018 ifp
->if_xname
, error
);
2026 OSAddAtomic(1, &ipstat
.ips_fragmented
);
2030 IFA_REMREF(&ia
->ia_ifa
);
2034 ROUTE_RELEASE(&ipsec_state
.ro
);
2036 KEYDEBUG(KEYDEBUG_IPSEC_STAMP
,
2037 printf("DP ip_output call free SP:%x\n", sp
));
2038 key_freesp(sp
, KEY_SADB_UNLOCKED
);
2042 ROUTE_RELEASE(&necp_route
);
2045 ROUTE_RELEASE(&saved_route
);
2046 #endif /* DUMMYNET */
2047 #if IPFIREWALL_FORWARD
2048 ROUTE_RELEASE(&sro_fwd
);
2049 #endif /* IPFIREWALL_FORWARD */
2051 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2052 if (ip_output_measure
) {
2053 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
2054 net_perf_histogram(&net_perf
, packets_processed
);
2068 #undef IP_CHECK_RESTRICTIONS
2072 ip_fragment(struct mbuf
*m
, struct ifnet
*ifp
, unsigned long mtu
, int sw_csum
)
2074 struct ip
*ip
, *mhip
;
2075 int len
, hlen
, mhlen
, firstlen
, off
, error
= 0;
2076 struct mbuf
**mnext
= &m
->m_nextpkt
, *m0
;
2079 ip
= mtod(m
, struct ip
*);
2081 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
2082 #else /* !_IP_VHL */
2083 hlen
= ip
->ip_hl
<< 2;
2084 #endif /* !_IP_VHL */
2088 * We need to adjust the fragment sizes to account
2089 * for IPv6 fragment header if it needs to be translated
2090 * from IPv4 to IPv6.
2092 if (IS_INTF_CLAT46(ifp
))
2093 mtu
-= sizeof(struct ip6_frag
);
2096 firstlen
= len
= (mtu
- hlen
) &~ 7;
2103 * if the interface will not calculate checksums on
2104 * fragmented packets, then do it here.
2106 if ((m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) &&
2107 !(ifp
->if_hwassist
& CSUM_IP_FRAGS
))
2108 in_delayed_cksum(m
);
2111 * Loop through length of segment after first fragment,
2112 * make new header and copy data of each part and link onto chain.
2115 mhlen
= sizeof (struct ip
);
2116 for (off
= hlen
+ len
; off
< (u_short
)ip
->ip_len
; off
+= len
) {
2117 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2120 OSAddAtomic(1, &ipstat
.ips_odropped
);
2123 m
->m_flags
|= (m0
->m_flags
& M_MCAST
) | M_FRAG
;
2124 m
->m_data
+= max_linkhdr
;
2125 mhip
= mtod(m
, struct ip
*);
2127 if (hlen
> sizeof (struct ip
)) {
2128 mhlen
= ip_optcopy(ip
, mhip
) + sizeof (struct ip
);
2129 mhip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, mhlen
>> 2);
2132 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
2133 if (ip
->ip_off
& IP_MF
)
2134 mhip
->ip_off
|= IP_MF
;
2135 if (off
+ len
>= (u_short
)ip
->ip_len
)
2136 len
= (u_short
)ip
->ip_len
- off
;
2138 mhip
->ip_off
|= IP_MF
;
2139 mhip
->ip_len
= htons((u_short
)(len
+ mhlen
));
2140 m
->m_next
= m_copy(m0
, off
, len
);
2141 if (m
->m_next
== NULL
) {
2143 error
= ENOBUFS
; /* ??? */
2144 OSAddAtomic(1, &ipstat
.ips_odropped
);
2147 m
->m_pkthdr
.len
= mhlen
+ len
;
2148 m
->m_pkthdr
.rcvif
= NULL
;
2149 m
->m_pkthdr
.csum_flags
= m0
->m_pkthdr
.csum_flags
;
2151 M_COPY_CLASSIFIER(m
, m0
);
2152 M_COPY_PFTAG(m
, m0
);
2155 mac_netinet_fragment(m0
, m
);
2156 #endif /* CONFIG_MACF_NET */
2158 #if BYTE_ORDER != BIG_ENDIAN
2159 HTONS(mhip
->ip_off
);
2163 if (sw_csum
& CSUM_DELAY_IP
) {
2164 mhip
->ip_sum
= ip_cksum_hdr_out(m
, mhlen
);
2165 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2168 mnext
= &m
->m_nextpkt
;
2171 OSAddAtomic(nfrags
, &ipstat
.ips_ofragments
);
2173 /* set first/last markers for fragment chain */
2174 m
->m_flags
|= M_LASTFRAG
;
2175 m0
->m_flags
|= M_FIRSTFRAG
| M_FRAG
;
2176 m0
->m_pkthdr
.csum_data
= nfrags
;
2179 * Update first fragment by trimming what's been copied out
2180 * and updating header, then send each fragment (in order).
2183 m_adj(m
, hlen
+ firstlen
- (u_short
)ip
->ip_len
);
2184 m
->m_pkthdr
.len
= hlen
+ firstlen
;
2185 ip
->ip_len
= htons((u_short
)m
->m_pkthdr
.len
);
2186 ip
->ip_off
|= IP_MF
;
2188 #if BYTE_ORDER != BIG_ENDIAN
2193 if (sw_csum
& CSUM_DELAY_IP
) {
2194 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
2195 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2205 ip_out_cksum_stats(int proto
, u_int32_t len
)
2209 tcp_out_cksum_stats(len
);
2212 udp_out_cksum_stats(len
);
2215 /* keep only TCP or UDP stats for now */
2221 * Process a delayed payload checksum calculation (outbound path.)
2223 * hoff is the number of bytes beyond the mbuf data pointer which
2224 * points to the IP header.
2226 * Returns a bitmask representing all the work done in software.
2229 in_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, uint32_t csum_flags
)
2231 unsigned char buf
[15 << 2] __attribute__((aligned(8)));
2233 uint32_t offset
, _hlen
, mlen
, hlen
, len
, sw_csum
;
2234 uint16_t csum
, ip_len
;
2236 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
2237 VERIFY(m
->m_flags
& M_PKTHDR
);
2239 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2241 if ((sw_csum
&= (CSUM_DELAY_IP
| CSUM_DELAY_DATA
)) == 0)
2244 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2246 /* sanity check (need at least simple IP header) */
2247 if (mlen
< (hoff
+ sizeof (*ip
))) {
2248 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2249 "(%u+%u)\n", __func__
, m
, mlen
, hoff
,
2250 (uint32_t)sizeof (*ip
));
2255 * In case the IP header is not contiguous, or not 32-bit aligned,
2256 * or if we're computing the IP header checksum, copy it to a local
2257 * buffer. Copy only the simple IP header here (IP options case
2258 * is handled below.)
2260 if ((sw_csum
& CSUM_DELAY_IP
) || (hoff
+ sizeof (*ip
)) > m
->m_len
||
2261 !IP_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2262 m_copydata(m
, hoff
, sizeof (*ip
), (caddr_t
)buf
);
2263 ip
= (struct ip
*)(void *)buf
;
2264 _hlen
= sizeof (*ip
);
2266 ip
= (struct ip
*)(void *)(m
->m_data
+ hoff
);
2270 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2; /* IP header len */
2273 if (mlen
< (hoff
+ hlen
)) {
2274 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2275 "hoff %u", __func__
, m
, mlen
, hlen
, hoff
);
2280 * We could be in the context of an IP or interface filter; in the
2281 * former case, ip_len would be in host (correct) order while for
2282 * the latter it would be in network order. Because of this, we
2283 * attempt to interpret the length field by comparing it against
2284 * the actual packet length. If the comparison fails, byte swap
2285 * the length and check again. If it still fails, use the actual
2286 * packet length. This also covers the trailing bytes case.
2288 ip_len
= ip
->ip_len
;
2289 if (ip_len
!= (mlen
- hoff
)) {
2290 ip_len
= OSSwapInt16(ip_len
);
2291 if (ip_len
!= (mlen
- hoff
)) {
2292 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2293 "[swapped %d (%x)] doesn't match actual packet "
2294 "length; %d is used instead\n", __func__
,
2295 (uint64_t)VM_KERNEL_ADDRPERM(m
), ip
->ip_p
,
2296 ip
->ip_len
, ip
->ip_len
, ip_len
, ip_len
,
2298 ip_len
= mlen
- hoff
;
2302 len
= ip_len
- hlen
; /* csum span */
2304 if (sw_csum
& CSUM_DELAY_DATA
) {
2308 * offset is added to the lower 16-bit value of csum_data,
2309 * which is expected to contain the ULP offset; therefore
2310 * CSUM_PARTIAL offset adjustment must be undone.
2312 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2313 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2315 * Get back the original ULP offset (this will
2316 * undo the CSUM_PARTIAL logic in ip_output.)
2318 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2319 m
->m_pkthdr
.csum_tx_start
);
2322 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2323 offset
= hoff
+ hlen
; /* ULP header */
2325 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2326 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2327 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2328 m
, mlen
, ip
->ip_p
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2332 csum
= inet_cksum(m
, 0, offset
, len
);
2335 ip_out_cksum_stats(ip
->ip_p
, len
);
2337 /* RFC1122 4.1.3.4 */
2339 (m
->m_pkthdr
.csum_flags
& (CSUM_UDP
|CSUM_ZERO_INVERT
)))
2342 /* Insert the checksum in the ULP csum field */
2344 if (offset
+ sizeof (csum
) > m
->m_len
) {
2345 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2346 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2347 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2349 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2351 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_DATA
| CSUM_DATA_VALID
|
2352 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2355 if (sw_csum
& CSUM_DELAY_IP
) {
2356 /* IP header must be in the local buffer */
2357 VERIFY(_hlen
== sizeof (*ip
));
2358 if (_hlen
!= hlen
) {
2359 VERIFY(hlen
<= sizeof (buf
));
2360 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2361 ip
= (struct ip
*)(void *)buf
;
2366 * Compute the IP header checksum as if the IP length
2367 * is the length which we believe is "correct"; see
2368 * how ip_len gets calculated above. Note that this
2369 * is done on the local copy and not on the real one.
2371 ip
->ip_len
= htons(ip_len
);
2373 csum
= in_cksum_hdr_opt(ip
);
2376 ipstat
.ips_snd_swcsum
++;
2377 ipstat
.ips_snd_swcsum_bytes
+= hlen
;
2380 * Insert only the checksum in the existing IP header
2381 * csum field; all other fields are left unchanged.
2383 offset
= hoff
+ offsetof(struct ip
, ip_sum
);
2384 if (offset
+ sizeof (csum
) > m
->m_len
) {
2385 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2386 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2387 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2389 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2391 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2399 * Insert IP options into preformed packet.
2400 * Adjust IP destination as required for IP source routing,
2401 * as indicated by a non-zero in_addr at the start of the options.
2403 * XXX This routine assumes that the packet has no options in place.
2405 static struct mbuf
*
2406 ip_insertoptions(struct mbuf
*m
, struct mbuf
*opt
, int *phlen
)
2408 struct ipoption
*p
= mtod(opt
, struct ipoption
*);
2410 struct ip
*ip
= mtod(m
, struct ip
*);
2413 optlen
= opt
->m_len
- sizeof (p
->ipopt_dst
);
2414 if (optlen
+ (u_short
)ip
->ip_len
> IP_MAXPACKET
)
2415 return (m
); /* XXX should fail */
2416 if (p
->ipopt_dst
.s_addr
)
2417 ip
->ip_dst
= p
->ipopt_dst
;
2418 if (m
->m_flags
& M_EXT
|| m
->m_data
- optlen
< m
->m_pktdat
) {
2419 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2422 n
->m_pkthdr
.rcvif
= 0;
2424 mac_mbuf_label_copy(m
, n
);
2425 #endif /* CONFIG_MACF_NET */
2426 n
->m_pkthdr
.len
= m
->m_pkthdr
.len
+ optlen
;
2427 m
->m_len
-= sizeof (struct ip
);
2428 m
->m_data
+= sizeof (struct ip
);
2431 m
->m_len
= optlen
+ sizeof (struct ip
);
2432 m
->m_data
+= max_linkhdr
;
2433 (void) memcpy(mtod(m
, void *), ip
, sizeof (struct ip
));
2435 m
->m_data
-= optlen
;
2437 m
->m_pkthdr
.len
+= optlen
;
2438 ovbcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof (struct ip
));
2440 ip
= mtod(m
, struct ip
*);
2441 bcopy(p
->ipopt_list
, ip
+ 1, optlen
);
2442 *phlen
= sizeof (struct ip
) + optlen
;
2443 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, *phlen
>> 2);
2444 ip
->ip_len
+= optlen
;
2449 * Copy options from ip to jp,
2450 * omitting those not copied during fragmentation.
2453 ip_optcopy(struct ip
*ip
, struct ip
*jp
)
2456 int opt
, optlen
, cnt
;
2458 cp
= (u_char
*)(ip
+ 1);
2459 dp
= (u_char
*)(jp
+ 1);
2460 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
2461 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2463 if (opt
== IPOPT_EOL
)
2465 if (opt
== IPOPT_NOP
) {
2466 /* Preserve for IP mcast tunnel's LSRR alignment. */
2472 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
)) {
2473 panic("malformed IPv4 option passed to ip_optcopy");
2477 optlen
= cp
[IPOPT_OLEN
];
2479 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
) {
2480 panic("malformed IPv4 option passed to ip_optcopy");
2484 /* bogus lengths should have been caught by ip_dooptions */
2487 if (IPOPT_COPIED(opt
)) {
2488 bcopy(cp
, dp
, optlen
);
2492 for (optlen
= dp
- (u_char
*)(jp
+1); optlen
& 0x3; optlen
++)
2498 * IP socket option processing.
2501 ip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2503 struct inpcb
*inp
= sotoinpcb(so
);
2507 if (sopt
->sopt_level
!= IPPROTO_IP
)
2510 switch (sopt
->sopt_dir
) {
2512 switch (sopt
->sopt_name
) {
2519 if (sopt
->sopt_valsize
> MLEN
) {
2523 MGET(m
, sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
,
2529 m
->m_len
= sopt
->sopt_valsize
;
2530 error
= sooptcopyin(sopt
, mtod(m
, char *),
2531 m
->m_len
, m
->m_len
);
2537 return (ip_pcbopts(sopt
->sopt_name
,
2538 &inp
->inp_options
, m
));
2544 case IP_RECVRETOPTS
:
2545 case IP_RECVDSTADDR
:
2548 case IP_RECVPKTINFO
:
2550 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2555 switch (sopt
->sopt_name
) {
2557 inp
->inp_ip_tos
= optval
;
2561 inp
->inp_ip_ttl
= optval
;
2563 #define OPTSET(bit) \
2565 inp->inp_flags |= bit; \
2567 inp->inp_flags &= ~bit;
2570 OPTSET(INP_RECVOPTS
);
2573 case IP_RECVRETOPTS
:
2574 OPTSET(INP_RECVRETOPTS
);
2577 case IP_RECVDSTADDR
:
2578 OPTSET(INP_RECVDSTADDR
);
2586 OPTSET(INP_RECVTTL
);
2589 case IP_RECVPKTINFO
:
2590 OPTSET(INP_PKTINFO
);
2594 OPTSET(INP_RECVTOS
);
2600 * Multicast socket options are processed by the in_mcast
2603 case IP_MULTICAST_IF
:
2604 case IP_MULTICAST_IFINDEX
:
2605 case IP_MULTICAST_VIF
:
2606 case IP_MULTICAST_TTL
:
2607 case IP_MULTICAST_LOOP
:
2608 case IP_ADD_MEMBERSHIP
:
2609 case IP_DROP_MEMBERSHIP
:
2610 case IP_ADD_SOURCE_MEMBERSHIP
:
2611 case IP_DROP_SOURCE_MEMBERSHIP
:
2612 case IP_BLOCK_SOURCE
:
2613 case IP_UNBLOCK_SOURCE
:
2615 case MCAST_JOIN_GROUP
:
2616 case MCAST_LEAVE_GROUP
:
2617 case MCAST_JOIN_SOURCE_GROUP
:
2618 case MCAST_LEAVE_SOURCE_GROUP
:
2619 case MCAST_BLOCK_SOURCE
:
2620 case MCAST_UNBLOCK_SOURCE
:
2621 error
= inp_setmoptions(inp
, sopt
);
2625 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2631 case IP_PORTRANGE_DEFAULT
:
2632 inp
->inp_flags
&= ~(INP_LOWPORT
);
2633 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2636 case IP_PORTRANGE_HIGH
:
2637 inp
->inp_flags
&= ~(INP_LOWPORT
);
2638 inp
->inp_flags
|= INP_HIGHPORT
;
2641 case IP_PORTRANGE_LOW
:
2642 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2643 inp
->inp_flags
|= INP_LOWPORT
;
2653 case IP_IPSEC_POLICY
: {
2660 if ((error
= soopt_getm(sopt
, &m
)) != 0) /* XXX */
2662 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) /* XXX */
2664 priv
= (proc_suser(sopt
->sopt_p
) == 0);
2666 req
= mtod(m
, caddr_t
);
2669 optname
= sopt
->sopt_name
;
2670 error
= ipsec4_set_policy(inp
, optname
, req
, len
, priv
);
2677 case IP_TRAFFIC_MGT_BACKGROUND
: {
2678 unsigned background
= 0;
2680 error
= sooptcopyin(sopt
, &background
,
2681 sizeof (background
), sizeof (background
));
2686 socket_set_traffic_mgt_flags_locked(so
,
2687 TRAFFIC_MGT_SO_BACKGROUND
);
2689 socket_clear_traffic_mgt_flags_locked(so
,
2690 TRAFFIC_MGT_SO_BACKGROUND
);
2695 #endif /* TRAFFIC_MGT */
2698 * On a multihomed system, scoped routing can be used to
2699 * restrict the source interface used for sending packets.
2700 * The socket option IP_BOUND_IF binds a particular AF_INET
2701 * socket to an interface such that data sent on the socket
2702 * is restricted to that interface. This is unlike the
2703 * SO_DONTROUTE option where the routing table is bypassed;
2704 * therefore it allows for a greater flexibility and control
2705 * over the system behavior, and does not place any restriction
2706 * on the destination address type (e.g. unicast, multicast,
2707 * or broadcast if applicable) or whether or not the host is
2708 * directly reachable. Note that in the multicast transmit
2709 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2710 * IP_BOUND_IF, since the former practically bypasses the
2711 * routing table; in this case, IP_BOUND_IF sets the default
2712 * interface used for sending multicast packets in the absence
2713 * of an explicit multicast transmit interface.
2716 /* This option is settable only for IPv4 */
2717 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2722 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2728 error
= inp_bindif(inp
, optval
, NULL
);
2731 case IP_NO_IFT_CELLULAR
:
2732 /* This option is settable only for IPv4 */
2733 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2738 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2744 /* once set, it cannot be unset */
2745 if (!optval
&& INP_NO_CELLULAR(inp
)) {
2750 error
= so_set_restrictions(so
,
2751 SO_RESTRICT_DENY_CELLULAR
);
2755 /* This option is not settable */
2760 error
= ENOPROTOOPT
;
2766 switch (sopt
->sopt_name
) {
2769 if (inp
->inp_options
) {
2770 error
= sooptcopyout(sopt
,
2771 mtod(inp
->inp_options
, char *),
2772 inp
->inp_options
->m_len
);
2774 sopt
->sopt_valsize
= 0;
2781 case IP_RECVRETOPTS
:
2782 case IP_RECVDSTADDR
:
2786 case IP_RECVPKTINFO
:
2788 switch (sopt
->sopt_name
) {
2790 optval
= inp
->inp_ip_tos
;
2794 optval
= inp
->inp_ip_ttl
;
2797 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2800 optval
= OPTBIT(INP_RECVOPTS
);
2803 case IP_RECVRETOPTS
:
2804 optval
= OPTBIT(INP_RECVRETOPTS
);
2807 case IP_RECVDSTADDR
:
2808 optval
= OPTBIT(INP_RECVDSTADDR
);
2812 optval
= OPTBIT(INP_RECVIF
);
2816 optval
= OPTBIT(INP_RECVTTL
);
2820 if (inp
->inp_flags
& INP_HIGHPORT
)
2821 optval
= IP_PORTRANGE_HIGH
;
2822 else if (inp
->inp_flags
& INP_LOWPORT
)
2823 optval
= IP_PORTRANGE_LOW
;
2828 case IP_RECVPKTINFO
:
2829 optval
= OPTBIT(INP_PKTINFO
);
2833 optval
= OPTBIT(INP_RECVTOS
);
2836 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2839 case IP_MULTICAST_IF
:
2840 case IP_MULTICAST_IFINDEX
:
2841 case IP_MULTICAST_VIF
:
2842 case IP_MULTICAST_TTL
:
2843 case IP_MULTICAST_LOOP
:
2845 error
= inp_getmoptions(inp
, sopt
);
2849 case IP_IPSEC_POLICY
: {
2850 error
= 0; /* This option is no longer supported */
2856 case IP_TRAFFIC_MGT_BACKGROUND
: {
2857 unsigned background
= (so
->so_flags1
&
2858 SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ? 1 : 0;
2859 return (sooptcopyout(sopt
, &background
,
2860 sizeof (background
)));
2862 #endif /* TRAFFIC_MGT */
2865 if (inp
->inp_flags
& INP_BOUND_IF
)
2866 optval
= inp
->inp_boundifp
->if_index
;
2867 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2870 case IP_NO_IFT_CELLULAR
:
2871 optval
= INP_NO_CELLULAR(inp
) ? 1 : 0;
2872 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2876 optval
= (inp
->inp_last_outifp
!= NULL
) ?
2877 inp
->inp_last_outifp
->if_index
: 0;
2878 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2882 error
= ENOPROTOOPT
;
2891 * Set up IP options in pcb for insertion in output packets.
2892 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2893 * with destination address if source routed.
2896 ip_pcbopts(int optname
, struct mbuf
**pcbopt
, struct mbuf
*m
)
2898 #pragma unused(optname)
2903 /* turn off any old options */
2905 (void) m_free(*pcbopt
);
2907 if (m
== (struct mbuf
*)0 || m
->m_len
== 0) {
2909 * Only turning off any previous options.
2916 if (m
->m_len
% sizeof (int32_t))
2920 * IP first-hop destination address will be stored before
2921 * actual options; move other options back
2922 * and clear it when none present.
2924 if (m
->m_data
+ m
->m_len
+ sizeof (struct in_addr
) >= &m
->m_dat
[MLEN
])
2927 m
->m_len
+= sizeof (struct in_addr
);
2928 cp
= mtod(m
, u_char
*) + sizeof (struct in_addr
);
2929 ovbcopy(mtod(m
, caddr_t
), (caddr_t
)cp
, (unsigned)cnt
);
2930 bzero(mtod(m
, caddr_t
), sizeof (struct in_addr
));
2932 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2933 opt
= cp
[IPOPT_OPTVAL
];
2934 if (opt
== IPOPT_EOL
)
2936 if (opt
== IPOPT_NOP
)
2939 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
))
2941 optlen
= cp
[IPOPT_OLEN
];
2942 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
)
2953 * user process specifies route as:
2955 * D must be our final destination (but we can't
2956 * check that since we may not have connected yet).
2957 * A is first hop destination, which doesn't appear in
2958 * actual IP option, but is stored before the options.
2960 if (optlen
< IPOPT_MINOFF
- 1 + sizeof (struct in_addr
))
2962 m
->m_len
-= sizeof (struct in_addr
);
2963 cnt
-= sizeof (struct in_addr
);
2964 optlen
-= sizeof (struct in_addr
);
2965 cp
[IPOPT_OLEN
] = optlen
;
2967 * Move first hop before start of options.
2969 bcopy((caddr_t
)&cp
[IPOPT_OFFSET
+1], mtod(m
, caddr_t
),
2970 sizeof (struct in_addr
));
2972 * Then copy rest of options back
2973 * to close up the deleted entry.
2975 ovbcopy((caddr_t
)(&cp
[IPOPT_OFFSET
+1] +
2976 sizeof (struct in_addr
)),
2977 (caddr_t
)&cp
[IPOPT_OFFSET
+1],
2978 (unsigned)cnt
+ sizeof (struct in_addr
));
2982 if (m
->m_len
> MAX_IPOPTLEN
+ sizeof (struct in_addr
))
2993 ip_moptions_init(void)
2995 PE_parse_boot_argn("ifa_debug", &imo_debug
, sizeof (imo_debug
));
2997 imo_size
= (imo_debug
== 0) ? sizeof (struct ip_moptions
) :
2998 sizeof (struct ip_moptions_dbg
);
3000 imo_zone
= zinit(imo_size
, IMO_ZONE_MAX
* imo_size
, 0,
3002 if (imo_zone
== NULL
) {
3003 panic("%s: failed allocating %s", __func__
, IMO_ZONE_NAME
);
3006 zone_change(imo_zone
, Z_EXPAND
, TRUE
);
3010 imo_addref(struct ip_moptions
*imo
, int locked
)
3015 IMO_LOCK_ASSERT_HELD(imo
);
3017 if (++imo
->imo_refcnt
== 0) {
3018 panic("%s: imo %p wraparound refcnt\n", __func__
, imo
);
3020 } else if (imo
->imo_trace
!= NULL
) {
3021 (*imo
->imo_trace
)(imo
, TRUE
);
3029 imo_remref(struct ip_moptions
*imo
)
3034 if (imo
->imo_refcnt
== 0) {
3035 panic("%s: imo %p negative refcnt", __func__
, imo
);
3037 } else if (imo
->imo_trace
!= NULL
) {
3038 (*imo
->imo_trace
)(imo
, FALSE
);
3042 if (imo
->imo_refcnt
> 0) {
3047 for (i
= 0; i
< imo
->imo_num_memberships
; ++i
) {
3048 struct in_mfilter
*imf
;
3050 imf
= imo
->imo_mfilters
? &imo
->imo_mfilters
[i
] : NULL
;
3054 (void) in_leavegroup(imo
->imo_membership
[i
], imf
);
3059 INM_REMREF(imo
->imo_membership
[i
]);
3060 imo
->imo_membership
[i
] = NULL
;
3062 imo
->imo_num_memberships
= 0;
3063 if (imo
->imo_mfilters
!= NULL
) {
3064 FREE(imo
->imo_mfilters
, M_INMFILTER
);
3065 imo
->imo_mfilters
= NULL
;
3067 if (imo
->imo_membership
!= NULL
) {
3068 FREE(imo
->imo_membership
, M_IPMOPTS
);
3069 imo
->imo_membership
= NULL
;
3073 lck_mtx_destroy(&imo
->imo_lock
, ifa_mtx_grp
);
3075 if (!(imo
->imo_debug
& IFD_ALLOC
)) {
3076 panic("%s: imo %p cannot be freed", __func__
, imo
);
3079 zfree(imo_zone
, imo
);
3083 imo_trace(struct ip_moptions
*imo
, int refhold
)
3085 struct ip_moptions_dbg
*imo_dbg
= (struct ip_moptions_dbg
*)imo
;
3090 if (!(imo
->imo_debug
& IFD_DEBUG
)) {
3091 panic("%s: imo %p has no debug structure", __func__
, imo
);
3095 cnt
= &imo_dbg
->imo_refhold_cnt
;
3096 tr
= imo_dbg
->imo_refhold
;
3098 cnt
= &imo_dbg
->imo_refrele_cnt
;
3099 tr
= imo_dbg
->imo_refrele
;
3102 idx
= atomic_add_16_ov(cnt
, 1) % IMO_TRACE_HIST_SIZE
;
3103 ctrace_record(&tr
[idx
]);
3106 struct ip_moptions
*
3107 ip_allocmoptions(int how
)
3109 struct ip_moptions
*imo
;
3111 imo
= (how
== M_WAITOK
) ? zalloc(imo_zone
) : zalloc_noblock(imo_zone
);
3113 bzero(imo
, imo_size
);
3114 lck_mtx_init(&imo
->imo_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3115 imo
->imo_debug
|= IFD_ALLOC
;
3116 if (imo_debug
!= 0) {
3117 imo
->imo_debug
|= IFD_DEBUG
;
3118 imo
->imo_trace
= imo_trace
;
3127 * Routine called from ip_output() to loop back a copy of an IP multicast
3128 * packet to the input queue of a specified interface. Note that this
3129 * calls the output routine of the loopback "driver", but with an interface
3130 * pointer that might NOT be a loopback interface -- evil, but easier than
3131 * replicating that code here.
3134 ip_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3135 struct sockaddr_in
*dst
, int hlen
)
3144 * Copy the packet header as it's needed for the checksum
3145 * Make sure to deep-copy IP header portion in case the data
3146 * is in an mbuf cluster, so that we can safely override the IP
3147 * header portion later.
3149 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3150 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) || copym
->m_len
< hlen
))
3151 copym
= m_pullup(copym
, hlen
);
3157 * We don't bother to fragment if the IP length is greater
3158 * than the interface's MTU. Can this possibly matter?
3160 ip
= mtod(copym
, struct ip
*);
3161 #if BYTE_ORDER != BIG_ENDIAN
3166 ip
->ip_sum
= ip_cksum_hdr_out(copym
, hlen
);
3169 * Mark checksum as valid unless receive checksum offload is
3170 * disabled; if so, compute checksum in software. If the
3171 * interface itself is lo0, this will be overridden by if_loop.
3174 copym
->m_pkthdr
.csum_flags
&= ~(CSUM_PARTIAL
|CSUM_ZERO_INVERT
);
3175 copym
->m_pkthdr
.csum_flags
|=
3176 CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
3177 copym
->m_pkthdr
.csum_data
= 0xffff;
3178 } else if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
3179 #if BYTE_ORDER != BIG_ENDIAN
3182 in_delayed_cksum(copym
);
3183 #if BYTE_ORDER != BIG_ENDIAN
3189 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3190 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3191 * to make the loopback driver compliant with the data link
3194 copym
->m_pkthdr
.rcvif
= origifp
;
3197 * Also record the source interface (which owns the source address).
3198 * This is basically a stripped down version of ifa_foraddr().
3200 if (srcifp
== NULL
) {
3201 struct in_ifaddr
*ia
;
3203 lck_rw_lock_shared(in_ifaddr_rwlock
);
3204 TAILQ_FOREACH(ia
, INADDR_HASH(ip
->ip_src
.s_addr
), ia_hash
) {
3205 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3206 if (IA_SIN(ia
)->sin_addr
.s_addr
== ip
->ip_src
.s_addr
) {
3207 srcifp
= ia
->ia_ifp
;
3208 IFA_UNLOCK(&ia
->ia_ifa
);
3211 IFA_UNLOCK(&ia
->ia_ifa
);
3213 lck_rw_done(in_ifaddr_rwlock
);
3216 ip_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3217 ip_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3219 dlil_output(lo_ifp
, PF_INET
, copym
, NULL
, SA(dst
), 0, NULL
);
3223 * Given a source IP address (and route, if available), determine the best
3224 * interface to send the packet from. Checking for (and updating) the
3225 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3226 * without any locks based on the assumption that ip_output() is single-
3227 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3228 * performing output at the IP layer.
3230 * This routine is analogous to in6_selectroute() for IPv6.
3232 static struct ifaddr
*
3233 in_selectsrcif(struct ip
*ip
, struct route
*ro
, unsigned int ifscope
)
3235 struct ifaddr
*ifa
= NULL
;
3236 struct in_addr src
= ip
->ip_src
;
3237 struct in_addr dst
= ip
->ip_dst
;
3238 struct ifnet
*rt_ifp
;
3239 char s_src
[MAX_IPv4_STR_LEN
], s_dst
[MAX_IPv4_STR_LEN
];
3241 VERIFY(src
.s_addr
!= INADDR_ANY
);
3243 if (ip_select_srcif_debug
) {
3244 (void) inet_ntop(AF_INET
, &src
.s_addr
, s_src
, sizeof (s_src
));
3245 (void) inet_ntop(AF_INET
, &dst
.s_addr
, s_dst
, sizeof (s_dst
));
3248 if (ro
->ro_rt
!= NULL
)
3251 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
3254 * Given the source IP address, find a suitable source interface
3255 * to use for transmission; if the caller has specified a scope,
3256 * optimize the search by looking at the addresses only for that
3257 * interface. This is still suboptimal, however, as we need to
3258 * traverse the per-interface list.
3260 if (ifscope
!= IFSCOPE_NONE
|| ro
->ro_rt
!= NULL
) {
3261 unsigned int scope
= ifscope
;
3264 * If no scope is specified and the route is stale (pointing
3265 * to a defunct interface) use the current primary interface;
3266 * this happens when switching between interfaces configured
3267 * with the same IP address. Otherwise pick up the scope
3268 * information from the route; the ULP may have looked up a
3269 * correct route and we just need to verify it here and mark
3270 * it with the ROF_SRCIF_SELECTED flag below.
3272 if (scope
== IFSCOPE_NONE
) {
3273 scope
= rt_ifp
->if_index
;
3274 if (scope
!= get_primary_ifscope(AF_INET
) &&
3276 scope
= get_primary_ifscope(AF_INET
);
3279 ifa
= (struct ifaddr
*)ifa_foraddr_scoped(src
.s_addr
, scope
);
3281 if (ifa
== NULL
&& ip
->ip_p
!= IPPROTO_UDP
&&
3282 ip
->ip_p
!= IPPROTO_TCP
&& ipforwarding
) {
3284 * If forwarding is enabled, and if the packet isn't
3285 * TCP or UDP, check if the source address belongs
3286 * to one of our own interfaces; if so, demote the
3287 * interface scope and do a route lookup right below.
3289 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3293 ifscope
= IFSCOPE_NONE
;
3297 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3298 if (ro
->ro_rt
!= NULL
) {
3299 printf("%s->%s ifscope %d->%d ifa_if %s "
3300 "ro_if %s\n", s_src
, s_dst
, ifscope
,
3301 scope
, if_name(ifa
->ifa_ifp
),
3304 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3305 s_src
, s_dst
, ifscope
, scope
,
3306 if_name(ifa
->ifa_ifp
));
3312 * Slow path; search for an interface having the corresponding source
3313 * IP address if the scope was not specified by the caller, and:
3315 * 1) There currently isn't any route, or,
3316 * 2) The interface used by the route does not own that source
3317 * IP address; in this case, the route will get blown away
3318 * and we'll do a more specific scoped search using the newly
3321 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
3322 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3325 * If we have the IP address, but not the route, we don't
3326 * really know whether or not it belongs to the correct
3327 * interface (it could be shared across multiple interfaces.)
3328 * The only way to find out is to do a route lookup.
3330 if (ifa
!= NULL
&& ro
->ro_rt
== NULL
) {
3332 struct sockaddr_in sin
;
3333 struct ifaddr
*oifa
= NULL
;
3335 bzero(&sin
, sizeof (sin
));
3336 sin
.sin_family
= AF_INET
;
3337 sin
.sin_len
= sizeof (sin
);
3340 lck_mtx_lock(rnh_lock
);
3341 if ((rt
= rt_lookup(TRUE
, SA(&sin
), NULL
,
3342 rt_tables
[AF_INET
], IFSCOPE_NONE
)) != NULL
) {
3345 * If the route uses a different interface,
3346 * use that one instead. The IP address of
3347 * the ifaddr that we pick up here is not
3350 if (ifa
->ifa_ifp
!= rt
->rt_ifp
) {
3360 lck_mtx_unlock(rnh_lock
);
3363 struct ifaddr
*iifa
;
3366 * See if the interface pointed to by the
3367 * route is configured with the source IP
3368 * address of the packet.
3370 iifa
= (struct ifaddr
*)ifa_foraddr_scoped(
3371 src
.s_addr
, ifa
->ifa_ifp
->if_index
);
3375 * Found it; drop the original one
3376 * as well as the route interface
3377 * address, and use this instead.
3382 } else if (!ipforwarding
||
3383 (rt
->rt_flags
& RTF_GATEWAY
)) {
3385 * This interface doesn't have that
3386 * source IP address; drop the route
3387 * interface address and just use the
3388 * original one, and let the caller
3389 * do a scoped route lookup.
3395 * Forwarding is enabled and the source
3396 * address belongs to one of our own
3397 * interfaces which isn't the outgoing
3398 * interface, and we have a route, and
3399 * the destination is on a network that
3400 * is directly attached (onlink); drop
3401 * the original one and use the route
3402 * interface address instead.
3407 } else if (ifa
!= NULL
&& ro
->ro_rt
!= NULL
&&
3408 !(ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) &&
3409 ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& ipforwarding
) {
3411 * Forwarding is enabled and the source address belongs
3412 * to one of our own interfaces which isn't the same
3413 * as the interface used by the known route; drop the
3414 * original one and use the route interface address.
3417 ifa
= ro
->ro_rt
->rt_ifa
;
3421 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3422 printf("%s->%s ifscope %d ifa_if %s\n",
3423 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
3427 if (ro
->ro_rt
!= NULL
)
3428 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
3430 * If there is a non-loopback route with the wrong interface, or if
3431 * there is no interface configured with such an address, blow it
3432 * away. Except for local/loopback, we look for one with a matching
3433 * interface scope/index.
3435 if (ro
->ro_rt
!= NULL
&&
3436 (ifa
== NULL
|| (ifa
->ifa_ifp
!= rt_ifp
&& rt_ifp
!= lo_ifp
) ||
3437 !(ro
->ro_rt
->rt_flags
& RTF_UP
))) {
3438 if (ip_select_srcif_debug
) {
3440 printf("%s->%s ifscope %d ro_if %s != "
3441 "ifa_if %s (cached route cleared)\n",
3442 s_src
, s_dst
, ifscope
, if_name(rt_ifp
),
3443 if_name(ifa
->ifa_ifp
));
3445 printf("%s->%s ifscope %d ro_if %s "
3446 "(no ifa_if found)\n",
3447 s_src
, s_dst
, ifscope
, if_name(rt_ifp
));
3451 RT_UNLOCK(ro
->ro_rt
);
3455 * If the destination is IPv4 LLA and the route's interface
3456 * doesn't match the source interface, then the source IP
3457 * address is wrong; it most likely belongs to the primary
3458 * interface associated with the IPv4 LL subnet. Drop the
3459 * packet rather than letting it go out and return an error
3460 * to the ULP. This actually applies not only to IPv4 LL
3461 * but other shared subnets; for now we explicitly test only
3462 * for the former case and save the latter for future.
3464 if (IN_LINKLOCAL(ntohl(dst
.s_addr
)) &&
3465 !IN_LINKLOCAL(ntohl(src
.s_addr
)) && ifa
!= NULL
) {
3471 if (ip_select_srcif_debug
&& ifa
== NULL
) {
3472 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3473 s_src
, s_dst
, ifscope
);
3477 * If there is a route, mark it accordingly. If there isn't one,
3478 * we'll get here again during the next transmit (possibly with a
3479 * route) and the flag will get set at that point. For IPv4 LLA
3480 * destination, mark it only if the route has been fully resolved;
3481 * otherwise we want to come back here again when the route points
3482 * to the interface over which the ARP reply arrives on.
3484 if (ro
->ro_rt
!= NULL
&& (!IN_LINKLOCAL(ntohl(dst
.s_addr
)) ||
3485 (ro
->ro_rt
->rt_gateway
->sa_family
== AF_LINK
&&
3486 SDL(ro
->ro_rt
->rt_gateway
)->sdl_alen
!= 0))) {
3488 IFA_ADDREF(ifa
); /* for route */
3489 if (ro
->ro_srcia
!= NULL
)
3490 IFA_REMREF(ro
->ro_srcia
);
3492 ro
->ro_flags
|= ROF_SRCIF_SELECTED
;
3493 RT_GENID_SYNC(ro
->ro_rt
);
3496 if (ro
->ro_rt
!= NULL
)
3497 RT_UNLOCK(ro
->ro_rt
);
3503 * @brief Given outgoing interface it determines what checksum needs
3504 * to be computed in software and what needs to be offloaded to the
3507 * @param ifp Pointer to the outgoing interface
3508 * @param m Pointer to the packet
3509 * @param hlen IP header length
3510 * @param ip_len Total packet size i.e. headers + data payload
3511 * @param sw_csum Pointer to a software checksum flag set
3516 ip_output_checksum(struct ifnet
*ifp
, struct mbuf
*m
, int hlen
, int ip_len
,
3519 int tso
= TSO_IPV4_OK(ifp
, m
);
3520 uint32_t hwcap
= ifp
->if_hwassist
;
3522 m
->m_pkthdr
.csum_flags
|= CSUM_IP
;
3525 /* do all in software; hardware checksum offload is disabled */
3526 *sw_csum
= (CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3527 m
->m_pkthdr
.csum_flags
;
3529 /* do in software what the hardware cannot */
3530 *sw_csum
= m
->m_pkthdr
.csum_flags
&
3531 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
3534 if (hlen
!= sizeof (struct ip
)) {
3535 *sw_csum
|= ((CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3536 m
->m_pkthdr
.csum_flags
);
3537 } else if (!(*sw_csum
& CSUM_DELAY_DATA
) && (hwcap
& CSUM_PARTIAL
)) {
3538 int interface_mtu
= ifp
->if_mtu
;
3540 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
3541 interface_mtu
= IN6_LINKMTU(ifp
);
3542 /* Further adjust the size for CLAT46 expansion */
3543 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3547 * Partial checksum offload, if non-IP fragment, and TCP only
3548 * (no UDP support, as the hardware may not be able to convert
3549 * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
3550 * supports "invert zero" capability.)
3552 if (hwcksum_tx
&& !tso
&&
3553 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP
) ||
3554 ((hwcap
& CSUM_ZERO_INVERT
) &&
3555 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
3556 ip_len
<= interface_mtu
) {
3557 uint16_t start
= sizeof (struct ip
);
3558 uint16_t ulpoff
= m
->m_pkthdr
.csum_data
& 0xffff;
3559 m
->m_pkthdr
.csum_flags
|=
3560 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
3561 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
3562 m
->m_pkthdr
.csum_tx_start
= start
;
3563 /* do IP hdr chksum in software */
3564 *sw_csum
= CSUM_DELAY_IP
;
3566 *sw_csum
|= (CSUM_DELAY_DATA
& m
->m_pkthdr
.csum_flags
);
3570 if (*sw_csum
& CSUM_DELAY_DATA
) {
3571 in_delayed_cksum(m
);
3572 *sw_csum
&= ~CSUM_DELAY_DATA
;
3577 * Drop off bits that aren't supported by hardware;
3578 * also make sure to preserve non-checksum related bits.
3580 m
->m_pkthdr
.csum_flags
=
3581 ((m
->m_pkthdr
.csum_flags
&
3582 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
3583 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
3585 /* drop all bits; hardware checksum offload is disabled */
3586 m
->m_pkthdr
.csum_flags
= 0;
3591 * GRE protocol output for PPP/PPTP
3594 ip_gre_output(struct mbuf
*m
)
3599 bzero(&ro
, sizeof (ro
));
3601 error
= ip_output(m
, NULL
, &ro
, 0, NULL
, NULL
);
3609 sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
3611 #pragma unused(arg1, arg2)
3614 i
= ip_output_measure
;
3615 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
3616 if (error
|| req
->newptr
== USER_ADDR_NULL
)
3619 if (i
< 0 || i
> 1) {
3623 if (ip_output_measure
!= i
&& i
== 1) {
3624 net_perf_initialize(&net_perf
, ip_output_measure_bins
);
3626 ip_output_measure
= i
;
3632 sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
3634 #pragma unused(arg1, arg2)
3638 i
= ip_output_measure_bins
;
3639 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
3640 if (error
|| req
->newptr
== USER_ADDR_NULL
)
3643 if (!net_perf_validate_bins(i
)) {
3647 ip_output_measure_bins
= i
;
3653 sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
3655 #pragma unused(oidp, arg1, arg2)
3656 if (req
->oldptr
== USER_ADDR_NULL
)
3657 req
->oldlen
= (size_t)sizeof (struct ipstat
);
3659 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));