]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/db_interface.c
xnu-344.21.73.tar.gz
[apple/xnu.git] / osfmk / i386 / db_interface.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * @OSF_COPYRIGHT@
27 */
28 /*
29 * Mach Operating System
30 * Copyright (c) 1991,1990 Carnegie Mellon University
31 * All Rights Reserved.
32 *
33 * Permission to use, copy, modify and distribute this software and its
34 * documentation is hereby granted, provided that both the copyright
35 * notice and this permission notice appear in all copies of the
36 * software, derivative works or modified versions, and any portions
37 * thereof, and that both notices appear in supporting documentation.
38 *
39 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
40 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
41 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
42 *
43 * Carnegie Mellon requests users of this software to return to
44 *
45 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
46 * School of Computer Science
47 * Carnegie Mellon University
48 * Pittsburgh PA 15213-3890
49 *
50 * any improvements or extensions that they make and grant Carnegie Mellon
51 * the rights to redistribute these changes.
52 */
53 /*
54 */
55
56 /*
57 * Interface to new debugger.
58 */
59 #include <cpus.h>
60 #include <platforms.h>
61 #include <time_stamp.h>
62 #include <mach_mp_debug.h>
63 #include <mach_ldebug.h>
64 #include <kern/spl.h>
65 #include <kern/cpu_number.h>
66 #include <kern/kern_types.h>
67 #include <kern/misc_protos.h>
68 #include <vm/pmap.h>
69
70 #include <i386/thread.h>
71 #include <i386/db_machdep.h>
72 #include <i386/seg.h>
73 #include <i386/trap.h>
74 #include <i386/setjmp.h>
75 #include <i386/pmap.h>
76 #include <i386/misc_protos.h>
77
78 #include <mach/vm_param.h>
79 #include <vm/vm_map.h>
80 #include <kern/thread.h>
81 #include <kern/task.h>
82
83 #include <ddb/db_command.h>
84 #include <ddb/db_task_thread.h>
85 #include <ddb/db_run.h>
86 #include <ddb/db_trap.h>
87 #include <ddb/db_output.h>
88 #include <ddb/db_access.h>
89 #include <ddb/db_sym.h>
90 #include <ddb/db_break.h>
91 #include <ddb/db_watch.h>
92
93 int db_active = 0;
94 int db_pass_thru[NCPUS];
95 struct i386_saved_state *i386_last_saved_statep;
96 struct i386_saved_state i386_nested_saved_state;
97 unsigned i386_last_kdb_sp;
98
99 vm_offset_t db_stacks[NCPUS];
100
101 extern thread_act_t db_default_act;
102
103 #if MACH_MP_DEBUG
104 extern int masked_state_cnt[];
105 #endif /* MACH_MP_DEBUG */
106
107 /*
108 * Enter KDB through a keyboard trap.
109 * We show the registers as of the keyboard interrupt
110 * instead of those at its call to KDB.
111 */
112 struct int_regs {
113 int gs;
114 int fs;
115 int edi;
116 int esi;
117 int ebp;
118 int ebx;
119 struct i386_interrupt_state *is;
120 };
121
122 extern char * trap_type[];
123 extern int TRAP_TYPES;
124
125 /* Forward */
126
127 extern void kdbprinttrap(
128 int type,
129 int code,
130 int *pc,
131 int sp);
132 extern void kdb_kentry(
133 struct int_regs *int_regs);
134 extern int db_user_to_kernel_address(
135 task_t task,
136 vm_offset_t addr,
137 unsigned *kaddr,
138 int flag);
139 extern void db_write_bytes_user_space(
140 vm_offset_t addr,
141 int size,
142 char *data,
143 task_t task);
144 extern int db_search_null(
145 task_t task,
146 unsigned *svaddr,
147 unsigned evaddr,
148 unsigned *skaddr,
149 int flag);
150 extern int kdb_enter(int);
151 extern void kdb_leave(void);
152 extern void lock_kdb(void);
153 extern void unlock_kdb(void);
154
155 /*
156 * kdb_trap - field a TRACE or BPT trap
157 */
158
159
160 extern jmp_buf_t *db_recover;
161 spl_t saved_ipl[NCPUS]; /* just to know what IPL was before trap */
162 struct i386_saved_state *saved_state[NCPUS];
163
164 /*
165 * Translate the state saved in a task state segment into an
166 * exception frame. Since we "know" we always want the state
167 * in a ktss, we hard-wire that in, rather than indexing the gdt
168 * with tss_sel to derive a pointer to the desired tss.
169 */
170 void
171 db_tss_to_frame(
172 int tss_sel,
173 struct i386_saved_state *regs)
174 {
175 extern struct i386_tss ktss;
176 int mycpu = cpu_number();
177 struct i386_tss *tss;
178
179 #if NCPUS == 1
180 tss = &ktss; /* XXX */
181 #else /* NCPUS > 1 */
182 tss = mp_ktss[mycpu]; /* XXX */
183 #endif /* NCPUS > 1 */
184
185 /*
186 * ddb will overwrite whatever's in esp, so put esp0 elsewhere, too.
187 */
188 regs->esp = tss->esp0;
189 regs->efl = tss->eflags;
190 regs->eip = tss->eip;
191 regs->trapno = tss->ss0; /* XXX */
192 regs->err = tss->esp0; /* XXX */
193 regs->eax = tss->eax;
194 regs->ecx = tss->ecx;
195 regs->edx = tss->edx;
196 regs->ebx = tss->ebx;
197 regs->uesp = tss->esp;
198 regs->ebp = tss->ebp;
199 regs->esi = tss->esi;
200 regs->edi = tss->edi;
201 regs->es = tss->es;
202 regs->ss = tss->ss;
203 regs->cs = tss->cs;
204 regs->ds = tss->ds;
205 regs->fs = tss->fs;
206 regs->gs = tss->gs;
207 }
208
209 /*
210 * Compose a call to the debugger from the saved state in regs. (No
211 * reason not to do this in C.)
212 */
213 boolean_t
214 db_trap_from_asm(
215 struct i386_saved_state *regs)
216 {
217 int code;
218 int type;
219
220 type = regs->trapno;
221 code = regs->err;
222 return (kdb_trap(type, code, regs));
223 }
224
225 int
226 kdb_trap(
227 int type,
228 int code,
229 struct i386_saved_state *regs)
230 {
231 extern char etext;
232 boolean_t trap_from_user;
233 spl_t s = splhigh();
234
235 switch (type) {
236 case T_DEBUG: /* single_step */
237 {
238 extern int dr_addr[];
239 int addr;
240 int status = dr6();
241
242 if (status & 0xf) { /* hmm hdw break */
243 addr = status & 0x8 ? dr_addr[3] :
244 status & 0x4 ? dr_addr[2] :
245 status & 0x2 ? dr_addr[1] :
246 dr_addr[0];
247 regs->efl |= EFL_RF;
248 db_single_step_cmd(addr, 0, 1, "p");
249 }
250 }
251 case T_INT3: /* breakpoint */
252 case T_WATCHPOINT: /* watchpoint */
253 case -1: /* keyboard interrupt */
254 break;
255
256 default:
257 if (db_recover) {
258 i386_nested_saved_state = *regs;
259 db_printf("Caught ");
260 if (type < 0 || type > TRAP_TYPES)
261 db_printf("type %d", type);
262 else
263 db_printf("%s", trap_type[type]);
264 db_printf(" trap, code = %x, pc = %x\n",
265 code, regs->eip);
266 splx(s);
267 db_error("");
268 /*NOTREACHED*/
269 }
270 kdbprinttrap(type, code, (int *)&regs->eip, regs->uesp);
271 }
272
273 #if NCPUS > 1
274 disable_preemption();
275 #endif /* NCPUS > 1 */
276
277 saved_ipl[cpu_number()] = s;
278 saved_state[cpu_number()] = regs;
279
280 i386_last_saved_statep = regs;
281 i386_last_kdb_sp = (unsigned) &type;
282
283 #if NCPUS > 1
284 if (!kdb_enter(regs->eip))
285 goto kdb_exit;
286 #endif /* NCPUS > 1 */
287
288 /* Should switch to kdb's own stack here. */
289
290 if (!IS_USER_TRAP(regs, &etext)) {
291 bzero((char *)&ddb_regs, sizeof (ddb_regs));
292 *(struct i386_saved_state_from_kernel *)&ddb_regs =
293 *(struct i386_saved_state_from_kernel *)regs;
294 trap_from_user = FALSE;
295 }
296 else {
297 ddb_regs = *regs;
298 trap_from_user = TRUE;
299 }
300 if (!trap_from_user) {
301 /*
302 * Kernel mode - esp and ss not saved
303 */
304 ddb_regs.uesp = (int)&regs->uesp; /* kernel stack pointer */
305 ddb_regs.ss = KERNEL_DS;
306 }
307
308 db_active++;
309 db_task_trap(type, code, trap_from_user);
310 db_active--;
311
312 regs->eip = ddb_regs.eip;
313 regs->efl = ddb_regs.efl;
314 regs->eax = ddb_regs.eax;
315 regs->ecx = ddb_regs.ecx;
316 regs->edx = ddb_regs.edx;
317 regs->ebx = ddb_regs.ebx;
318 if (trap_from_user) {
319 /*
320 * user mode - saved esp and ss valid
321 */
322 regs->uesp = ddb_regs.uesp; /* user stack pointer */
323 regs->ss = ddb_regs.ss & 0xffff; /* user stack segment */
324 }
325 regs->ebp = ddb_regs.ebp;
326 regs->esi = ddb_regs.esi;
327 regs->edi = ddb_regs.edi;
328 regs->es = ddb_regs.es & 0xffff;
329 regs->cs = ddb_regs.cs & 0xffff;
330 regs->ds = ddb_regs.ds & 0xffff;
331 regs->fs = ddb_regs.fs & 0xffff;
332 regs->gs = ddb_regs.gs & 0xffff;
333
334 if ((type == T_INT3) &&
335 (db_get_task_value(regs->eip,
336 BKPT_SIZE,
337 FALSE,
338 db_target_space(current_act(),
339 trap_from_user))
340 == BKPT_INST))
341 regs->eip += BKPT_SIZE;
342
343 #if NCPUS > 1
344 kdb_exit:
345 kdb_leave();
346 #endif /* NCPUS > 1 */
347
348 saved_state[cpu_number()] = 0;
349
350 #if MACH_MP_DEBUG
351 masked_state_cnt[cpu_number()] = 0;
352 #endif /* MACH_MP_DEBUG */
353
354 #if NCPUS > 1
355 enable_preemption();
356 #endif /* NCPUS > 1 */
357
358 splx(s);
359
360 /* Allow continue to upper layers of exception handling if
361 * trap was not a debugging trap.
362 */
363
364 if (trap_from_user && type != T_DEBUG && type != T_INT3
365 && type != T_WATCHPOINT)
366 return 0;
367 else
368 return (1);
369 }
370
371 /*
372 * Enter KDB through a keyboard trap.
373 * We show the registers as of the keyboard interrupt
374 * instead of those at its call to KDB.
375 */
376
377 spl_t kdb_oldspl;
378
379 void
380 kdb_kentry(
381 struct int_regs *int_regs)
382 {
383 extern char etext;
384 boolean_t trap_from_user;
385 struct i386_interrupt_state *is = int_regs->is;
386 struct i386_saved_state regs;
387 spl_t s;
388
389 s = splhigh();
390 kdb_oldspl = s;
391
392 if (IS_USER_TRAP(is, &etext))
393 {
394 regs.uesp = ((int *)(is+1))[0];
395 regs.ss = ((int *)(is+1))[1];
396 }
397 else {
398 regs.ss = KERNEL_DS;
399 regs.uesp= (int)(is+1);
400 }
401 regs.efl = is->efl;
402 regs.cs = is->cs;
403 regs.eip = is->eip;
404 regs.eax = is->eax;
405 regs.ecx = is->ecx;
406 regs.edx = is->edx;
407 regs.ebx = int_regs->ebx;
408 regs.ebp = int_regs->ebp;
409 regs.esi = int_regs->esi;
410 regs.edi = int_regs->edi;
411 regs.ds = is->ds;
412 regs.es = is->es;
413 regs.fs = int_regs->fs;
414 regs.gs = int_regs->gs;
415
416 #if NCPUS > 1
417 disable_preemption();
418 #endif /* NCPUS > 1 */
419
420 saved_state[cpu_number()] = &regs;
421
422 #if NCPUS > 1
423 if (!kdb_enter(regs.eip))
424 goto kdb_exit;
425 #endif /* NCPUS > 1 */
426
427 bcopy((char *)&regs, (char *)&ddb_regs, sizeof (ddb_regs));
428 trap_from_user = IS_USER_TRAP(&ddb_regs, &etext);
429
430 db_active++;
431 db_task_trap(-1, 0, trap_from_user);
432 db_active--;
433
434 if (trap_from_user) {
435 ((int *)(is+1))[0] = ddb_regs.uesp;
436 ((int *)(is+1))[1] = ddb_regs.ss & 0xffff;
437 }
438 is->efl = ddb_regs.efl;
439 is->cs = ddb_regs.cs & 0xffff;
440 is->eip = ddb_regs.eip;
441 is->eax = ddb_regs.eax;
442 is->ecx = ddb_regs.ecx;
443 is->edx = ddb_regs.edx;
444 int_regs->ebx = ddb_regs.ebx;
445 int_regs->ebp = ddb_regs.ebp;
446 int_regs->esi = ddb_regs.esi;
447 int_regs->edi = ddb_regs.edi;
448 is->ds = ddb_regs.ds & 0xffff;
449 is->es = ddb_regs.es & 0xffff;
450 int_regs->fs = ddb_regs.fs & 0xffff;
451 int_regs->gs = ddb_regs.gs & 0xffff;
452
453 #if NCPUS > 1
454 kdb_exit:
455 kdb_leave();
456 #endif /* NCPUS > 1 */
457 saved_state[cpu_number()] = 0;
458
459 #if NCPUS > 1
460 enable_preemption();
461 #endif /* NCPUS > 1 */
462
463 splx(s);
464 }
465
466 /*
467 * Print trap reason.
468 */
469
470 void
471 kdbprinttrap(
472 int type,
473 int code,
474 int *pc,
475 int sp)
476 {
477 printf("kernel: ");
478 if (type < 0 || type > TRAP_TYPES)
479 db_printf("type %d", type);
480 else
481 db_printf("%s", trap_type[type]);
482 db_printf(" trap, code=%x eip@%x = %x esp=%x\n",
483 code, pc, *(int *)pc, sp);
484 db_run_mode = STEP_CONTINUE;
485 }
486
487 int
488 db_user_to_kernel_address(
489 task_t task,
490 vm_offset_t addr,
491 unsigned *kaddr,
492 int flag)
493 {
494 register pt_entry_t *ptp;
495
496 ptp = pmap_pte(task->map->pmap, addr);
497 if (ptp == PT_ENTRY_NULL || (*ptp & INTEL_PTE_VALID) == 0) {
498 if (flag) {
499 db_printf("\nno memory is assigned to address %08x\n", addr);
500 db_error(0);
501 /* NOTREACHED */
502 }
503 return(-1);
504 }
505 *kaddr = (unsigned)ptetokv(*ptp) + (addr & (INTEL_PGBYTES-1));
506 return(0);
507 }
508
509 /*
510 * Read bytes from kernel address space for debugger.
511 */
512
513 void
514 db_read_bytes(
515 vm_offset_t addr,
516 int size,
517 char *data,
518 task_t task)
519 {
520 register char *src;
521 register int n;
522 unsigned kern_addr;
523
524 src = (char *)addr;
525 if (task == kernel_task || task == TASK_NULL) {
526 while (--size >= 0) {
527 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
528 db_printf("\nbad address %x\n", addr);
529 db_error(0);
530 /* NOTREACHED */
531 }
532 *data++ = *src++;
533 }
534 return;
535 }
536 while (size > 0) {
537 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
538 return;
539 src = (char *)kern_addr;
540 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
541 if (n > size)
542 n = size;
543 size -= n;
544 addr += n;
545 while (--n >= 0)
546 *data++ = *src++;
547 }
548 }
549
550 /*
551 * Write bytes to kernel address space for debugger.
552 */
553
554 void
555 db_write_bytes(
556 vm_offset_t addr,
557 int size,
558 char *data,
559 task_t task)
560 {
561 register char *dst;
562
563 register pt_entry_t *ptep0 = 0;
564 pt_entry_t oldmap0 = 0;
565 vm_offset_t addr1;
566 register pt_entry_t *ptep1 = 0;
567 pt_entry_t oldmap1 = 0;
568 extern char etext;
569
570 if (task && task != kernel_task) {
571 db_write_bytes_user_space(addr, size, data, task);
572 return;
573 }
574
575
576 if (addr >= VM_MIN_KERNEL_LOADED_ADDRESS) {
577 db_write_bytes_user_space(addr, size, data, kernel_task);
578 return;
579 }
580
581 if (addr >= VM_MIN_KERNEL_ADDRESS &&
582 addr <= (vm_offset_t)&etext)
583 {
584 ptep0 = pmap_pte(kernel_pmap, addr);
585 oldmap0 = *ptep0;
586 *ptep0 |= INTEL_PTE_WRITE;
587
588 addr1 = i386_trunc_page(addr + size - 1);
589 if (i386_trunc_page(addr) != addr1) {
590 /* data crosses a page boundary */
591
592 ptep1 = pmap_pte(kernel_pmap, addr1);
593 oldmap1 = *ptep1;
594 *ptep1 |= INTEL_PTE_WRITE;
595 }
596 flush_tlb();
597 }
598
599 dst = (char *)addr;
600
601 while (--size >= 0) {
602 if (addr++ > VM_MAX_KERNEL_ADDRESS) {
603 db_printf("\nbad address %x\n", addr);
604 db_error(0);
605 /* NOTREACHED */
606 }
607 *dst++ = *data++;
608 }
609
610 if (ptep0) {
611 *ptep0 = oldmap0;
612 if (ptep1) {
613 *ptep1 = oldmap1;
614 }
615 flush_tlb();
616 }
617 }
618
619 void
620 db_write_bytes_user_space(
621 vm_offset_t addr,
622 int size,
623 char *data,
624 task_t task)
625 {
626 register char *dst;
627 register int n;
628 unsigned kern_addr;
629
630 while (size > 0) {
631 if (db_user_to_kernel_address(task, addr, &kern_addr, 1) < 0)
632 return;
633 dst = (char *)kern_addr;
634 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
635 if (n > size)
636 n = size;
637 size -= n;
638 addr += n;
639 while (--n >= 0)
640 *dst++ = *data++;
641 }
642 }
643
644 boolean_t
645 db_check_access(
646 vm_offset_t addr,
647 int size,
648 task_t task)
649 {
650 register n;
651 unsigned kern_addr;
652
653 if (task == kernel_task || task == TASK_NULL) {
654 if (kernel_task == TASK_NULL)
655 return(TRUE);
656 task = kernel_task;
657 } else if (task == TASK_NULL) {
658 if (current_act() == THR_ACT_NULL)
659 return(FALSE);
660 task = current_act()->task;
661 }
662 while (size > 0) {
663 if (db_user_to_kernel_address(task, addr, &kern_addr, 0) < 0)
664 return(FALSE);
665 n = intel_trunc_page(addr+INTEL_PGBYTES) - addr;
666 if (n > size)
667 n = size;
668 size -= n;
669 addr += n;
670 }
671 return(TRUE);
672 }
673
674 boolean_t
675 db_phys_eq(
676 task_t task1,
677 vm_offset_t addr1,
678 task_t task2,
679 vm_offset_t addr2)
680 {
681 unsigned kern_addr1, kern_addr2;
682
683 if ((addr1 & (INTEL_PGBYTES-1)) != (addr2 & (INTEL_PGBYTES-1)))
684 return(FALSE);
685 if (task1 == TASK_NULL) {
686 if (current_act() == THR_ACT_NULL)
687 return(FALSE);
688 task1 = current_act()->task;
689 }
690 if (db_user_to_kernel_address(task1, addr1, &kern_addr1, 0) < 0 ||
691 db_user_to_kernel_address(task2, addr2, &kern_addr2, 0) < 0)
692 return(FALSE);
693 return(kern_addr1 == kern_addr2);
694 }
695
696 #define DB_USER_STACK_ADDR (VM_MIN_KERNEL_ADDRESS)
697 #define DB_NAME_SEARCH_LIMIT (DB_USER_STACK_ADDR-(INTEL_PGBYTES*3))
698
699 int
700 db_search_null(
701 task_t task,
702 unsigned *svaddr,
703 unsigned evaddr,
704 unsigned *skaddr,
705 int flag)
706 {
707 register unsigned vaddr;
708 register unsigned *kaddr;
709
710 kaddr = (unsigned *)*skaddr;
711 for (vaddr = *svaddr; vaddr > evaddr; vaddr -= sizeof(unsigned)) {
712 if (vaddr % INTEL_PGBYTES == 0) {
713 vaddr -= sizeof(unsigned);
714 if (db_user_to_kernel_address(task, vaddr, skaddr, 0) < 0)
715 return(-1);
716 kaddr = (unsigned *)*skaddr;
717 } else {
718 vaddr -= sizeof(unsigned);
719 kaddr--;
720 }
721 if ((*kaddr == 0) ^ (flag == 0)) {
722 *svaddr = vaddr;
723 *skaddr = (unsigned)kaddr;
724 return(0);
725 }
726 }
727 return(-1);
728 }
729
730 void
731 db_task_name(
732 task_t task)
733 {
734 register char *p;
735 register n;
736 unsigned vaddr, kaddr;
737
738 vaddr = DB_USER_STACK_ADDR;
739 kaddr = 0;
740
741 /*
742 * skip nulls at the end
743 */
744 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 0) < 0) {
745 db_printf(DB_NULL_TASK_NAME);
746 return;
747 }
748 /*
749 * search start of args
750 */
751 if (db_search_null(task, &vaddr, DB_NAME_SEARCH_LIMIT, &kaddr, 1) < 0) {
752 db_printf(DB_NULL_TASK_NAME);
753 return;
754 }
755
756 n = DB_TASK_NAME_LEN-1;
757 p = (char *)kaddr + sizeof(unsigned);
758 for (vaddr += sizeof(int); vaddr < DB_USER_STACK_ADDR && n > 0;
759 vaddr++, p++, n--) {
760 if (vaddr % INTEL_PGBYTES == 0) {
761 (void)db_user_to_kernel_address(task, vaddr, &kaddr, 0);
762 p = (char*)kaddr;
763 }
764 db_printf("%c", (*p < ' ' || *p > '~')? ' ': *p);
765 }
766 while (n-- >= 0) /* compare with >= 0 for one more space */
767 db_printf(" ");
768 }
769
770 #if NCPUS == 1
771
772 void
773 db_machdep_init(void)
774 {
775 db_stacks[0] = (vm_offset_t)(db_stack_store +
776 INTSTACK_SIZE - sizeof (natural_t));
777 dbtss.esp0 = (int)(db_task_stack_store +
778 INTSTACK_SIZE - sizeof (natural_t));
779 dbtss.esp = dbtss.esp0;
780 dbtss.eip = (int)&db_task_start;
781 }
782
783 #else /* NCPUS > 1 */
784
785 /*
786 * Code used to synchronize kdb among all cpus, one active at a time, switch
787 * from on to another using kdb_on! #cpu or cpu #cpu
788 */
789
790 decl_simple_lock_data(, kdb_lock) /* kdb lock */
791
792 #define db_simple_lock_init(l, e) hw_lock_init(&((l)->interlock))
793 #define db_simple_lock_try(l) hw_lock_try(&((l)->interlock))
794 #define db_simple_unlock(l) hw_lock_unlock(&((l)->interlock))
795
796 int kdb_cpu = -1; /* current cpu running kdb */
797 int kdb_debug = 0;
798 int kdb_is_slave[NCPUS];
799 int kdb_active[NCPUS];
800 volatile unsigned int cpus_holding_bkpts; /* counter for number of cpus holding
801 breakpoints (ie: cpus that did not
802 insert back breakpoints) */
803 extern boolean_t db_breakpoints_inserted;
804
805 void
806 db_machdep_init(void)
807 {
808 int c;
809
810 db_simple_lock_init(&kdb_lock, ETAP_MISC_KDB);
811 for (c = 0; c < NCPUS; ++c) {
812 db_stacks[c] = (vm_offset_t) (db_stack_store +
813 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
814 if (c == master_cpu) {
815 dbtss.esp0 = (int)(db_task_stack_store +
816 (INTSTACK_SIZE * (c + 1)) - sizeof (natural_t));
817 dbtss.esp = dbtss.esp0;
818 dbtss.eip = (int)&db_task_start;
819 /*
820 * The TSS for the debugging task on each slave CPU
821 * is set up in mp_desc_init().
822 */
823 }
824 }
825 }
826
827 /*
828 * Called when entering kdb:
829 * Takes kdb lock. If if we were called remotely (slave state) we just
830 * wait for kdb_cpu to be equal to cpu_number(). Otherwise enter kdb if
831 * not active on another cpu.
832 * If db_pass_thru[cpu_number()] > 0, then kdb can't stop now.
833 */
834
835 int
836 kdb_enter(int pc)
837 {
838 int my_cpu;
839 int retval;
840
841 #if NCPUS > 1
842 disable_preemption();
843 #endif /* NCPUS > 1 */
844
845 my_cpu = cpu_number();
846
847 if (db_pass_thru[my_cpu]) {
848 retval = 0;
849 goto kdb_exit;
850 }
851
852 kdb_active[my_cpu]++;
853 lock_kdb();
854
855 if (kdb_debug)
856 db_printf("kdb_enter: cpu %d, is_slave %d, kdb_cpu %d, run mode %d pc %x (%x) holds %d\n",
857 my_cpu, kdb_is_slave[my_cpu], kdb_cpu,
858 db_run_mode, pc, *(int *)pc, cpus_holding_bkpts);
859 if (db_breakpoints_inserted)
860 cpus_holding_bkpts++;
861 if (kdb_cpu == -1 && !kdb_is_slave[my_cpu]) {
862 kdb_cpu = my_cpu;
863 remote_kdb(); /* stop other cpus */
864 retval = 1;
865 } else if (kdb_cpu == my_cpu)
866 retval = 1;
867 else
868 retval = 0;
869
870 kdb_exit:
871 #if NCPUS > 1
872 enable_preemption();
873 #endif /* NCPUS > 1 */
874
875 return (retval);
876 }
877
878 void
879 kdb_leave(void)
880 {
881 int my_cpu;
882 boolean_t wait = FALSE;
883
884 #if NCPUS > 1
885 disable_preemption();
886 #endif /* NCPUS > 1 */
887
888 my_cpu = cpu_number();
889
890 if (db_run_mode == STEP_CONTINUE) {
891 wait = TRUE;
892 kdb_cpu = -1;
893 }
894 if (db_breakpoints_inserted)
895 cpus_holding_bkpts--;
896 if (kdb_is_slave[my_cpu])
897 kdb_is_slave[my_cpu]--;
898 if (kdb_debug)
899 db_printf("kdb_leave: cpu %d, kdb_cpu %d, run_mode %d pc %x (%x) holds %d\n",
900 my_cpu, kdb_cpu, db_run_mode,
901 ddb_regs.eip, *(int *)ddb_regs.eip,
902 cpus_holding_bkpts);
903 clear_kdb_intr();
904 unlock_kdb();
905 kdb_active[my_cpu]--;
906
907 #if NCPUS > 1
908 enable_preemption();
909 #endif /* NCPUS > 1 */
910
911 if (wait) {
912 while(cpus_holding_bkpts);
913 }
914 }
915
916 void
917 lock_kdb(void)
918 {
919 int my_cpu;
920 register i;
921 extern void kdb_console(void);
922
923 #if NCPUS > 1
924 disable_preemption();
925 #endif /* NCPUS > 1 */
926
927 my_cpu = cpu_number();
928
929 for(;;) {
930 kdb_console();
931 if (kdb_cpu != -1 && kdb_cpu != my_cpu) {
932 continue;
933 }
934 if (db_simple_lock_try(&kdb_lock)) {
935 if (kdb_cpu == -1 || kdb_cpu == my_cpu)
936 break;
937 db_simple_unlock(&kdb_lock);
938 }
939 }
940
941 #if NCPUS > 1
942 enable_preemption();
943 #endif /* NCPUS > 1 */
944 }
945
946 #if TIME_STAMP
947 extern unsigned old_time_stamp;
948 #endif /* TIME_STAMP */
949
950 void
951 unlock_kdb(void)
952 {
953 db_simple_unlock(&kdb_lock);
954 #if TIME_STAMP
955 old_time_stamp = 0;
956 #endif /* TIME_STAMP */
957 }
958
959
960 #ifdef __STDC__
961 #define KDB_SAVE(type, name) extern type name; type name##_save = name
962 #define KDB_RESTORE(name) name = name##_save
963 #else /* __STDC__ */
964 #define KDB_SAVE(type, name) extern type name; type name/**/_save = name
965 #define KDB_RESTORE(name) name = name/**/_save
966 #endif /* __STDC__ */
967
968 #define KDB_SAVE_CTXT() \
969 KDB_SAVE(int, db_run_mode); \
970 KDB_SAVE(boolean_t, db_sstep_print); \
971 KDB_SAVE(int, db_loop_count); \
972 KDB_SAVE(int, db_call_depth); \
973 KDB_SAVE(int, db_inst_count); \
974 KDB_SAVE(int, db_last_inst_count); \
975 KDB_SAVE(int, db_load_count); \
976 KDB_SAVE(int, db_store_count); \
977 KDB_SAVE(boolean_t, db_cmd_loop_done); \
978 KDB_SAVE(jmp_buf_t *, db_recover); \
979 KDB_SAVE(db_addr_t, db_dot); \
980 KDB_SAVE(db_addr_t, db_last_addr); \
981 KDB_SAVE(db_addr_t, db_prev); \
982 KDB_SAVE(db_addr_t, db_next); \
983 KDB_SAVE(db_regs_t, ddb_regs);
984
985 #define KDB_RESTORE_CTXT() \
986 KDB_RESTORE(db_run_mode); \
987 KDB_RESTORE(db_sstep_print); \
988 KDB_RESTORE(db_loop_count); \
989 KDB_RESTORE(db_call_depth); \
990 KDB_RESTORE(db_inst_count); \
991 KDB_RESTORE(db_last_inst_count); \
992 KDB_RESTORE(db_load_count); \
993 KDB_RESTORE(db_store_count); \
994 KDB_RESTORE(db_cmd_loop_done); \
995 KDB_RESTORE(db_recover); \
996 KDB_RESTORE(db_dot); \
997 KDB_RESTORE(db_last_addr); \
998 KDB_RESTORE(db_prev); \
999 KDB_RESTORE(db_next); \
1000 KDB_RESTORE(ddb_regs);
1001
1002 /*
1003 * switch to another cpu
1004 */
1005
1006 void
1007 kdb_on(
1008 int cpu)
1009 {
1010 KDB_SAVE_CTXT();
1011 if (cpu < 0 || cpu >= NCPUS || !kdb_active[cpu])
1012 return;
1013 db_set_breakpoints();
1014 db_set_watchpoints();
1015 kdb_cpu = cpu;
1016 unlock_kdb();
1017 lock_kdb();
1018 db_clear_breakpoints();
1019 db_clear_watchpoints();
1020 KDB_RESTORE_CTXT();
1021 if (kdb_cpu == -1) {/* someone continued */
1022 kdb_cpu = cpu_number();
1023 db_continue_cmd(0, 0, 0, "");
1024 }
1025 }
1026
1027 #endif /* NCPUS > 1 */
1028
1029 void db_reboot(
1030 db_expr_t addr,
1031 boolean_t have_addr,
1032 db_expr_t count,
1033 char *modif)
1034 {
1035 boolean_t reboot = TRUE;
1036 char *cp, c;
1037
1038 cp = modif;
1039 while ((c = *cp++) != 0) {
1040 if (c == 'r') /* reboot */
1041 reboot = TRUE;
1042 if (c == 'h') /* halt */
1043 reboot = FALSE;
1044 }
1045 halt_all_cpus(reboot);
1046 }