]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_mroute.c
xnu-1504.9.37.tar.gz
[apple/xnu.git] / bsd / netinet / ip_mroute.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
30 * support for mandatory and extensible security protections. This notice
31 * is included in support of clause 2.2 (b) of the Apple Public License,
32 * Version 2.0.
33 */
34 /*
35 * IP multicast forwarding procedures
36 *
37 * Written by David Waitzman, BBN Labs, August 1988.
38 * Modified by Steve Deering, Stanford, February 1989.
39 * Modified by Mark J. Steiglitz, Stanford, May, 1991
40 * Modified by Van Jacobson, LBL, January 1993
41 * Modified by Ajit Thyagarajan, PARC, August 1993
42 * Modified by Bill Fenner, PARC, April 1995
43 *
44 * MROUTING Revision: 3.5
45 * $FreeBSD: src/sys/netinet/ip_mroute.c,v 1.56.2.2 2001/07/19 06:37:26 kris Exp $
46 */
47
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/socket.h>
54 #include <sys/socketvar.h>
55 #include <sys/protosw.h>
56 #include <sys/time.h>
57 #include <sys/kernel.h>
58 #include <sys/sockio.h>
59 #include <sys/syslog.h>
60
61 #include <machine/endian.h>
62
63 #include <net/if.h>
64 #include <net/route.h>
65 #include <net/kpi_protocol.h>
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/in_var.h>
71 #include <netinet/igmp.h>
72 #include <netinet/ip_mroute.h>
73 #include <netinet/udp.h>
74
75 #if CONFIG_MACF_NET
76 #include <security/mac_framework.h>
77 #endif
78
79
80 #if !MROUTING
81 extern u_int32_t _ip_mcast_src(int vifi);
82 extern int _ip_mforward(struct ip *ip, struct ifnet *ifp,
83 struct mbuf *m, struct ip_moptions *imo);
84 extern int _ip_mrouter_done(void);
85 extern int _ip_mrouter_get(struct socket *so, struct sockopt *sopt);
86 extern int _ip_mrouter_set(struct socket *so, struct sockopt *sopt);
87 extern int _mrt_ioctl(int req, caddr_t data, struct proc *p);
88
89 /*
90 * Dummy routines and globals used when multicast routing is not compiled in.
91 */
92
93 struct socket *ip_mrouter = NULL;
94 u_int rsvpdebug = 0;
95
96 int
97 _ip_mrouter_set(__unused struct socket *so,
98 __unused struct sockopt *sopt)
99 {
100 return(EOPNOTSUPP);
101 }
102
103 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = _ip_mrouter_set;
104
105
106 int
107 _ip_mrouter_get(__unused struct socket *so,
108 __unused sockopt *sopt)
109 {
110 return(EOPNOTSUPP);
111 }
112
113 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = _ip_mrouter_get;
114
115 int
116 _ip_mrouter_done(void)
117 {
118 return(0);
119 }
120
121 int (*ip_mrouter_done)(void) = _ip_mrouter_done;
122
123 int
124 _ip_mforward(__unused struct ip *ip, __unused struct ifnet *ifp,
125 __unused struct mbuf *m, __unused ip_moptions *imo)
126 {
127 return(0);
128 }
129
130 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
131 struct ip_moptions *) = _ip_mforward;
132
133 int
134 _mrt_ioctl(__unused int req, __unused caddr_t data, __unused struct proc *p)
135 {
136 return EOPNOTSUPP;
137 }
138
139 int (*mrt_ioctl)(int, caddr_t, struct proc *) = _mrt_ioctl;
140
141 void
142 rsvp_input(struct mbuf *m, int iphlen) /* XXX must fixup manually */
143 {
144 /* Can still get packets with rsvp_on = 0 if there is a local member
145 * of the group to which the RSVP packet is addressed. But in this
146 * case we want to throw the packet away.
147 */
148 if (!rsvp_on) {
149 m_freem(m);
150 return;
151 }
152
153 if (ip_rsvpd != NULL) {
154 if (rsvpdebug)
155 printf("rsvp_input: Sending packet up old-style socket\n");
156 rip_input(m, iphlen);
157 return;
158 }
159 /* Drop the packet */
160 m_freem(m);
161 }
162
163 void ipip_input(struct mbuf *m, int iphlen) { /* XXX must fixup manually */
164 rip_input(m, iphlen);
165 }
166
167 int (*legal_vif_num)(int) = 0;
168
169 /*
170 * This should never be called, since IP_MULTICAST_VIF should fail, but
171 * just in case it does get called, the code a little lower in ip_output
172 * will assign the packet a local address.
173 */
174 u_int32_t
175 _ip_mcast_src(int vifi) { return INADDR_ANY; }
176 u_int32_t (*ip_mcast_src)(int) = _ip_mcast_src;
177
178 int
179 ip_rsvp_vif_init(so, sopt)
180 struct socket *so;
181 struct sockopt *sopt;
182 {
183 return(EINVAL);
184 }
185
186 int
187 ip_rsvp_vif_done(so, sopt)
188 struct socket *so;
189 struct sockopt *sopt;
190 {
191 return(EINVAL);
192 }
193
194 void
195 ip_rsvp_force_done(so)
196 struct socket *so;
197 {
198 return;
199 }
200
201 #else /* MROUTING */
202
203 #define M_HASCL(m) ((m)->m_flags & M_EXT)
204
205 #define INSIZ sizeof(struct in_addr)
206 #define same(a1, a2) \
207 (bcmp((caddr_t)(a1), (caddr_t)(a2), INSIZ) == 0)
208
209
210 /*
211 * Globals. All but ip_mrouter and ip_mrtproto could be static,
212 * except for netstat or debugging purposes.
213 */
214 #ifndef MROUTE_LKM
215 struct socket *ip_mrouter = NULL;
216 static struct mrtstat mrtstat;
217 #else /* MROUTE_LKM */
218 extern void X_ipip_input(struct mbuf *m, int iphlen);
219 extern struct mrtstat mrtstat;
220 static int ip_mrtproto;
221 #endif
222
223 #define NO_RTE_FOUND 0x1
224 #define RTE_FOUND 0x2
225
226 static struct mfc *mfctable[CONFIG_MFCTBLSIZ];
227 static u_char nexpire[CONFIG_MFCTBLSIZ];
228 static struct vif viftable[CONFIG_MAXVIFS];
229 static u_int mrtdebug = 0; /* debug level */
230 #define DEBUG_MFC 0x02
231 #define DEBUG_FORWARD 0x04
232 #define DEBUG_EXPIRE 0x08
233 #define DEBUG_XMIT 0x10
234 static u_int tbfdebug = 0; /* tbf debug level */
235 static u_int rsvpdebug = 0; /* rsvp debug level */
236
237 #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */
238 #define UPCALL_EXPIRE 6 /* number of timeouts */
239
240 /*
241 * Define the token bucket filter structures
242 * tbftable -> each vif has one of these for storing info
243 */
244
245 static struct tbf tbftable[CONFIG_MAXVIFS];
246 #define TBF_REPROCESS (hz / 100) /* 100x / second */
247
248 /*
249 * 'Interfaces' associated with decapsulator (so we can tell
250 * packets that went through it from ones that get reflected
251 * by a broken gateway). These interfaces are never linked into
252 * the system ifnet list & no routes point to them. I.e., packets
253 * can't be sent this way. They only exist as a placeholder for
254 * multicast source verification.
255 */
256 static struct ifnet multicast_decap_if[CONFIG_MAXVIFS];
257
258 #define ENCAP_TTL 64
259 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */
260
261 /* prototype IP hdr for encapsulated packets */
262 static struct ip multicast_encap_iphdr = {
263 #if BYTE_ORDER == LITTLE_ENDIAN
264 sizeof(struct ip) >> 2, IPVERSION,
265 #else
266 IPVERSION, sizeof(struct ip) >> 2,
267 #endif
268 0, /* tos */
269 sizeof(struct ip), /* total length */
270 0, /* id */
271 0, /* frag offset */
272 ENCAP_TTL, ENCAP_PROTO,
273 0, /* checksum */
274 { 0 }, { 0 }
275 };
276
277 /*
278 * Private variables.
279 */
280 static vifi_t numvifs = 0;
281 static int have_encap_tunnel = 0;
282
283 /*
284 * one-back cache used by ipip_input to locate a tunnel's vif
285 * given a datagram's src ip address.
286 */
287 static u_int32_t last_encap_src;
288 static struct vif *last_encap_vif;
289
290 static u_int32_t X_ip_mcast_src(int vifi);
291 static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo);
292 static int X_ip_mrouter_done(void);
293 static int X_ip_mrouter_get(struct socket *so, struct sockopt *m);
294 static int X_ip_mrouter_set(struct socket *so, struct sockopt *m);
295 static int X_legal_vif_num(int vif);
296 static int X_mrt_ioctl(int cmd, caddr_t data);
297
298 static int get_sg_cnt(struct sioc_sg_req *);
299 static int get_vif_cnt(struct sioc_vif_req *);
300 static int ip_mrouter_init(struct socket *, int);
301 static int add_vif(struct vifctl *);
302 static int del_vif(vifi_t);
303 static int add_mfc(struct mfcctl *);
304 static int del_mfc(struct mfcctl *);
305 static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *);
306 static int set_assert(int);
307 static void expire_upcalls(void *);
308 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *,
309 vifi_t);
310 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
311 static void encap_send(struct ip *, struct vif *, struct mbuf *);
312 static void tbf_control(struct vif *, struct mbuf *, struct ip *, u_int32_t);
313 static void tbf_queue(struct vif *, struct mbuf *);
314 static void tbf_process_q(struct vif *);
315 static void tbf_reprocess_q(void *);
316 static int tbf_dq_sel(struct vif *, struct ip *);
317 static void tbf_send_packet(struct vif *, struct mbuf *);
318 static void tbf_update_tokens(struct vif *);
319 static int priority(struct vif *, struct ip *);
320 void multiencap_decap(struct mbuf *);
321
322 /*
323 * whether or not special PIM assert processing is enabled.
324 */
325 static int pim_assert;
326 /*
327 * Rate limit for assert notification messages, in usec
328 */
329 #define ASSERT_MSG_TIME 3000000
330
331 /*
332 * Hash function for a source, group entry
333 */
334 #define MFCHASH(a, g) MFCHASHMOD(((a) >> 20) ^ ((a) >> 10) ^ (a) ^ \
335 ((g) >> 20) ^ ((g) >> 10) ^ (g))
336
337 /*
338 * Find a route for a given origin IP address and Multicast group address
339 * Type of service parameter to be added in the future!!!
340 */
341
342 #define MFCFIND(o, g, rt) { \
343 struct mfc *_rt = mfctable[MFCHASH(o,g)]; \
344 rt = NULL; \
345 ++mrtstat.mrts_mfc_lookups; \
346 while (_rt) { \
347 if ((_rt->mfc_origin.s_addr == o) && \
348 (_rt->mfc_mcastgrp.s_addr == g) && \
349 (_rt->mfc_stall == NULL)) { \
350 rt = _rt; \
351 break; \
352 } \
353 _rt = _rt->mfc_next; \
354 } \
355 if (rt == NULL) { \
356 ++mrtstat.mrts_mfc_misses; \
357 } \
358 }
359
360
361 /*
362 * Macros to compute elapsed time efficiently
363 * Borrowed from Van Jacobson's scheduling code
364 */
365 #define TV_DELTA(a, b, delta) { \
366 int xxs; \
367 \
368 delta = (a).tv_usec - (b).tv_usec; \
369 if ((xxs = (a).tv_sec - (b).tv_sec)) { \
370 switch (xxs) { \
371 case 2: \
372 delta += 1000000; \
373 /* fall through */ \
374 case 1: \
375 delta += 1000000; \
376 break; \
377 default: \
378 delta += (1000000 * xxs); \
379 } \
380 } \
381 }
382
383 #define TV_LT(a, b) (((a).tv_usec < (b).tv_usec && \
384 (a).tv_sec <= (b).tv_sec) || (a).tv_sec < (b).tv_sec)
385
386 #if UPCALL_TIMING
387 u_int32_t upcall_data[51];
388 static void collate(struct timeval *);
389 #endif /* UPCALL_TIMING */
390
391
392 /*
393 * Handle MRT setsockopt commands to modify the multicast routing tables.
394 */
395 static int
396 X_ip_mrouter_set(struct socket *so, struct sockopt *sopt)
397 {
398 int error, optval;
399 vifi_t vifi;
400 struct vifctl vifc;
401 struct mfcctl mfc;
402
403 if (so != ip_mrouter && sopt->sopt_name != MRT_INIT)
404 return (EPERM);
405
406 error = 0;
407 switch (sopt->sopt_name) {
408 case MRT_INIT:
409 error = sooptcopyin(sopt, &optval, sizeof optval,
410 sizeof optval);
411 if (error)
412 break;
413 error = ip_mrouter_init(so, optval);
414 break;
415
416 case MRT_DONE:
417 error = ip_mrouter_done();
418 break;
419
420 case MRT_ADD_VIF:
421 error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc);
422 if (error)
423 break;
424 error = add_vif(&vifc);
425 break;
426
427 case MRT_DEL_VIF:
428 error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi);
429 if (error)
430 break;
431 error = del_vif(vifi);
432 break;
433
434 case MRT_ADD_MFC:
435 case MRT_DEL_MFC:
436 error = sooptcopyin(sopt, &mfc, sizeof mfc, sizeof mfc);
437 if (error)
438 break;
439 if (sopt->sopt_name == MRT_ADD_MFC)
440 error = add_mfc(&mfc);
441 else
442 error = del_mfc(&mfc);
443 break;
444
445 case MRT_ASSERT:
446 error = sooptcopyin(sopt, &optval, sizeof optval,
447 sizeof optval);
448 if (error)
449 break;
450 set_assert(optval);
451 break;
452
453 default:
454 error = EOPNOTSUPP;
455 break;
456 }
457 return (error);
458 }
459
460 #if !defined(MROUTE_LKM) || !MROUTE_LKM
461 int (*ip_mrouter_set)(struct socket *, struct sockopt *) = X_ip_mrouter_set;
462 #endif
463
464 /*
465 * Handle MRT getsockopt commands
466 */
467 static int
468 X_ip_mrouter_get(__unused struct socket *so, struct sockopt *sopt)
469 {
470 int error;
471 static int vers = 0x0305; /* !!! why is this here? XXX */
472
473 switch (sopt->sopt_name) {
474 case MRT_VERSION:
475 error = sooptcopyout(sopt, &vers, sizeof vers);
476 break;
477
478 case MRT_ASSERT:
479 error = sooptcopyout(sopt, &pim_assert, sizeof pim_assert);
480 break;
481 default:
482 error = EOPNOTSUPP;
483 break;
484 }
485 return (error);
486 }
487
488 #if !defined(MROUTE_LKM) || !MROUTE_LKM
489 int (*ip_mrouter_get)(struct socket *, struct sockopt *) = X_ip_mrouter_get;
490 #endif
491
492 /*
493 * Handle ioctl commands to obtain information from the cache
494 */
495 static int
496 X_mrt_ioctl(int cmd, caddr_t data)
497 {
498 int error = 0;
499
500 switch (cmd) {
501 case (SIOCGETVIFCNT):
502 return (get_vif_cnt((struct sioc_vif_req *)data));
503 break;
504 case (SIOCGETSGCNT):
505 return (get_sg_cnt((struct sioc_sg_req *)data));
506 break;
507 default:
508 return (EINVAL);
509 break;
510 }
511 return error;
512 }
513
514 #if !defined(MROUTE_LKM) || !MROUTE_LKM
515 int (*mrt_ioctl)(int, caddr_t) = X_mrt_ioctl;
516 #endif
517
518 /*
519 * returns the packet, byte, rpf-failure count for the source group provided
520 */
521 static int
522 get_sg_cnt(struct sioc_sg_req *req)
523 {
524 struct mfc *rt;
525
526 MFCFIND(req->src.s_addr, req->grp.s_addr, rt);
527 if (rt != NULL) {
528 req->pktcnt = rt->mfc_pkt_cnt;
529 req->bytecnt = rt->mfc_byte_cnt;
530 req->wrong_if = rt->mfc_wrong_if;
531 } else
532 req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
533
534 return 0;
535 }
536
537 /*
538 * returns the input and output packet and byte counts on the vif provided
539 */
540 static int
541 get_vif_cnt(struct sioc_vif_req *req)
542 {
543 vifi_t vifi = req->vifi;
544
545 if (vifi >= numvifs) return EINVAL;
546
547 req->icount = viftable[vifi].v_pkt_in;
548 req->ocount = viftable[vifi].v_pkt_out;
549 req->ibytes = viftable[vifi].v_bytes_in;
550 req->obytes = viftable[vifi].v_bytes_out;
551
552 return 0;
553 }
554
555 /*
556 * Enable multicast routing
557 */
558 static int
559 ip_mrouter_init(struct socket *so, int vers)
560 {
561 if (mrtdebug)
562 log(LOG_DEBUG,"ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
563 so->so_type, so->so_proto->pr_protocol);
564
565 if (so->so_type != SOCK_RAW ||
566 so->so_proto->pr_protocol != IPPROTO_IGMP) return EOPNOTSUPP;
567
568 if (vers != 1)
569 return ENOPROTOOPT;
570
571 if (ip_mrouter != NULL) return EADDRINUSE;
572
573 ip_mrouter = so;
574
575 bzero((caddr_t)mfctable, sizeof(mfctable));
576 bzero((caddr_t)nexpire, sizeof(nexpire));
577
578 pim_assert = 0;
579
580 timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
581
582 if (mrtdebug)
583 log(LOG_DEBUG, "ip_mrouter_init\n");
584
585 return 0;
586 }
587
588 /*
589 * Disable multicast routing
590 */
591 static int
592 X_ip_mrouter_done(void)
593 {
594 vifi_t vifi;
595 int i;
596 struct ifnet *ifp;
597 struct ifreq ifr;
598 struct mfc *rt;
599 struct rtdetq *rte;
600
601 /*
602 * For each phyint in use, disable promiscuous reception of all IP
603 * multicasts.
604 */
605 for (vifi = 0; vifi < numvifs; vifi++) {
606 if (viftable[vifi].v_lcl_addr.s_addr != 0 &&
607 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
608 ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
609 ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr
610 = INADDR_ANY;
611 ifp = viftable[vifi].v_ifp;
612 if_allmulti(ifp, 0);
613 }
614 }
615 bzero((caddr_t)tbftable, sizeof(tbftable));
616 bzero((caddr_t)viftable, sizeof(viftable));
617 numvifs = 0;
618 pim_assert = 0;
619
620 untimeout(expire_upcalls, (caddr_t)NULL);
621
622 /*
623 * Free all multicast forwarding cache entries.
624 */
625 for (i = 0; i < CONFIG_MFCTBLSIZ; i++) {
626 for (rt = mfctable[i]; rt != NULL; ) {
627 struct mfc *nr = rt->mfc_next;
628
629 for (rte = rt->mfc_stall; rte != NULL; ) {
630 struct rtdetq *n = rte->next;
631
632 m_freem(rte->m);
633 FREE(rte, M_MRTABLE);
634 rte = n;
635 }
636 FREE(rt, M_MRTABLE);
637 rt = nr;
638 }
639 }
640
641 bzero((caddr_t)mfctable, sizeof(mfctable));
642
643 /*
644 * Reset de-encapsulation cache
645 */
646 last_encap_src = 0;
647 last_encap_vif = NULL;
648 have_encap_tunnel = 0;
649
650 ip_mrouter = NULL;
651
652 if (mrtdebug)
653 log(LOG_DEBUG, "ip_mrouter_done\n");
654
655 return 0;
656 }
657
658 #if !defined(MROUTE_LKM) || !MROUTE_LKM
659 int (*ip_mrouter_done)(void) = X_ip_mrouter_done;
660 #endif
661
662 /*
663 * Set PIM assert processing global
664 */
665 static int
666 set_assert(int i)
667 {
668 if ((i != 1) && (i != 0))
669 return EINVAL;
670
671 pim_assert = i;
672
673 return 0;
674 }
675
676 /*
677 * Add a vif to the vif table
678 */
679 static int
680 add_vif(struct vifctl *vifcp)
681 {
682 struct vif *vifp = viftable + vifcp->vifc_vifi;
683 static struct sockaddr_in sin = { sizeof sin, AF_INET,
684 0 , {0}, {0,0,0,0,0,0,0,0,} };
685 struct ifaddr *ifa;
686 struct ifnet *ifp;
687 int error, s;
688 struct tbf *v_tbf = tbftable + vifcp->vifc_vifi;
689
690 if (vifcp->vifc_vifi >= CONFIG_MAXVIFS) return EINVAL;
691 if (vifp->v_lcl_addr.s_addr != 0) return EADDRINUSE;
692
693 /* Find the interface with an address in AF_INET family */
694 sin.sin_addr = vifcp->vifc_lcl_addr;
695 ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
696 if (ifa == 0) return EADDRNOTAVAIL;
697 ifp = ifa->ifa_ifp;
698 ifafree(ifa);
699 ifa = NULL;
700
701 if (vifcp->vifc_flags & VIFF_TUNNEL) {
702 if ((vifcp->vifc_flags & VIFF_SRCRT) == 0) {
703 /*
704 * An encapsulating tunnel is wanted. Tell ipip_input() to
705 * start paying attention to encapsulated packets.
706 */
707 if (have_encap_tunnel == 0) {
708 have_encap_tunnel = 1;
709 for (s = 0; s < CONFIG_MAXVIFS; ++s) {
710 multicast_decap_if[s].if_name = "mdecap";
711 multicast_decap_if[s].if_unit = s;
712 multicast_decap_if[s].if_family = APPLE_IF_FAM_MDECAP;
713 }
714 }
715 /*
716 * Set interface to fake encapsulator interface
717 */
718 ifp = &multicast_decap_if[vifcp->vifc_vifi];
719 /*
720 * Prepare cached route entry
721 */
722 bzero(&vifp->v_route, sizeof(vifp->v_route));
723 } else {
724 log(LOG_ERR, "source routed tunnels not supported\n");
725 return EOPNOTSUPP;
726 }
727 } else {
728 /* Make sure the interface supports multicast */
729 if ((ifp->if_flags & IFF_MULTICAST) == 0)
730 return EOPNOTSUPP;
731
732 /* Enable promiscuous reception of all IP multicasts from the if */
733 error = if_allmulti(ifp, 1);
734 if (error)
735 return error;
736 }
737
738 /* define parameters for the tbf structure */
739 vifp->v_tbf = v_tbf;
740 GET_TIME(vifp->v_tbf->tbf_last_pkt_t);
741 vifp->v_tbf->tbf_n_tok = 0;
742 vifp->v_tbf->tbf_q_len = 0;
743 vifp->v_tbf->tbf_max_q_len = MAXQSIZE;
744 vifp->v_tbf->tbf_q = vifp->v_tbf->tbf_t = NULL;
745
746 vifp->v_flags = vifcp->vifc_flags;
747 vifp->v_threshold = vifcp->vifc_threshold;
748 vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
749 vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
750 vifp->v_ifp = ifp;
751 /* scaling up here allows division by 1024 in critical code */
752 vifp->v_rate_limit= vifcp->vifc_rate_limit * 1024 / 1000;
753 vifp->v_rsvp_on = 0;
754 vifp->v_rsvpd = NULL;
755 /* initialize per vif pkt counters */
756 vifp->v_pkt_in = 0;
757 vifp->v_pkt_out = 0;
758 vifp->v_bytes_in = 0;
759 vifp->v_bytes_out = 0;
760
761 /* Adjust numvifs up if the vifi is higher than numvifs */
762 if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1;
763
764 if (mrtdebug)
765 log(LOG_DEBUG, "add_vif #%d, lcladdr %lx, %s %lx, thresh %x, rate %d\n",
766 vifcp->vifc_vifi,
767 (u_int32_t)ntohl(vifcp->vifc_lcl_addr.s_addr),
768 (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
769 (u_int32_t)ntohl(vifcp->vifc_rmt_addr.s_addr),
770 vifcp->vifc_threshold,
771 vifcp->vifc_rate_limit);
772
773 return 0;
774 }
775
776 /*
777 * Delete a vif from the vif table
778 */
779 static int
780 del_vif(vifi_t vifi)
781 {
782 struct vif *vifp = &viftable[vifi];
783 struct mbuf *m;
784 struct ifnet *ifp;
785 struct ifreq ifr;
786
787 if (vifi >= numvifs) return EINVAL;
788 if (vifp->v_lcl_addr.s_addr == 0) return EADDRNOTAVAIL;
789
790 if (!(vifp->v_flags & VIFF_TUNNEL)) {
791 ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_family = AF_INET;
792 ((struct sockaddr_in *)&(ifr.ifr_addr))->sin_addr.s_addr = INADDR_ANY;
793 ifp = vifp->v_ifp;
794 if_allmulti(ifp, 0);
795 }
796
797 if (vifp == last_encap_vif) {
798 last_encap_vif = 0;
799 last_encap_src = 0;
800 }
801
802 /*
803 * Free packets queued at the interface
804 */
805 while (vifp->v_tbf->tbf_q) {
806 m = vifp->v_tbf->tbf_q;
807 vifp->v_tbf->tbf_q = m->m_act;
808 m_freem(m);
809 }
810
811 bzero((caddr_t)vifp->v_tbf, sizeof(*(vifp->v_tbf)));
812 bzero((caddr_t)vifp, sizeof (*vifp));
813
814 if (mrtdebug)
815 log(LOG_DEBUG, "del_vif %d, numvifs %d\n", vifi, numvifs);
816
817 /* Adjust numvifs down */
818 for (vifi = numvifs; vifi > 0; vifi--)
819 if (viftable[vifi-1].v_lcl_addr.s_addr != 0) break;
820 numvifs = vifi;
821
822 return 0;
823 }
824
825 /*
826 * Add an mfc entry
827 */
828 static int
829 add_mfc(struct mfcctl *mfccp)
830 {
831 struct mfc *rt;
832 u_int32_t hash;
833 struct rtdetq *rte;
834 u_short nstl;
835 int i;
836
837 MFCFIND(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr, rt);
838
839 /* If an entry already exists, just update the fields */
840 if (rt) {
841 if (mrtdebug & DEBUG_MFC)
842 log(LOG_DEBUG,"add_mfc update o %lx g %lx p %x\n",
843 (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
844 (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
845 mfccp->mfcc_parent);
846
847 rt->mfc_parent = mfccp->mfcc_parent;
848 for (i = 0; i < numvifs; i++)
849 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
850 return 0;
851 }
852
853 /*
854 * Find the entry for which the upcall was made and update
855 */
856 hash = MFCHASH(mfccp->mfcc_origin.s_addr, mfccp->mfcc_mcastgrp.s_addr);
857 for (rt = mfctable[hash], nstl = 0; rt; rt = rt->mfc_next) {
858
859 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
860 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr) &&
861 (rt->mfc_stall != NULL)) {
862
863 if (nstl++)
864 log(LOG_ERR, "add_mfc %s o %lx g %lx p %x dbx %p\n",
865 "multiple kernel entries",
866 (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
867 (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
868 mfccp->mfcc_parent, (void *)rt->mfc_stall);
869
870 if (mrtdebug & DEBUG_MFC)
871 log(LOG_DEBUG,"add_mfc o %lx g %lx p %x dbg %p\n",
872 (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
873 (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
874 mfccp->mfcc_parent, (void *)rt->mfc_stall);
875
876 rt->mfc_origin = mfccp->mfcc_origin;
877 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
878 rt->mfc_parent = mfccp->mfcc_parent;
879 for (i = 0; i < numvifs; i++)
880 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
881 /* initialize pkt counters per src-grp */
882 rt->mfc_pkt_cnt = 0;
883 rt->mfc_byte_cnt = 0;
884 rt->mfc_wrong_if = 0;
885 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
886
887 rt->mfc_expire = 0; /* Don't clean this guy up */
888 nexpire[hash]--;
889
890 /* free packets Qed at the end of this entry */
891 for (rte = rt->mfc_stall; rte != NULL; ) {
892 struct rtdetq *n = rte->next;
893
894 ip_mdq(rte->m, rte->ifp, rt, -1);
895 m_freem(rte->m);
896 #if UPCALL_TIMING
897 collate(&(rte->t));
898 #endif /* UPCALL_TIMING */
899 FREE(rte, M_MRTABLE);
900 rte = n;
901 }
902 rt->mfc_stall = NULL;
903 }
904 }
905
906 /*
907 * It is possible that an entry is being inserted without an upcall
908 */
909 if (nstl == 0) {
910 if (mrtdebug & DEBUG_MFC)
911 log(LOG_DEBUG,"add_mfc no upcall h %lu o %lx g %lx p %x\n",
912 hash, (u_int32_t)ntohl(mfccp->mfcc_origin.s_addr),
913 (u_int32_t)ntohl(mfccp->mfcc_mcastgrp.s_addr),
914 mfccp->mfcc_parent);
915
916 for (rt = mfctable[hash]; rt != NULL; rt = rt->mfc_next) {
917
918 if ((rt->mfc_origin.s_addr == mfccp->mfcc_origin.s_addr) &&
919 (rt->mfc_mcastgrp.s_addr == mfccp->mfcc_mcastgrp.s_addr)) {
920
921 rt->mfc_origin = mfccp->mfcc_origin;
922 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
923 rt->mfc_parent = mfccp->mfcc_parent;
924 for (i = 0; i < numvifs; i++)
925 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
926 /* initialize pkt counters per src-grp */
927 rt->mfc_pkt_cnt = 0;
928 rt->mfc_byte_cnt = 0;
929 rt->mfc_wrong_if = 0;
930 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
931 if (rt->mfc_expire)
932 nexpire[hash]--;
933 rt->mfc_expire = 0;
934 }
935 }
936 if (rt == NULL) {
937 /* no upcall, so make a new entry */
938 rt = (struct mfc *) _MALLOC(sizeof(*rt), M_MRTABLE, M_NOWAIT);
939 if (rt == NULL) {
940 return ENOBUFS;
941 }
942
943 /* insert new entry at head of hash chain */
944 rt->mfc_origin = mfccp->mfcc_origin;
945 rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp;
946 rt->mfc_parent = mfccp->mfcc_parent;
947 for (i = 0; i < numvifs; i++)
948 rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
949 /* initialize pkt counters per src-grp */
950 rt->mfc_pkt_cnt = 0;
951 rt->mfc_byte_cnt = 0;
952 rt->mfc_wrong_if = 0;
953 rt->mfc_last_assert.tv_sec = rt->mfc_last_assert.tv_usec = 0;
954 rt->mfc_expire = 0;
955 rt->mfc_stall = NULL;
956
957 /* link into table */
958 rt->mfc_next = mfctable[hash];
959 mfctable[hash] = rt;
960 }
961 }
962 return 0;
963 }
964
965 #if UPCALL_TIMING
966 /*
967 * collect delay statistics on the upcalls
968 */
969 static void
970 collate(struct timeval *t)
971 {
972 u_int32_t d;
973 struct timeval tp;
974 u_int32_t delta;
975
976 GET_TIME(tp);
977
978 if (TV_LT(*t, tp))
979 {
980 TV_DELTA(tp, *t, delta);
981
982 d = delta >> 10;
983 if (d > 50)
984 d = 50;
985
986 ++upcall_data[d];
987 }
988 }
989 #endif /* UPCALL_TIMING */
990
991 /*
992 * Delete an mfc entry
993 */
994 static int
995 del_mfc(struct mfcctl *mfccp)
996 {
997 struct in_addr origin;
998 struct in_addr mcastgrp;
999 struct mfc *rt;
1000 struct mfc **nptr;
1001 u_int32_t hash;
1002
1003 origin = mfccp->mfcc_origin;
1004 mcastgrp = mfccp->mfcc_mcastgrp;
1005 hash = MFCHASH(origin.s_addr, mcastgrp.s_addr);
1006
1007 if (mrtdebug & DEBUG_MFC)
1008 log(LOG_DEBUG,"del_mfc orig %lx mcastgrp %lx\n",
1009 (u_int32_t)ntohl(origin.s_addr), (u_int32_t)ntohl(mcastgrp.s_addr));
1010
1011 nptr = &mfctable[hash];
1012 while ((rt = *nptr) != NULL) {
1013 if (origin.s_addr == rt->mfc_origin.s_addr &&
1014 mcastgrp.s_addr == rt->mfc_mcastgrp.s_addr &&
1015 rt->mfc_stall == NULL)
1016 break;
1017
1018 nptr = &rt->mfc_next;
1019 }
1020 if (rt == NULL) {
1021 return EADDRNOTAVAIL;
1022 }
1023
1024 *nptr = rt->mfc_next;
1025 FREE(rt, M_MRTABLE);
1026
1027 return 0;
1028 }
1029
1030 /*
1031 * Send a message to mrouted on the multicast routing socket
1032 */
1033 static int
1034 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1035 {
1036 socket_lock(s, 1);
1037 if (s) {
1038 if (sbappendaddr(&s->so_rcv,
1039 (struct sockaddr *)src,
1040 mm, (struct mbuf *)0, NULL) != 0) {
1041 sorwakeup(s);
1042 socket_unlock(s, 1);
1043 return 0;
1044 }
1045 }
1046 socket_unlock(s, 1);
1047 m_freem(mm);
1048 return -1;
1049 }
1050
1051 /*
1052 * IP multicast forwarding function. This function assumes that the packet
1053 * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1054 * pointed to by "ifp", and the packet is to be relayed to other networks
1055 * that have members of the packet's destination IP multicast group.
1056 *
1057 * The packet is returned unscathed to the caller, unless it is
1058 * erroneous, in which case a non-zero return value tells the caller to
1059 * discard it.
1060 */
1061
1062 #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */
1063 #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */
1064
1065 static int
1066 X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m,
1067 struct ip_moptions *imo)
1068 {
1069 struct mfc *rt;
1070 u_char *ipoptions;
1071 static struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET,
1072 0 , {0}, {0,0,0,0,0,0,0,0,} };
1073 static int srctun = 0;
1074 struct mbuf *mm;
1075 vifi_t vifi;
1076 struct vif *vifp;
1077
1078 if (mrtdebug & DEBUG_FORWARD)
1079 log(LOG_DEBUG, "ip_mforward: src %lx, dst %lx, ifp %p\n",
1080 (u_int32_t)ntohl(ip->ip_src.s_addr), (u_int32_t)ntohl(ip->ip_dst.s_addr),
1081 (void *)ifp);
1082
1083 if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1084 (ipoptions = (u_char *)(ip + 1))[1] != IPOPT_LSRR ) {
1085 /*
1086 * Packet arrived via a physical interface or
1087 * an encapsulated tunnel.
1088 */
1089 } else {
1090 /*
1091 * Packet arrived through a source-route tunnel.
1092 * Source-route tunnels are no longer supported.
1093 */
1094 if ((srctun++ % 1000) == 0)
1095 log(LOG_ERR,
1096 "ip_mforward: received source-routed packet from %lx\n",
1097 (u_int32_t)ntohl(ip->ip_src.s_addr));
1098
1099 return 1;
1100 }
1101
1102 if ((imo) && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1103 if (ip->ip_ttl < 255)
1104 ip->ip_ttl++; /* compensate for -1 in *_send routines */
1105 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1106 vifp = viftable + vifi;
1107 printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s%d)\n",
1108 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), vifi,
1109 (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1110 vifp->v_ifp->if_name, vifp->v_ifp->if_unit);
1111 }
1112 return (ip_mdq(m, ifp, NULL, vifi));
1113 }
1114 if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1115 printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n",
1116 ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr));
1117 if(!imo)
1118 printf("In fact, no options were specified at all\n");
1119 }
1120
1121 /*
1122 * Don't forward a packet with time-to-live of zero or one,
1123 * or a packet destined to a local-only group.
1124 */
1125 if (ip->ip_ttl <= 1 ||
1126 ntohl(ip->ip_dst.s_addr) <= INADDR_MAX_LOCAL_GROUP)
1127 return 0;
1128
1129 /*
1130 * Determine forwarding vifs from the forwarding cache table
1131 */
1132 MFCFIND(ip->ip_src.s_addr, ip->ip_dst.s_addr, rt);
1133
1134 /* Entry exists, so forward if necessary */
1135 if (rt != NULL) {
1136 return (ip_mdq(m, ifp, rt, -1));
1137 } else {
1138 /*
1139 * If we don't have a route for packet's origin,
1140 * Make a copy of the packet &
1141 * send message to routing daemon
1142 */
1143
1144 struct mbuf *mb0;
1145 struct rtdetq *rte;
1146 u_int32_t hash;
1147 int hlen = ip->ip_hl << 2;
1148 #if UPCALL_TIMING
1149 struct timeval tp;
1150
1151 GET_TIME(tp);
1152 #endif
1153
1154 mrtstat.mrts_no_route++;
1155 if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1156 log(LOG_DEBUG, "ip_mforward: no rte s %lx g %lx\n",
1157 (u_int32_t)ntohl(ip->ip_src.s_addr),
1158 (u_int32_t)ntohl(ip->ip_dst.s_addr));
1159
1160 /*
1161 * Allocate mbufs early so that we don't do extra work if we are
1162 * just going to fail anyway. Make sure to pullup the header so
1163 * that other people can't step on it.
1164 */
1165 rte = (struct rtdetq *) _MALLOC((sizeof *rte), M_MRTABLE, M_NOWAIT);
1166 if (rte == NULL) {
1167 return ENOBUFS;
1168 }
1169 mb0 = m_copy(m, 0, M_COPYALL);
1170 if (mb0 && (M_HASCL(mb0) || mb0->m_len < hlen))
1171 mb0 = m_pullup(mb0, hlen);
1172 if (mb0 == NULL) {
1173 FREE(rte, M_MRTABLE);
1174 return ENOBUFS;
1175 }
1176
1177 /* is there an upcall waiting for this packet? */
1178 hash = MFCHASH(ip->ip_src.s_addr, ip->ip_dst.s_addr);
1179 for (rt = mfctable[hash]; rt; rt = rt->mfc_next) {
1180 if ((ip->ip_src.s_addr == rt->mfc_origin.s_addr) &&
1181 (ip->ip_dst.s_addr == rt->mfc_mcastgrp.s_addr) &&
1182 (rt->mfc_stall != NULL))
1183 break;
1184 }
1185
1186 if (rt == NULL) {
1187 int i;
1188 struct igmpmsg *im;
1189
1190 /* no upcall, so make a new entry */
1191 rt = (struct mfc *) _MALLOC(sizeof(*rt), M_MRTABLE, M_NOWAIT);
1192 if (rt == NULL) {
1193 FREE(rte, M_MRTABLE);
1194 m_freem(mb0);
1195 return ENOBUFS;
1196 }
1197 /* Make a copy of the header to send to the user level process */
1198 mm = m_copy(mb0, 0, hlen);
1199 if (mm == NULL) {
1200 FREE(rte, M_MRTABLE);
1201 m_freem(mb0);
1202 FREE(rt, M_MRTABLE);
1203 return ENOBUFS;
1204 }
1205
1206 /*
1207 * Send message to routing daemon to install
1208 * a route into the kernel table
1209 */
1210 k_igmpsrc.sin_addr = ip->ip_src;
1211
1212 im = mtod(mm, struct igmpmsg *);
1213 im->im_msgtype = IGMPMSG_NOCACHE;
1214 im->im_mbz = 0;
1215
1216 mrtstat.mrts_upcalls++;
1217
1218 if (socket_send(ip_mrouter, mm, &k_igmpsrc) < 0) {
1219 log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n");
1220 ++mrtstat.mrts_upq_sockfull;
1221 FREE(rte, M_MRTABLE);
1222 m_freem(mb0);
1223 FREE(rt, M_MRTABLE);
1224 return ENOBUFS;
1225 }
1226
1227 /* insert new entry at head of hash chain */
1228 rt->mfc_origin.s_addr = ip->ip_src.s_addr;
1229 rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr;
1230 rt->mfc_expire = UPCALL_EXPIRE;
1231 nexpire[hash]++;
1232 for (i = 0; i < numvifs; i++)
1233 rt->mfc_ttls[i] = 0;
1234 rt->mfc_parent = -1;
1235
1236 /* link into table */
1237 rt->mfc_next = mfctable[hash];
1238 mfctable[hash] = rt;
1239 rt->mfc_stall = rte;
1240
1241 } else {
1242 /* determine if q has overflowed */
1243 int npkts = 0;
1244 struct rtdetq **p;
1245
1246 for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1247 npkts++;
1248
1249 if (npkts > MAX_UPQ) {
1250 mrtstat.mrts_upq_ovflw++;
1251 FREE(rte, M_MRTABLE);
1252 m_freem(mb0);
1253 return 0;
1254 }
1255
1256 /* Add this entry to the end of the queue */
1257 *p = rte;
1258 }
1259
1260 rte->m = mb0;
1261 rte->ifp = ifp;
1262 #if UPCALL_TIMING
1263 rte->t = tp;
1264 #endif
1265 rte->next = NULL;
1266
1267 return 0;
1268 }
1269 }
1270
1271 #if !defined(MROUTE_LKM) || !MROUTE_LKM
1272 int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
1273 struct ip_moptions *) = X_ip_mforward;
1274 #endif
1275
1276 /*
1277 * Clean up the cache entry if upcall is not serviced
1278 */
1279 static void
1280 expire_upcalls(__unused void *unused)
1281 {
1282 struct rtdetq *rte;
1283 struct mfc *mfc, **nptr;
1284 int i;
1285
1286 for (i = 0; i < CONFIG_MFCTBLSIZ; i++) {
1287 if (nexpire[i] == 0)
1288 continue;
1289 nptr = &mfctable[i];
1290 for (mfc = *nptr; mfc != NULL; mfc = *nptr) {
1291 /*
1292 * Skip real cache entries
1293 * Make sure it wasn't marked to not expire (shouldn't happen)
1294 * If it expires now
1295 */
1296 if (mfc->mfc_stall != NULL &&
1297 mfc->mfc_expire != 0 &&
1298 --mfc->mfc_expire == 0) {
1299 if (mrtdebug & DEBUG_EXPIRE)
1300 log(LOG_DEBUG, "expire_upcalls: expiring (%lx %lx)\n",
1301 (u_int32_t)ntohl(mfc->mfc_origin.s_addr),
1302 (u_int32_t)ntohl(mfc->mfc_mcastgrp.s_addr));
1303 /*
1304 * drop all the packets
1305 * free the mbuf with the pkt, if, timing info
1306 */
1307 for (rte = mfc->mfc_stall; rte; ) {
1308 struct rtdetq *n = rte->next;
1309
1310 m_freem(rte->m);
1311 FREE(rte, M_MRTABLE);
1312 rte = n;
1313 }
1314 ++mrtstat.mrts_cache_cleanups;
1315 nexpire[i]--;
1316
1317 *nptr = mfc->mfc_next;
1318 FREE(mfc, M_MRTABLE);
1319 } else {
1320 nptr = &mfc->mfc_next;
1321 }
1322 }
1323 }
1324 timeout(expire_upcalls, (caddr_t)NULL, EXPIRE_TIMEOUT);
1325 }
1326
1327 /*
1328 * Packet forwarding routine once entry in the cache is made
1329 */
1330 static int
1331 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt,
1332 vifi_t xmt_vif)
1333 {
1334 struct ip *ip = mtod(m, struct ip *);
1335 vifi_t vifi;
1336 struct vif *vifp;
1337 int plen = ip->ip_len;
1338
1339 /*
1340 * Macro to send packet on vif. Since RSVP packets don't get counted on
1341 * input, they shouldn't get counted on output, so statistics keeping is
1342 * seperate.
1343 */
1344 #define MC_SEND(ip,vifp,m) { \
1345 if ((vifp)->v_flags & VIFF_TUNNEL) \
1346 encap_send((ip), (vifp), (m)); \
1347 else \
1348 phyint_send((ip), (vifp), (m)); \
1349 }
1350
1351 /*
1352 * If xmt_vif is not -1, send on only the requested vif.
1353 *
1354 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.)
1355 */
1356 if (xmt_vif < numvifs) {
1357 MC_SEND(ip, viftable + xmt_vif, m);
1358 return 1;
1359 }
1360
1361 /*
1362 * Don't forward if it didn't arrive from the parent vif for its origin.
1363 */
1364 vifi = rt->mfc_parent;
1365 if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1366 /* came in the wrong interface */
1367 if (mrtdebug & DEBUG_FORWARD)
1368 log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1369 (void *)ifp, vifi, (void *)viftable[vifi].v_ifp);
1370 ++mrtstat.mrts_wrong_if;
1371 ++rt->mfc_wrong_if;
1372 /*
1373 * If we are doing PIM assert processing, and we are forwarding
1374 * packets on this interface, and it is a broadcast medium
1375 * interface (and not a tunnel), send a message to the routing daemon.
1376 */
1377 if (pim_assert && rt->mfc_ttls[vifi] &&
1378 (ifp->if_flags & IFF_BROADCAST) &&
1379 !(viftable[vifi].v_flags & VIFF_TUNNEL)) {
1380 struct sockaddr_in k_igmpsrc;
1381 struct mbuf *mm;
1382 struct igmpmsg *im;
1383 int hlen = ip->ip_hl << 2;
1384 struct timeval now;
1385 u_int32_t delta;
1386
1387 GET_TIME(now);
1388
1389 TV_DELTA(rt->mfc_last_assert, now, delta);
1390
1391 if (delta > ASSERT_MSG_TIME) {
1392 mm = m_copy(m, 0, hlen);
1393 if (mm && (M_HASCL(mm) || mm->m_len < hlen))
1394 mm = m_pullup(mm, hlen);
1395 if (mm == NULL) {
1396 return ENOBUFS;
1397 }
1398
1399 rt->mfc_last_assert = now;
1400
1401 im = mtod(mm, struct igmpmsg *);
1402 im->im_msgtype = IGMPMSG_WRONGVIF;
1403 im->im_mbz = 0;
1404 im->im_vif = vifi;
1405
1406 k_igmpsrc.sin_addr = im->im_src;
1407
1408 socket_send(ip_mrouter, mm, &k_igmpsrc);
1409 }
1410 }
1411 return 0;
1412 }
1413
1414 /* If I sourced this packet, it counts as output, else it was input. */
1415 if (ip->ip_src.s_addr == viftable[vifi].v_lcl_addr.s_addr) {
1416 viftable[vifi].v_pkt_out++;
1417 viftable[vifi].v_bytes_out += plen;
1418 } else {
1419 viftable[vifi].v_pkt_in++;
1420 viftable[vifi].v_bytes_in += plen;
1421 }
1422 rt->mfc_pkt_cnt++;
1423 rt->mfc_byte_cnt += plen;
1424
1425 /*
1426 * For each vif, decide if a copy of the packet should be forwarded.
1427 * Forward if:
1428 * - the ttl exceeds the vif's threshold
1429 * - there are group members downstream on interface
1430 */
1431 for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1432 if ((rt->mfc_ttls[vifi] > 0) &&
1433 (ip->ip_ttl > rt->mfc_ttls[vifi])) {
1434 vifp->v_pkt_out++;
1435 vifp->v_bytes_out += plen;
1436 MC_SEND(ip, vifp, m);
1437 }
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * check if a vif number is legal/ok. This is used by ip_output, to export
1444 * numvifs there,
1445 */
1446 static int
1447 X_legal_vif_num(int vif)
1448 {
1449 if (vif >= 0 && vif < numvifs)
1450 return(1);
1451 else
1452 return(0);
1453 }
1454
1455 #if !defined(MROUTE_LKM) || !MROUTE_LKM
1456 int (*legal_vif_num)(int) = X_legal_vif_num;
1457 #endif
1458
1459 /*
1460 * Return the local address used by this vif
1461 */
1462 static u_int32_t
1463 X_ip_mcast_src(int vifi)
1464 {
1465 if (vifi >= 0 && vifi < numvifs)
1466 return viftable[vifi].v_lcl_addr.s_addr;
1467 else
1468 return INADDR_ANY;
1469 }
1470
1471 #if !defined(MROUTE_LKM) || !MROUTE_LKM
1472 u_int32_t (*ip_mcast_src)(int) = X_ip_mcast_src;
1473 #endif
1474
1475 static void
1476 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1477 {
1478 struct mbuf *mb_copy;
1479 int hlen = ip->ip_hl << 2;
1480
1481 /*
1482 * Make a new reference to the packet; make sure that
1483 * the IP header is actually copied, not just referenced,
1484 * so that ip_output() only scribbles on the copy.
1485 */
1486 mb_copy = m_copy(m, 0, M_COPYALL);
1487 if (mb_copy && (M_HASCL(mb_copy) || mb_copy->m_len < hlen))
1488 mb_copy = m_pullup(mb_copy, hlen);
1489 if (mb_copy == NULL)
1490 return;
1491
1492 if (vifp->v_rate_limit == 0)
1493 tbf_send_packet(vifp, mb_copy);
1494 else
1495 tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ip->ip_len);
1496 }
1497
1498 static void
1499 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1500 {
1501 struct mbuf *mb_copy;
1502 struct ip *ip_copy;
1503 int i, len = ip->ip_len;
1504
1505 /*
1506 * copy the old packet & pullup its IP header into the
1507 * new mbuf so we can modify it. Try to fill the new
1508 * mbuf since if we don't the ethernet driver will.
1509 */
1510 MGETHDR(mb_copy, M_DONTWAIT, MT_HEADER);
1511 if (mb_copy == NULL)
1512 return;
1513 #if CONFIG_MACF_NET
1514 mac_mbuf_label_associate_multicast_encap(m, vifp->v_ifp, mb_copy);
1515 #endif
1516 mb_copy->m_data += max_linkhdr;
1517 mb_copy->m_len = sizeof(multicast_encap_iphdr);
1518
1519 if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1520 m_freem(mb_copy);
1521 return;
1522 }
1523 i = MHLEN - M_LEADINGSPACE(mb_copy);
1524 if (i > len)
1525 i = len;
1526 mb_copy = m_pullup(mb_copy, i);
1527 if (mb_copy == NULL)
1528 return;
1529 mb_copy->m_pkthdr.len = len + sizeof(multicast_encap_iphdr);
1530
1531 /*
1532 * fill in the encapsulating IP header.
1533 */
1534 ip_copy = mtod(mb_copy, struct ip *);
1535 *ip_copy = multicast_encap_iphdr;
1536 #if RANDOM_IP_ID
1537 ip_copy->ip_id = ip_randomid();
1538 #else
1539 ip_copy->ip_id = htons(ip_id++);
1540 #endif
1541 ip_copy->ip_len += len;
1542 ip_copy->ip_src = vifp->v_lcl_addr;
1543 ip_copy->ip_dst = vifp->v_rmt_addr;
1544
1545 /*
1546 * turn the encapsulated IP header back into a valid one.
1547 */
1548 ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1549 --ip->ip_ttl;
1550
1551 #if BYTE_ORDER != BIG_ENDIAN
1552 HTONS(ip->ip_len);
1553 HTONS(ip->ip_off);
1554 #endif
1555
1556 ip->ip_sum = 0;
1557 mb_copy->m_data += sizeof(multicast_encap_iphdr);
1558 ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1559 mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1560
1561 if (vifp->v_rate_limit == 0)
1562 tbf_send_packet(vifp, mb_copy);
1563 else
1564 tbf_control(vifp, mb_copy, ip, ip_copy->ip_len);
1565 }
1566
1567 /*
1568 * De-encapsulate a packet and feed it back through ip input (this
1569 * routine is called whenever IP gets a packet with proto type
1570 * ENCAP_PROTO and a local destination address).
1571 */
1572 void
1573 #if MROUTE_LKM
1574 X_ipip_input(struct mbuf *m, int iphlen)
1575 #else
1576 ipip_input(struct mbuf *m, int iphlen)
1577 #endif
1578 {
1579 struct ifnet *ifp = m->m_pkthdr.rcvif;
1580 struct ip *ip = mtod(m, struct ip *);
1581 int hlen = ip->ip_hl << 2;
1582 struct vif *vifp;
1583
1584 if (!have_encap_tunnel) {
1585 rip_input(m, iphlen);
1586 return;
1587 }
1588 /*
1589 * dump the packet if it's not to a multicast destination or if
1590 * we don't have an encapsulating tunnel with the source.
1591 * Note: This code assumes that the remote site IP address
1592 * uniquely identifies the tunnel (i.e., that this site has
1593 * at most one tunnel with the remote site).
1594 */
1595 if (! IN_MULTICAST(ntohl(((struct ip *)((char *)ip + hlen))->ip_dst.s_addr))) {
1596 ++mrtstat.mrts_bad_tunnel;
1597 m_freem(m);
1598 return;
1599 }
1600 if (ip->ip_src.s_addr != last_encap_src) {
1601 struct vif *vife;
1602
1603 vifp = viftable;
1604 vife = vifp + numvifs;
1605 last_encap_src = ip->ip_src.s_addr;
1606 last_encap_vif = 0;
1607 for ( ; vifp < vife; ++vifp)
1608 if (vifp->v_rmt_addr.s_addr == ip->ip_src.s_addr) {
1609 if ((vifp->v_flags & (VIFF_TUNNEL|VIFF_SRCRT))
1610 == VIFF_TUNNEL)
1611 last_encap_vif = vifp;
1612 break;
1613 }
1614 }
1615 if ((vifp = last_encap_vif) == 0) {
1616 last_encap_src = 0;
1617 mrtstat.mrts_cant_tunnel++; /*XXX*/
1618 m_freem(m);
1619 if (mrtdebug)
1620 log(LOG_DEBUG, "ip_mforward: no tunnel with %lx\n",
1621 (u_int32_t)ntohl(ip->ip_src.s_addr));
1622 return;
1623 }
1624 ifp = vifp->v_ifp;
1625
1626 if (hlen > IP_HDR_LEN)
1627 ip_stripoptions(m, (struct mbuf *) 0);
1628 m->m_data += IP_HDR_LEN;
1629 m->m_len -= IP_HDR_LEN;
1630 m->m_pkthdr.len -= IP_HDR_LEN;
1631 m->m_pkthdr.rcvif = ifp;
1632
1633 proto_inject(PF_INET, m);
1634 }
1635
1636 /*
1637 * Token bucket filter module
1638 */
1639
1640 static void
1641 tbf_control(struct vif *vifp, struct mbuf *m, struct ip *ip,
1642 u_int32_t p_len)
1643 {
1644 struct tbf *t = vifp->v_tbf;
1645
1646 if (p_len > MAX_BKT_SIZE) {
1647 /* drop if packet is too large */
1648 mrtstat.mrts_pkt2large++;
1649 m_freem(m);
1650 return;
1651 }
1652
1653 tbf_update_tokens(vifp);
1654
1655 /* if there are enough tokens,
1656 * and the queue is empty,
1657 * send this packet out
1658 */
1659
1660 if (t->tbf_q_len == 0) {
1661 /* queue empty, send packet if enough tokens */
1662 if (p_len <= t->tbf_n_tok) {
1663 t->tbf_n_tok -= p_len;
1664 tbf_send_packet(vifp, m);
1665 } else {
1666 /* queue packet and timeout till later */
1667 tbf_queue(vifp, m);
1668 timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1669 }
1670 } else if (t->tbf_q_len < t->tbf_max_q_len) {
1671 /* finite queue length, so queue pkts and process queue */
1672 tbf_queue(vifp, m);
1673 tbf_process_q(vifp);
1674 } else {
1675 /* queue length too much, try to dq and queue and process */
1676 if (!tbf_dq_sel(vifp, ip)) {
1677 mrtstat.mrts_q_overflow++;
1678 m_freem(m);
1679 return;
1680 } else {
1681 tbf_queue(vifp, m);
1682 tbf_process_q(vifp);
1683 }
1684 }
1685 return;
1686 }
1687
1688 /*
1689 * adds a packet to the queue at the interface
1690 */
1691 static void
1692 tbf_queue(struct vif *vifp, struct mbuf *m)
1693 {
1694 struct tbf *t = vifp->v_tbf;
1695
1696 if (t->tbf_t == NULL) {
1697 /* Queue was empty */
1698 t->tbf_q = m;
1699 } else {
1700 /* Insert at tail */
1701 t->tbf_t->m_act = m;
1702 }
1703
1704 /* Set new tail pointer */
1705 t->tbf_t = m;
1706
1707 #if DIAGNOSTIC
1708 /* Make sure we didn't get fed a bogus mbuf */
1709 if (m->m_act)
1710 panic("tbf_queue: m_act");
1711 #endif
1712 m->m_act = NULL;
1713
1714 t->tbf_q_len++;
1715 }
1716
1717
1718 /*
1719 * processes the queue at the interface
1720 */
1721 static void
1722 tbf_process_q(struct vif *vifp)
1723 {
1724 struct mbuf *m;
1725 int len;
1726 struct tbf *t = vifp->v_tbf;
1727
1728 /* loop through the queue at the interface and send as many packets
1729 * as possible
1730 */
1731 while (t->tbf_q_len > 0) {
1732 m = t->tbf_q;
1733
1734 len = mtod(m, struct ip *)->ip_len;
1735
1736 /* determine if the packet can be sent */
1737 if (len <= t->tbf_n_tok) {
1738 /* if so,
1739 * reduce no of tokens, dequeue the packet,
1740 * send the packet.
1741 */
1742 t->tbf_n_tok -= len;
1743
1744 t->tbf_q = m->m_act;
1745 if (--t->tbf_q_len == 0)
1746 t->tbf_t = NULL;
1747
1748 m->m_act = NULL;
1749 tbf_send_packet(vifp, m);
1750
1751 } else break;
1752 }
1753 }
1754
1755 static void
1756 tbf_reprocess_q(void *xvifp)
1757 {
1758 struct vif *vifp = xvifp;
1759
1760 if (ip_mrouter == NULL) {
1761 return;
1762 }
1763
1764 tbf_update_tokens(vifp);
1765
1766 tbf_process_q(vifp);
1767
1768 if (vifp->v_tbf->tbf_q_len)
1769 timeout(tbf_reprocess_q, (caddr_t)vifp, TBF_REPROCESS);
1770 }
1771
1772 /* function that will selectively discard a member of the queue
1773 * based on the precedence value and the priority
1774 */
1775 static int
1776 tbf_dq_sel(struct vif *vifp, struct ip *ip)
1777 {
1778 u_int p;
1779 struct mbuf *m, *last;
1780 struct mbuf **np;
1781 struct tbf *t = vifp->v_tbf;
1782
1783 p = priority(vifp, ip);
1784
1785 np = &t->tbf_q;
1786 last = NULL;
1787 while ((m = *np) != NULL) {
1788 if (p > priority(vifp, mtod(m, struct ip *))) {
1789 *np = m->m_act;
1790 /* If we're removing the last packet, fix the tail pointer */
1791 if (m == t->tbf_t)
1792 t->tbf_t = last;
1793 m_freem(m);
1794 /* it's impossible for the queue to be empty, but
1795 * we check anyway. */
1796 if (--t->tbf_q_len == 0)
1797 t->tbf_t = NULL;
1798 mrtstat.mrts_drop_sel++;
1799 return(1);
1800 }
1801 np = &m->m_act;
1802 last = m;
1803 }
1804 return(0);
1805 }
1806
1807 static void
1808 tbf_send_packet(struct vif *vifp, struct mbuf *m)
1809 {
1810 struct ip_moptions imo;
1811 int error;
1812 static struct route ro;
1813
1814 if (vifp->v_flags & VIFF_TUNNEL) {
1815 /* If tunnel options */
1816 ip_output(m, (struct mbuf *)0, &vifp->v_route,
1817 IP_FORWARDING, (struct ip_moptions *)0, NULL);
1818 } else {
1819 imo.imo_multicast_ifp = vifp->v_ifp;
1820 imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1;
1821 imo.imo_multicast_loop = 1;
1822 imo.imo_multicast_vif = -1;
1823
1824 /*
1825 * Re-entrancy should not be a problem here, because
1826 * the packets that we send out and are looped back at us
1827 * should get rejected because they appear to come from
1828 * the loopback interface, thus preventing looping.
1829 */
1830 error = ip_output(m, (struct mbuf *)0, &ro,
1831 IP_FORWARDING, &imo, NULL);
1832
1833 if (mrtdebug & DEBUG_XMIT)
1834 log(LOG_DEBUG, "phyint_send on vif %d err %d\n",
1835 vifp - viftable, error);
1836 }
1837 }
1838
1839 /* determine the current time and then
1840 * the elapsed time (between the last time and time now)
1841 * in milliseconds & update the no. of tokens in the bucket
1842 */
1843 static void
1844 tbf_update_tokens(struct vif *vifp)
1845 {
1846 struct timeval tp;
1847 u_int32_t tm;
1848 struct tbf *t = vifp->v_tbf;
1849
1850 GET_TIME(tp);
1851
1852 TV_DELTA(tp, t->tbf_last_pkt_t, tm);
1853
1854 /*
1855 * This formula is actually
1856 * "time in seconds" * "bytes/second".
1857 *
1858 * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8)
1859 *
1860 * The (1000/1024) was introduced in add_vif to optimize
1861 * this divide into a shift.
1862 */
1863 t->tbf_n_tok += tm * vifp->v_rate_limit / 1024 / 8;
1864 t->tbf_last_pkt_t = tp;
1865
1866 if (t->tbf_n_tok > MAX_BKT_SIZE)
1867 t->tbf_n_tok = MAX_BKT_SIZE;
1868 }
1869
1870 static int
1871 priority(__unused struct vif *vifp, struct ip *ip)
1872 {
1873 int prio;
1874
1875 /* temporary hack; may add general packet classifier some day */
1876
1877 /*
1878 * The UDP port space is divided up into four priority ranges:
1879 * [0, 16384) : unclassified - lowest priority
1880 * [16384, 32768) : audio - highest priority
1881 * [32768, 49152) : whiteboard - medium priority
1882 * [49152, 65536) : video - low priority
1883 */
1884 if (ip->ip_p == IPPROTO_UDP) {
1885 struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2));
1886 switch (ntohs(udp->uh_dport) & 0xc000) {
1887 case 0x4000:
1888 prio = 70;
1889 break;
1890 case 0x8000:
1891 prio = 60;
1892 break;
1893 case 0xc000:
1894 prio = 55;
1895 break;
1896 default:
1897 prio = 50;
1898 break;
1899 }
1900 if (tbfdebug > 1)
1901 log(LOG_DEBUG, "port %x prio%d\n", ntohs(udp->uh_dport), prio);
1902 } else {
1903 prio = 50;
1904 }
1905 return prio;
1906 }
1907
1908 /*
1909 * End of token bucket filter modifications
1910 */
1911
1912 int
1913 ip_rsvp_vif_init(struct socket *so, struct sockopt *sopt)
1914 {
1915 int error, i;
1916
1917 if (rsvpdebug)
1918 printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1919 so->so_type, so->so_proto->pr_protocol);
1920
1921 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
1922 return EOPNOTSUPP;
1923
1924 /* Check mbuf. */
1925 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1926 if (error)
1927 return (error);
1928
1929 if (rsvpdebug)
1930 printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on);
1931
1932 /* Check vif. */
1933 if (!legal_vif_num(i)) {
1934 return EADDRNOTAVAIL;
1935 }
1936
1937 /* Check if socket is available. */
1938 if (viftable[i].v_rsvpd != NULL) {
1939 return EADDRINUSE;
1940 }
1941
1942 viftable[i].v_rsvpd = so;
1943 /* This may seem silly, but we need to be sure we don't over-increment
1944 * the RSVP counter, in case something slips up.
1945 */
1946 if (!viftable[i].v_rsvp_on) {
1947 viftable[i].v_rsvp_on = 1;
1948 rsvp_on++;
1949 }
1950
1951 return 0;
1952 }
1953
1954 int
1955 ip_rsvp_vif_done(struct socket *so, struct sockopt *sopt)
1956 {
1957 int error, i;
1958
1959 if (rsvpdebug)
1960 printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1961 so->so_type, so->so_proto->pr_protocol);
1962
1963 if (so->so_type != SOCK_RAW ||
1964 so->so_proto->pr_protocol != IPPROTO_RSVP)
1965 return EOPNOTSUPP;
1966
1967 error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1968 if (error)
1969 return (error);
1970
1971 /* Check vif. */
1972 if (!legal_vif_num(i)) {
1973 return EADDRNOTAVAIL;
1974 }
1975
1976 if (rsvpdebug)
1977 printf("ip_rsvp_vif_done: v_rsvpd = %p so = %p\n",
1978 viftable[i].v_rsvpd, so);
1979
1980 viftable[i].v_rsvpd = NULL;
1981 /*
1982 * This may seem silly, but we need to be sure we don't over-decrement
1983 * the RSVP counter, in case something slips up.
1984 */
1985 if (viftable[i].v_rsvp_on) {
1986 viftable[i].v_rsvp_on = 0;
1987 rsvp_on--;
1988 }
1989
1990 return 0;
1991 }
1992
1993 void
1994 ip_rsvp_force_done(struct socket *so)
1995 {
1996 int vifi;
1997
1998 /* Don't bother if it is not the right type of socket. */
1999 if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP)
2000 return;
2001
2002 /* The socket may be attached to more than one vif...this
2003 * is perfectly legal.
2004 */
2005 for (vifi = 0; vifi < numvifs; vifi++) {
2006 if (viftable[vifi].v_rsvpd == so) {
2007 viftable[vifi].v_rsvpd = NULL;
2008 /* This may seem silly, but we need to be sure we don't
2009 * over-decrement the RSVP counter, in case something slips up.
2010 */
2011 if (viftable[vifi].v_rsvp_on) {
2012 viftable[vifi].v_rsvp_on = 0;
2013 rsvp_on--;
2014 }
2015 }
2016 }
2017
2018 return;
2019 }
2020
2021 void
2022 rsvp_input(struct mbuf *m, int iphlen)
2023 {
2024 int vifi;
2025 struct ip *ip = mtod(m, struct ip *);
2026 static struct sockaddr_in rsvp_src = { sizeof rsvp_src, AF_INET,
2027 0 , {0}, {0,0,0,0,0,0,0,0,} };
2028 struct ifnet *ifp;
2029
2030 if (rsvpdebug)
2031 printf("rsvp_input: rsvp_on %d\n",rsvp_on);
2032
2033 /* Can still get packets with rsvp_on = 0 if there is a local member
2034 * of the group to which the RSVP packet is addressed. But in this
2035 * case we want to throw the packet away.
2036 */
2037 if (!rsvp_on) {
2038 m_freem(m);
2039 return;
2040 }
2041
2042 if (rsvpdebug)
2043 printf("rsvp_input: check vifs\n");
2044
2045 #if DIAGNOSTIC
2046 if (!(m->m_flags & M_PKTHDR))
2047 panic("rsvp_input no hdr");
2048 #endif
2049
2050 ifp = m->m_pkthdr.rcvif;
2051 /* Find which vif the packet arrived on. */
2052 for (vifi = 0; vifi < numvifs; vifi++)
2053 if (viftable[vifi].v_ifp == ifp)
2054 break;
2055
2056 if (vifi == numvifs || viftable[vifi].v_rsvpd == NULL) {
2057 /*
2058 * If the old-style non-vif-associated socket is set,
2059 * then use it. Otherwise, drop packet since there
2060 * is no specific socket for this vif.
2061 */
2062 if (ip_rsvpd != NULL) {
2063 if (rsvpdebug)
2064 printf("rsvp_input: Sending packet up old-style socket\n");
2065 rip_input(m, iphlen); /* xxx */
2066 } else {
2067 if (rsvpdebug && vifi == numvifs)
2068 printf("rsvp_input: Can't find vif for packet.\n");
2069 else if (rsvpdebug && viftable[vifi].v_rsvpd == NULL)
2070 printf("rsvp_input: No socket defined for vif %d\n",vifi);
2071 m_freem(m);
2072 }
2073 return;
2074 }
2075 rsvp_src.sin_addr = ip->ip_src;
2076
2077 if (rsvpdebug && m)
2078 printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2079 m->m_len,sbspace(&(viftable[vifi].v_rsvpd->so_rcv)));
2080
2081 if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) {
2082 if (rsvpdebug)
2083 printf("rsvp_input: Failed to append to socket\n");
2084 } else {
2085 if (rsvpdebug)
2086 printf("rsvp_input: send packet up\n");
2087 }
2088
2089 }
2090
2091 #if MROUTE_LKM
2092 #include <sys/conf.h>
2093 #include <sys/exec.h>
2094 #include <sys/sysent.h>
2095 #include <sys/lkm.h>
2096
2097 MOD_MISC("ip_mroute_mod")
2098
2099 static int
2100 ip_mroute_mod_handle(struct lkm_table *lkmtp, int cmd)
2101 {
2102 int i;
2103 struct lkm_misc *args = lkmtp->private.lkm_misc;
2104 int err = 0;
2105
2106 switch(cmd) {
2107 static int (*old_ip_mrouter_cmd)();
2108 static int (*old_ip_mrouter_done)();
2109 static int (*old_ip_mforward)();
2110 static int (*old_mrt_ioctl)();
2111 static void (*old_proto4_input)();
2112 static int (*old_legal_vif_num)();
2113 extern struct protosw inetsw[];
2114
2115 case LKM_E_LOAD:
2116 if(lkmexists(lkmtp) || ip_mrtproto)
2117 return(EEXIST);
2118 old_ip_mrouter_cmd = ip_mrouter_cmd;
2119 ip_mrouter_cmd = X_ip_mrouter_cmd;
2120 old_ip_mrouter_done = ip_mrouter_done;
2121 ip_mrouter_done = X_ip_mrouter_done;
2122 old_ip_mforward = ip_mforward;
2123 ip_mforward = X_ip_mforward;
2124 old_mrt_ioctl = mrt_ioctl;
2125 mrt_ioctl = X_mrt_ioctl;
2126 old_proto4_input = ip_protox[ENCAP_PROTO]->pr_input;
2127 ip_protox[ENCAP_PROTO]->pr_input = X_ipip_input;
2128 old_legal_vif_num = legal_vif_num;
2129 legal_vif_num = X_legal_vif_num;
2130 ip_mrtproto = IGMP_DVMRP;
2131
2132 printf("\nIP multicast routing loaded\n");
2133 break;
2134
2135 case LKM_E_UNLOAD:
2136 if (ip_mrouter)
2137 return EINVAL;
2138
2139 ip_mrouter_cmd = old_ip_mrouter_cmd;
2140 ip_mrouter_done = old_ip_mrouter_done;
2141 ip_mforward = old_ip_mforward;
2142 mrt_ioctl = old_mrt_ioctl;
2143 ip_protox[ENCAP_PROTO]->pr_input = old_proto4_input;
2144 legal_vif_num = old_legal_vif_num;
2145 ip_mrtproto = 0;
2146 break;
2147
2148 default:
2149 err = EINVAL;
2150 break;
2151 }
2152
2153 return(err);
2154 }
2155
2156 int
2157 ip_mroute_mod(struct lkm_table *lkmtp, int cmd, int ver) {
2158 DISPATCH(lkmtp, cmd, ver, ip_mroute_mod_handle, ip_mroute_mod_handle,
2159 nosys);
2160 }
2161
2162 #endif /* MROUTE_LKM */
2163 #endif /* MROUTING */