]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-201.42.3.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1988, 1989, 1993
24 * The Regents of the University of California. All rights reserved.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
28 * are met:
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * @(#)radix.c 8.4 (Berkeley) 11/2/94
55 */
56
57 /*
58 * Routines to build and maintain radix trees for routing lookups.
59 */
60 #ifndef _RADIX_H_
61 #include <sys/param.h>
62 #ifdef KERNEL
63 #include <sys/systm.h>
64 #include <sys/malloc.h>
65 #define M_DONTWAIT M_NOWAIT
66 #include <sys/domain.h>
67 #else
68 #include <stdlib.h>
69 #endif
70 #include <sys/syslog.h>
71 #include <net/radix.h>
72 #endif
73
74 static int rn_walktree_from __P((struct radix_node_head *h, void *a,
75 void *m, walktree_f_t *f, void *w));
76 static int rn_walktree __P((struct radix_node_head *, walktree_f_t *, void *));
77 static struct radix_node
78 *rn_insert __P((void *, struct radix_node_head *, int *,
79 struct radix_node [2])),
80 *rn_newpair __P((void *, int, struct radix_node[2])),
81 *rn_search __P((void *, struct radix_node *)),
82 *rn_search_m __P((void *, struct radix_node *, void *));
83
84 static int max_keylen;
85 static struct radix_mask *rn_mkfreelist;
86 static struct radix_node_head *mask_rnhead;
87 static char *addmask_key;
88 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
89 static char *rn_zeros, *rn_ones;
90
91 #define rn_masktop (mask_rnhead->rnh_treetop)
92 #undef Bcmp
93 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
94
95 static int rn_lexobetter __P((void *m_arg, void *n_arg));
96 static struct radix_mask *
97 rn_new_radix_mask __P((struct radix_node *tt,
98 struct radix_mask *next));
99 static int rn_satsifies_leaf __P((char *trial, struct radix_node *leaf,
100 int skip));
101
102 /*
103 * The data structure for the keys is a radix tree with one way
104 * branching removed. The index rn_b at an internal node n represents a bit
105 * position to be tested. The tree is arranged so that all descendants
106 * of a node n have keys whose bits all agree up to position rn_b - 1.
107 * (We say the index of n is rn_b.)
108 *
109 * There is at least one descendant which has a one bit at position rn_b,
110 * and at least one with a zero there.
111 *
112 * A route is determined by a pair of key and mask. We require that the
113 * bit-wise logical and of the key and mask to be the key.
114 * We define the index of a route to associated with the mask to be
115 * the first bit number in the mask where 0 occurs (with bit number 0
116 * representing the highest order bit).
117 *
118 * We say a mask is normal if every bit is 0, past the index of the mask.
119 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
120 * and m is a normal mask, then the route applies to every descendant of n.
121 * If the index(m) < rn_b, this implies the trailing last few bits of k
122 * before bit b are all 0, (and hence consequently true of every descendant
123 * of n), so the route applies to all descendants of the node as well.
124 *
125 * Similar logic shows that a non-normal mask m such that
126 * index(m) <= index(n) could potentially apply to many children of n.
127 * Thus, for each non-host route, we attach its mask to a list at an internal
128 * node as high in the tree as we can go.
129 *
130 * The present version of the code makes use of normal routes in short-
131 * circuiting an explict mask and compare operation when testing whether
132 * a key satisfies a normal route, and also in remembering the unique leaf
133 * that governs a subtree.
134 */
135
136 static struct radix_node *
137 rn_search(v_arg, head)
138 void *v_arg;
139 struct radix_node *head;
140 {
141 register struct radix_node *x;
142 register caddr_t v;
143
144 for (x = head, v = v_arg; x->rn_b >= 0;) {
145 if (x->rn_bmask & v[x->rn_off])
146 x = x->rn_r;
147 else
148 x = x->rn_l;
149 }
150 return (x);
151 }
152
153 static struct radix_node *
154 rn_search_m(v_arg, head, m_arg)
155 struct radix_node *head;
156 void *v_arg, *m_arg;
157 {
158 register struct radix_node *x;
159 register caddr_t v = v_arg, m = m_arg;
160
161 for (x = head; x->rn_b >= 0;) {
162 if ((x->rn_bmask & m[x->rn_off]) &&
163 (x->rn_bmask & v[x->rn_off]))
164 x = x->rn_r;
165 else
166 x = x->rn_l;
167 }
168 return x;
169 }
170
171 int
172 rn_refines(m_arg, n_arg)
173 void *m_arg, *n_arg;
174 {
175 register caddr_t m = m_arg, n = n_arg;
176 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
177 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
178 int masks_are_equal = 1;
179
180 if (longer > 0)
181 lim -= longer;
182 while (n < lim) {
183 if (*n & ~(*m))
184 return 0;
185 if (*n++ != *m++)
186 masks_are_equal = 0;
187 }
188 while (n < lim2)
189 if (*n++)
190 return 0;
191 if (masks_are_equal && (longer < 0))
192 for (lim2 = m - longer; m < lim2; )
193 if (*m++)
194 return 1;
195 return (!masks_are_equal);
196 }
197
198 struct radix_node *
199 rn_lookup(v_arg, m_arg, head)
200 void *v_arg, *m_arg;
201 struct radix_node_head *head;
202 {
203 register struct radix_node *x;
204 caddr_t netmask = 0;
205
206 if (m_arg) {
207 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
208 return (0);
209 netmask = x->rn_key;
210 }
211 x = rn_match(v_arg, head);
212 if (x && netmask) {
213 while (x && x->rn_mask != netmask)
214 x = x->rn_dupedkey;
215 }
216 return x;
217 }
218
219 static int
220 rn_satsifies_leaf(trial, leaf, skip)
221 char *trial;
222 register struct radix_node *leaf;
223 int skip;
224 {
225 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
226 char *cplim;
227 int length = min(*(u_char *)cp, *(u_char *)cp2);
228
229 if (cp3 == 0)
230 cp3 = rn_ones;
231 else
232 length = min(length, *(u_char *)cp3);
233 cplim = cp + length; cp3 += skip; cp2 += skip;
234 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
235 if ((*cp ^ *cp2) & *cp3)
236 return 0;
237 return 1;
238 }
239
240 struct radix_node *
241 rn_match(v_arg, head)
242 void *v_arg;
243 struct radix_node_head *head;
244 {
245 caddr_t v = v_arg;
246 register struct radix_node *t = head->rnh_treetop, *x;
247 register caddr_t cp = v, cp2;
248 caddr_t cplim;
249 struct radix_node *saved_t, *top = t;
250 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
251 register int test, b, rn_b;
252
253 /*
254 * Open code rn_search(v, top) to avoid overhead of extra
255 * subroutine call.
256 */
257 for (; t->rn_b >= 0; ) {
258 if (t->rn_bmask & cp[t->rn_off])
259 t = t->rn_r;
260 else
261 t = t->rn_l;
262 }
263 /*
264 * See if we match exactly as a host destination
265 * or at least learn how many bits match, for normal mask finesse.
266 *
267 * It doesn't hurt us to limit how many bytes to check
268 * to the length of the mask, since if it matches we had a genuine
269 * match and the leaf we have is the most specific one anyway;
270 * if it didn't match with a shorter length it would fail
271 * with a long one. This wins big for class B&C netmasks which
272 * are probably the most common case...
273 */
274 if (t->rn_mask)
275 vlen = *(u_char *)t->rn_mask;
276 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 for (; cp < cplim; cp++, cp2++)
278 if (*cp != *cp2)
279 goto on1;
280 /*
281 * This extra grot is in case we are explicitly asked
282 * to look up the default. Ugh!
283 */
284 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 t = t->rn_dupedkey;
286 return t;
287 on1:
288 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 for (b = 7; (test >>= 1) > 0;)
290 b--;
291 matched_off = cp - v;
292 b += matched_off << 3;
293 rn_b = -1 - b;
294 /*
295 * If there is a host route in a duped-key chain, it will be first.
296 */
297 if ((saved_t = t)->rn_mask == 0)
298 t = t->rn_dupedkey;
299 for (; t; t = t->rn_dupedkey)
300 /*
301 * Even if we don't match exactly as a host,
302 * we may match if the leaf we wound up at is
303 * a route to a net.
304 */
305 if (t->rn_flags & RNF_NORMAL) {
306 if (rn_b <= t->rn_b)
307 return t;
308 } else if (rn_satsifies_leaf(v, t, matched_off))
309 return t;
310 t = saved_t;
311 /* start searching up the tree */
312 do {
313 register struct radix_mask *m;
314 t = t->rn_p;
315 m = t->rn_mklist;
316 if (m) {
317 /*
318 * If non-contiguous masks ever become important
319 * we can restore the masking and open coding of
320 * the search and satisfaction test and put the
321 * calculation of "off" back before the "do".
322 */
323 do {
324 if (m->rm_flags & RNF_NORMAL) {
325 if (rn_b <= m->rm_b)
326 return (m->rm_leaf);
327 } else {
328 off = min(t->rn_off, matched_off);
329 x = rn_search_m(v, t, m->rm_mask);
330 while (x && x->rn_mask != m->rm_mask)
331 x = x->rn_dupedkey;
332 if (x && rn_satsifies_leaf(v, x, off))
333 return x;
334 }
335 m = m->rm_mklist;
336 } while (m);
337 }
338 } while (t != top);
339 return 0;
340 }
341
342 #ifdef RN_DEBUG
343 int rn_nodenum;
344 struct radix_node *rn_clist;
345 int rn_saveinfo;
346 int rn_debug = 1;
347 #endif
348
349 static struct radix_node *
350 rn_newpair(v, b, nodes)
351 void *v;
352 int b;
353 struct radix_node nodes[2];
354 {
355 register struct radix_node *tt = nodes, *t = tt + 1;
356 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
357 t->rn_l = tt; t->rn_off = b >> 3;
358 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
359 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
360 #ifdef RN_DEBUG
361 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
362 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
363 #endif
364 return t;
365 }
366
367 static struct radix_node *
368 rn_insert(v_arg, head, dupentry, nodes)
369 void *v_arg;
370 struct radix_node_head *head;
371 int *dupentry;
372 struct radix_node nodes[2];
373 {
374 caddr_t v = v_arg;
375 struct radix_node *top = head->rnh_treetop;
376 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
377 register struct radix_node *t = rn_search(v_arg, top);
378 register caddr_t cp = v + head_off;
379 register int b;
380 struct radix_node *tt;
381 /*
382 * Find first bit at which v and t->rn_key differ
383 */
384 {
385 register caddr_t cp2 = t->rn_key + head_off;
386 register int cmp_res;
387 caddr_t cplim = v + vlen;
388
389 while (cp < cplim)
390 if (*cp2++ != *cp++)
391 goto on1;
392 *dupentry = 1;
393 return t;
394 on1:
395 *dupentry = 0;
396 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
397 for (b = (cp - v) << 3; cmp_res; b--)
398 cmp_res >>= 1;
399 }
400 {
401 register struct radix_node *p, *x = top;
402 cp = v;
403 do {
404 p = x;
405 if (cp[x->rn_off] & x->rn_bmask)
406 x = x->rn_r;
407 else x = x->rn_l;
408 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
409 #ifdef RN_DEBUG
410 if (rn_debug)
411 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
412 #endif
413 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
414 if ((cp[p->rn_off] & p->rn_bmask) == 0)
415 p->rn_l = t;
416 else
417 p->rn_r = t;
418 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
419 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
420 t->rn_r = x;
421 } else {
422 t->rn_r = tt; t->rn_l = x;
423 }
424 #ifdef RN_DEBUG
425 if (rn_debug)
426 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
427 #endif
428 }
429 return (tt);
430 }
431
432 struct radix_node *
433 rn_addmask(n_arg, search, skip)
434 int search, skip;
435 void *n_arg;
436 {
437 caddr_t netmask = (caddr_t)n_arg;
438 register struct radix_node *x;
439 register caddr_t cp, cplim;
440 register int b = 0, mlen, j;
441 int maskduplicated, m0, isnormal;
442 struct radix_node *saved_x;
443 static int last_zeroed = 0;
444
445 if ((mlen = *(u_char *)netmask) > max_keylen)
446 mlen = max_keylen;
447 if (skip == 0)
448 skip = 1;
449 if (mlen <= skip)
450 return (mask_rnhead->rnh_nodes);
451 if (skip > 1)
452 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
453 if ((m0 = mlen) > skip)
454 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
455 /*
456 * Trim trailing zeroes.
457 */
458 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
459 cp--;
460 mlen = cp - addmask_key;
461 if (mlen <= skip) {
462 if (m0 >= last_zeroed)
463 last_zeroed = mlen;
464 return (mask_rnhead->rnh_nodes);
465 }
466 if (m0 < last_zeroed)
467 Bzero(addmask_key + m0, last_zeroed - m0);
468 *addmask_key = last_zeroed = mlen;
469 x = rn_search(addmask_key, rn_masktop);
470 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
471 x = 0;
472 if (x || search)
473 return (x);
474 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
475 if ((saved_x = x) == 0)
476 return (0);
477 Bzero(x, max_keylen + 2 * sizeof (*x));
478 netmask = cp = (caddr_t)(x + 2);
479 Bcopy(addmask_key, cp, mlen);
480 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
481 if (maskduplicated) {
482 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
483 Free(saved_x);
484 return (x);
485 }
486 /*
487 * Calculate index of mask, and check for normalcy.
488 */
489 cplim = netmask + mlen; isnormal = 1;
490 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
491 cp++;
492 if (cp != cplim) {
493 for (j = 0x80; (j & *cp) != 0; j >>= 1)
494 b++;
495 if (*cp != normal_chars[b] || cp != (cplim - 1))
496 isnormal = 0;
497 }
498 b += (cp - netmask) << 3;
499 x->rn_b = -1 - b;
500 if (isnormal)
501 x->rn_flags |= RNF_NORMAL;
502 return (x);
503 }
504
505 static int /* XXX: arbitrary ordering for non-contiguous masks */
506 rn_lexobetter(m_arg, n_arg)
507 void *m_arg, *n_arg;
508 {
509 register u_char *mp = m_arg, *np = n_arg, *lim;
510
511 if (*mp > *np)
512 return 1; /* not really, but need to check longer one first */
513 if (*mp == *np)
514 for (lim = mp + *mp; mp < lim;)
515 if (*mp++ > *np++)
516 return 1;
517 return 0;
518 }
519
520 static struct radix_mask *
521 rn_new_radix_mask(tt, next)
522 register struct radix_node *tt;
523 register struct radix_mask *next;
524 {
525 register struct radix_mask *m;
526
527 MKGet(m);
528 if (m == 0) {
529 log(LOG_ERR, "Mask for route not entered\n");
530 return (0);
531 }
532 Bzero(m, sizeof *m);
533 m->rm_b = tt->rn_b;
534 m->rm_flags = tt->rn_flags;
535 if (tt->rn_flags & RNF_NORMAL)
536 m->rm_leaf = tt;
537 else
538 m->rm_mask = tt->rn_mask;
539 m->rm_mklist = next;
540 tt->rn_mklist = m;
541 return m;
542 }
543
544 struct radix_node *
545 rn_addroute(v_arg, n_arg, head, treenodes)
546 void *v_arg, *n_arg;
547 struct radix_node_head *head;
548 struct radix_node treenodes[2];
549 {
550 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
551 register struct radix_node *t, *x = 0, *tt;
552 struct radix_node *saved_tt, *top = head->rnh_treetop;
553 short b = 0, b_leaf = 0;
554 int keyduplicated;
555 caddr_t mmask;
556 struct radix_mask *m, **mp;
557
558 /*
559 * In dealing with non-contiguous masks, there may be
560 * many different routes which have the same mask.
561 * We will find it useful to have a unique pointer to
562 * the mask to speed avoiding duplicate references at
563 * nodes and possibly save time in calculating indices.
564 */
565 if (netmask) {
566 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
567 return (0);
568 b_leaf = x->rn_b;
569 b = -1 - x->rn_b;
570 netmask = x->rn_key;
571 }
572 /*
573 * Deal with duplicated keys: attach node to previous instance
574 */
575 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
576 if (keyduplicated) {
577 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
578 if (tt->rn_mask == netmask)
579 return (0);
580 if (netmask == 0 ||
581 (tt->rn_mask &&
582 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
583 rn_refines(netmask, tt->rn_mask) ||
584 rn_lexobetter(netmask, tt->rn_mask))))
585 break;
586 }
587 /*
588 * If the mask is not duplicated, we wouldn't
589 * find it among possible duplicate key entries
590 * anyway, so the above test doesn't hurt.
591 *
592 * We sort the masks for a duplicated key the same way as
593 * in a masklist -- most specific to least specific.
594 * This may require the unfortunate nuisance of relocating
595 * the head of the list.
596 */
597 if (tt == saved_tt) {
598 struct radix_node *xx = x;
599 /* link in at head of list */
600 (tt = treenodes)->rn_dupedkey = t;
601 tt->rn_flags = t->rn_flags;
602 tt->rn_p = x = t->rn_p;
603 t->rn_p = tt; /* parent */
604 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
605 saved_tt = tt; x = xx;
606 } else {
607 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
608 t->rn_dupedkey = tt;
609 tt->rn_p = t; /* parent */
610 if (tt->rn_dupedkey) /* parent */
611 tt->rn_dupedkey->rn_p = tt; /* parent */
612 }
613 #ifdef RN_DEBUG
614 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
615 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
616 #endif
617 tt->rn_key = (caddr_t) v;
618 tt->rn_b = -1;
619 tt->rn_flags = RNF_ACTIVE;
620 }
621 /*
622 * Put mask in tree.
623 */
624 if (netmask) {
625 tt->rn_mask = netmask;
626 tt->rn_b = x->rn_b;
627 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
628 }
629 t = saved_tt->rn_p;
630 if (keyduplicated)
631 goto on2;
632 b_leaf = -1 - t->rn_b;
633 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
634 /* Promote general routes from below */
635 if (x->rn_b < 0) {
636 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
637 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
638 *mp = m = rn_new_radix_mask(x, 0);
639 if (m)
640 mp = &m->rm_mklist;
641 }
642 } else if (x->rn_mklist) {
643 /*
644 * Skip over masks whose index is > that of new node
645 */
646 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
647 if (m->rm_b >= b_leaf)
648 break;
649 t->rn_mklist = m; *mp = 0;
650 }
651 on2:
652 /* Add new route to highest possible ancestor's list */
653 if ((netmask == 0) || (b > t->rn_b ))
654 return tt; /* can't lift at all */
655 b_leaf = tt->rn_b;
656 do {
657 x = t;
658 t = t->rn_p;
659 } while (b <= t->rn_b && x != top);
660 /*
661 * Search through routes associated with node to
662 * insert new route according to index.
663 * Need same criteria as when sorting dupedkeys to avoid
664 * double loop on deletion.
665 */
666 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
667 if (m->rm_b < b_leaf)
668 continue;
669 if (m->rm_b > b_leaf)
670 break;
671 if (m->rm_flags & RNF_NORMAL) {
672 mmask = m->rm_leaf->rn_mask;
673 if (tt->rn_flags & RNF_NORMAL) {
674 log(LOG_ERR,
675 "Non-unique normal route, mask not entered");
676 return tt;
677 }
678 } else
679 mmask = m->rm_mask;
680 if (mmask == netmask) {
681 m->rm_refs++;
682 tt->rn_mklist = m;
683 return tt;
684 }
685 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
686 break;
687 }
688 *mp = rn_new_radix_mask(tt, *mp);
689 return tt;
690 }
691
692 struct radix_node *
693 rn_delete(v_arg, netmask_arg, head)
694 void *v_arg, *netmask_arg;
695 struct radix_node_head *head;
696 {
697 register struct radix_node *t, *p, *x, *tt;
698 struct radix_mask *m, *saved_m, **mp;
699 struct radix_node *dupedkey, *saved_tt, *top;
700 caddr_t v, netmask;
701 int b, head_off, vlen;
702
703 v = v_arg;
704 netmask = netmask_arg;
705 x = head->rnh_treetop;
706 tt = rn_search(v, x);
707 head_off = x->rn_off;
708 vlen = *(u_char *)v;
709 saved_tt = tt;
710 top = x;
711 if (tt == 0 ||
712 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
713 return (0);
714 /*
715 * Delete our route from mask lists.
716 */
717 if (netmask) {
718 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
719 return (0);
720 netmask = x->rn_key;
721 while (tt->rn_mask != netmask)
722 if ((tt = tt->rn_dupedkey) == 0)
723 return (0);
724 }
725 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
726 goto on1;
727 if (tt->rn_flags & RNF_NORMAL) {
728 if (m->rm_leaf != tt || m->rm_refs > 0) {
729 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
730 return 0; /* dangling ref could cause disaster */
731 }
732 } else {
733 if (m->rm_mask != tt->rn_mask) {
734 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
735 goto on1;
736 }
737 if (--m->rm_refs >= 0)
738 goto on1;
739 }
740 b = -1 - tt->rn_b;
741 t = saved_tt->rn_p;
742 if (b > t->rn_b)
743 goto on1; /* Wasn't lifted at all */
744 do {
745 x = t;
746 t = t->rn_p;
747 } while (b <= t->rn_b && x != top);
748 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
749 if (m == saved_m) {
750 *mp = m->rm_mklist;
751 MKFree(m);
752 break;
753 }
754 if (m == 0) {
755 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
756 if (tt->rn_flags & RNF_NORMAL)
757 return (0); /* Dangling ref to us */
758 }
759 on1:
760 /*
761 * Eliminate us from tree
762 */
763 if (tt->rn_flags & RNF_ROOT)
764 return (0);
765 #ifdef RN_DEBUG
766 /* Get us out of the creation list */
767 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
768 if (t) t->rn_ybro = tt->rn_ybro;
769 #endif
770 t = tt->rn_p;
771 dupedkey = saved_tt->rn_dupedkey;
772 if (dupedkey) {
773 /*
774 * at this point, tt is the deletion target and saved_tt
775 * is the head of the dupekey chain
776 */
777 if (tt == saved_tt) {
778 /* remove from head of chain */
779 x = dupedkey; x->rn_p = t;
780 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
781 } else {
782 /* find node in front of tt on the chain */
783 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
784 p = p->rn_dupedkey;
785 if (p) {
786 p->rn_dupedkey = tt->rn_dupedkey;
787 if (tt->rn_dupedkey) /* parent */
788 tt->rn_dupedkey->rn_p = p; /* parent */
789 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
790 }
791 t = tt + 1;
792 if (t->rn_flags & RNF_ACTIVE) {
793 #ifndef RN_DEBUG
794 *++x = *t; p = t->rn_p;
795 #else
796 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
797 #endif
798 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
799 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
800 }
801 goto out;
802 }
803 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
804 p = t->rn_p;
805 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
806 x->rn_p = p;
807 /*
808 * Demote routes attached to us.
809 */
810 if (t->rn_mklist) {
811 if (x->rn_b >= 0) {
812 for (mp = &x->rn_mklist; (m = *mp);)
813 mp = &m->rm_mklist;
814 *mp = t->rn_mklist;
815 } else {
816 /* If there are any key,mask pairs in a sibling
817 duped-key chain, some subset will appear sorted
818 in the same order attached to our mklist */
819 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
820 if (m == x->rn_mklist) {
821 struct radix_mask *mm = m->rm_mklist;
822 x->rn_mklist = 0;
823 if (--(m->rm_refs) < 0)
824 MKFree(m);
825 m = mm;
826 }
827 if (m)
828 log(LOG_ERR,
829 "rn_delete: Orphaned Mask %p at %p\n",
830 (void *)m, (void *)x);
831 }
832 }
833 /*
834 * We may be holding an active internal node in the tree.
835 */
836 x = tt + 1;
837 if (t != x) {
838 #ifndef RN_DEBUG
839 *t = *x;
840 #else
841 b = t->rn_info; *t = *x; t->rn_info = b;
842 #endif
843 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
844 p = x->rn_p;
845 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
846 }
847 out:
848 tt->rn_flags &= ~RNF_ACTIVE;
849 tt[1].rn_flags &= ~RNF_ACTIVE;
850 return (tt);
851 }
852
853 /*
854 * This is the same as rn_walktree() except for the parameters and the
855 * exit.
856 */
857 static int
858 rn_walktree_from(h, a, m, f, w)
859 struct radix_node_head *h;
860 void *a, *m;
861 walktree_f_t *f;
862 void *w;
863 {
864 int error;
865 struct radix_node *base, *next;
866 u_char *xa = (u_char *)a;
867 u_char *xm = (u_char *)m;
868 register struct radix_node *rn, *last = 0 /* shut up gcc */;
869 int stopping = 0;
870 int lastb;
871
872 /*
873 * rn_search_m is sort-of-open-coded here.
874 */
875 /* printf("about to search\n"); */
876 for (rn = h->rnh_treetop; rn->rn_b >= 0; ) {
877 last = rn;
878 /* printf("rn_b %d, rn_bmask %x, xm[rn_off] %x\n",
879 rn->rn_b, rn->rn_bmask, xm[rn->rn_off]); */
880 if (!(rn->rn_bmask & xm[rn->rn_off])) {
881 break;
882 }
883 if (rn->rn_bmask & xa[rn->rn_off]) {
884 rn = rn->rn_r;
885 } else {
886 rn = rn->rn_l;
887 }
888 }
889 /* printf("done searching\n"); */
890
891 /*
892 * Two cases: either we stepped off the end of our mask,
893 * in which case last == rn, or we reached a leaf, in which
894 * case we want to start from the last node we looked at.
895 * Either way, last is the node we want to start from.
896 */
897 rn = last;
898 lastb = rn->rn_b;
899
900 /* printf("rn %p, lastb %d\n", rn, lastb);*/
901
902 /*
903 * This gets complicated because we may delete the node
904 * while applying the function f to it, so we need to calculate
905 * the successor node in advance.
906 */
907 while (rn->rn_b >= 0)
908 rn = rn->rn_l;
909
910 while (!stopping) {
911 /* printf("node %p (%d)\n", rn, rn->rn_b); */
912 base = rn;
913 /* If at right child go back up, otherwise, go right */
914 while (rn->rn_p->rn_r == rn && !(rn->rn_flags & RNF_ROOT)) {
915 rn = rn->rn_p;
916
917 /* if went up beyond last, stop */
918 if (rn->rn_b < lastb) {
919 stopping = 1;
920 /* printf("up too far\n"); */
921 }
922 }
923
924 /* Find the next *leaf* since next node might vanish, too */
925 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
926 rn = rn->rn_l;
927 next = rn;
928 /* Process leaves */
929 while ((rn = base) != 0) {
930 base = rn->rn_dupedkey;
931 /* printf("leaf %p\n", rn); */
932 if (!(rn->rn_flags & RNF_ROOT)
933 && (error = (*f)(rn, w)))
934 return (error);
935 }
936 rn = next;
937
938 if (rn->rn_flags & RNF_ROOT) {
939 /* printf("root, stopping"); */
940 stopping = 1;
941 }
942
943 }
944 return 0;
945 }
946
947 static int
948 rn_walktree(h, f, w)
949 struct radix_node_head *h;
950 walktree_f_t *f;
951 void *w;
952 {
953 int error;
954 struct radix_node *base, *next;
955 register struct radix_node *rn = h->rnh_treetop;
956 /*
957 * This gets complicated because we may delete the node
958 * while applying the function f to it, so we need to calculate
959 * the successor node in advance.
960 */
961 /* First time through node, go left */
962 while (rn->rn_b >= 0)
963 rn = rn->rn_l;
964 for (;;) {
965 base = rn;
966 /* If at right child go back up, otherwise, go right */
967 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
968 rn = rn->rn_p;
969 /* Find the next *leaf* since next node might vanish, too */
970 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
971 rn = rn->rn_l;
972 next = rn;
973 /* Process leaves */
974 while ((rn = base)) {
975 base = rn->rn_dupedkey;
976 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
977 return (error);
978 }
979 rn = next;
980 if (rn->rn_flags & RNF_ROOT)
981 return (0);
982 }
983 /* NOTREACHED */
984 }
985
986 int
987 rn_inithead(head, off)
988 void **head;
989 int off;
990 {
991 register struct radix_node_head *rnh;
992 register struct radix_node *t, *tt, *ttt;
993 if (*head)
994 return (1);
995 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
996 if (rnh == 0)
997 return (0);
998 Bzero(rnh, sizeof (*rnh));
999 *head = rnh;
1000 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1001 ttt = rnh->rnh_nodes + 2;
1002 t->rn_r = ttt;
1003 t->rn_p = t;
1004 tt = t->rn_l;
1005 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1006 tt->rn_b = -1 - off;
1007 *ttt = *tt;
1008 ttt->rn_key = rn_ones;
1009 rnh->rnh_addaddr = rn_addroute;
1010 rnh->rnh_deladdr = rn_delete;
1011 rnh->rnh_matchaddr = rn_match;
1012 rnh->rnh_lookup = rn_lookup;
1013 rnh->rnh_walktree = rn_walktree;
1014 rnh->rnh_walktree_from = rn_walktree_from;
1015 rnh->rnh_treetop = t;
1016 return (1);
1017 }
1018
1019 void
1020 rn_init()
1021 {
1022 char *cp, *cplim;
1023 #ifdef KERNEL
1024 struct domain *dom;
1025
1026 for (dom = domains; dom; dom = dom->dom_next)
1027 if (dom->dom_maxrtkey > max_keylen)
1028 max_keylen = dom->dom_maxrtkey;
1029 #endif
1030 if (max_keylen == 0) {
1031 log(LOG_ERR,
1032 "rn_init: radix functions require max_keylen be set\n");
1033 return;
1034 }
1035 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1036 if (rn_zeros == NULL)
1037 panic("rn_init");
1038 Bzero(rn_zeros, 3 * max_keylen);
1039 rn_ones = cp = rn_zeros + max_keylen;
1040 addmask_key = cplim = rn_ones + max_keylen;
1041 while (cp < cplim)
1042 *cp++ = -1;
1043 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1044 panic("rn_init 2");
1045 }