]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sysv_sem.c
xnu-344.21.73.tar.gz
[apple/xnu.git] / bsd / kern / sysv_sem.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /*
26 * Implementation of SVID semaphores
27 *
28 * Author: Daniel Boulet
29 *
30 * This software is provided ``AS IS'' without any warranties of any kind.
31 */
32 /*
33 * John Bellardo modified the implementation for Darwin. 12/2000
34 */
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/proc.h>
40 #include <sys/sem.h>
41 #include <sys/malloc.h>
42 #include <mach/mach_types.h>
43
44 #include <sys/filedesc.h>
45 #include <sys/file.h>
46
47 /*#include <sys/sysproto.h>*/
48 /*#include <sys/sysent.h>*/
49
50 /* Uncomment this line to see the debugging output */
51 /* #define SEM_DEBUG */
52
53 /* Macros to deal with the semaphore subsystem lock. The lock currently uses
54 * the semlock_holder static variable as a mutex. NULL means no lock, any
55 * value other than NULL means locked. semlock_holder is used because it was
56 * present in the code before the Darwin port, and for no other reason.
57 * When the time comes to relax the funnel requirements of the kernel only
58 * these macros should need to be changed. A spin lock would work well.
59 */
60 /* Aquire the lock */
61 #define SUBSYSTEM_LOCK_AQUIRE(p) { sysv_sem_aquiring_threads++; \
62 while (semlock_holder != NULL) \
63 (void) tsleep((caddr_t)&semlock_holder, (PZERO - 4), "sysvsem", 0); \
64 semlock_holder = p; \
65 sysv_sem_aquiring_threads--; }
66
67 /* Release the lock */
68 #define SUBSYSTEM_LOCK_RELEASE { semlock_holder = NULL; wakeup((caddr_t)&semlock_holder); }
69
70 /* Release the lock and return a value */
71 #define UNLOCK_AND_RETURN(ret) { SUBSYSTEM_LOCK_RELEASE; return(ret); }
72
73 #define M_SYSVSEM M_SUBPROC
74
75 #if 0
76 static void seminit __P((void *));
77 SYSINIT(sysv_sem, SI_SUB_SYSV_SEM, SI_ORDER_FIRST, seminit, NULL)
78 #endif 0
79
80 /* Hard system limits to avoid resource starvation / DOS attacks.
81 * These are not needed if we can make the semaphore pages swappable.
82 */
83 static struct seminfo limitseminfo = {
84 SEMMAP, /* # of entries in semaphore map */
85 SEMMNI, /* # of semaphore identifiers */
86 SEMMNS, /* # of semaphores in system */
87 SEMMNU, /* # of undo structures in system */
88 SEMMSL, /* max # of semaphores per id */
89 SEMOPM, /* max # of operations per semop call */
90 SEMUME, /* max # of undo entries per process */
91 SEMUSZ, /* size in bytes of undo structure */
92 SEMVMX, /* semaphore maximum value */
93 SEMAEM /* adjust on exit max value */
94 };
95
96 /* Current system allocations. We use this structure to track how many
97 * resources we have allocated so far. This way we can set large hard limits
98 * and not allocate the memory for them up front.
99 */
100 struct seminfo seminfo = {
101 SEMMAP, /* Unused, # of entries in semaphore map */
102 0, /* # of semaphore identifiers */
103 0, /* # of semaphores in system */
104 0, /* # of undo entries in system */
105 SEMMSL, /* max # of semaphores per id */
106 SEMOPM, /* max # of operations per semop call */
107 SEMUME, /* max # of undo entries per process */
108 SEMUSZ, /* size in bytes of undo structure */
109 SEMVMX, /* semaphore maximum value */
110 SEMAEM /* adjust on exit max value */
111 };
112
113 /* A counter so the module unload code knows when there are no more processes using
114 * the sysv_sem code */
115 static long sysv_sem_sleeping_threads = 0;
116 static long sysv_sem_aquiring_threads = 0;
117
118 struct semctl_args;
119 int semctl __P((struct proc *p, struct semctl_args *uap, int *));
120 struct semget_args;
121 int semget __P((struct proc *p, struct semget_args *uap, int *));
122 struct semop_args;
123 int semop __P((struct proc *p, struct semop_args *uap, int *));
124 struct semconfig_args;
125 int semconfig __P((struct proc *p, struct semconfig_args *uap, int *));
126
127
128 static struct sem_undo *semu_alloc __P((struct proc *p));
129 static int semundo_adjust __P((struct proc *p, struct sem_undo **supptr,
130 int semid, int semnum, int adjval));
131 static void semundo_clear __P((int semid, int semnum));
132
133 typedef int sy_call_t __P((struct proc *, void *, int *));
134
135 /* XXX casting to (sy_call_t *) is bogus, as usual. */
136 static sy_call_t *semcalls[] = {
137 (sy_call_t *)semctl, (sy_call_t *)semget,
138 (sy_call_t *)semop, (sy_call_t *)semconfig
139 };
140
141 static int semtot = 0; /* # of used semaphores */
142 struct semid_ds *sema = NULL; /* semaphore id pool */
143 struct sem *sem = NULL; /* semaphore pool */
144 static struct sem_undo *semu_list = NULL; /* list of active undo structures */
145 struct sem_undo *semu = NULL; /* semaphore undo pool */
146
147 static struct proc *semlock_holder = NULL;
148
149 /* seminit no longer needed. The data structures are grown dynamically */
150 void
151 seminit()
152 {
153 }
154
155 /*
156 * Entry point for all SEM calls
157 *
158 * In Darwin this is no longer the entry point. It will be removed after
159 * the code has been tested better.
160 */
161 struct semsys_args {
162 u_int which;
163 int a2;
164 int a3;
165 int a4;
166 int a5;
167 };
168 int
169 semsys(p, uap, retval)
170 struct proc *p;
171 /* XXX actually varargs. */
172 struct semsys_args *uap;
173 register_t *retval;
174 {
175
176 /* The individual calls handling the locking now */
177 /*while (semlock_holder != NULL && semlock_holder != p)
178 (void) tsleep((caddr_t)&semlock_holder, (PZERO - 4), "semsys", 0);
179 */
180
181 if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0]))
182 return (EINVAL);
183 return ((*semcalls[uap->which])(p, &uap->a2, retval));
184 }
185
186 /*
187 * Lock or unlock the entire semaphore facility.
188 *
189 * This will probably eventually evolve into a general purpose semaphore
190 * facility status enquiry mechanism (I don't like the "read /dev/kmem"
191 * approach currently taken by ipcs and the amount of info that we want
192 * to be able to extract for ipcs is probably beyond what the capability
193 * of the getkerninfo facility.
194 *
195 * At the time that the current version of semconfig was written, ipcs is
196 * the only user of the semconfig facility. It uses it to ensure that the
197 * semaphore facility data structures remain static while it fishes around
198 * in /dev/kmem.
199 */
200
201 #ifndef _SYS_SYSPROTO_H_
202 struct semconfig_args {
203 semconfig_ctl_t flag;
204 };
205 #endif
206
207 int
208 semconfig(p, uap, retval)
209 struct proc *p;
210 struct semconfig_args *uap;
211 register_t *retval;
212 {
213 int eval = 0;
214
215 switch (uap->flag) {
216 case SEM_CONFIG_FREEZE:
217 SUBSYSTEM_LOCK_AQUIRE(p);
218 break;
219
220 case SEM_CONFIG_THAW:
221 SUBSYSTEM_LOCK_RELEASE;
222 break;
223
224 default:
225 printf("semconfig: unknown flag parameter value (%d) - ignored\n",
226 uap->flag);
227 eval = EINVAL;
228 break;
229 }
230
231 *retval = 0;
232 return(eval);
233 }
234
235 /* Expand the semu array to the given capacity. If the expansion fails
236 * return 0, otherwise return 1.
237 *
238 * Assumes we already have the subsystem lock.
239 */
240 static int
241 grow_semu_array(newSize)
242 int newSize;
243 {
244 register int i, j;
245 register struct sem_undo *newSemu;
246 if (newSize <= seminfo.semmnu)
247 return 0;
248 if (newSize > limitseminfo.semmnu) /* enforce hard limit */
249 {
250 #ifdef SEM_DEBUG
251 printf("undo structure hard limit of %d reached, requested %d\n",
252 limitseminfo.semmnu, newSize);
253 #endif
254 return 0;
255 }
256 newSize = (newSize/SEMMNU_INC + 1) * SEMMNU_INC;
257 newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize;
258
259 #ifdef SEM_DEBUG
260 printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize);
261 #endif
262 MALLOC(newSemu, struct sem_undo*, sizeof(struct sem_undo)*newSize,
263 M_SYSVSEM, M_WAITOK);
264 if (NULL == newSemu)
265 {
266 #ifdef SEM_DEBUG
267 printf("allocation failed. no changes made.\n");
268 #endif
269 return 0;
270 }
271
272 /* Initialize our structure. */
273 for (i = 0; i < seminfo.semmnu; i++)
274 {
275 newSemu[i] = semu[i];
276 for(j = 0; j < SEMUME; j++) /* Is this really needed? */
277 newSemu[i].un_ent[j] = semu[i].un_ent[j];
278 }
279 for (i = seminfo.semmnu; i < newSize; i++)
280 {
281 newSemu[i].un_proc = NULL;
282 }
283
284 /* Clean up the old array */
285 if (semu)
286 FREE(semu, M_SYSVSEM);
287
288 semu = newSemu;
289 seminfo.semmnu = newSize;
290 #ifdef SEM_DEBUG
291 printf("expansion successful\n");
292 #endif
293 return 1;
294 }
295
296 /*
297 * Expand the sema array to the given capacity. If the expansion fails
298 * we return 0, otherwise we return 1.
299 *
300 * Assumes we already have the subsystem lock.
301 */
302 static int
303 grow_sema_array(newSize)
304 int newSize;
305 {
306 register struct semid_ds *newSema;
307 register int i;
308
309 if (newSize <= seminfo.semmni)
310 return 0;
311 if (newSize > limitseminfo.semmni) /* enforce hard limit */
312 {
313 #ifdef SEM_DEBUG
314 printf("identifier hard limit of %d reached, requested %d\n",
315 limitseminfo.semmni, newSize);
316 #endif
317 return 0;
318 }
319 newSize = (newSize/SEMMNI_INC + 1) * SEMMNI_INC;
320 newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize;
321
322 #ifdef SEM_DEBUG
323 printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize);
324 #endif
325 MALLOC(newSema, struct semid_ds*, sizeof(struct semid_ds)*newSize,
326 M_SYSVSEM, M_WAITOK);
327 if (NULL == newSema)
328 {
329 #ifdef SEM_DEBUG
330 printf("allocation failed. no changes made.\n");
331 #endif
332 return 0;
333 }
334
335 /* Initialize our new ids, and copy over the old ones */
336 for (i = 0; i < seminfo.semmni; i++)
337 {
338 newSema[i] = sema[i];
339 /* This is a hack. What we really want to be able to
340 * do is change the value a process is waiting on
341 * without waking it up, but I don't know how to do
342 * this with the existing code, so we wake up the
343 * process and let it do a lot of work to determine the
344 * semaphore set is really not available yet, and then
345 * sleep on the correct, reallocated semid_ds pointer.
346 */
347 if (sema[i].sem_perm.mode & SEM_ALLOC)
348 wakeup((caddr_t)&sema[i]);
349 }
350
351 for (i = seminfo.semmni; i < newSize; i++)
352 {
353 newSema[i].sem_base = 0;
354 newSema[i].sem_perm.mode = 0;
355 }
356
357 /* Clean up the old array */
358 if (sema)
359 FREE(sema, M_SYSVSEM);
360
361 sema = newSema;
362 seminfo.semmni = newSize;
363 #ifdef SEM_DEBUG
364 printf("expansion successful\n");
365 #endif
366 return 1;
367 }
368
369 /*
370 * Expand the sem array to the given capacity. If the expansion fails
371 * we return 0 (fail), otherwise we return 1 (success).
372 *
373 * Assumes we already hold the subsystem lock.
374 */
375 static int
376 grow_sem_array(newSize)
377 int newSize;
378 {
379 register struct sem *newSem = NULL;
380 register int i;
381
382 if (newSize < semtot)
383 return 0;
384 if (newSize > limitseminfo.semmns) /* enforce hard limit */
385 {
386 #ifdef SEM_DEBUG
387 printf("semaphore hard limit of %d reached, requested %d\n",
388 limitseminfo.semmns, newSize);
389 #endif
390 return 0;
391 }
392 newSize = (newSize/SEMMNS_INC + 1) * SEMMNS_INC;
393 newSize = newSize > limitseminfo.semmns ? limitseminfo.semmns : newSize;
394
395 #ifdef SEM_DEBUG
396 printf("growing sem array from %d to %d\n", seminfo.semmns, newSize);
397 #endif
398 MALLOC(newSem, struct sem*, sizeof(struct sem)*newSize,
399 M_SYSVSEM, M_WAITOK);
400 if (NULL == newSem)
401 {
402 #ifdef SEM_DEBUG
403 printf("allocation failed. no changes made.\n");
404 #endif
405 return 0;
406 }
407
408 /* We have our new memory, now copy the old contents over */
409 if (sem)
410 for(i = 0; i < seminfo.semmns; i++)
411 newSem[i] = sem[i];
412
413 /* Update our id structures to point to the new semaphores */
414 for(i = 0; i < seminfo.semmni; i++)
415 if (sema[i].sem_perm.mode & SEM_ALLOC) /* ID in use */
416 {
417 if (newSem > sem)
418 sema[i].sem_base += newSem - sem;
419 else
420 sema[i].sem_base -= sem - newSem;
421 }
422
423 /* clean up the old array */
424 if (sem)
425 FREE(sem, M_SYSVSEM);
426
427 sem = newSem;
428 seminfo.semmns = newSize;
429 #ifdef SEM_DEBUG
430 printf("expansion complete\n");
431 #endif
432 return 1;
433 }
434
435 /*
436 * Allocate a new sem_undo structure for a process
437 * (returns ptr to structure or NULL if no more room)
438 *
439 * Assumes we already hold the subsystem lock.
440 */
441
442 static struct sem_undo *
443 semu_alloc(p)
444 struct proc *p;
445 {
446 register int i;
447 register struct sem_undo *suptr;
448 register struct sem_undo **supptr;
449 int attempt;
450
451 /*
452 * Try twice to allocate something.
453 * (we'll purge any empty structures after the first pass so
454 * two passes are always enough)
455 */
456
457 for (attempt = 0; attempt < 2; attempt++) {
458 /*
459 * Look for a free structure.
460 * Fill it in and return it if we find one.
461 */
462
463 for (i = 0; i < seminfo.semmnu; i++) {
464 suptr = SEMU(i);
465 if (suptr->un_proc == NULL) {
466 suptr->un_next = semu_list;
467 semu_list = suptr;
468 suptr->un_cnt = 0;
469 suptr->un_proc = p;
470 return(suptr);
471 }
472 }
473
474 /*
475 * We didn't find a free one, if this is the first attempt
476 * then try to free some structures.
477 */
478
479 if (attempt == 0) {
480 /* All the structures are in use - try to free some */
481 int did_something = 0;
482
483 supptr = &semu_list;
484 while ((suptr = *supptr) != NULL) {
485 if (suptr->un_cnt == 0) {
486 suptr->un_proc = NULL;
487 *supptr = suptr->un_next;
488 did_something = 1;
489 } else
490 supptr = &(suptr->un_next);
491 }
492
493 /* If we didn't free anything. Try expanding
494 * the semu[] array. If that doesn't work
495 * then fail. We expand last to get the
496 * most reuse out of existing resources.
497 */
498 if (!did_something)
499 if (!grow_semu_array(seminfo.semmnu + 1))
500 return(NULL);
501 } else {
502 /*
503 * The second pass failed even though we freed
504 * something after the first pass!
505 * This is IMPOSSIBLE!
506 */
507 panic("semu_alloc - second attempt failed");
508 }
509 }
510 return (NULL);
511 }
512
513 /*
514 * Adjust a particular entry for a particular proc
515 *
516 * Assumes we already hold the subsystem lock.
517 */
518
519 static int
520 semundo_adjust(p, supptr, semid, semnum, adjval)
521 register struct proc *p;
522 struct sem_undo **supptr;
523 int semid, semnum;
524 int adjval;
525 {
526 register struct sem_undo *suptr;
527 register struct undo *sunptr;
528 int i;
529
530 /* Look for and remember the sem_undo if the caller doesn't provide
531 it */
532
533 suptr = *supptr;
534 if (suptr == NULL) {
535 for (suptr = semu_list; suptr != NULL;
536 suptr = suptr->un_next) {
537 if (suptr->un_proc == p) {
538 *supptr = suptr;
539 break;
540 }
541 }
542 if (suptr == NULL) {
543 if (adjval == 0)
544 return(0);
545 suptr = semu_alloc(p);
546 if (suptr == NULL)
547 return(ENOSPC);
548 *supptr = suptr;
549 }
550 }
551
552 /*
553 * Look for the requested entry and adjust it (delete if adjval becomes
554 * 0).
555 */
556 sunptr = &suptr->un_ent[0];
557 for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
558 if (sunptr->un_id != semid || sunptr->un_num != semnum)
559 continue;
560 if (adjval == 0)
561 sunptr->un_adjval = 0;
562 else
563 sunptr->un_adjval += adjval;
564 if (sunptr->un_adjval == 0) {
565 suptr->un_cnt--;
566 if (i < suptr->un_cnt)
567 suptr->un_ent[i] =
568 suptr->un_ent[suptr->un_cnt];
569 }
570 return(0);
571 }
572
573 /* Didn't find the right entry - create it */
574 if (adjval == 0)
575 return(0);
576 if (suptr->un_cnt != seminfo.semume) {
577 sunptr = &suptr->un_ent[suptr->un_cnt];
578 suptr->un_cnt++;
579 sunptr->un_adjval = adjval;
580 sunptr->un_id = semid; sunptr->un_num = semnum;
581 } else
582 return(EINVAL);
583 return(0);
584 }
585
586 /* Assumes we already hold the subsystem lock.
587 */
588 static void
589 semundo_clear(semid, semnum)
590 int semid, semnum;
591 {
592 register struct sem_undo *suptr;
593
594 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
595 register struct undo *sunptr = &suptr->un_ent[0];
596 register int i = 0;
597
598 while (i < suptr->un_cnt) {
599 if (sunptr->un_id == semid) {
600 if (semnum == -1 || sunptr->un_num == semnum) {
601 suptr->un_cnt--;
602 if (i < suptr->un_cnt) {
603 suptr->un_ent[i] =
604 suptr->un_ent[suptr->un_cnt];
605 continue;
606 }
607 }
608 if (semnum != -1)
609 break;
610 }
611 i++, sunptr++;
612 }
613 }
614 }
615
616 /*
617 * Note that the user-mode half of this passes a union, not a pointer
618 */
619 #ifndef _SYS_SYSPROTO_H_
620 struct semctl_args {
621 int semid;
622 int semnum;
623 int cmd;
624 union semun arg;
625 };
626 #endif
627
628 int
629 semctl(p, uap, retval)
630 struct proc *p;
631 register struct semctl_args *uap;
632 register_t *retval;
633 {
634 int semid = uap->semid;
635 int semnum = uap->semnum;
636 int cmd = uap->cmd;
637 union semun arg = uap->arg;
638 union semun real_arg;
639 struct ucred *cred = p->p_ucred;
640 int i, rval, eval;
641 struct semid_ds sbuf;
642 register struct semid_ds *semaptr;
643
644 SUBSYSTEM_LOCK_AQUIRE(p);
645 #ifdef SEM_DEBUG
646 printf("call to semctl(%d, %d, %d, 0x%x)\n", semid, semnum, cmd, arg);
647 #endif
648
649 semid = IPCID_TO_IX(semid);
650 if (semid < 0 || semid >= seminfo.semmsl)
651 {
652 #ifdef SEM_DEBUG
653 printf("Invalid semid\n");
654 #endif
655 UNLOCK_AND_RETURN(EINVAL);
656 }
657
658 semaptr = &sema[semid];
659 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
660 semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid))
661 UNLOCK_AND_RETURN(EINVAL);
662
663 eval = 0;
664 rval = 0;
665
666 switch (cmd) {
667 case IPC_RMID:
668 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
669 UNLOCK_AND_RETURN(eval);
670 semaptr->sem_perm.cuid = cred->cr_uid;
671 semaptr->sem_perm.uid = cred->cr_uid;
672 semtot -= semaptr->sem_nsems;
673 for (i = semaptr->sem_base - sem; i < semtot; i++)
674 sem[i] = sem[i + semaptr->sem_nsems];
675 for (i = 0; i < seminfo.semmni; i++) {
676 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
677 sema[i].sem_base > semaptr->sem_base)
678 sema[i].sem_base -= semaptr->sem_nsems;
679 }
680 semaptr->sem_perm.mode = 0;
681 semundo_clear(semid, -1);
682 wakeup((caddr_t)semaptr);
683 break;
684
685 case IPC_SET:
686 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
687 UNLOCK_AND_RETURN(eval);
688 /*if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
689 UNLOCK_AND_RETURN(eval);*/
690 if ((eval = copyin(arg.buf, (caddr_t)&sbuf,
691 sizeof(sbuf))) != 0)
692 UNLOCK_AND_RETURN(eval);
693 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
694 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
695 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
696 (sbuf.sem_perm.mode & 0777);
697 semaptr->sem_ctime = time_second;
698 break;
699
700 case IPC_STAT:
701 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
702 UNLOCK_AND_RETURN(eval);
703 /*if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
704 UNLOCK_AND_RETURN(eval);*/
705 eval = copyout((caddr_t)semaptr, arg.buf,
706 sizeof(struct semid_ds));
707 break;
708
709 case GETNCNT:
710 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
711 UNLOCK_AND_RETURN(eval);
712 if (semnum < 0 || semnum >= semaptr->sem_nsems)
713 UNLOCK_AND_RETURN(EINVAL);
714 rval = semaptr->sem_base[semnum].semncnt;
715 break;
716
717 case GETPID:
718 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
719 UNLOCK_AND_RETURN(eval);
720 if (semnum < 0 || semnum >= semaptr->sem_nsems)
721 UNLOCK_AND_RETURN(EINVAL);
722 rval = semaptr->sem_base[semnum].sempid;
723 break;
724
725 case GETVAL:
726 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
727 UNLOCK_AND_RETURN(eval);
728 if (semnum < 0 || semnum >= semaptr->sem_nsems)
729 UNLOCK_AND_RETURN(EINVAL);
730 rval = semaptr->sem_base[semnum].semval;
731 break;
732
733 case GETALL:
734 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
735 UNLOCK_AND_RETURN(eval);
736 /*if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
737 UNLOCK_AND_RETURN(eval);*/
738 for (i = 0; i < semaptr->sem_nsems; i++) {
739 eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
740 &arg.array[i], sizeof(arg.array[0]));
741 if (eval != 0)
742 break;
743 }
744 break;
745
746 case GETZCNT:
747 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
748 UNLOCK_AND_RETURN(eval);
749 if (semnum < 0 || semnum >= semaptr->sem_nsems)
750 UNLOCK_AND_RETURN(EINVAL);
751 rval = semaptr->sem_base[semnum].semzcnt;
752 break;
753
754 case SETVAL:
755 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
756 {
757 #ifdef SEM_DEBUG
758 printf("Invalid credentials for write\n");
759 #endif
760 UNLOCK_AND_RETURN(eval);
761 }
762 if (semnum < 0 || semnum >= semaptr->sem_nsems)
763 {
764 #ifdef SEM_DEBUG
765 printf("Invalid number out of range for set\n");
766 #endif
767 UNLOCK_AND_RETURN(EINVAL);
768 }
769 /*if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
770 {
771 #ifdef SEM_DEBUG
772 printf("Error during value copyin\n");
773 #endif
774 UNLOCK_AND_RETURN(eval);
775 }*/
776 semaptr->sem_base[semnum].semval = arg.val;
777 semundo_clear(semid, semnum);
778 wakeup((caddr_t)semaptr);
779 break;
780
781 case SETALL:
782 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
783 UNLOCK_AND_RETURN(eval);
784 /*if ((eval = copyin(arg, &real_arg, sizeof(real_arg))) != 0)
785 UNLOCK_AND_RETURN(eval);*/
786 for (i = 0; i < semaptr->sem_nsems; i++) {
787 eval = copyin(&arg.array[i],
788 (caddr_t)&semaptr->sem_base[i].semval,
789 sizeof(arg.array[0]));
790 if (eval != 0)
791 break;
792 }
793 semundo_clear(semid, -1);
794 wakeup((caddr_t)semaptr);
795 break;
796
797 default:
798 UNLOCK_AND_RETURN(EINVAL);
799 }
800
801 if (eval == 0)
802 *retval = rval;
803 UNLOCK_AND_RETURN(eval);
804 }
805
806 #ifndef _SYS_SYSPROTO_H_
807 struct semget_args {
808 key_t key;
809 int nsems;
810 int semflg;
811 };
812 #endif
813
814 int
815 semget(p, uap, retval)
816 struct proc *p;
817 register struct semget_args *uap;
818 register_t *retval;
819 {
820 int semid, eval;
821 int key = uap->key;
822 int nsems = uap->nsems;
823 int semflg = uap->semflg;
824 struct ucred *cred = p->p_ucred;
825
826 SUBSYSTEM_LOCK_AQUIRE(p);
827 #ifdef SEM_DEBUG
828 if (key != IPC_PRIVATE)
829 printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
830 else
831 printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
832 #endif
833
834 if (key != IPC_PRIVATE) {
835 for (semid = 0; semid < seminfo.semmni; semid++) {
836 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
837 sema[semid].sem_perm.key == key)
838 break;
839 }
840 if (semid < seminfo.semmni) {
841 #ifdef SEM_DEBUG
842 printf("found public key\n");
843 #endif
844 if ((eval = ipcperm(cred, &sema[semid].sem_perm,
845 semflg & 0700)))
846 UNLOCK_AND_RETURN(eval);
847 if (nsems > 0 && sema[semid].sem_nsems < nsems) {
848 #ifdef SEM_DEBUG
849 printf("too small\n");
850 #endif
851 UNLOCK_AND_RETURN(EINVAL);
852 }
853 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
854 #ifdef SEM_DEBUG
855 printf("not exclusive\n");
856 #endif
857 UNLOCK_AND_RETURN(EEXIST);
858 }
859 goto found;
860 }
861 }
862
863 #ifdef SEM_DEBUG
864 printf("need to allocate an id for the request\n");
865 #endif
866 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
867 if (nsems <= 0 || nsems > seminfo.semmsl) {
868 #ifdef SEM_DEBUG
869 printf("nsems out of range (0<%d<=%d)\n", nsems,
870 seminfo.semmsl);
871 #endif
872 UNLOCK_AND_RETURN(EINVAL);
873 }
874 if (nsems > seminfo.semmns - semtot) {
875 #ifdef SEM_DEBUG
876 printf("not enough semaphores left (need %d, got %d)\n",
877 nsems, seminfo.semmns - semtot);
878 #endif
879 if (!grow_sem_array(semtot + nsems))
880 {
881 #ifdef SEM_DEBUG
882 printf("failed to grow the sem array\n");
883 #endif
884 UNLOCK_AND_RETURN(ENOSPC);
885 }
886 }
887 for (semid = 0; semid < seminfo.semmni; semid++) {
888 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
889 break;
890 }
891 if (semid == seminfo.semmni) {
892 #ifdef SEM_DEBUG
893 printf("no more id's available\n");
894 #endif
895 if (!grow_sema_array(seminfo.semmni + 1))
896 {
897 #ifdef SEM_DEBUG
898 printf("failed to grow sema array\n");
899 #endif
900 UNLOCK_AND_RETURN(ENOSPC);
901 }
902 }
903 #ifdef SEM_DEBUG
904 printf("semid %d is available\n", semid);
905 #endif
906 sema[semid].sem_perm.key = key;
907 sema[semid].sem_perm.cuid = cred->cr_uid;
908 sema[semid].sem_perm.uid = cred->cr_uid;
909 sema[semid].sem_perm.cgid = cred->cr_gid;
910 sema[semid].sem_perm.gid = cred->cr_gid;
911 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
912 sema[semid].sem_perm.seq =
913 (sema[semid].sem_perm.seq + 1) & 0x7fff;
914 sema[semid].sem_nsems = nsems;
915 sema[semid].sem_otime = 0;
916 sema[semid].sem_ctime = time_second;
917 sema[semid].sem_base = &sem[semtot];
918 semtot += nsems;
919 bzero(sema[semid].sem_base,
920 sizeof(sema[semid].sem_base[0])*nsems);
921 #ifdef SEM_DEBUG
922 printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base,
923 &sem[semtot]);
924 #endif
925 } else {
926 #ifdef SEM_DEBUG
927 printf("didn't find it and wasn't asked to create it\n");
928 #endif
929 UNLOCK_AND_RETURN(ENOENT);
930 }
931
932 found:
933 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
934 #ifdef SEM_DEBUG
935 printf("semget is done, returning %d\n", *retval);
936 #endif
937 SUBSYSTEM_LOCK_RELEASE;
938 return(0);
939 }
940
941 #ifndef _SYS_SYSPROTO_H_
942 struct semop_args {
943 int semid;
944 struct sembuf *sops;
945 int nsops;
946 };
947 #endif
948
949 int
950 semop(p, uap, retval)
951 struct proc *p;
952 register struct semop_args *uap;
953 register_t *retval;
954 {
955 int semid = uap->semid;
956 int nsops = uap->nsops;
957 struct sembuf sops[MAX_SOPS];
958 register struct semid_ds *semaptr;
959 register struct sembuf *sopptr;
960 register struct sem *semptr;
961 struct sem_undo *suptr = NULL;
962 struct ucred *cred = p->p_ucred;
963 int i, j, eval;
964 int do_wakeup, do_undos;
965
966 SUBSYSTEM_LOCK_AQUIRE(p);
967 #ifdef SEM_DEBUG
968 printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
969 #endif
970
971 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
972
973 if (semid < 0 || semid >= seminfo.semmsl)
974 UNLOCK_AND_RETURN(EINVAL);
975
976 semaptr = &sema[semid];
977 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
978 UNLOCK_AND_RETURN(EINVAL);
979 if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid))
980 UNLOCK_AND_RETURN(EINVAL);
981
982 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
983 #ifdef SEM_DEBUG
984 printf("eval = %d from ipaccess\n", eval);
985 #endif
986 UNLOCK_AND_RETURN(eval);
987 }
988
989 if (nsops > MAX_SOPS) {
990 #ifdef SEM_DEBUG
991 printf("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops);
992 #endif
993 UNLOCK_AND_RETURN(E2BIG);
994 }
995
996 if ((eval = copyin(uap->sops, &sops, nsops * sizeof(sops[0]))) != 0) {
997 #ifdef SEM_DEBUG
998 printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
999 uap->sops, &sops, nsops * sizeof(sops[0]));
1000 #endif
1001 UNLOCK_AND_RETURN(eval);
1002 }
1003
1004 /*
1005 * Loop trying to satisfy the vector of requests.
1006 * If we reach a point where we must wait, any requests already
1007 * performed are rolled back and we go to sleep until some other
1008 * process wakes us up. At this point, we start all over again.
1009 *
1010 * This ensures that from the perspective of other tasks, a set
1011 * of requests is atomic (never partially satisfied).
1012 */
1013 do_undos = 0;
1014
1015 for (;;) {
1016 do_wakeup = 0;
1017
1018 for (i = 0; i < nsops; i++) {
1019 sopptr = &sops[i];
1020
1021 if (sopptr->sem_num >= semaptr->sem_nsems)
1022 UNLOCK_AND_RETURN(EFBIG);
1023
1024 semptr = &semaptr->sem_base[sopptr->sem_num];
1025
1026 #ifdef SEM_DEBUG
1027 printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
1028 semaptr, semaptr->sem_base, semptr,
1029 sopptr->sem_num, semptr->semval, sopptr->sem_op,
1030 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
1031 #endif
1032
1033 if (sopptr->sem_op < 0) {
1034 if (semptr->semval + sopptr->sem_op < 0) {
1035 #ifdef SEM_DEBUG
1036 printf("semop: can't do it now\n");
1037 #endif
1038 break;
1039 } else {
1040 semptr->semval += sopptr->sem_op;
1041 if (semptr->semval == 0 &&
1042 semptr->semzcnt > 0)
1043 do_wakeup = 1;
1044 }
1045 if (sopptr->sem_flg & SEM_UNDO)
1046 do_undos = 1;
1047 } else if (sopptr->sem_op == 0) {
1048 if (semptr->semval > 0) {
1049 #ifdef SEM_DEBUG
1050 printf("semop: not zero now\n");
1051 #endif
1052 break;
1053 }
1054 } else {
1055 if (semptr->semncnt > 0)
1056 do_wakeup = 1;
1057 semptr->semval += sopptr->sem_op;
1058 if (sopptr->sem_flg & SEM_UNDO)
1059 do_undos = 1;
1060 }
1061 }
1062
1063 /*
1064 * Did we get through the entire vector?
1065 */
1066 if (i >= nsops)
1067 goto done;
1068
1069 /*
1070 * No ... rollback anything that we've already done
1071 */
1072 #ifdef SEM_DEBUG
1073 printf("semop: rollback 0 through %d\n", i-1);
1074 #endif
1075 for (j = 0; j < i; j++)
1076 semaptr->sem_base[sops[j].sem_num].semval -=
1077 sops[j].sem_op;
1078
1079 /*
1080 * If the request that we couldn't satisfy has the
1081 * NOWAIT flag set then return with EAGAIN.
1082 */
1083 if (sopptr->sem_flg & IPC_NOWAIT)
1084 UNLOCK_AND_RETURN(EAGAIN);
1085
1086 if (sopptr->sem_op == 0)
1087 semptr->semzcnt++;
1088 else
1089 semptr->semncnt++;
1090
1091 #ifdef SEM_DEBUG
1092 printf("semop: good night!\n");
1093 #endif
1094 /* Release our lock on the semaphore subsystem so
1095 * another thread can get at the semaphore we are
1096 * waiting for. We will get the lock back after we
1097 * wake up.
1098 */
1099 SUBSYSTEM_LOCK_RELEASE;
1100 sysv_sem_sleeping_threads++;
1101 eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
1102 "semwait", 0);
1103 sysv_sem_sleeping_threads--;
1104
1105 #ifdef SEM_DEBUG
1106 printf("semop: good morning (eval=%d)!\n", eval);
1107 #endif
1108 /* There is no need to get the lock if we are just
1109 * going to return without performing more semaphore
1110 * operations.
1111 */
1112 if (eval != 0)
1113 return(EINTR);
1114
1115 SUBSYSTEM_LOCK_AQUIRE(p); /* Get it back */
1116 suptr = NULL; /* sem_undo may have been reallocated */
1117 semaptr = &sema[semid]; /* sema may have been reallocated */
1118
1119
1120 #ifdef SEM_DEBUG
1121 printf("semop: good morning!\n");
1122 #endif
1123
1124 /*
1125 * Make sure that the semaphore still exists
1126 */
1127 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
1128 semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
1129 /* The man page says to return EIDRM. */
1130 /* Unfortunately, BSD doesn't define that code! */
1131 #ifdef EIDRM
1132 UNLOCK_AND_RETURN(EIDRM);
1133 #else
1134 UNLOCK_AND_RETURN(EINVAL);
1135 #endif
1136 }
1137
1138 /*
1139 * The semaphore is still alive. Readjust the count of
1140 * waiting processes. semptr needs to be recomputed
1141 * because the sem[] may have been reallocated while
1142 * we were sleeping, updating our sem_base pointer.
1143 */
1144 semptr = &semaptr->sem_base[sopptr->sem_num];
1145 if (sopptr->sem_op == 0)
1146 semptr->semzcnt--;
1147 else
1148 semptr->semncnt--;
1149 }
1150
1151 done:
1152 /*
1153 * Process any SEM_UNDO requests.
1154 */
1155 if (do_undos) {
1156 for (i = 0; i < nsops; i++) {
1157 /*
1158 * We only need to deal with SEM_UNDO's for non-zero
1159 * op's.
1160 */
1161 int adjval;
1162
1163 if ((sops[i].sem_flg & SEM_UNDO) == 0)
1164 continue;
1165 adjval = sops[i].sem_op;
1166 if (adjval == 0)
1167 continue;
1168 eval = semundo_adjust(p, &suptr, semid,
1169 sops[i].sem_num, -adjval);
1170 if (eval == 0)
1171 continue;
1172
1173 /*
1174 * Oh-Oh! We ran out of either sem_undo's or undo's.
1175 * Rollback the adjustments to this point and then
1176 * rollback the semaphore ups and down so we can return
1177 * with an error with all structures restored. We
1178 * rollback the undo's in the exact reverse order that
1179 * we applied them. This guarantees that we won't run
1180 * out of space as we roll things back out.
1181 */
1182 for (j = i - 1; j >= 0; j--) {
1183 if ((sops[j].sem_flg & SEM_UNDO) == 0)
1184 continue;
1185 adjval = sops[j].sem_op;
1186 if (adjval == 0)
1187 continue;
1188 if (semundo_adjust(p, &suptr, semid,
1189 sops[j].sem_num, adjval) != 0)
1190 panic("semop - can't undo undos");
1191 }
1192
1193 for (j = 0; j < nsops; j++)
1194 semaptr->sem_base[sops[j].sem_num].semval -=
1195 sops[j].sem_op;
1196
1197 #ifdef SEM_DEBUG
1198 printf("eval = %d from semundo_adjust\n", eval);
1199 #endif
1200 UNLOCK_AND_RETURN(eval);
1201 } /* loop through the sops */
1202 } /* if (do_undos) */
1203
1204 /* We're definitely done - set the sempid's */
1205 for (i = 0; i < nsops; i++) {
1206 sopptr = &sops[i];
1207 semptr = &semaptr->sem_base[sopptr->sem_num];
1208 semptr->sempid = p->p_pid;
1209 }
1210
1211 /* Do a wakeup if any semaphore was up'd.
1212 * we will release our lock on the semaphore subsystem before
1213 * we wakeup other processes to prevent a little thrashing.
1214 * Note that this is fine because we are done using the
1215 * semaphore structures at this point in time. We only use
1216 * a local variable pointer value, and the retval
1217 * parameter.
1218 * Note 2: Future use of sem_wakeup may reqiure the lock.
1219 */
1220 SUBSYSTEM_LOCK_RELEASE;
1221 if (do_wakeup) {
1222 #ifdef SEM_DEBUG
1223 printf("semop: doing wakeup\n");
1224 #ifdef SEM_WAKEUP
1225 sem_wakeup((caddr_t)semaptr);
1226 #else
1227 wakeup((caddr_t)semaptr);
1228 #endif
1229 printf("semop: back from wakeup\n");
1230 #else
1231 wakeup((caddr_t)semaptr);
1232 #endif
1233 }
1234 #ifdef SEM_DEBUG
1235 printf("semop: done\n");
1236 #endif
1237 *retval = 0;
1238 return(0);
1239 }
1240
1241 /*
1242 * Go through the undo structures for this process and apply the adjustments to
1243 * semaphores.
1244 */
1245 void
1246 semexit(p)
1247 struct proc *p;
1248 {
1249 register struct sem_undo *suptr;
1250 register struct sem_undo **supptr;
1251 int did_something;
1252
1253 /* If we have not allocated our semaphores yet there can't be
1254 * anything to undo, but we need the lock to prevent
1255 * dynamic memory race conditions.
1256 */
1257 SUBSYSTEM_LOCK_AQUIRE(p);
1258 if (!sem)
1259 {
1260 SUBSYSTEM_LOCK_RELEASE;
1261 return;
1262 }
1263 did_something = 0;
1264
1265 /*
1266 * Go through the chain of undo vectors looking for one
1267 * associated with this process.
1268 */
1269
1270 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1271 supptr = &suptr->un_next) {
1272 if (suptr->un_proc == p)
1273 break;
1274 }
1275
1276 if (suptr == NULL)
1277 goto unlock;
1278
1279 #ifdef SEM_DEBUG
1280 printf("proc @%08x has undo structure with %d entries\n", p,
1281 suptr->un_cnt);
1282 #endif
1283
1284 /*
1285 * If there are any active undo elements then process them.
1286 */
1287 if (suptr->un_cnt > 0) {
1288 int ix;
1289
1290 for (ix = 0; ix < suptr->un_cnt; ix++) {
1291 int semid = suptr->un_ent[ix].un_id;
1292 int semnum = suptr->un_ent[ix].un_num;
1293 int adjval = suptr->un_ent[ix].un_adjval;
1294 struct semid_ds *semaptr;
1295
1296 semaptr = &sema[semid];
1297 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1298 panic("semexit - semid not allocated");
1299 if (semnum >= semaptr->sem_nsems)
1300 panic("semexit - semnum out of range");
1301
1302 #ifdef SEM_DEBUG
1303 printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
1304 suptr->un_proc, suptr->un_ent[ix].un_id,
1305 suptr->un_ent[ix].un_num,
1306 suptr->un_ent[ix].un_adjval,
1307 semaptr->sem_base[semnum].semval);
1308 #endif
1309
1310 if (adjval < 0) {
1311 if (semaptr->sem_base[semnum].semval < -adjval)
1312 semaptr->sem_base[semnum].semval = 0;
1313 else
1314 semaptr->sem_base[semnum].semval +=
1315 adjval;
1316 } else
1317 semaptr->sem_base[semnum].semval += adjval;
1318
1319 /* Maybe we should build a list of semaptr's to wake
1320 * up, finish all access to data structures, release the
1321 * subsystem lock, and wake all the processes. Something
1322 * to think about. It wouldn't buy us anything unless
1323 * wakeup had the potential to block, or the syscall
1324 * funnel state was changed to allow multiple threads
1325 * in the BSD code at once.
1326 */
1327 #ifdef SEM_WAKEUP
1328 sem_wakeup((caddr_t)semaptr);
1329 #else
1330 wakeup((caddr_t)semaptr);
1331 #endif
1332 #ifdef SEM_DEBUG
1333 printf("semexit: back from wakeup\n");
1334 #endif
1335 }
1336 }
1337
1338 /*
1339 * Deallocate the undo vector.
1340 */
1341 #ifdef SEM_DEBUG
1342 printf("removing vector\n");
1343 #endif
1344 suptr->un_proc = NULL;
1345 *supptr = suptr->un_next;
1346
1347 unlock:
1348 /*
1349 * There is a semaphore leak (i.e. memory leak) in this code.
1350 * We should be deleting the IPC_PRIVATE semaphores when they are
1351 * no longer needed, and we dont. We would have to track which processes
1352 * know about which IPC_PRIVATE semaphores, updating the list after
1353 * every fork. We can't just delete them semaphore when the process
1354 * that created it dies, because that process may well have forked
1355 * some children. So we need to wait until all of it's children have
1356 * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore
1357 * with the creating group ID, count the number of processes left in
1358 * that group, and delete the semaphore when the group is gone.
1359 * Until that code gets implemented we will leak IPC_PRIVATE semaphores.
1360 * There is an upper bound on the size of our semaphore array, so
1361 * leaking the semaphores should not work as a DOS attack.
1362 *
1363 * Please note that the original BSD code this file is based on had the
1364 * same leaky semaphore problem.
1365 */
1366
1367 SUBSYSTEM_LOCK_RELEASE;
1368 }
1369