]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/i386_vm_init.c
xnu-4570.71.2.tar.gz
[apple/xnu.git] / osfmk / i386 / i386_vm_init.c
1 /*
2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57
58 #include <mach/i386/vm_param.h>
59
60 #include <string.h>
61 #include <mach/vm_param.h>
62 #include <mach/vm_prot.h>
63 #include <mach/machine.h>
64 #include <mach/time_value.h>
65 #include <kern/spl.h>
66 #include <kern/assert.h>
67 #include <kern/debug.h>
68 #include <kern/misc_protos.h>
69 #include <kern/cpu_data.h>
70 #include <kern/processor.h>
71 #include <vm/vm_page.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_kern.h>
74 #include <i386/pmap.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77 #include <mach/thread_status.h>
78 #include <pexpert/i386/efi.h>
79 #include <i386/i386_lowmem.h>
80 #include <x86_64/lowglobals.h>
81 #include <i386/pal_routines.h>
82
83 #include <mach-o/loader.h>
84 #include <libkern/kernel_mach_header.h>
85
86
87 vm_size_t mem_size = 0;
88 pmap_paddr_t first_avail = 0;/* first after page tables */
89
90 uint64_t max_mem; /* Size of physical memory (bytes), adjusted by maxmem */
91 uint64_t mem_actual;
92 uint64_t sane_size = 0; /* Memory size for defaults calculations */
93
94 /*
95 * KASLR parameters
96 */
97 ppnum_t vm_kernel_base_page;
98 vm_offset_t vm_kernel_base;
99 vm_offset_t vm_kernel_top;
100 vm_offset_t vm_kernel_stext;
101 vm_offset_t vm_kernel_etext;
102 vm_offset_t vm_kernel_slide;
103 vm_offset_t vm_kernel_slid_base;
104 vm_offset_t vm_kernel_slid_top;
105 vm_offset_t vm_hib_base;
106 vm_offset_t vm_kext_base = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
107 vm_offset_t vm_kext_top = VM_MIN_KERNEL_ADDRESS;
108
109 vm_offset_t vm_prelink_stext;
110 vm_offset_t vm_prelink_etext;
111 vm_offset_t vm_prelink_sinfo;
112 vm_offset_t vm_prelink_einfo;
113 vm_offset_t vm_slinkedit;
114 vm_offset_t vm_elinkedit;
115
116 #define MAXLORESERVE (32 * 1024 * 1024)
117
118 ppnum_t max_ppnum = 0;
119 ppnum_t lowest_lo = 0;
120 ppnum_t lowest_hi = 0;
121 ppnum_t highest_hi = 0;
122
123 enum {PMAP_MAX_RESERVED_RANGES = 32};
124 uint32_t pmap_reserved_pages_allocated = 0;
125 uint32_t pmap_reserved_range_indices[PMAP_MAX_RESERVED_RANGES];
126 uint32_t pmap_last_reserved_range_index = 0;
127 uint32_t pmap_reserved_ranges = 0;
128
129 extern unsigned int bsd_mbuf_cluster_reserve(boolean_t *);
130
131 pmap_paddr_t avail_start, avail_end;
132 vm_offset_t virtual_avail, virtual_end;
133 static pmap_paddr_t avail_remaining;
134 vm_offset_t static_memory_end = 0;
135
136 vm_offset_t sHIB, eHIB, stext, etext, sdata, edata, end, sconst, econst;
137
138 /*
139 * _mh_execute_header is the mach_header for the currently executing kernel
140 */
141 vm_offset_t segTEXTB; unsigned long segSizeTEXT;
142 vm_offset_t segDATAB; unsigned long segSizeDATA;
143 vm_offset_t segLINKB; unsigned long segSizeLINK;
144 vm_offset_t segPRELINKTEXTB; unsigned long segSizePRELINKTEXT;
145 vm_offset_t segPRELINKINFOB; unsigned long segSizePRELINKINFO;
146 vm_offset_t segHIBB; unsigned long segSizeHIB;
147 unsigned long segSizeConst;
148
149 static kernel_segment_command_t *segTEXT, *segDATA;
150 static kernel_section_t *cursectTEXT, *lastsectTEXT;
151 static kernel_segment_command_t *segCONST;
152
153 extern uint64_t firmware_Conventional_bytes;
154 extern uint64_t firmware_RuntimeServices_bytes;
155 extern uint64_t firmware_ACPIReclaim_bytes;
156 extern uint64_t firmware_ACPINVS_bytes;
157 extern uint64_t firmware_PalCode_bytes;
158 extern uint64_t firmware_Reserved_bytes;
159 extern uint64_t firmware_Unusable_bytes;
160 extern uint64_t firmware_other_bytes;
161 uint64_t firmware_MMIO_bytes;
162
163 /*
164 * Linker magic to establish the highest address in the kernel.
165 */
166 extern void *last_kernel_symbol;
167
168 boolean_t memmap = FALSE;
169 #if DEBUG || DEVELOPMENT
170 static void
171 kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) {
172 unsigned int i;
173 unsigned int j;
174 pmap_memory_region_t *p = pmap_memory_regions;
175 EfiMemoryRange *mptr;
176 addr64_t region_start, region_end;
177 addr64_t efi_start, efi_end;
178
179 for (j = 0; j < pmap_memory_region_count; j++, p++) {
180 kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
181 j, p->type,
182 (addr64_t) p->base << I386_PGSHIFT,
183 (addr64_t) p->alloc_up << I386_PGSHIFT,
184 (addr64_t) p->alloc_down << I386_PGSHIFT,
185 (addr64_t) p->end << I386_PGSHIFT);
186 region_start = (addr64_t) p->base << I386_PGSHIFT;
187 region_end = ((addr64_t) p->end << I386_PGSHIFT) - 1;
188 mptr = (EfiMemoryRange *) maddr;
189 for (i = 0;
190 i < mcount;
191 i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
192 if (mptr->Type != kEfiLoaderCode &&
193 mptr->Type != kEfiLoaderData &&
194 mptr->Type != kEfiBootServicesCode &&
195 mptr->Type != kEfiBootServicesData &&
196 mptr->Type != kEfiConventionalMemory) {
197 efi_start = (addr64_t)mptr->PhysicalStart;
198 efi_end = efi_start + ((vm_offset_t)mptr->NumberOfPages << I386_PGSHIFT) - 1;
199 if ((efi_start >= region_start && efi_start <= region_end) ||
200 (efi_end >= region_start && efi_end <= region_end)) {
201 kprintf(" *** Overlapping region with EFI runtime region %d\n", i);
202 }
203 }
204 }
205 }
206 }
207 #define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0)
208
209 #else
210
211 static void
212 kprint_memmap(vm_offset_t maddr, unsigned int msize, unsigned int mcount) {
213 #pragma unused(maddr, msize, mcount)
214 }
215
216 #define DPRINTF(x...)
217 #endif /* DEBUG */
218
219 /*
220 * Basic VM initialization.
221 */
222 void
223 i386_vm_init(uint64_t maxmem,
224 boolean_t IA32e,
225 boot_args *args)
226 {
227 pmap_memory_region_t *pmptr;
228 pmap_memory_region_t *prev_pmptr;
229 EfiMemoryRange *mptr;
230 unsigned int mcount;
231 unsigned int msize;
232 vm_offset_t maddr;
233 ppnum_t fap;
234 unsigned int i;
235 ppnum_t maxpg = 0;
236 uint32_t pmap_type;
237 uint32_t maxloreserve;
238 uint32_t maxdmaaddr;
239 uint32_t mbuf_reserve = 0;
240 boolean_t mbuf_override = FALSE;
241 boolean_t coalescing_permitted;
242 vm_kernel_base_page = i386_btop(args->kaddr);
243 vm_offset_t base_address;
244 vm_offset_t static_base_address;
245
246 PE_parse_boot_argn("memmap", &memmap, sizeof(memmap));
247
248 /*
249 * Establish the KASLR parameters.
250 */
251 static_base_address = ml_static_ptovirt(KERNEL_BASE_OFFSET);
252 base_address = ml_static_ptovirt(args->kaddr);
253 vm_kernel_slide = base_address - static_base_address;
254 if (args->kslide) {
255 kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide);
256 if (vm_kernel_slide != ((vm_offset_t)args->kslide))
257 panic("Kernel base inconsistent with slide - rebased?");
258 } else {
259 /* No slide relative to on-disk symbols */
260 kprintf("KASLR slide: 0x%016lx static and ignored\n",
261 vm_kernel_slide);
262 vm_kernel_slide = 0;
263 }
264
265 /*
266 * Zero out local relocations to avoid confusing kxld.
267 * TODO: might be better to move this code to OSKext::initialize
268 */
269 if (_mh_execute_header.flags & MH_PIE) {
270 struct load_command *loadcmd;
271 uint32_t cmd;
272
273 loadcmd = (struct load_command *)((uintptr_t)&_mh_execute_header +
274 sizeof (_mh_execute_header));
275
276 for (cmd = 0; cmd < _mh_execute_header.ncmds; cmd++) {
277 if (loadcmd->cmd == LC_DYSYMTAB) {
278 struct dysymtab_command *dysymtab;
279
280 dysymtab = (struct dysymtab_command *)loadcmd;
281 dysymtab->nlocrel = 0;
282 dysymtab->locreloff = 0;
283 kprintf("Hiding local relocations\n");
284 break;
285 }
286 loadcmd = (struct load_command *)((uintptr_t)loadcmd + loadcmd->cmdsize);
287 }
288 }
289
290 /*
291 * Now retrieve addresses for end, edata, and etext
292 * from MACH-O headers.
293 */
294 segTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
295 "__TEXT", &segSizeTEXT);
296 segDATAB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
297 "__DATA", &segSizeDATA);
298 segLINKB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
299 "__LINKEDIT", &segSizeLINK);
300 segHIBB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
301 "__HIB", &segSizeHIB);
302 segPRELINKTEXTB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
303 "__PRELINK_TEXT", &segSizePRELINKTEXT);
304 segPRELINKINFOB = (vm_offset_t) getsegdatafromheader(&_mh_execute_header,
305 "__PRELINK_INFO", &segSizePRELINKINFO);
306 segTEXT = getsegbynamefromheader(&_mh_execute_header,
307 "__TEXT");
308 segDATA = getsegbynamefromheader(&_mh_execute_header,
309 "__DATA");
310 segCONST = getsegbynamefromheader(&_mh_execute_header,
311 "__CONST");
312 cursectTEXT = lastsectTEXT = firstsect(segTEXT);
313 /* Discover the last TEXT section within the TEXT segment */
314 while ((cursectTEXT = nextsect(segTEXT, cursectTEXT)) != NULL) {
315 lastsectTEXT = cursectTEXT;
316 }
317
318 sHIB = segHIBB;
319 eHIB = segHIBB + segSizeHIB;
320 vm_hib_base = sHIB;
321 /* Zero-padded from ehib to stext if text is 2M-aligned */
322 stext = segTEXTB;
323 lowGlo.lgStext = stext;
324 etext = (vm_offset_t) round_page_64(lastsectTEXT->addr + lastsectTEXT->size);
325 /* Zero-padded from etext to sdata if text is 2M-aligned */
326 sdata = segDATAB;
327 edata = segDATAB + segSizeDATA;
328
329 sconst = segCONST->vmaddr;
330 segSizeConst = segCONST->vmsize;
331 econst = sconst + segSizeConst;
332
333 assert(((sconst|econst) & PAGE_MASK) == 0);
334
335 DPRINTF("segTEXTB = %p\n", (void *) segTEXTB);
336 DPRINTF("segDATAB = %p\n", (void *) segDATAB);
337 DPRINTF("segLINKB = %p\n", (void *) segLINKB);
338 DPRINTF("segHIBB = %p\n", (void *) segHIBB);
339 DPRINTF("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB);
340 DPRINTF("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB);
341 DPRINTF("sHIB = %p\n", (void *) sHIB);
342 DPRINTF("eHIB = %p\n", (void *) eHIB);
343 DPRINTF("stext = %p\n", (void *) stext);
344 DPRINTF("etext = %p\n", (void *) etext);
345 DPRINTF("sdata = %p\n", (void *) sdata);
346 DPRINTF("edata = %p\n", (void *) edata);
347 DPRINTF("sconst = %p\n", (void *) sconst);
348 DPRINTF("econst = %p\n", (void *) econst);
349 DPRINTF("kernel_top = %p\n", (void *) &last_kernel_symbol);
350
351 vm_kernel_base = sHIB;
352 vm_kernel_top = (vm_offset_t) &last_kernel_symbol;
353 vm_kernel_stext = stext;
354 vm_kernel_etext = etext;
355 vm_prelink_stext = segPRELINKTEXTB;
356 vm_prelink_etext = segPRELINKTEXTB + segSizePRELINKTEXT;
357 vm_prelink_sinfo = segPRELINKINFOB;
358 vm_prelink_einfo = segPRELINKINFOB + segSizePRELINKINFO;
359 vm_slinkedit = segLINKB;
360 vm_elinkedit = segLINKB + segSizeLINK;
361 vm_kernel_slid_base = vm_kext_base + vm_kernel_slide;
362 vm_kernel_slid_top = vm_prelink_einfo;
363
364 vm_set_page_size();
365
366 /*
367 * Compute the memory size.
368 */
369
370 avail_remaining = 0;
371 avail_end = 0;
372 pmptr = pmap_memory_regions;
373 prev_pmptr = 0;
374 pmap_memory_region_count = pmap_memory_region_current = 0;
375 fap = (ppnum_t) i386_btop(first_avail);
376
377 maddr = ml_static_ptovirt((vm_offset_t)args->MemoryMap);
378 mptr = (EfiMemoryRange *)maddr;
379 if (args->MemoryMapDescriptorSize == 0)
380 panic("Invalid memory map descriptor size");
381 msize = args->MemoryMapDescriptorSize;
382 mcount = args->MemoryMapSize / msize;
383
384 #define FOURGIG 0x0000000100000000ULL
385 #define ONEGIG 0x0000000040000000ULL
386
387 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
388 ppnum_t base, top;
389 uint64_t region_bytes = 0;
390
391 if (pmap_memory_region_count >= PMAP_MEMORY_REGIONS_SIZE) {
392 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count);
393 break;
394 }
395 base = (ppnum_t) (mptr->PhysicalStart >> I386_PGSHIFT);
396 top = (ppnum_t) (((mptr->PhysicalStart) >> I386_PGSHIFT) + mptr->NumberOfPages - 1);
397
398 if (base == 0) {
399 /*
400 * Avoid having to deal with the edge case of the
401 * very first possible physical page and the roll-over
402 * to -1; just ignore that page.
403 */
404 kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
405 base++;
406 }
407 if (top + 1 == 0) {
408 /*
409 * Avoid having to deal with the edge case of the
410 * very last possible physical page and the roll-over
411 * to 0; just ignore that page.
412 */
413 kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base, (uint64_t) top);
414 top--;
415 }
416 if (top < base) {
417 /*
418 * That was the only page in that region, so
419 * ignore the whole region.
420 */
421 continue;
422 }
423
424 #if MR_RSV_TEST
425 static uint32_t nmr = 0;
426 if ((base > 0x20000) && (nmr++ < 4))
427 mptr->Attribute |= EFI_MEMORY_KERN_RESERVED;
428 #endif
429 region_bytes = (uint64_t)(mptr->NumberOfPages << I386_PGSHIFT);
430 pmap_type = mptr->Type;
431
432 switch (mptr->Type) {
433 case kEfiLoaderCode:
434 case kEfiLoaderData:
435 case kEfiBootServicesCode:
436 case kEfiBootServicesData:
437 case kEfiConventionalMemory:
438 /*
439 * Consolidate usable memory types into one.
440 */
441 pmap_type = kEfiConventionalMemory;
442 sane_size += region_bytes;
443 firmware_Conventional_bytes += region_bytes;
444 break;
445 /*
446 * sane_size should reflect the total amount of physical
447 * RAM in the system, not just the amount that is
448 * available for the OS to use.
449 * We now get this value from SMBIOS tables
450 * rather than reverse engineering the memory map.
451 * But the legacy computation of "sane_size" is kept
452 * for diagnostic information.
453 */
454
455 case kEfiRuntimeServicesCode:
456 case kEfiRuntimeServicesData:
457 firmware_RuntimeServices_bytes += region_bytes;
458 sane_size += region_bytes;
459 break;
460 case kEfiACPIReclaimMemory:
461 firmware_ACPIReclaim_bytes += region_bytes;
462 sane_size += region_bytes;
463 break;
464 case kEfiACPIMemoryNVS:
465 firmware_ACPINVS_bytes += region_bytes;
466 sane_size += region_bytes;
467 break;
468 case kEfiPalCode:
469 firmware_PalCode_bytes += region_bytes;
470 sane_size += region_bytes;
471 break;
472
473 case kEfiReservedMemoryType:
474 firmware_Reserved_bytes += region_bytes;
475 break;
476 case kEfiUnusableMemory:
477 firmware_Unusable_bytes += region_bytes;
478 break;
479 case kEfiMemoryMappedIO:
480 case kEfiMemoryMappedIOPortSpace:
481 firmware_MMIO_bytes += region_bytes;
482 break;
483 default:
484 firmware_other_bytes += region_bytes;
485 break;
486 }
487
488 DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
489 i, mptr->Type, pmap_type, base, top,
490 (mptr->Attribute&EFI_MEMORY_KERN_RESERVED)? "RESERVED" :
491 (mptr->Attribute&EFI_MEMORY_RUNTIME)? "RUNTIME" : "");
492
493 if (maxpg) {
494 if (base >= maxpg)
495 break;
496 top = (top > maxpg) ? maxpg : top;
497 }
498
499 /*
500 * handle each region
501 */
502 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME ||
503 pmap_type != kEfiConventionalMemory) {
504 prev_pmptr = 0;
505 continue;
506 } else {
507 /*
508 * Usable memory region
509 */
510 if (top < I386_LOWMEM_RESERVED ||
511 !pal_is_usable_memory(base, top)) {
512 prev_pmptr = 0;
513 continue;
514 }
515 /*
516 * A range may be marked with with the
517 * EFI_MEMORY_KERN_RESERVED attribute
518 * on some systems, to indicate that the range
519 * must not be made available to devices.
520 */
521
522 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED) {
523 if (++pmap_reserved_ranges > PMAP_MAX_RESERVED_RANGES) {
524 panic("Too many reserved ranges %u\n", pmap_reserved_ranges);
525 }
526 }
527
528 if (top < fap) {
529 /*
530 * entire range below first_avail
531 * salvage some low memory pages
532 * we use some very low memory at startup
533 * mark as already allocated here
534 */
535 if (base >= I386_LOWMEM_RESERVED)
536 pmptr->base = base;
537 else
538 pmptr->base = I386_LOWMEM_RESERVED;
539
540 pmptr->end = top;
541
542
543 if ((mptr->Attribute & EFI_MEMORY_KERN_RESERVED) &&
544 (top < vm_kernel_base_page)) {
545 pmptr->alloc_up = pmptr->base;
546 pmptr->alloc_down = pmptr->end;
547 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
548 }
549 else {
550 /*
551 * mark as already mapped
552 */
553 pmptr->alloc_up = top + 1;
554 pmptr->alloc_down = top;
555 }
556 pmptr->type = pmap_type;
557 pmptr->attribute = mptr->Attribute;
558 }
559 else if ( (base < fap) && (top > fap) ) {
560 /*
561 * spans first_avail
562 * put mem below first avail in table but
563 * mark already allocated
564 */
565 pmptr->base = base;
566 pmptr->end = (fap - 1);
567 pmptr->alloc_up = pmptr->end + 1;
568 pmptr->alloc_down = pmptr->end;
569 pmptr->type = pmap_type;
570 pmptr->attribute = mptr->Attribute;
571 /*
572 * we bump these here inline so the accounting
573 * below works correctly
574 */
575 pmptr++;
576 pmap_memory_region_count++;
577
578 pmptr->alloc_up = pmptr->base = fap;
579 pmptr->type = pmap_type;
580 pmptr->attribute = mptr->Attribute;
581 pmptr->alloc_down = pmptr->end = top;
582
583 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
584 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
585 } else {
586 /*
587 * entire range useable
588 */
589 pmptr->alloc_up = pmptr->base = base;
590 pmptr->type = pmap_type;
591 pmptr->attribute = mptr->Attribute;
592 pmptr->alloc_down = pmptr->end = top;
593 if (mptr->Attribute & EFI_MEMORY_KERN_RESERVED)
594 pmap_reserved_range_indices[pmap_last_reserved_range_index++] = pmap_memory_region_count;
595 }
596
597 if (i386_ptob(pmptr->end) > avail_end )
598 avail_end = i386_ptob(pmptr->end);
599
600 avail_remaining += (pmptr->end - pmptr->base);
601 coalescing_permitted = (prev_pmptr && (pmptr->attribute == prev_pmptr->attribute) && ((pmptr->attribute & EFI_MEMORY_KERN_RESERVED) == 0));
602 /*
603 * Consolidate contiguous memory regions, if possible
604 */
605 if (prev_pmptr &&
606 (pmptr->type == prev_pmptr->type) &&
607 (coalescing_permitted) &&
608 (pmptr->base == pmptr->alloc_up) &&
609 (prev_pmptr->end == prev_pmptr->alloc_down) &&
610 (pmptr->base == (prev_pmptr->end + 1)))
611 {
612 prev_pmptr->end = pmptr->end;
613 prev_pmptr->alloc_down = pmptr->alloc_down;
614 } else {
615 pmap_memory_region_count++;
616 prev_pmptr = pmptr;
617 pmptr++;
618 }
619 }
620 }
621
622 if (memmap) {
623 kprint_memmap(maddr, msize, mcount);
624 }
625
626 avail_start = first_avail;
627 mem_actual = args->PhysicalMemorySize;
628
629 /*
630 * For user visible memory size, round up to 128 Mb
631 * - accounting for the various stolen memory not reported by EFI.
632 * This is maintained for historical, comparison purposes but
633 * we now use the memory size reported by EFI/Booter.
634 */
635 sane_size = (sane_size + 128 * MB - 1) & ~((uint64_t)(128 * MB - 1));
636 if (sane_size != mem_actual)
637 printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
638 mem_actual, sane_size);
639 sane_size = mem_actual;
640
641 /*
642 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
643 * Unless overriden by the maxmem= boot-arg
644 * -- which is a non-zero maxmem argument to this function.
645 */
646 if (maxmem == 0 && sane_size > KERNEL_MAXMEM) {
647 maxmem = KERNEL_MAXMEM;
648 printf("Physical memory %lld bytes capped at %dGB\n",
649 sane_size, (uint32_t) (KERNEL_MAXMEM/GB));
650 }
651
652 /*
653 * if user set maxmem, reduce memory sizes
654 */
655 if ( (maxmem > (uint64_t)first_avail) && (maxmem < sane_size)) {
656 ppnum_t discarded_pages = (ppnum_t)((sane_size - maxmem) >> I386_PGSHIFT);
657 ppnum_t highest_pn = 0;
658 ppnum_t cur_end = 0;
659 uint64_t pages_to_use;
660 unsigned cur_region = 0;
661
662 sane_size = maxmem;
663
664 if (avail_remaining > discarded_pages)
665 avail_remaining -= discarded_pages;
666 else
667 avail_remaining = 0;
668
669 pages_to_use = avail_remaining;
670
671 while (cur_region < pmap_memory_region_count && pages_to_use) {
672 for (cur_end = pmap_memory_regions[cur_region].base;
673 cur_end < pmap_memory_regions[cur_region].end && pages_to_use;
674 cur_end++) {
675 if (cur_end > highest_pn)
676 highest_pn = cur_end;
677 pages_to_use--;
678 }
679 if (pages_to_use == 0) {
680 pmap_memory_regions[cur_region].end = cur_end;
681 pmap_memory_regions[cur_region].alloc_down = cur_end;
682 }
683
684 cur_region++;
685 }
686 pmap_memory_region_count = cur_region;
687
688 avail_end = i386_ptob(highest_pn + 1);
689 }
690
691 /*
692 * mem_size is only a 32 bit container... follow the PPC route
693 * and pin it to a 2 Gbyte maximum
694 */
695 if (sane_size > (FOURGIG >> 1))
696 mem_size = (vm_size_t)(FOURGIG >> 1);
697 else
698 mem_size = (vm_size_t)sane_size;
699 max_mem = sane_size;
700
701 kprintf("Physical memory %llu MB\n", sane_size/MB);
702
703 max_valid_low_ppnum = (2 * GB) / PAGE_SIZE;
704
705 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr, sizeof (maxdmaaddr))) {
706 max_valid_dma_address = (uint64_t)4 * (uint64_t)GB;
707 } else {
708 max_valid_dma_address = ((uint64_t) maxdmaaddr) * MB;
709
710 if ((max_valid_dma_address / PAGE_SIZE) < max_valid_low_ppnum)
711 max_valid_low_ppnum = (ppnum_t)(max_valid_dma_address / PAGE_SIZE);
712 }
713 if (avail_end >= max_valid_dma_address) {
714
715 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve, sizeof (maxloreserve))) {
716
717 if (sane_size >= (ONEGIG * 15))
718 maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 4;
719 else if (sane_size >= (ONEGIG * 7))
720 maxloreserve = (MAXLORESERVE / PAGE_SIZE) * 2;
721 else
722 maxloreserve = MAXLORESERVE / PAGE_SIZE;
723
724 #if SOCKETS
725 mbuf_reserve = bsd_mbuf_cluster_reserve(&mbuf_override) / PAGE_SIZE;
726 #endif
727 } else
728 maxloreserve = (maxloreserve * (1024 * 1024)) / PAGE_SIZE;
729
730 if (maxloreserve) {
731 vm_lopage_free_limit = maxloreserve;
732
733 if (mbuf_override == TRUE) {
734 vm_lopage_free_limit += mbuf_reserve;
735 vm_lopage_lowater = 0;
736 } else
737 vm_lopage_lowater = vm_lopage_free_limit / 16;
738
739 vm_lopage_refill = TRUE;
740 vm_lopage_needed = TRUE;
741 }
742 }
743
744 /*
745 * Initialize kernel physical map.
746 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
747 */
748 kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining);
749 pmap_bootstrap(0, IA32e);
750 }
751
752
753 unsigned int
754 pmap_free_pages(void)
755 {
756 return (unsigned int)avail_remaining;
757 }
758
759
760 boolean_t pmap_next_page_reserved(ppnum_t *);
761
762 /*
763 * Pick a page from a "kernel private" reserved range; works around
764 * errata on some hardware.
765 */
766 boolean_t
767 pmap_next_page_reserved(ppnum_t *pn) {
768 if (pmap_reserved_ranges) {
769 uint32_t n;
770 pmap_memory_region_t *region;
771 for (n = 0; n < pmap_last_reserved_range_index; n++) {
772 uint32_t reserved_index = pmap_reserved_range_indices[n];
773 region = &pmap_memory_regions[reserved_index];
774 if (region->alloc_up <= region->alloc_down) {
775 *pn = region->alloc_up++;
776 avail_remaining--;
777
778 if (*pn > max_ppnum)
779 max_ppnum = *pn;
780
781 if (lowest_lo == 0 || *pn < lowest_lo)
782 lowest_lo = *pn;
783
784 pmap_reserved_pages_allocated++;
785 #if DEBUG
786 if (region->alloc_up > region->alloc_down) {
787 kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index, region->base, region->end, region->type, region->attribute);
788 }
789 #endif
790 return TRUE;
791 }
792 }
793 }
794 return FALSE;
795 }
796
797
798 boolean_t
799 pmap_next_page_hi(
800 ppnum_t *pn)
801 {
802 pmap_memory_region_t *region;
803 int n;
804
805 if (pmap_next_page_reserved(pn))
806 return TRUE;
807
808 if (avail_remaining) {
809 for (n = pmap_memory_region_count - 1; n >= 0; n--) {
810 region = &pmap_memory_regions[n];
811
812 if (region->alloc_down >= region->alloc_up) {
813 *pn = region->alloc_down--;
814 avail_remaining--;
815
816 if (*pn > max_ppnum)
817 max_ppnum = *pn;
818
819 if (lowest_lo == 0 || *pn < lowest_lo)
820 lowest_lo = *pn;
821
822 if (lowest_hi == 0 || *pn < lowest_hi)
823 lowest_hi = *pn;
824
825 if (*pn > highest_hi)
826 highest_hi = *pn;
827
828 return TRUE;
829 }
830 }
831 }
832 return FALSE;
833 }
834
835
836 boolean_t
837 pmap_next_page(
838 ppnum_t *pn)
839 {
840 if (avail_remaining) while (pmap_memory_region_current < pmap_memory_region_count) {
841 if (pmap_memory_regions[pmap_memory_region_current].alloc_up >
842 pmap_memory_regions[pmap_memory_region_current].alloc_down) {
843 pmap_memory_region_current++;
844 continue;
845 }
846 *pn = pmap_memory_regions[pmap_memory_region_current].alloc_up++;
847 avail_remaining--;
848
849 if (*pn > max_ppnum)
850 max_ppnum = *pn;
851
852 if (lowest_lo == 0 || *pn < lowest_lo)
853 lowest_lo = *pn;
854
855 return TRUE;
856 }
857 return FALSE;
858 }
859
860
861 boolean_t
862 pmap_valid_page(
863 ppnum_t pn)
864 {
865 unsigned int i;
866 pmap_memory_region_t *pmptr = pmap_memory_regions;
867
868 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
869 if ( (pn >= pmptr->base) && (pn <= pmptr->end) )
870 return TRUE;
871 }
872 return FALSE;
873 }
874