]>
git.saurik.com Git - apple/xnu.git/blob - bsd/kern/mach_fat.c
2 * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <sys/param.h>
29 #include <sys/types.h>
31 #include <sys/vnode.h>
32 #include <vm/vm_kern.h>
33 #include <mach/kern_return.h>
34 #include <mach/vm_param.h>
35 #include <kern/cpu_number.h>
36 #include <mach-o/fat.h>
37 #include <kern/mach_loader.h>
38 #include <kern/mach_fat.h>
39 #include <libkern/OSByteOrder.h>
40 #include <machine/exec.h>
42 /**********************************************************************
43 * Routine: fatfile_getarch()
45 * Function: Locate the architecture-dependant contents of a fat
46 * file that match this CPU.
48 * Args: header: A pointer to the fat file header.
49 * size: How large the fat file header is (including fat_arch array)
50 * req_cpu_type: The required cpu type.
51 * mask_bits: Bits to mask from the sub-image type when
52 * grading it vs. the req_cpu_type
53 * archret (out): Pointer to fat_arch structure to hold
56 * Returns: KERN_SUCCESS: Valid architecture found.
57 * KERN_FAILURE: No valid architecture found.
58 **********************************************************************/
63 cpu_type_t req_cpu_type
,
65 struct fat_arch
*archret
)
68 struct fat_arch
*arch
;
69 struct fat_arch
*best_arch
;
72 uint32_t nfat_arch
, max_nfat_arch
;
74 cpu_type_t testsubtype
;
75 struct fat_header
*header
;
77 if (sizeof(struct fat_header
) > data_size
) {
78 return (LOAD_FAILURE
);
81 header
= (struct fat_header
*)data_ptr
;
82 nfat_arch
= OSSwapBigToHostInt32(header
->nfat_arch
);
84 max_nfat_arch
= (data_size
- sizeof(struct fat_header
)) / sizeof(struct fat_arch
);
85 if (nfat_arch
> max_nfat_arch
) {
86 /* nfat_arch would cause us to read off end of buffer */
87 return (LOAD_BADMACHO
);
91 * Scan the fat_arch's looking for the best one. */
94 arch
= (struct fat_arch
*) (data_ptr
+ sizeof(struct fat_header
));
95 for (; nfat_arch
-- > 0; arch
++) {
96 testtype
= OSSwapBigToHostInt32(arch
->cputype
);
97 testsubtype
= OSSwapBigToHostInt32(arch
->cpusubtype
) & ~CPU_SUBTYPE_MASK
;
100 * Check to see if right cpu type.
102 if((testtype
& ~mask_bits
) != (req_cpu_type
& ~mask_bits
)) {
107 * Get the grade of the cpu subtype (without feature flags)
109 grade
= grade_binary(testtype
, testsubtype
);
112 * Remember it if it's the best we've seen.
114 if (grade
> best_grade
) {
121 * Return our results.
123 if (best_arch
== NULL
) {
127 OSSwapBigToHostInt32(best_arch
->cputype
);
128 archret
->cpusubtype
=
129 OSSwapBigToHostInt32(best_arch
->cpusubtype
);
131 OSSwapBigToHostInt32(best_arch
->offset
);
133 OSSwapBigToHostInt32(best_arch
->size
);
135 OSSwapBigToHostInt32(best_arch
->align
);
141 * Free the memory we allocated and return.
148 vm_offset_t data_ptr
,
150 struct fat_arch
*archret
)
153 * Ignore all architectural bits when determining if an image
154 * in a fat file should be skipped or graded.
156 return fatfile_getarch(data_ptr
, data_size
, cpu_type(), CPU_ARCH_MASK
, archret
);
160 fatfile_getbestarch_for_cputype(
162 vm_offset_t data_ptr
,
164 struct fat_arch
*archret
)
167 * Scan the fat_arch array for exact matches for this cpu_type_t only
169 return fatfile_getarch(data_ptr
, data_size
, cputype
, 0, archret
);
172 /**********************************************************************
173 * Routine: fatfile_getarch_with_bits()
175 * Function: Locate the architecture-dependant contents of a fat
176 * file that match this CPU.
178 * Args: vp: The vnode for the fat file.
179 * archbits: Architecture specific feature bits
180 * header: A pointer to the fat file header.
181 * archret (out): Pointer to fat_arch structure to hold
184 * Returns: KERN_SUCCESS: Valid architecture found.
185 * KERN_FAILURE: No valid architecture found.
186 **********************************************************************/
188 fatfile_getarch_with_bits(
190 vm_offset_t data_ptr
,
192 struct fat_arch
*archret
)
195 * Scan the fat_arch array for matches with the requested
196 * architectural bits set, and for the current hardware cpu CPU.
198 return fatfile_getarch(data_ptr
, data_size
, (archbits
& CPU_ARCH_MASK
) | (cpu_type() & ~CPU_ARCH_MASK
), 0, archret
);
202 * Validate the fat_header and fat_arch array in memory. We check that:
204 * 1) arch count would not exceed the data buffer
205 * 2) arch list does not contain duplicate cputype/cpusubtype tuples
206 * 3) arch list does not have two overlapping slices. The area
207 * at the front of the file containing the fat headers is implicitly
208 * a range that a slice should also not try to cover
211 fatfile_validate_fatarches(vm_offset_t data_ptr
, vm_size_t data_size
)
213 uint32_t magic
, nfat_arch
;
214 uint32_t max_nfat_arch
, i
, j
;
215 uint32_t fat_header_size
;
217 struct fat_arch
*arches
;
218 struct fat_header
*header
;
220 if (sizeof(struct fat_header
) > data_size
) {
221 return (LOAD_FAILURE
);
224 header
= (struct fat_header
*)data_ptr
;
225 magic
= OSSwapBigToHostInt32(header
->magic
);
226 nfat_arch
= OSSwapBigToHostInt32(header
->nfat_arch
);
228 if (magic
!= FAT_MAGIC
) {
229 /* must be FAT_MAGIC big endian */
230 return (LOAD_FAILURE
);
233 max_nfat_arch
= (data_size
- sizeof(struct fat_header
)) / sizeof(struct fat_arch
);
234 if (nfat_arch
> max_nfat_arch
) {
235 /* nfat_arch would cause us to read off end of buffer */
236 return (LOAD_BADMACHO
);
239 /* now that we know the fat_arch list fits in the buffer, how much does it use? */
240 fat_header_size
= sizeof(struct fat_header
) + nfat_arch
* sizeof(struct fat_arch
);
241 arches
= (struct fat_arch
*)(data_ptr
+ sizeof(struct fat_header
));
243 for (i
=0; i
< nfat_arch
; i
++) {
244 uint32_t i_begin
= OSSwapBigToHostInt32(arches
[i
].offset
);
245 uint32_t i_size
= OSSwapBigToHostInt32(arches
[i
].size
);
246 uint32_t i_cputype
= OSSwapBigToHostInt32(arches
[i
].cputype
);
247 uint32_t i_cpusubtype
= OSSwapBigToHostInt32(arches
[i
].cpusubtype
);
249 if (i_begin
< fat_header_size
) {
250 /* slice is trying to claim part of the file used by fat headers themselves */
251 return (LOAD_BADMACHO
);
254 if ((UINT32_MAX
- i_size
) < i_begin
) {
255 /* start + size would overflow */
256 return (LOAD_BADMACHO
);
258 uint32_t i_end
= i_begin
+ i_size
;
260 for (j
=i
+1; j
< nfat_arch
; j
++) {
261 uint32_t j_begin
= OSSwapBigToHostInt32(arches
[j
].offset
);
262 uint32_t j_size
= OSSwapBigToHostInt32(arches
[j
].size
);
263 uint32_t j_cputype
= OSSwapBigToHostInt32(arches
[j
].cputype
);
264 uint32_t j_cpusubtype
= OSSwapBigToHostInt32(arches
[j
].cpusubtype
);
266 if ((i_cputype
== j_cputype
) && (i_cpusubtype
== j_cpusubtype
)) {
267 /* duplicate cputype/cpusubtype, results in ambiguous references */
268 return (LOAD_BADMACHO
);
271 if ((UINT32_MAX
- j_size
) < j_begin
) {
272 /* start + size would overflow */
273 return (LOAD_BADMACHO
);
275 uint32_t j_end
= j_begin
+ j_size
;
277 if (i_begin
<= j_begin
) {
278 if (i_end
<= j_begin
) {
279 /* I completely precedes J */
281 /* I started before J, but ends somewhere in or after J */
282 return (LOAD_BADMACHO
);
285 if (i_begin
>= j_end
) {
286 /* I started after J started but also after J ended */
288 /* I started after J started but before it ended, so there is overlap */
289 return (LOAD_BADMACHO
);
295 return (LOAD_SUCCESS
);