2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
58 #include <mach/i386/vm_param.h>
61 #include <mach/vm_param.h>
62 #include <mach/vm_prot.h>
63 #include <mach/machine.h>
64 #include <mach/time_value.h>
66 #include <kern/assert.h>
67 #include <kern/debug.h>
68 #include <kern/misc_protos.h>
69 #include <kern/cpu_data.h>
70 #include <kern/processor.h>
71 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <i386/pmap.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77 #include <mach/thread_status.h>
78 #include <pexpert/i386/efi.h>
79 #include <i386/i386_lowmem.h>
80 #include <x86_64/lowglobals.h>
81 #include <i386/pal_routines.h>
83 #include <mach-o/loader.h>
84 #include <libkern/kernel_mach_header.h>
87 vm_size_t mem_size
= 0;
88 pmap_paddr_t first_avail
= 0;/* first after page tables */
90 uint64_t max_mem
; /* Size of physical memory (bytes), adjusted by maxmem */
92 uint64_t sane_size
= 0; /* Memory size for defaults calculations */
97 ppnum_t vm_kernel_base_page
;
98 vm_offset_t vm_kernel_base
;
99 vm_offset_t vm_kernel_top
;
100 vm_offset_t vm_kernel_stext
;
101 vm_offset_t vm_kernel_etext
;
102 vm_offset_t vm_kernel_slide
;
103 vm_offset_t vm_kernel_slid_base
;
104 vm_offset_t vm_kernel_slid_top
;
105 vm_offset_t vm_hib_base
;
106 vm_offset_t vm_kext_base
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
107 vm_offset_t vm_kext_top
= VM_MIN_KERNEL_ADDRESS
;
109 vm_offset_t vm_prelink_stext
;
110 vm_offset_t vm_prelink_etext
;
111 vm_offset_t vm_prelink_sinfo
;
112 vm_offset_t vm_prelink_einfo
;
113 vm_offset_t vm_slinkedit
;
114 vm_offset_t vm_elinkedit
;
116 #define MAXLORESERVE (32 * 1024 * 1024)
118 ppnum_t max_ppnum
= 0;
119 ppnum_t lowest_lo
= 0;
120 ppnum_t lowest_hi
= 0;
121 ppnum_t highest_hi
= 0;
123 enum {PMAP_MAX_RESERVED_RANGES
= 32};
124 uint32_t pmap_reserved_pages_allocated
= 0;
125 uint32_t pmap_reserved_range_indices
[PMAP_MAX_RESERVED_RANGES
];
126 uint32_t pmap_last_reserved_range_index
= 0;
127 uint32_t pmap_reserved_ranges
= 0;
129 extern unsigned int bsd_mbuf_cluster_reserve(boolean_t
*);
131 pmap_paddr_t avail_start
, avail_end
;
132 vm_offset_t virtual_avail
, virtual_end
;
133 static pmap_paddr_t avail_remaining
;
134 vm_offset_t static_memory_end
= 0;
136 vm_offset_t sHIB
, eHIB
, stext
, etext
, sdata
, edata
, end
, sconst
, econst
;
139 * _mh_execute_header is the mach_header for the currently executing kernel
141 vm_offset_t segTEXTB
; unsigned long segSizeTEXT
;
142 vm_offset_t segDATAB
; unsigned long segSizeDATA
;
143 vm_offset_t segLINKB
; unsigned long segSizeLINK
;
144 vm_offset_t segPRELINKTEXTB
; unsigned long segSizePRELINKTEXT
;
145 vm_offset_t segPRELINKINFOB
; unsigned long segSizePRELINKINFO
;
146 vm_offset_t segHIBB
; unsigned long segSizeHIB
;
147 unsigned long segSizeConst
;
149 static kernel_segment_command_t
*segTEXT
, *segDATA
;
150 static kernel_section_t
*cursectTEXT
, *lastsectTEXT
;
151 static kernel_segment_command_t
*segCONST
;
153 extern uint64_t firmware_Conventional_bytes
;
154 extern uint64_t firmware_RuntimeServices_bytes
;
155 extern uint64_t firmware_ACPIReclaim_bytes
;
156 extern uint64_t firmware_ACPINVS_bytes
;
157 extern uint64_t firmware_PalCode_bytes
;
158 extern uint64_t firmware_Reserved_bytes
;
159 extern uint64_t firmware_Unusable_bytes
;
160 extern uint64_t firmware_other_bytes
;
161 uint64_t firmware_MMIO_bytes
;
164 * Linker magic to establish the highest address in the kernel.
166 extern void *last_kernel_symbol
;
168 boolean_t memmap
= FALSE
;
169 #if DEBUG || DEVELOPMENT
171 kprint_memmap(vm_offset_t maddr
, unsigned int msize
, unsigned int mcount
) {
174 pmap_memory_region_t
*p
= pmap_memory_regions
;
175 EfiMemoryRange
*mptr
;
176 addr64_t region_start
, region_end
;
177 addr64_t efi_start
, efi_end
;
179 for (j
= 0; j
< pmap_memory_region_count
; j
++, p
++) {
180 kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
182 (addr64_t
) p
->base
<< I386_PGSHIFT
,
183 (addr64_t
) p
->alloc_up
<< I386_PGSHIFT
,
184 (addr64_t
) p
->alloc_down
<< I386_PGSHIFT
,
185 (addr64_t
) p
->end
<< I386_PGSHIFT
);
186 region_start
= (addr64_t
) p
->base
<< I386_PGSHIFT
;
187 region_end
= ((addr64_t
) p
->end
<< I386_PGSHIFT
) - 1;
188 mptr
= (EfiMemoryRange
*) maddr
;
191 i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
192 if (mptr
->Type
!= kEfiLoaderCode
&&
193 mptr
->Type
!= kEfiLoaderData
&&
194 mptr
->Type
!= kEfiBootServicesCode
&&
195 mptr
->Type
!= kEfiBootServicesData
&&
196 mptr
->Type
!= kEfiConventionalMemory
) {
197 efi_start
= (addr64_t
)mptr
->PhysicalStart
;
198 efi_end
= efi_start
+ ((vm_offset_t
)mptr
->NumberOfPages
<< I386_PGSHIFT
) - 1;
199 if ((efi_start
>= region_start
&& efi_start
<= region_end
) ||
200 (efi_end
>= region_start
&& efi_end
<= region_end
)) {
201 kprintf(" *** Overlapping region with EFI runtime region %d\n", i
);
207 #define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0)
212 kprint_memmap(vm_offset_t maddr
, unsigned int msize
, unsigned int mcount
) {
213 #pragma unused(maddr, msize, mcount)
216 #define DPRINTF(x...)
220 * Basic VM initialization.
223 i386_vm_init(uint64_t maxmem
,
227 pmap_memory_region_t
*pmptr
;
228 pmap_memory_region_t
*prev_pmptr
;
229 EfiMemoryRange
*mptr
;
237 uint32_t maxloreserve
;
239 uint32_t mbuf_reserve
= 0;
240 boolean_t mbuf_override
= FALSE
;
241 boolean_t coalescing_permitted
;
242 vm_kernel_base_page
= i386_btop(args
->kaddr
);
243 vm_offset_t base_address
;
244 vm_offset_t static_base_address
;
246 PE_parse_boot_argn("memmap", &memmap
, sizeof(memmap
));
249 * Establish the KASLR parameters.
251 static_base_address
= ml_static_ptovirt(KERNEL_BASE_OFFSET
);
252 base_address
= ml_static_ptovirt(args
->kaddr
);
253 vm_kernel_slide
= base_address
- static_base_address
;
255 kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide
);
256 if (vm_kernel_slide
!= ((vm_offset_t
)args
->kslide
))
257 panic("Kernel base inconsistent with slide - rebased?");
259 /* No slide relative to on-disk symbols */
260 kprintf("KASLR slide: 0x%016lx static and ignored\n",
266 * Zero out local relocations to avoid confusing kxld.
267 * TODO: might be better to move this code to OSKext::initialize
269 if (_mh_execute_header
.flags
& MH_PIE
) {
270 struct load_command
*loadcmd
;
273 loadcmd
= (struct load_command
*)((uintptr_t)&_mh_execute_header
+
274 sizeof (_mh_execute_header
));
276 for (cmd
= 0; cmd
< _mh_execute_header
.ncmds
; cmd
++) {
277 if (loadcmd
->cmd
== LC_DYSYMTAB
) {
278 struct dysymtab_command
*dysymtab
;
280 dysymtab
= (struct dysymtab_command
*)loadcmd
;
281 dysymtab
->nlocrel
= 0;
282 dysymtab
->locreloff
= 0;
283 kprintf("Hiding local relocations\n");
286 loadcmd
= (struct load_command
*)((uintptr_t)loadcmd
+ loadcmd
->cmdsize
);
291 * Now retrieve addresses for end, edata, and etext
292 * from MACH-O headers.
294 segTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
295 "__TEXT", &segSizeTEXT
);
296 segDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
297 "__DATA", &segSizeDATA
);
298 segLINKB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
299 "__LINKEDIT", &segSizeLINK
);
300 segHIBB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
301 "__HIB", &segSizeHIB
);
302 segPRELINKTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
303 "__PRELINK_TEXT", &segSizePRELINKTEXT
);
304 segPRELINKINFOB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
305 "__PRELINK_INFO", &segSizePRELINKINFO
);
306 segTEXT
= getsegbynamefromheader(&_mh_execute_header
,
308 segDATA
= getsegbynamefromheader(&_mh_execute_header
,
310 segCONST
= getsegbynamefromheader(&_mh_execute_header
,
312 cursectTEXT
= lastsectTEXT
= firstsect(segTEXT
);
313 /* Discover the last TEXT section within the TEXT segment */
314 while ((cursectTEXT
= nextsect(segTEXT
, cursectTEXT
)) != NULL
) {
315 lastsectTEXT
= cursectTEXT
;
319 eHIB
= segHIBB
+ segSizeHIB
;
321 /* Zero-padded from ehib to stext if text is 2M-aligned */
323 lowGlo
.lgStext
= stext
;
324 etext
= (vm_offset_t
) round_page_64(lastsectTEXT
->addr
+ lastsectTEXT
->size
);
325 /* Zero-padded from etext to sdata if text is 2M-aligned */
327 edata
= segDATAB
+ segSizeDATA
;
329 sconst
= segCONST
->vmaddr
;
330 segSizeConst
= segCONST
->vmsize
;
331 econst
= sconst
+ segSizeConst
;
333 assert(((sconst
|econst
) & PAGE_MASK
) == 0);
335 DPRINTF("segTEXTB = %p\n", (void *) segTEXTB
);
336 DPRINTF("segDATAB = %p\n", (void *) segDATAB
);
337 DPRINTF("segLINKB = %p\n", (void *) segLINKB
);
338 DPRINTF("segHIBB = %p\n", (void *) segHIBB
);
339 DPRINTF("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB
);
340 DPRINTF("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB
);
341 DPRINTF("sHIB = %p\n", (void *) sHIB
);
342 DPRINTF("eHIB = %p\n", (void *) eHIB
);
343 DPRINTF("stext = %p\n", (void *) stext
);
344 DPRINTF("etext = %p\n", (void *) etext
);
345 DPRINTF("sdata = %p\n", (void *) sdata
);
346 DPRINTF("edata = %p\n", (void *) edata
);
347 DPRINTF("sconst = %p\n", (void *) sconst
);
348 DPRINTF("econst = %p\n", (void *) econst
);
349 DPRINTF("kernel_top = %p\n", (void *) &last_kernel_symbol
);
351 vm_kernel_base
= sHIB
;
352 vm_kernel_top
= (vm_offset_t
) &last_kernel_symbol
;
353 vm_kernel_stext
= stext
;
354 vm_kernel_etext
= etext
;
355 vm_prelink_stext
= segPRELINKTEXTB
;
356 vm_prelink_etext
= segPRELINKTEXTB
+ segSizePRELINKTEXT
;
357 vm_prelink_sinfo
= segPRELINKINFOB
;
358 vm_prelink_einfo
= segPRELINKINFOB
+ segSizePRELINKINFO
;
359 vm_slinkedit
= segLINKB
;
360 vm_elinkedit
= segLINKB
+ segSizeLINK
;
361 vm_kernel_slid_base
= vm_kext_base
+ vm_kernel_slide
;
362 vm_kernel_slid_top
= vm_prelink_einfo
;
367 * Compute the memory size.
372 pmptr
= pmap_memory_regions
;
374 pmap_memory_region_count
= pmap_memory_region_current
= 0;
375 fap
= (ppnum_t
) i386_btop(first_avail
);
377 maddr
= ml_static_ptovirt((vm_offset_t
)args
->MemoryMap
);
378 mptr
= (EfiMemoryRange
*)maddr
;
379 if (args
->MemoryMapDescriptorSize
== 0)
380 panic("Invalid memory map descriptor size");
381 msize
= args
->MemoryMapDescriptorSize
;
382 mcount
= args
->MemoryMapSize
/ msize
;
384 #define FOURGIG 0x0000000100000000ULL
385 #define ONEGIG 0x0000000040000000ULL
387 for (i
= 0; i
< mcount
; i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
389 uint64_t region_bytes
= 0;
391 if (pmap_memory_region_count
>= PMAP_MEMORY_REGIONS_SIZE
) {
392 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count
);
395 base
= (ppnum_t
) (mptr
->PhysicalStart
>> I386_PGSHIFT
);
396 top
= (ppnum_t
) (((mptr
->PhysicalStart
) >> I386_PGSHIFT
) + mptr
->NumberOfPages
- 1);
400 * Avoid having to deal with the edge case of the
401 * very first possible physical page and the roll-over
402 * to -1; just ignore that page.
404 kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
409 * Avoid having to deal with the edge case of the
410 * very last possible physical page and the roll-over
411 * to 0; just ignore that page.
413 kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
418 * That was the only page in that region, so
419 * ignore the whole region.
425 static uint32_t nmr
= 0;
426 if ((base
> 0x20000) && (nmr
++ < 4))
427 mptr
->Attribute
|= EFI_MEMORY_KERN_RESERVED
;
429 region_bytes
= (uint64_t)(mptr
->NumberOfPages
<< I386_PGSHIFT
);
430 pmap_type
= mptr
->Type
;
432 switch (mptr
->Type
) {
435 case kEfiBootServicesCode
:
436 case kEfiBootServicesData
:
437 case kEfiConventionalMemory
:
439 * Consolidate usable memory types into one.
441 pmap_type
= kEfiConventionalMemory
;
442 sane_size
+= region_bytes
;
443 firmware_Conventional_bytes
+= region_bytes
;
446 * sane_size should reflect the total amount of physical
447 * RAM in the system, not just the amount that is
448 * available for the OS to use.
449 * We now get this value from SMBIOS tables
450 * rather than reverse engineering the memory map.
451 * But the legacy computation of "sane_size" is kept
452 * for diagnostic information.
455 case kEfiRuntimeServicesCode
:
456 case kEfiRuntimeServicesData
:
457 firmware_RuntimeServices_bytes
+= region_bytes
;
458 sane_size
+= region_bytes
;
460 case kEfiACPIReclaimMemory
:
461 firmware_ACPIReclaim_bytes
+= region_bytes
;
462 sane_size
+= region_bytes
;
464 case kEfiACPIMemoryNVS
:
465 firmware_ACPINVS_bytes
+= region_bytes
;
466 sane_size
+= region_bytes
;
469 firmware_PalCode_bytes
+= region_bytes
;
470 sane_size
+= region_bytes
;
473 case kEfiReservedMemoryType
:
474 firmware_Reserved_bytes
+= region_bytes
;
476 case kEfiUnusableMemory
:
477 firmware_Unusable_bytes
+= region_bytes
;
479 case kEfiMemoryMappedIO
:
480 case kEfiMemoryMappedIOPortSpace
:
481 firmware_MMIO_bytes
+= region_bytes
;
484 firmware_other_bytes
+= region_bytes
;
488 DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
489 i
, mptr
->Type
, pmap_type
, base
, top
,
490 (mptr
->Attribute
&EFI_MEMORY_KERN_RESERVED
)? "RESERVED" :
491 (mptr
->Attribute
&EFI_MEMORY_RUNTIME
)? "RUNTIME" : "");
496 top
= (top
> maxpg
) ? maxpg
: top
;
502 if ((mptr
->Attribute
& EFI_MEMORY_RUNTIME
) == EFI_MEMORY_RUNTIME
||
503 pmap_type
!= kEfiConventionalMemory
) {
508 * Usable memory region
510 if (top
< I386_LOWMEM_RESERVED
||
511 !pal_is_usable_memory(base
, top
)) {
516 * A range may be marked with with the
517 * EFI_MEMORY_KERN_RESERVED attribute
518 * on some systems, to indicate that the range
519 * must not be made available to devices.
522 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) {
523 if (++pmap_reserved_ranges
> PMAP_MAX_RESERVED_RANGES
) {
524 panic("Too many reserved ranges %u\n", pmap_reserved_ranges
);
530 * entire range below first_avail
531 * salvage some low memory pages
532 * we use some very low memory at startup
533 * mark as already allocated here
535 if (base
>= I386_LOWMEM_RESERVED
)
538 pmptr
->base
= I386_LOWMEM_RESERVED
;
543 if ((mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) &&
544 (top
< vm_kernel_base_page
)) {
545 pmptr
->alloc_up
= pmptr
->base
;
546 pmptr
->alloc_down
= pmptr
->end
;
547 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
551 * mark as already mapped
553 pmptr
->alloc_up
= top
+ 1;
554 pmptr
->alloc_down
= top
;
556 pmptr
->type
= pmap_type
;
557 pmptr
->attribute
= mptr
->Attribute
;
559 else if ( (base
< fap
) && (top
> fap
) ) {
562 * put mem below first avail in table but
563 * mark already allocated
566 pmptr
->end
= (fap
- 1);
567 pmptr
->alloc_up
= pmptr
->end
+ 1;
568 pmptr
->alloc_down
= pmptr
->end
;
569 pmptr
->type
= pmap_type
;
570 pmptr
->attribute
= mptr
->Attribute
;
572 * we bump these here inline so the accounting
573 * below works correctly
576 pmap_memory_region_count
++;
578 pmptr
->alloc_up
= pmptr
->base
= fap
;
579 pmptr
->type
= pmap_type
;
580 pmptr
->attribute
= mptr
->Attribute
;
581 pmptr
->alloc_down
= pmptr
->end
= top
;
583 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
)
584 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
587 * entire range useable
589 pmptr
->alloc_up
= pmptr
->base
= base
;
590 pmptr
->type
= pmap_type
;
591 pmptr
->attribute
= mptr
->Attribute
;
592 pmptr
->alloc_down
= pmptr
->end
= top
;
593 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
)
594 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
597 if (i386_ptob(pmptr
->end
) > avail_end
)
598 avail_end
= i386_ptob(pmptr
->end
);
600 avail_remaining
+= (pmptr
->end
- pmptr
->base
);
601 coalescing_permitted
= (prev_pmptr
&& (pmptr
->attribute
== prev_pmptr
->attribute
) && ((pmptr
->attribute
& EFI_MEMORY_KERN_RESERVED
) == 0));
603 * Consolidate contiguous memory regions, if possible
606 (pmptr
->type
== prev_pmptr
->type
) &&
607 (coalescing_permitted
) &&
608 (pmptr
->base
== pmptr
->alloc_up
) &&
609 (prev_pmptr
->end
== prev_pmptr
->alloc_down
) &&
610 (pmptr
->base
== (prev_pmptr
->end
+ 1)))
612 prev_pmptr
->end
= pmptr
->end
;
613 prev_pmptr
->alloc_down
= pmptr
->alloc_down
;
615 pmap_memory_region_count
++;
623 kprint_memmap(maddr
, msize
, mcount
);
626 avail_start
= first_avail
;
627 mem_actual
= args
->PhysicalMemorySize
;
630 * For user visible memory size, round up to 128 Mb
631 * - accounting for the various stolen memory not reported by EFI.
632 * This is maintained for historical, comparison purposes but
633 * we now use the memory size reported by EFI/Booter.
635 sane_size
= (sane_size
+ 128 * MB
- 1) & ~((uint64_t)(128 * MB
- 1));
636 if (sane_size
!= mem_actual
)
637 printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
638 mem_actual
, sane_size
);
639 sane_size
= mem_actual
;
642 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
643 * Unless overriden by the maxmem= boot-arg
644 * -- which is a non-zero maxmem argument to this function.
646 if (maxmem
== 0 && sane_size
> KERNEL_MAXMEM
) {
647 maxmem
= KERNEL_MAXMEM
;
648 printf("Physical memory %lld bytes capped at %dGB\n",
649 sane_size
, (uint32_t) (KERNEL_MAXMEM
/GB
));
653 * if user set maxmem, reduce memory sizes
655 if ( (maxmem
> (uint64_t)first_avail
) && (maxmem
< sane_size
)) {
656 ppnum_t discarded_pages
= (ppnum_t
)((sane_size
- maxmem
) >> I386_PGSHIFT
);
657 ppnum_t highest_pn
= 0;
659 uint64_t pages_to_use
;
660 unsigned cur_region
= 0;
664 if (avail_remaining
> discarded_pages
)
665 avail_remaining
-= discarded_pages
;
669 pages_to_use
= avail_remaining
;
671 while (cur_region
< pmap_memory_region_count
&& pages_to_use
) {
672 for (cur_end
= pmap_memory_regions
[cur_region
].base
;
673 cur_end
< pmap_memory_regions
[cur_region
].end
&& pages_to_use
;
675 if (cur_end
> highest_pn
)
676 highest_pn
= cur_end
;
679 if (pages_to_use
== 0) {
680 pmap_memory_regions
[cur_region
].end
= cur_end
;
681 pmap_memory_regions
[cur_region
].alloc_down
= cur_end
;
686 pmap_memory_region_count
= cur_region
;
688 avail_end
= i386_ptob(highest_pn
+ 1);
692 * mem_size is only a 32 bit container... follow the PPC route
693 * and pin it to a 2 Gbyte maximum
695 if (sane_size
> (FOURGIG
>> 1))
696 mem_size
= (vm_size_t
)(FOURGIG
>> 1);
698 mem_size
= (vm_size_t
)sane_size
;
701 kprintf("Physical memory %llu MB\n", sane_size
/MB
);
703 max_valid_low_ppnum
= (2 * GB
) / PAGE_SIZE
;
705 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr
, sizeof (maxdmaaddr
))) {
706 max_valid_dma_address
= (uint64_t)4 * (uint64_t)GB
;
708 max_valid_dma_address
= ((uint64_t) maxdmaaddr
) * MB
;
710 if ((max_valid_dma_address
/ PAGE_SIZE
) < max_valid_low_ppnum
)
711 max_valid_low_ppnum
= (ppnum_t
)(max_valid_dma_address
/ PAGE_SIZE
);
713 if (avail_end
>= max_valid_dma_address
) {
715 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve
, sizeof (maxloreserve
))) {
717 if (sane_size
>= (ONEGIG
* 15))
718 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 4;
719 else if (sane_size
>= (ONEGIG
* 7))
720 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 2;
722 maxloreserve
= MAXLORESERVE
/ PAGE_SIZE
;
725 mbuf_reserve
= bsd_mbuf_cluster_reserve(&mbuf_override
) / PAGE_SIZE
;
728 maxloreserve
= (maxloreserve
* (1024 * 1024)) / PAGE_SIZE
;
731 vm_lopage_free_limit
= maxloreserve
;
733 if (mbuf_override
== TRUE
) {
734 vm_lopage_free_limit
+= mbuf_reserve
;
735 vm_lopage_lowater
= 0;
737 vm_lopage_lowater
= vm_lopage_free_limit
/ 16;
739 vm_lopage_refill
= TRUE
;
740 vm_lopage_needed
= TRUE
;
745 * Initialize kernel physical map.
746 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
748 kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining
);
749 pmap_bootstrap(0, IA32e
);
754 pmap_free_pages(void)
756 return (unsigned int)avail_remaining
;
760 boolean_t
pmap_next_page_reserved(ppnum_t
*);
763 * Pick a page from a "kernel private" reserved range; works around
764 * errata on some hardware.
767 pmap_next_page_reserved(ppnum_t
*pn
) {
768 if (pmap_reserved_ranges
) {
770 pmap_memory_region_t
*region
;
771 for (n
= 0; n
< pmap_last_reserved_range_index
; n
++) {
772 uint32_t reserved_index
= pmap_reserved_range_indices
[n
];
773 region
= &pmap_memory_regions
[reserved_index
];
774 if (region
->alloc_up
<= region
->alloc_down
) {
775 *pn
= region
->alloc_up
++;
781 if (lowest_lo
== 0 || *pn
< lowest_lo
)
784 pmap_reserved_pages_allocated
++;
786 if (region
->alloc_up
> region
->alloc_down
) {
787 kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index
, region
->base
, region
->end
, region
->type
, region
->attribute
);
802 pmap_memory_region_t
*region
;
805 if (pmap_next_page_reserved(pn
))
808 if (avail_remaining
) {
809 for (n
= pmap_memory_region_count
- 1; n
>= 0; n
--) {
810 region
= &pmap_memory_regions
[n
];
812 if (region
->alloc_down
>= region
->alloc_up
) {
813 *pn
= region
->alloc_down
--;
819 if (lowest_lo
== 0 || *pn
< lowest_lo
)
822 if (lowest_hi
== 0 || *pn
< lowest_hi
)
825 if (*pn
> highest_hi
)
840 if (avail_remaining
) while (pmap_memory_region_current
< pmap_memory_region_count
) {
841 if (pmap_memory_regions
[pmap_memory_region_current
].alloc_up
>
842 pmap_memory_regions
[pmap_memory_region_current
].alloc_down
) {
843 pmap_memory_region_current
++;
846 *pn
= pmap_memory_regions
[pmap_memory_region_current
].alloc_up
++;
852 if (lowest_lo
== 0 || *pn
< lowest_lo
)
866 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
868 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
869 if ( (pn
>= pmptr
->base
) && (pn
<= pmptr
->end
) )