]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/mach_fat.c
xnu-4903.221.2.tar.gz
[apple/xnu.git] / bsd / kern / mach_fat.c
1 /*
2 * Copyright (c) 1991-2015 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <sys/param.h>
29 #include <sys/types.h>
30 #include <sys/uio.h>
31 #include <sys/vnode.h>
32 #include <vm/vm_kern.h>
33 #include <mach/kern_return.h>
34 #include <mach/vm_param.h>
35 #include <kern/cpu_number.h>
36 #include <mach-o/fat.h>
37 #include <kern/mach_loader.h>
38 #include <kern/mach_fat.h>
39 #include <libkern/OSByteOrder.h>
40 #include <machine/exec.h>
41
42 /**********************************************************************
43 * Routine: fatfile_getarch()
44 *
45 * Function: Locate the architecture-dependant contents of a fat
46 * file that match this CPU.
47 *
48 * Args: header: A pointer to the fat file header.
49 * size: How large the fat file header is (including fat_arch array)
50 * req_cpu_type: The required cpu type.
51 * mask_bits: Bits to mask from the sub-image type when
52 * grading it vs. the req_cpu_type
53 * archret (out): Pointer to fat_arch structure to hold
54 * the results.
55 *
56 * Returns: KERN_SUCCESS: Valid architecture found.
57 * KERN_FAILURE: No valid architecture found.
58 **********************************************************************/
59 static load_return_t
60 fatfile_getarch(
61 vm_offset_t data_ptr,
62 vm_size_t data_size,
63 cpu_type_t req_cpu_type,
64 cpu_type_t mask_bits,
65 struct fat_arch *archret)
66 {
67 load_return_t lret;
68 struct fat_arch *arch;
69 struct fat_arch *best_arch;
70 int grade;
71 int best_grade;
72 uint32_t nfat_arch, max_nfat_arch;
73 cpu_type_t testtype;
74 cpu_type_t testsubtype;
75 struct fat_header *header;
76
77 if (sizeof(struct fat_header) > data_size) {
78 return (LOAD_FAILURE);
79 }
80
81 header = (struct fat_header *)data_ptr;
82 nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
83
84 max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
85 if (nfat_arch > max_nfat_arch) {
86 /* nfat_arch would cause us to read off end of buffer */
87 return (LOAD_BADMACHO);
88 }
89
90 /*
91 * Scan the fat_arch's looking for the best one. */
92 best_arch = NULL;
93 best_grade = 0;
94 arch = (struct fat_arch *) (data_ptr + sizeof(struct fat_header));
95 for (; nfat_arch-- > 0; arch++) {
96 testtype = OSSwapBigToHostInt32(arch->cputype);
97 testsubtype = OSSwapBigToHostInt32(arch->cpusubtype) & ~CPU_SUBTYPE_MASK;
98
99 /*
100 * Check to see if right cpu type.
101 */
102 if((testtype & ~mask_bits) != (req_cpu_type & ~mask_bits)) {
103 continue;
104 }
105
106 /*
107 * Get the grade of the cpu subtype (without feature flags)
108 */
109 grade = grade_binary(testtype, testsubtype);
110
111 /*
112 * Remember it if it's the best we've seen.
113 */
114 if (grade > best_grade) {
115 best_grade = grade;
116 best_arch = arch;
117 }
118 }
119
120 /*
121 * Return our results.
122 */
123 if (best_arch == NULL) {
124 lret = LOAD_BADARCH;
125 } else {
126 archret->cputype =
127 OSSwapBigToHostInt32(best_arch->cputype);
128 archret->cpusubtype =
129 OSSwapBigToHostInt32(best_arch->cpusubtype);
130 archret->offset =
131 OSSwapBigToHostInt32(best_arch->offset);
132 archret->size =
133 OSSwapBigToHostInt32(best_arch->size);
134 archret->align =
135 OSSwapBigToHostInt32(best_arch->align);
136
137 lret = LOAD_SUCCESS;
138 }
139
140 /*
141 * Free the memory we allocated and return.
142 */
143 return(lret);
144 }
145
146 load_return_t
147 fatfile_getbestarch(
148 vm_offset_t data_ptr,
149 vm_size_t data_size,
150 struct fat_arch *archret)
151 {
152 /*
153 * Ignore all architectural bits when determining if an image
154 * in a fat file should be skipped or graded.
155 */
156 return fatfile_getarch(data_ptr, data_size, cpu_type(), CPU_ARCH_MASK, archret);
157 }
158
159 load_return_t
160 fatfile_getbestarch_for_cputype(
161 cpu_type_t cputype,
162 vm_offset_t data_ptr,
163 vm_size_t data_size,
164 struct fat_arch *archret)
165 {
166 /*
167 * Scan the fat_arch array for exact matches for this cpu_type_t only
168 */
169 return fatfile_getarch(data_ptr, data_size, cputype, 0, archret);
170 }
171
172 /**********************************************************************
173 * Routine: fatfile_getarch_with_bits()
174 *
175 * Function: Locate the architecture-dependant contents of a fat
176 * file that match this CPU.
177 *
178 * Args: vp: The vnode for the fat file.
179 * archbits: Architecture specific feature bits
180 * header: A pointer to the fat file header.
181 * archret (out): Pointer to fat_arch structure to hold
182 * the results.
183 *
184 * Returns: KERN_SUCCESS: Valid architecture found.
185 * KERN_FAILURE: No valid architecture found.
186 **********************************************************************/
187 load_return_t
188 fatfile_getarch_with_bits(
189 integer_t archbits,
190 vm_offset_t data_ptr,
191 vm_size_t data_size,
192 struct fat_arch *archret)
193 {
194 /*
195 * Scan the fat_arch array for matches with the requested
196 * architectural bits set, and for the current hardware cpu CPU.
197 */
198 return fatfile_getarch(data_ptr, data_size, (archbits & CPU_ARCH_MASK) | (cpu_type() & ~CPU_ARCH_MASK), 0, archret);
199 }
200
201 /*
202 * Validate the fat_header and fat_arch array in memory. We check that:
203 *
204 * 1) arch count would not exceed the data buffer
205 * 2) arch list does not contain duplicate cputype/cpusubtype tuples
206 * 3) arch list does not have two overlapping slices. The area
207 * at the front of the file containing the fat headers is implicitly
208 * a range that a slice should also not try to cover
209 */
210 load_return_t
211 fatfile_validate_fatarches(vm_offset_t data_ptr, vm_size_t data_size)
212 {
213 uint32_t magic, nfat_arch;
214 uint32_t max_nfat_arch, i, j;
215 uint32_t fat_header_size;
216
217 struct fat_arch *arches;
218 struct fat_header *header;
219
220 if (sizeof(struct fat_header) > data_size) {
221 return (LOAD_FAILURE);
222 }
223
224 header = (struct fat_header *)data_ptr;
225 magic = OSSwapBigToHostInt32(header->magic);
226 nfat_arch = OSSwapBigToHostInt32(header->nfat_arch);
227
228 if (magic != FAT_MAGIC) {
229 /* must be FAT_MAGIC big endian */
230 return (LOAD_FAILURE);
231 }
232
233 max_nfat_arch = (data_size - sizeof(struct fat_header)) / sizeof(struct fat_arch);
234 if (nfat_arch > max_nfat_arch) {
235 /* nfat_arch would cause us to read off end of buffer */
236 return (LOAD_BADMACHO);
237 }
238
239 /* now that we know the fat_arch list fits in the buffer, how much does it use? */
240 fat_header_size = sizeof(struct fat_header) + nfat_arch * sizeof(struct fat_arch);
241 arches = (struct fat_arch *)(data_ptr + sizeof(struct fat_header));
242
243 for (i=0; i < nfat_arch; i++) {
244 uint32_t i_begin = OSSwapBigToHostInt32(arches[i].offset);
245 uint32_t i_size = OSSwapBigToHostInt32(arches[i].size);
246 uint32_t i_cputype = OSSwapBigToHostInt32(arches[i].cputype);
247 uint32_t i_cpusubtype = OSSwapBigToHostInt32(arches[i].cpusubtype);
248
249 if (i_begin < fat_header_size) {
250 /* slice is trying to claim part of the file used by fat headers themselves */
251 return (LOAD_BADMACHO);
252 }
253
254 if ((UINT32_MAX - i_size) < i_begin) {
255 /* start + size would overflow */
256 return (LOAD_BADMACHO);
257 }
258 uint32_t i_end = i_begin + i_size;
259
260 for (j=i+1; j < nfat_arch; j++) {
261 uint32_t j_begin = OSSwapBigToHostInt32(arches[j].offset);
262 uint32_t j_size = OSSwapBigToHostInt32(arches[j].size);
263 uint32_t j_cputype = OSSwapBigToHostInt32(arches[j].cputype);
264 uint32_t j_cpusubtype = OSSwapBigToHostInt32(arches[j].cpusubtype);
265
266 if ((i_cputype == j_cputype) && (i_cpusubtype == j_cpusubtype)) {
267 /* duplicate cputype/cpusubtype, results in ambiguous references */
268 return (LOAD_BADMACHO);
269 }
270
271 if ((UINT32_MAX - j_size) < j_begin) {
272 /* start + size would overflow */
273 return (LOAD_BADMACHO);
274 }
275 uint32_t j_end = j_begin + j_size;
276
277 if (i_begin <= j_begin) {
278 if (i_end <= j_begin) {
279 /* I completely precedes J */
280 } else {
281 /* I started before J, but ends somewhere in or after J */
282 return (LOAD_BADMACHO);
283 }
284 } else {
285 if (i_begin >= j_end) {
286 /* I started after J started but also after J ended */
287 } else {
288 /* I started after J started but before it ended, so there is overlap */
289 return (LOAD_BADMACHO);
290 }
291 }
292 }
293 }
294
295 return (LOAD_SUCCESS);
296 }