2 * Copyright (c) 2000-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/locks.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
113 #include <netinet/in.h>
114 #include <netinet/in_var.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet6/in6_var.h>
119 #include <netinet/ip6.h>
120 #include <netinet6/in6_pcb.h>
121 #include <netinet6/ip6_var.h>
122 #include <netinet6/scope6_var.h>
123 #include <netinet6/nd6.h>
125 #include <net/net_osdep.h>
129 SYSCTL_DECL(_net_inet6_ip6
);
131 static int ip6_select_srcif_debug
= 0;
132 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcif_debug
,
133 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcif_debug
, 0,
134 "log source interface selection debug info");
136 static int ip6_select_srcaddr_debug
= 0;
137 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcaddr_debug
,
138 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcaddr_debug
, 0,
139 "log source address selection debug info");
141 static int ip6_select_src_expensive_secondary_if
= 0;
142 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_expensive_secondary_if
,
143 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_expensive_secondary_if
, 0,
144 "allow source interface selection to use expensive secondaries");
146 static int ip6_select_src_strong_end
= 1;
147 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_strong_end
,
148 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_strong_end
, 0,
149 "limit source address selection to outgoing interface");
151 #define ADDR_LABEL_NOTAPP (-1)
152 struct in6_addrpolicy defaultaddrpolicy
;
154 int ip6_prefer_tempaddr
= 1;
155 #ifdef ENABLE_ADDRSEL
156 extern lck_mtx_t
*addrsel_mutex
;
157 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
158 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
160 #define ADDRSEL_LOCK()
161 #define ADDRSEL_UNLOCK()
164 static int selectroute(struct sockaddr_in6
*, struct sockaddr_in6
*,
165 struct ip6_pktopts
*, struct ip6_moptions
*, struct in6_ifaddr
**,
166 struct route_in6
*, struct ifnet
**, struct rtentry
**, int, int,
167 struct ip6_out_args
*ip6oa
);
168 static int in6_selectif(struct sockaddr_in6
*, struct ip6_pktopts
*,
169 struct ip6_moptions
*, struct route_in6
*ro
,
170 struct ip6_out_args
*, struct ifnet
**);
171 static void init_policy_queue(void);
172 static int add_addrsel_policyent(const struct in6_addrpolicy
*);
173 #ifdef ENABLE_ADDRSEL
174 static int delete_addrsel_policyent(const struct in6_addrpolicy
*);
176 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy
*, void *),
178 static int dump_addrsel_policyent(const struct in6_addrpolicy
*, void *);
179 static struct in6_addrpolicy
*match_addrsel_policy(struct sockaddr_in6
*);
180 void addrsel_policy_init(void);
182 #define SASEL_DO_DBG(inp) \
183 (ip6_select_srcaddr_debug && (inp) != NULL && \
184 (inp)->inp_socket != NULL && \
185 ((inp)->inp_socket->so_options & SO_DEBUG))
187 #define SASEL_LOG(fmt, ...) \
190 printf("%s:%d " fmt "\n",\
191 __FUNCTION__, __LINE__, ##__VA_ARGS__); \
195 * Return an IPv6 address, which is the most appropriate for a given
196 * destination and user specified options.
197 * If necessary, this function lookups the routing table and returns
198 * an entry to the caller for later use.
200 #define REPLACE(r) do {\
201 SASEL_LOG("REPLACE r %d ia %s ifp1 %s\n", \
202 (r), s_src, ifp1->if_xname); \
207 #define NEXTSRC(r) do {\
208 SASEL_LOG("NEXTSRC r %d ia %s ifp1 %s\n", \
209 (r), s_src, ifp1->if_xname); \
210 goto next; /* XXX: we can't use 'continue' here */ \
213 #define BREAK(r) do { \
214 SASEL_LOG("BREAK r %d ia %s ifp1 %s\n", \
215 (r), s_src, ifp1->if_xname); \
217 goto out; /* XXX: we can't use 'break' here */ \
222 in6_selectsrc_core_ifa(struct sockaddr_in6
*addr
, struct ifnet
*ifp
, int srcsel_debug
) {
224 struct ifnet
*src_ifp
= NULL
;
225 struct in6_addr src_storage
= {};
226 struct in6_addr
*in6
= NULL
;
227 struct ifaddr
*ifa
= NULL
;
229 if((in6
= in6_selectsrc_core(addr
,
230 (ip6_prefer_tempaddr
? IPV6_SRCSEL_HINT_PREFER_TMPADDR
: 0),
231 ifp
, 0, &src_storage
, &src_ifp
, &err
, &ifa
)) == NULL
) {
234 VERIFY(src_ifp
== NULL
);
242 if (src_ifp
!= ifp
) {
253 ifnet_lock_shared(ifp
);
254 if ((ifa
->ifa_debug
& IFD_DETACHING
) != 0) {
256 ifnet_lock_done(ifp
);
263 ifnet_lock_done(ifp
);
266 SASEL_LOG("Returned with error: %d", err
);
268 ifnet_release(src_ifp
);
273 in6_selectsrc_core(struct sockaddr_in6
*dstsock
, uint32_t hint_mask
,
274 struct ifnet
*ifp
, int srcsel_debug
, struct in6_addr
*src_storage
,
275 struct ifnet
**sifp
, int *errorp
, struct ifaddr
**ifapp
)
278 int bestrule
= IP6S_SRCRULE_0
;
279 struct in6_addrpolicy
*dst_policy
= NULL
, *best_policy
= NULL
;
281 struct in6_ifaddr
*ia
= NULL
, *ia_best
= NULL
;
282 char s_src
[MAX_IPv6_STR_LEN
] = {0};
283 char s_dst
[MAX_IPv6_STR_LEN
] = {0};
284 const struct in6_addr
*tmp
= NULL
;
285 int dst_scope
= -1, best_scope
= -1, best_matchlen
= -1;
286 uint64_t secs
= net_uptime();
287 VERIFY(dstsock
!= NULL
);
288 VERIFY(src_storage
!= NULL
);
297 dst
= dstsock
->sin6_addr
; /* make a copy for local operation */
300 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof (s_src
));
303 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof (s_src
));
304 printf("%s out src %s dst %s ifp %s\n",
305 __func__
, s_src
, s_dst
, ifp
->if_xname
);
308 *errorp
= in6_setscope(&dst
, ifp
, &odstzone
);
314 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
315 for (ia
= in6_ifaddrs
; ia
; ia
= ia
->ia_next
) {
316 int new_scope
= -1, new_matchlen
= -1;
317 struct in6_addrpolicy
*new_policy
= NULL
;
318 u_int32_t srczone
= 0, osrczone
, dstzone
;
320 struct ifnet
*ifp1
= ia
->ia_ifp
;
324 (void) inet_ntop(AF_INET6
, &ia
->ia_addr
.sin6_addr
,
325 s_src
, sizeof (s_src
));
327 IFA_LOCK(&ia
->ia_ifa
);
330 * XXX By default we are strong end system and will
331 * limit candidate set of source address to the ones
332 * configured on the outgoing interface.
334 if (ip6_select_src_strong_end
&&
336 SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing "
337 "interface \n", s_src
, ifp1
->if_xname
);
342 * We'll never take an address that breaks the scope zone
343 * of the destination. We also skip an address if its zone
344 * does not contain the outgoing interface.
345 * XXX: we should probably use sin6_scope_id here.
347 if (in6_setscope(&dst
, ifp1
, &dstzone
) ||
348 odstzone
!= dstzone
) {
349 SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n",
350 s_src
, ifp1
->if_xname
, odstzone
, dstzone
);
353 src
= ia
->ia_addr
.sin6_addr
;
354 if (in6_setscope(&src
, ifp
, &osrczone
) ||
355 in6_setscope(&src
, ifp1
, &srczone
) ||
356 osrczone
!= srczone
) {
357 SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n",
358 s_src
, ifp1
->if_xname
, osrczone
, srczone
);
361 /* avoid unusable addresses */
363 (IN6_IFF_NOTREADY
| IN6_IFF_ANYCAST
| IN6_IFF_DETACHED
))) {
364 SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n",
365 s_src
, ifp1
->if_xname
, ia
->ia6_flags
);
368 if (!ip6_use_deprecated
&& IFA6_IS_DEPRECATED(ia
, secs
)) {
369 SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n",
370 s_src
, ifp1
->if_xname
);
373 if (!nd6_optimistic_dad
&&
374 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0) {
375 SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n",
376 s_src
, ifp1
->if_xname
);
379 /* Rule 1: Prefer same address */
380 if (IN6_ARE_ADDR_EQUAL(&dst
, &ia
->ia_addr
.sin6_addr
))
381 BREAK(IP6S_SRCRULE_1
); /* there should be no better candidate */
384 REPLACE(IP6S_SRCRULE_0
);
386 /* Rule 2: Prefer appropriate scope */
388 dst_scope
= in6_addrscope(&dst
);
389 new_scope
= in6_addrscope(&ia
->ia_addr
.sin6_addr
);
390 if (IN6_ARE_SCOPE_CMP(best_scope
, new_scope
) < 0) {
391 if (IN6_ARE_SCOPE_CMP(best_scope
, dst_scope
) < 0)
392 REPLACE(IP6S_SRCRULE_2
);
393 NEXTSRC(IP6S_SRCRULE_2
);
394 } else if (IN6_ARE_SCOPE_CMP(new_scope
, best_scope
) < 0) {
395 if (IN6_ARE_SCOPE_CMP(new_scope
, dst_scope
) < 0)
396 NEXTSRC(IP6S_SRCRULE_2
);
397 REPLACE(IP6S_SRCRULE_2
);
401 * Rule 3: Avoid deprecated addresses. Note that the case of
402 * !ip6_use_deprecated is already rejected above.
404 if (!IFA6_IS_DEPRECATED(ia_best
, secs
) &&
405 IFA6_IS_DEPRECATED(ia
, secs
))
406 NEXTSRC(IP6S_SRCRULE_3
);
407 if (IFA6_IS_DEPRECATED(ia_best
, secs
) &&
408 !IFA6_IS_DEPRECATED(ia
, secs
))
409 REPLACE(IP6S_SRCRULE_3
);
412 * RFC 4429 says that optimistic addresses are equivalent to
413 * deprecated addresses, so avoid them here.
415 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0 &&
416 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0)
417 NEXTSRC(IP6S_SRCRULE_3
);
418 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0 &&
419 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0)
420 REPLACE(IP6S_SRCRULE_3
);
422 /* Rule 4: Prefer home addresses */
424 * XXX: This is a TODO. We should probably merge the MIP6
428 /* Rule 5: Prefer outgoing interface */
430 * XXX By default we are strong end with source address
431 * selection. That means all address selection candidate
432 * addresses will be the ones hosted on the outgoing interface
433 * making the following check redundant.
435 if (ip6_select_src_strong_end
== 0) {
436 if (ia_best
->ia_ifp
== ifp
&& ia
->ia_ifp
!= ifp
)
437 NEXTSRC(IP6S_SRCRULE_5
);
438 if (ia_best
->ia_ifp
!= ifp
&& ia
->ia_ifp
== ifp
)
439 REPLACE(IP6S_SRCRULE_5
);
443 * Rule 6: Prefer matching label
444 * Note that best_policy should be non-NULL here.
446 if (dst_policy
== NULL
)
447 dst_policy
= in6_addrsel_lookup_policy(dstsock
);
448 if (dst_policy
->label
!= ADDR_LABEL_NOTAPP
) {
449 new_policy
= in6_addrsel_lookup_policy(&ia
->ia_addr
);
450 if (dst_policy
->label
== best_policy
->label
&&
451 dst_policy
->label
!= new_policy
->label
)
452 NEXTSRC(IP6S_SRCRULE_6
);
453 if (dst_policy
->label
!= best_policy
->label
&&
454 dst_policy
->label
== new_policy
->label
)
455 REPLACE(IP6S_SRCRULE_6
);
459 * Rule 7: Prefer temporary addresses.
460 * We allow users to reverse the logic by configuring
461 * a sysctl variable, so that transparency conscious users can
462 * always prefer stable addresses.
464 if (!(ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
465 (ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
466 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
)
467 REPLACE(IP6S_SRCRULE_7
);
469 NEXTSRC(IP6S_SRCRULE_7
);
471 if ((ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
472 !(ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
473 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
)
474 NEXTSRC(IP6S_SRCRULE_7
);
476 REPLACE(IP6S_SRCRULE_7
);
480 * Rule 7x: prefer addresses on alive interfaces.
481 * This is a KAME specific rule.
483 if ((ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
484 !(ia
->ia_ifp
->if_flags
& IFF_UP
))
485 NEXTSRC(IP6S_SRCRULE_7x
);
486 if (!(ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
487 (ia
->ia_ifp
->if_flags
& IFF_UP
))
488 REPLACE(IP6S_SRCRULE_7x
);
491 * Rule 8: Use longest matching prefix.
493 new_matchlen
= in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
);
494 if (best_matchlen
< new_matchlen
)
495 REPLACE(IP6S_SRCRULE_8
);
496 if (new_matchlen
< best_matchlen
)
497 NEXTSRC(IP6S_SRCRULE_8
);
500 * Last resort: just keep the current candidate.
501 * Or, do we need more rules?
503 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
504 ip6_select_src_expensive_secondary_if
== 0) {
505 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
506 s_src
, ifp1
->if_xname
);
507 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
510 SASEL_LOG("NEXT ia %s ifp1 %s last resort\n",
511 s_src
, ifp1
->if_xname
);
512 IFA_UNLOCK(&ia
->ia_ifa
);
517 * Ignore addresses on secondary interfaces that are marked
520 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
521 ip6_select_src_expensive_secondary_if
== 0) {
522 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
523 s_src
, ifp1
->if_xname
);
524 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
528 best_scope
= (new_scope
>= 0 ? new_scope
:
529 in6_addrscope(&ia
->ia_addr
.sin6_addr
));
530 best_policy
= (new_policy
? new_policy
:
531 in6_addrsel_lookup_policy(&ia
->ia_addr
));
532 best_matchlen
= (new_matchlen
>= 0 ? new_matchlen
:
533 in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
));
534 SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n",
535 s_src
, ifp1
->if_xname
, best_scope
, new_scope
, dst_scope
);
536 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
537 IFA_UNLOCK(&ia
->ia_ifa
);
539 IFA_REMREF(&ia_best
->ia_ifa
);
544 IFA_UNLOCK(&ia
->ia_ifa
);
548 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
549 IFA_UNLOCK(&ia
->ia_ifa
);
551 IFA_REMREF(&ia_best
->ia_ifa
);
556 lck_rw_done(&in6_ifaddr_rwlock
);
558 if ((ia
= ia_best
) == NULL
) {
560 *errorp
= EADDRNOTAVAIL
;
566 *sifp
= ia
->ia_ifa
.ifa_ifp
;
567 ifnet_reference(*sifp
);
570 IFA_LOCK_SPIN(&ia
->ia_ifa
);
571 if (bestrule
< IP6S_SRCRULE_COUNT
)
572 ip6stat
.ip6s_sources_rule
[bestrule
]++;
573 *src_storage
= satosin6(&ia
->ia_addr
)->sin6_addr
;
574 IFA_UNLOCK(&ia
->ia_ifa
);
577 *ifapp
= &ia
->ia_ifa
;
579 IFA_REMREF(&ia
->ia_ifa
);
583 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof (s_src
));
585 tmp
= (src_storage
!= NULL
) ? src_storage
: &in6addr_any
;
586 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof (s_src
));
588 printf("%s out src %s dst %s dst_scope %d best_scope %d\n",
589 __func__
, s_src
, s_dst
, dst_scope
, best_scope
);
592 return (src_storage
);
596 * Regardless of error, it will return an ifp with a reference held if the
597 * caller provides a non-NULL ifpp. The caller is responsible for checking
598 * if the returned ifp is valid and release its reference at all times.
601 in6_selectsrc(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
602 struct inpcb
*inp
, struct route_in6
*ro
,
603 struct ifnet
**ifpp
, struct in6_addr
*src_storage
, unsigned int ifscope
,
606 struct ifnet
*ifp
= NULL
;
607 struct in6_pktinfo
*pi
= NULL
;
608 struct ip6_moptions
*mopts
;
609 struct ip6_out_args ip6oa
;
610 boolean_t inp_debug
= FALSE
;
611 uint32_t hint_mask
= 0;
612 int prefer_tempaddr
= 0;
613 struct ifnet
*sifp
= NULL
;
615 bzero(&ip6oa
, sizeof(ip6oa
));
616 ip6oa
.ip6oa_boundif
= ifscope
;
617 ip6oa
.ip6oa_flags
= IP6OAF_SELECT_SRCIF
;
618 ip6oa
.ip6oa_sotc
= SO_TC_UNSPEC
;
619 ip6oa
.ip6oa_netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
626 inp_debug
= SASEL_DO_DBG(inp
);
627 mopts
= inp
->in6p_moptions
;
628 if (INP_NO_CELLULAR(inp
))
629 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CELLULAR
;
630 if (INP_NO_EXPENSIVE(inp
))
631 ip6oa
.ip6oa_flags
|= IP6OAF_NO_EXPENSIVE
;
632 if (INP_AWDL_UNRESTRICTED(inp
))
633 ip6oa
.ip6oa_flags
|= IP6OAF_AWDL_UNRESTRICTED
;
634 if (INP_INTCOPROC_ALLOWED(inp
))
635 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
;
638 /* Allow the kernel to retransmit packets. */
639 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
|
640 IP6OAF_AWDL_UNRESTRICTED
;
643 if (ip6oa
.ip6oa_boundif
!= IFSCOPE_NONE
)
644 ip6oa
.ip6oa_flags
|= IP6OAF_BOUND_IF
;
647 * If the source address is explicitly specified by the caller,
648 * check if the requested source address is indeed a unicast address
649 * assigned to the node, and can be used as the packet's source
650 * address. If everything is okay, use the address as source.
652 if (opts
&& (pi
= opts
->ip6po_pktinfo
) &&
653 !IN6_IS_ADDR_UNSPECIFIED(&pi
->ipi6_addr
)) {
654 struct sockaddr_in6 srcsock
;
655 struct in6_ifaddr
*ia6
;
657 /* get the outgoing interface */
658 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
665 * determine the appropriate zone id of the source based on
666 * the zone of the destination and the outgoing interface.
667 * If the specified address is ambiguous wrt the scope zone,
668 * the interface must be specified; otherwise, ifa_ifwithaddr()
669 * will fail matching the address.
671 bzero(&srcsock
, sizeof (srcsock
));
672 srcsock
.sin6_family
= AF_INET6
;
673 srcsock
.sin6_len
= sizeof (srcsock
);
674 srcsock
.sin6_addr
= pi
->ipi6_addr
;
676 *errorp
= in6_setscope(&srcsock
.sin6_addr
, ifp
, NULL
);
682 ia6
= (struct in6_ifaddr
*)ifa_ifwithaddr((struct sockaddr
*)
685 *errorp
= EADDRNOTAVAIL
;
689 IFA_LOCK_SPIN(&ia6
->ia_ifa
);
690 if ((ia6
->ia6_flags
& (IN6_IFF_ANYCAST
| IN6_IFF_NOTREADY
)) ||
691 (inp
&& inp_restricted_send(inp
, ia6
->ia_ifa
.ifa_ifp
))) {
692 IFA_UNLOCK(&ia6
->ia_ifa
);
693 IFA_REMREF(&ia6
->ia_ifa
);
694 *errorp
= EHOSTUNREACH
;
699 *src_storage
= satosin6(&ia6
->ia_addr
)->sin6_addr
;
700 IFA_UNLOCK(&ia6
->ia_ifa
);
701 IFA_REMREF(&ia6
->ia_ifa
);
706 * Otherwise, if the socket has already bound the source, just use it.
708 if (inp
!= NULL
&& !IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
709 src_storage
= &inp
->in6p_laddr
;
714 * If the address is not specified, choose the best one based on
715 * the outgoing interface and the destination address.
717 /* get the outgoing interface */
718 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
727 opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_SYSTEM
) {
728 prefer_tempaddr
= ip6_prefer_tempaddr
;
729 } else if (opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_NOTPREFER
) {
735 hint_mask
|= IPV6_SRCSEL_HINT_PREFER_TMPADDR
;
737 if (in6_selectsrc_core(dstsock
, hint_mask
, ifp
, inp_debug
, src_storage
,
738 &sifp
, errorp
, NULL
) == NULL
) {
743 VERIFY(sifp
!= NULL
);
745 if (inp
&& inp_restricted_send(inp
, sifp
)) {
747 *errorp
= EHOSTUNREACH
;
756 /* if ifp is non-NULL, refcnt held in in6_selectif() */
758 } else if (ifp
!= NULL
) {
761 return (src_storage
);
765 * Given a source IPv6 address (and route, if available), determine the best
766 * interface to send the packet from. Checking for (and updating) the
767 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
768 * without any locks, based on the assumption that in the event this is
769 * called from ip6_output(), the output operation is single-threaded per-pcb,
770 * i.e. for any given pcb there can only be one thread performing output at
773 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
774 * error, it will return an ifp with a reference held if the caller provides
775 * a non-NULL retifp. The caller is responsible for checking if the
776 * returned ifp is valid and release its reference at all times.
778 * clone - meaningful only for bsdi and freebsd
781 selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
782 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
783 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
,
784 struct ifnet
**retifp
, struct rtentry
**retrt
, int clone
,
785 int norouteok
, struct ip6_out_args
*ip6oa
)
788 struct ifnet
*ifp
= NULL
, *ifp0
= NULL
;
789 struct route_in6
*route
= NULL
;
790 struct sockaddr_in6
*sin6_next
;
791 struct in6_pktinfo
*pi
= NULL
;
792 struct in6_addr
*dst
= &dstsock
->sin6_addr
;
793 struct ifaddr
*ifa
= NULL
;
794 char s_src
[MAX_IPv6_STR_LEN
], s_dst
[MAX_IPv6_STR_LEN
];
795 boolean_t select_srcif
, proxied_ifa
= FALSE
, local_dst
= FALSE
;
796 unsigned int ifscope
= ((ip6oa
!= NULL
) ?
797 ip6oa
->ip6oa_boundif
: IFSCOPE_NONE
);
805 if (ip6_select_srcif_debug
) {
807 src
= (srcsock
!= NULL
) ? srcsock
->sin6_addr
: in6addr_any
;
808 (void) inet_ntop(AF_INET6
, &src
, s_src
, sizeof (s_src
));
809 (void) inet_ntop(AF_INET6
, dst
, s_dst
, sizeof (s_dst
));
813 * If the destination address is UNSPECIFIED addr, bail out.
815 if (IN6_IS_ADDR_UNSPECIFIED(dst
)) {
816 error
= EHOSTUNREACH
;
821 * Perform source interface selection only if Scoped Routing
822 * is enabled and a source address that isn't unspecified.
824 select_srcif
= (srcsock
!= NULL
&&
825 !IN6_IS_ADDR_UNSPECIFIED(&srcsock
->sin6_addr
));
827 if (ip6_select_srcif_debug
) {
828 printf("%s src %s dst %s ifscope %d select_srcif %d\n",
829 __func__
, s_src
, s_dst
, ifscope
, select_srcif
);
832 /* If the caller specified the outgoing interface explicitly, use it */
833 if (opts
!= NULL
&& (pi
= opts
->ip6po_pktinfo
) != NULL
&&
834 pi
->ipi6_ifindex
!= 0) {
836 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
838 ifscope
= pi
->ipi6_ifindex
;
839 ifnet_head_lock_shared();
840 /* ifp may be NULL if detached or out of range */
842 ((ifscope
<= if_index
) ? ifindex2ifnet
[ifscope
] : NULL
);
844 if (norouteok
|| retrt
== NULL
|| IN6_IS_ADDR_MULTICAST(dst
)) {
846 * We do not have to check or get the route for
847 * multicast. If the caller didn't ask/care for
848 * the route and we have no interface to use,
852 error
= EHOSTUNREACH
;
860 * If the destination address is a multicast address and the outgoing
861 * interface for the address is specified by the caller, use it.
863 if (IN6_IS_ADDR_MULTICAST(dst
) && mopts
!= NULL
) {
865 if ((ifp
= ifp0
= mopts
->im6o_multicast_ifp
) != NULL
) {
867 goto done
; /* we do not need a route for multicast. */
874 * If the outgoing interface was not set via IPV6_BOUND_IF or
875 * IPV6_PKTINFO, use the scope ID in the destination address.
877 if (ifscope
== IFSCOPE_NONE
)
878 ifscope
= dstsock
->sin6_scope_id
;
881 * Perform source interface selection; the source IPv6 address
882 * must belong to one of the addresses of the interface used
883 * by the route. For performance reasons, do this only if
884 * there is no route, or if the routing table has changed,
885 * or if we haven't done source interface selection on this
886 * route (for this PCB instance) before.
890 } else if (!ROUTE_UNUSABLE(ro
) && ro
->ro_srcia
!= NULL
&&
891 (ro
->ro_flags
& ROF_SRCIF_SELECTED
)) {
892 if (ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)
895 IFA_ADDREF(ifa
); /* for caller */
900 * Given the source IPv6 address, find a suitable source interface
901 * to use for transmission; if a scope ID has been specified,
902 * optimize the search by looking at the addresses only for that
903 * interface. This is still suboptimal, however, as we need to
904 * traverse the per-interface list.
906 if (ifscope
!= IFSCOPE_NONE
|| (ro
!= NULL
&& ro
->ro_rt
!= NULL
)) {
907 unsigned int scope
= ifscope
;
908 struct ifnet
*rt_ifp
;
910 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
913 * If no scope is specified and the route is stale (pointing
914 * to a defunct interface) use the current primary interface;
915 * this happens when switching between interfaces configured
916 * with the same IPv6 address. Otherwise pick up the scope
917 * information from the route; the ULP may have looked up a
918 * correct route and we just need to verify it here and mark
919 * it with the ROF_SRCIF_SELECTED flag below.
921 if (scope
== IFSCOPE_NONE
) {
922 scope
= rt_ifp
->if_index
;
923 if (scope
!= get_primary_ifscope(AF_INET6
) &&
925 scope
= get_primary_ifscope(AF_INET6
);
928 ifa
= (struct ifaddr
*)
929 ifa_foraddr6_scoped(&srcsock
->sin6_addr
, scope
);
932 * If we are forwarding and proxying prefix(es), see if the
933 * source address is one of ours and is a proxied address;
936 if (ifa
== NULL
&& ip6_forwarding
&& nd6_prproxy
) {
937 ifa
= (struct ifaddr
*)
938 ifa_foraddr6(&srcsock
->sin6_addr
);
939 if (ifa
!= NULL
&& !(proxied_ifa
=
940 nd6_prproxy_ifaddr((struct in6_ifaddr
*)ifa
))) {
946 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
947 if (ro
->ro_rt
!= NULL
) {
948 printf("%s %s->%s ifscope %d->%d ifa_if %s "
951 s_src
, s_dst
, ifscope
,
952 scope
, if_name(ifa
->ifa_ifp
),
955 printf("%s %s->%s ifscope %d->%d ifa_if %s\n",
957 s_src
, s_dst
, ifscope
, scope
,
958 if_name(ifa
->ifa_ifp
));
964 * Slow path; search for an interface having the corresponding source
965 * IPv6 address if the scope was not specified by the caller, and:
967 * 1) There currently isn't any route, or,
968 * 2) The interface used by the route does not own that source
969 * IPv6 address; in this case, the route will get blown away
970 * and we'll do a more specific scoped search using the newly
973 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
974 struct ifaddr
*ifadst
;
976 /* Check if the destination address is one of ours */
977 ifadst
= (struct ifaddr
*)ifa_foraddr6(&dstsock
->sin6_addr
);
978 if (ifadst
!= NULL
) {
983 ifa
= (struct ifaddr
*)ifa_foraddr6(&srcsock
->sin6_addr
);
985 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
986 printf("%s %s->%s ifscope %d ifa_if %s\n",
988 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
989 } else if (ip6_select_srcif_debug
) {
990 printf("%s %s->%s ifscope %d ifa_if NULL\n",
992 s_src
, s_dst
, ifscope
);
997 if (ifa
!= NULL
&& !proxied_ifa
&& !local_dst
)
998 ifscope
= ifa
->ifa_ifp
->if_index
;
1001 * If the next hop address for the packet is specified by the caller,
1002 * use it as the gateway.
1004 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
1005 struct route_in6
*ron
;
1007 sin6_next
= satosin6(opts
->ip6po_nexthop
);
1009 /* at this moment, we only support AF_INET6 next hops */
1010 if (sin6_next
->sin6_family
!= AF_INET6
) {
1011 error
= EAFNOSUPPORT
; /* or should we proceed? */
1016 * If the next hop is an IPv6 address, then the node identified
1017 * by that address must be a neighbor of the sending host.
1019 ron
= &opts
->ip6po_nextroute
;
1020 if (ron
->ro_rt
!= NULL
)
1021 RT_LOCK(ron
->ro_rt
);
1022 if (ROUTE_UNUSABLE(ron
) || (ron
->ro_rt
!= NULL
&&
1023 (!(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
1024 (select_srcif
&& (ifa
== NULL
||
1025 (ifa
->ifa_ifp
!= ron
->ro_rt
->rt_ifp
&& !proxied_ifa
))))) ||
1026 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron
->ro_dst
)->sin6_addr
,
1027 &sin6_next
->sin6_addr
)) {
1028 if (ron
->ro_rt
!= NULL
)
1029 RT_UNLOCK(ron
->ro_rt
);
1032 *satosin6(&ron
->ro_dst
) = *sin6_next
;
1034 if (ron
->ro_rt
== NULL
) {
1035 rtalloc_scoped((struct route
*)ron
, ifscope
);
1036 if (ron
->ro_rt
!= NULL
)
1037 RT_LOCK(ron
->ro_rt
);
1038 if (ROUTE_UNUSABLE(ron
) ||
1039 !(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
1040 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron
->ro_rt
))->
1041 sin6_addr
, &sin6_next
->sin6_addr
)) {
1042 if (ron
->ro_rt
!= NULL
)
1043 RT_UNLOCK(ron
->ro_rt
);
1046 error
= EHOSTUNREACH
;
1051 ifp
= ifp0
= ron
->ro_rt
->rt_ifp
;
1054 * When cloning is required, try to allocate a route to the
1055 * destination so that the caller can store path MTU
1060 /* Keep the route locked */
1063 RT_UNLOCK(ron
->ro_rt
);
1066 RT_UNLOCK(ron
->ro_rt
);
1070 * Use a cached route if it exists and is valid, else try to allocate
1071 * a new one. Note that we should check the address family of the
1072 * cached destination, in case of sharing the cache with IPv4.
1076 if (ro
->ro_rt
!= NULL
)
1077 RT_LOCK_SPIN(ro
->ro_rt
);
1078 if (ROUTE_UNUSABLE(ro
) || (ro
->ro_rt
!= NULL
&&
1079 (satosin6(&ro
->ro_dst
)->sin6_family
!= AF_INET6
||
1080 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro
->ro_dst
)->sin6_addr
, dst
) ||
1081 (select_srcif
&& (ifa
== NULL
||
1082 (ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& !proxied_ifa
)))))) {
1083 if (ro
->ro_rt
!= NULL
)
1084 RT_UNLOCK(ro
->ro_rt
);
1088 if (ro
->ro_rt
== NULL
) {
1089 struct sockaddr_in6
*sa6
;
1091 if (ro
->ro_rt
!= NULL
)
1092 RT_UNLOCK(ro
->ro_rt
);
1093 /* No route yet, so try to acquire one */
1094 bzero(&ro
->ro_dst
, sizeof (struct sockaddr_in6
));
1095 sa6
= (struct sockaddr_in6
*)&ro
->ro_dst
;
1096 sa6
->sin6_family
= AF_INET6
;
1097 sa6
->sin6_len
= sizeof (struct sockaddr_in6
);
1098 sa6
->sin6_addr
= *dst
;
1099 if (IN6_IS_ADDR_MULTICAST(dst
)) {
1100 ro
->ro_rt
= rtalloc1_scoped(
1101 &((struct route
*)ro
)->ro_dst
, 0, 0, ifscope
);
1103 rtalloc_scoped((struct route
*)ro
, ifscope
);
1105 if (ro
->ro_rt
!= NULL
)
1106 RT_LOCK_SPIN(ro
->ro_rt
);
1110 * Do not care about the result if we have the nexthop
1111 * explicitly specified (in case we're asked to clone.)
1113 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
1114 if (ro
->ro_rt
!= NULL
)
1115 RT_UNLOCK(ro
->ro_rt
);
1119 if (ro
->ro_rt
!= NULL
) {
1120 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1121 ifp
= ifp0
= ro
->ro_rt
->rt_ifp
;
1123 error
= EHOSTUNREACH
;
1129 boolean_t has_route
= (route
!= NULL
&& route
->ro_rt
!= NULL
);
1130 boolean_t srcif_selected
= FALSE
;
1133 RT_LOCK_ASSERT_HELD(route
->ro_rt
);
1135 * If there is a non-loopback route with the wrong interface,
1136 * or if there is no interface configured with such an address,
1137 * blow it away. Except for local/loopback, we look for one
1138 * with a matching interface scope/index.
1140 if (has_route
&& (ifa
== NULL
||
1141 (ifa
->ifa_ifp
!= ifp
&& ifp
!= lo_ifp
) ||
1142 !(route
->ro_rt
->rt_flags
& RTF_UP
))) {
1144 * If the destination address belongs to a proxied
1145 * prefix, relax the requirement and allow the packet
1146 * to come out of the proxy interface with the source
1147 * address of the real interface.
1149 if (ifa
!= NULL
&& proxied_ifa
&&
1150 (route
->ro_rt
->rt_flags
& (RTF_UP
|RTF_PROXY
)) ==
1151 (RTF_UP
|RTF_PROXY
)) {
1152 srcif_selected
= TRUE
;
1154 if (ip6_select_srcif_debug
) {
1156 printf("%s->%s ifscope %d "
1157 "ro_if %s != ifa_if %s "
1158 "(cached route cleared)\n",
1160 ifscope
, if_name(ifp
),
1161 if_name(ifa
->ifa_ifp
));
1163 printf("%s->%s ifscope %d "
1164 "ro_if %s (no ifa_if "
1165 "found)\n", s_src
, s_dst
,
1166 ifscope
, if_name(ifp
));
1169 RT_UNLOCK(route
->ro_rt
);
1170 ROUTE_RELEASE(route
);
1171 error
= EHOSTUNREACH
;
1172 /* Undo the settings done above */
1174 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1177 } else if (has_route
) {
1178 srcif_selected
= TRUE
;
1181 if (srcif_selected
) {
1183 if (ifa
!= route
->ro_srcia
||
1184 !(route
->ro_flags
& ROF_SRCIF_SELECTED
)) {
1185 RT_CONVERT_LOCK(route
->ro_rt
);
1187 IFA_ADDREF(ifa
); /* for route_in6 */
1188 if (route
->ro_srcia
!= NULL
)
1189 IFA_REMREF(route
->ro_srcia
);
1190 route
->ro_srcia
= ifa
;
1191 route
->ro_flags
|= ROF_SRCIF_SELECTED
;
1192 RT_GENID_SYNC(route
->ro_rt
);
1194 RT_UNLOCK(route
->ro_rt
);
1197 if (ro
->ro_rt
!= NULL
)
1198 RT_UNLOCK(ro
->ro_rt
);
1199 if (ifp
!= NULL
&& opts
!= NULL
&&
1200 opts
->ip6po_pktinfo
!= NULL
&&
1201 opts
->ip6po_pktinfo
->ipi6_ifindex
!= 0) {
1203 * Check if the outgoing interface conflicts with the
1204 * interface specified by ipi6_ifindex (if specified).
1205 * Note that loopback interface is always okay.
1206 * (this may happen when we are sending a packet to
1207 * one of our own addresses.)
1209 if (!(ifp
->if_flags
& IFF_LOOPBACK
) && ifp
->if_index
!=
1210 opts
->ip6po_pktinfo
->ipi6_ifindex
) {
1211 error
= EHOSTUNREACH
;
1219 * Check for interface restrictions.
1221 #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
1222 ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
1223 IFNET_IS_CELLULAR(_ifp)) || \
1224 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
1225 IFNET_IS_EXPENSIVE(_ifp)) || \
1226 (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \
1227 IFNET_IS_INTCOPROC(_ifp)) || \
1228 (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
1229 IFNET_IS_AWDL_RESTRICTED(_ifp)))
1231 if (error
== 0 && ip6oa
!= NULL
&&
1232 ((ifp
&& CHECK_RESTRICTIONS(ip6oa
, ifp
)) ||
1233 (route
&& route
->ro_rt
&&
1234 CHECK_RESTRICTIONS(ip6oa
, route
->ro_rt
->rt_ifp
)))) {
1235 if (route
!= NULL
&& route
->ro_rt
!= NULL
) {
1236 ROUTE_RELEASE(route
);
1239 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1240 error
= EHOSTUNREACH
;
1241 ip6oa
->ip6oa_retflags
|= IP6OARF_IFDENIED
;
1243 #undef CHECK_RESTRICTIONS
1246 * If the interface is disabled for IPv6, then ENETDOWN error.
1249 ifp
!= NULL
&& (ifp
->if_eflags
& IFEF_IPV6_DISABLED
)) {
1253 if (ifp
== NULL
&& (route
== NULL
|| route
->ro_rt
== NULL
)) {
1255 * This can happen if the caller did not pass a cached route
1256 * nor any other hints. We treat this case an error.
1258 error
= EHOSTUNREACH
;
1260 if (error
== EHOSTUNREACH
|| error
== ENETDOWN
)
1261 ip6stat
.ip6s_noroute
++;
1264 * We'll return ifp regardless of error, so pick it up from ifp0
1265 * in case it was nullified above. Caller is responsible for
1266 * releasing the ifp if it is non-NULL.
1269 if (retifp
!= NULL
) {
1271 ifnet_reference(ifp
); /* for caller */
1275 if (retsrcia
!= NULL
) {
1277 IFA_ADDREF(ifa
); /* for caller */
1278 *retsrcia
= (struct in6_ifaddr
*)ifa
;
1282 if (retrt
!= NULL
&& route
!= NULL
)
1283 *retrt
= route
->ro_rt
; /* ro_rt may be NULL */
1285 if (ip6_select_srcif_debug
) {
1286 printf("%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1288 s_src
, s_dst
, ifscope
,
1289 (ifa
!= NULL
) ? if_name(ifa
->ifa_ifp
) : "NONE",
1290 (ifp
!= NULL
) ? if_name(ifp
) : "NONE", error
);
1300 * Regardless of error, it will return an ifp with a reference held if the
1301 * caller provides a non-NULL retifp. The caller is responsible for checking
1302 * if the returned ifp is valid and release its reference at all times.
1305 in6_selectif(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
1306 struct ip6_moptions
*mopts
, struct route_in6
*ro
,
1307 struct ip6_out_args
*ip6oa
, struct ifnet
**retifp
)
1310 struct route_in6 sro
;
1311 struct rtentry
*rt
= NULL
;
1314 bzero(&sro
, sizeof (sro
));
1318 if ((err
= selectroute(NULL
, dstsock
, opts
, mopts
, NULL
, ro
, retifp
,
1319 &rt
, 0, 1, ip6oa
)) != 0)
1323 * do not use a rejected or black hole route.
1324 * XXX: this check should be done in the L2 output routine.
1325 * However, if we skipped this check here, we'd see the following
1327 * - install a rejected route for a scoped address prefix
1329 * - send a packet to a destination that matches the scoped prefix,
1330 * with ambiguity about the scope zone.
1331 * - pick the outgoing interface from the route, and disambiguate the
1332 * scope zone with the interface.
1333 * - ip6_output() would try to get another route with the "new"
1334 * destination, which may be valid.
1335 * - we'd see no error on output.
1336 * Although this may not be very harmful, it should still be confusing.
1337 * We thus reject the case here.
1339 if (rt
&& (rt
->rt_flags
& (RTF_REJECT
| RTF_BLACKHOLE
))) {
1340 err
= ((rt
->rt_flags
& RTF_HOST
) ? EHOSTUNREACH
: ENETUNREACH
);
1345 * Adjust the "outgoing" interface. If we're going to loop the packet
1346 * back to ourselves, the ifp would be the loopback interface.
1347 * However, we'd rather know the interface associated to the
1348 * destination address (which should probably be one of our own
1351 if (rt
!= NULL
&& rt
->rt_ifa
!= NULL
&& rt
->rt_ifa
->ifa_ifp
!= NULL
&&
1353 ifnet_reference(rt
->rt_ifa
->ifa_ifp
);
1354 if (*retifp
!= NULL
)
1355 ifnet_release(*retifp
);
1356 *retifp
= rt
->rt_ifa
->ifa_ifp
;
1361 VERIFY(rt
== NULL
|| rt
== ro
->ro_rt
);
1366 * retifp might point to a valid ifp with a reference held;
1367 * caller is responsible for releasing it if non-NULL.
1373 * Regardless of error, it will return an ifp with a reference held if the
1374 * caller provides a non-NULL retifp. The caller is responsible for checking
1375 * if the returned ifp is valid and release its reference at all times.
1377 * clone - meaningful only for bsdi and freebsd
1380 in6_selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
1381 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
1382 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
, struct ifnet
**retifp
,
1383 struct rtentry
**retrt
, int clone
, struct ip6_out_args
*ip6oa
)
1386 return (selectroute(srcsock
, dstsock
, opts
, mopts
, retsrcia
, ro
, retifp
,
1387 retrt
, clone
, 0, ip6oa
));
1391 * Default hop limit selection. The precedence is as follows:
1392 * 1. Hoplimit value specified via ioctl.
1393 * 2. (If the outgoing interface is detected) the current
1394 * hop limit of the interface specified by router advertisement.
1395 * 3. The system default hoplimit.
1398 in6_selecthlim(struct in6pcb
*in6p
, struct ifnet
*ifp
)
1400 if (in6p
&& in6p
->in6p_hops
>= 0) {
1401 return (in6p
->in6p_hops
);
1402 } else if (NULL
!= ifp
) {
1404 struct nd_ifinfo
*ndi
= ND_IFINFO(ifp
);
1405 if (ndi
&& ndi
->initialized
) {
1406 /* access chlim without lock, for performance */
1409 chlim
= ip6_defhlim
;
1414 return (ip6_defhlim
);
1418 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1419 * share this function by all *bsd*...
1422 in6_pcbsetport(struct in6_addr
*laddr
, struct inpcb
*inp
, struct proc
*p
,
1425 struct socket
*so
= inp
->inp_socket
;
1426 u_int16_t lport
= 0, first
, last
, *lastport
;
1427 int count
, error
= 0, wild
= 0;
1428 boolean_t counting_down
;
1430 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
1434 if (!locked
) { /* Make sure we don't run into a deadlock: 4052373 */
1435 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
1436 socket_unlock(inp
->inp_socket
, 0);
1437 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
1438 socket_lock(inp
->inp_socket
, 0);
1442 * Check if a local port was assigned to the inp while
1443 * this thread was waiting for the pcbinfo lock
1445 if (inp
->inp_lport
!= 0) {
1446 VERIFY(inp
->inp_flags2
& INP2_INHASHLIST
);
1447 lck_rw_done(pcbinfo
->ipi_lock
);
1450 * It is not an error if another thread allocated
1457 /* XXX: this is redundant when called from in6_pcbbind */
1458 if ((so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)) == 0)
1459 wild
= INPLOOKUP_WILDCARD
;
1461 if (inp
->inp_flags
& INP_HIGHPORT
) {
1462 first
= ipport_hifirstauto
; /* sysctl */
1463 last
= ipport_hilastauto
;
1464 lastport
= &pcbinfo
->ipi_lasthi
;
1465 } else if (inp
->inp_flags
& INP_LOWPORT
) {
1466 cred
= kauth_cred_proc_ref(p
);
1467 error
= priv_check_cred(cred
, PRIV_NETINET_RESERVEDPORT
, 0);
1468 kauth_cred_unref(&cred
);
1471 lck_rw_done(pcbinfo
->ipi_lock
);
1474 first
= ipport_lowfirstauto
; /* 1023 */
1475 last
= ipport_lowlastauto
; /* 600 */
1476 lastport
= &pcbinfo
->ipi_lastlow
;
1478 first
= ipport_firstauto
; /* sysctl */
1479 last
= ipport_lastauto
;
1480 lastport
= &pcbinfo
->ipi_lastport
;
1483 * Simple check to ensure all ports are not used up causing
1489 count
= first
- last
;
1490 counting_down
= TRUE
;
1493 count
= last
- first
;
1494 counting_down
= FALSE
;
1497 if (count
-- < 0) { /* completely used? */
1499 * Undo any address bind that may have
1502 inp
->in6p_laddr
= in6addr_any
;
1503 inp
->in6p_last_outifp
= NULL
;
1505 lck_rw_done(pcbinfo
->ipi_lock
);
1508 if (counting_down
) {
1510 if (*lastport
> first
|| *lastport
< last
) {
1515 if (*lastport
< first
|| *lastport
> last
)
1518 lport
= htons(*lastport
);
1519 found
= (in6_pcblookup_local(pcbinfo
, &inp
->in6p_laddr
,
1520 lport
, wild
) == NULL
);
1523 inp
->inp_lport
= lport
;
1524 inp
->inp_flags
|= INP_ANONPORT
;
1526 if (in_pcbinshash(inp
, 1) != 0) {
1527 inp
->in6p_laddr
= in6addr_any
;
1528 inp
->in6p_last_outifp
= NULL
;
1531 inp
->inp_flags
&= ~INP_ANONPORT
;
1533 lck_rw_done(pcbinfo
->ipi_lock
);
1538 lck_rw_done(pcbinfo
->ipi_lock
);
1543 * The followings are implementation of the policy table using a
1544 * simple tail queue.
1545 * XXX such details should be hidden.
1546 * XXX implementation using binary tree should be more efficient.
1548 struct addrsel_policyent
{
1549 TAILQ_ENTRY(addrsel_policyent
) ape_entry
;
1550 struct in6_addrpolicy ape_policy
;
1553 TAILQ_HEAD(addrsel_policyhead
, addrsel_policyent
);
1555 struct addrsel_policyhead addrsel_policytab
;
1558 init_policy_queue(void)
1560 TAILQ_INIT(&addrsel_policytab
);
1564 addrsel_policy_init(void)
1567 * Default address selection policy based on RFC 6724.
1569 static const struct in6_addrpolicy defaddrsel
[] = {
1570 /* Loopback -- prefix=::1/128, precedence=50, label=0 */
1573 .sin6_family
= AF_INET6
,
1574 .sin6_addr
= IN6ADDR_LOOPBACK_INIT
,
1575 .sin6_len
= sizeof (struct sockaddr_in6
)
1578 .sin6_family
= AF_INET6
,
1579 .sin6_addr
= IN6MASK128
,
1580 .sin6_len
= sizeof (struct sockaddr_in6
)
1586 /* Unspecified -- prefix=::/0, precedence=40, label=1 */
1589 .sin6_family
= AF_INET6
,
1590 .sin6_addr
= IN6ADDR_ANY_INIT
,
1591 .sin6_len
= sizeof (struct sockaddr_in6
)
1594 .sin6_family
= AF_INET6
,
1595 .sin6_addr
= IN6MASK0
,
1596 .sin6_len
= sizeof (struct sockaddr_in6
)
1602 /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
1605 .sin6_family
= AF_INET6
,
1606 .sin6_addr
= IN6ADDR_V4MAPPED_INIT
,
1607 .sin6_len
= sizeof (struct sockaddr_in6
)
1610 .sin6_family
= AF_INET6
,
1611 .sin6_addr
= IN6MASK96
,
1612 .sin6_len
= sizeof (struct sockaddr_in6
)
1618 /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
1621 .sin6_family
= AF_INET6
,
1622 .sin6_addr
= {{{ 0x20, 0x02 }}},
1623 .sin6_len
= sizeof (struct sockaddr_in6
)
1626 .sin6_family
= AF_INET6
,
1627 .sin6_addr
= IN6MASK16
,
1628 .sin6_len
= sizeof (struct sockaddr_in6
)
1634 /* Teredo -- prefix=2001::/32, precedence=5, label=5 */
1637 .sin6_family
= AF_INET6
,
1638 .sin6_addr
= {{{ 0x20, 0x01 }}},
1639 .sin6_len
= sizeof (struct sockaddr_in6
)
1642 .sin6_family
= AF_INET6
,
1643 .sin6_addr
= IN6MASK32
,
1644 .sin6_len
= sizeof (struct sockaddr_in6
)
1650 /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
1653 .sin6_family
= AF_INET6
,
1654 .sin6_addr
= {{{ 0xfc }}},
1655 .sin6_len
= sizeof (struct sockaddr_in6
)
1658 .sin6_family
= AF_INET6
,
1659 .sin6_addr
= IN6MASK7
,
1660 .sin6_len
= sizeof (struct sockaddr_in6
)
1666 /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
1669 .sin6_family
= AF_INET6
,
1670 .sin6_addr
= IN6ADDR_ANY_INIT
,
1671 .sin6_len
= sizeof (struct sockaddr_in6
)
1674 .sin6_family
= AF_INET6
,
1675 .sin6_addr
= IN6MASK96
,
1676 .sin6_len
= sizeof (struct sockaddr_in6
)
1682 /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
1685 .sin6_family
= AF_INET6
,
1686 .sin6_addr
= {{{ 0xfe, 0xc0 }}},
1687 .sin6_len
= sizeof (struct sockaddr_in6
)
1690 .sin6_family
= AF_INET6
,
1691 .sin6_addr
= IN6MASK16
,
1692 .sin6_len
= sizeof (struct sockaddr_in6
)
1698 /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
1701 .sin6_family
= AF_INET6
,
1702 .sin6_addr
= {{{ 0x3f, 0xfe }}},
1703 .sin6_len
= sizeof (struct sockaddr_in6
)
1706 .sin6_family
= AF_INET6
,
1707 .sin6_addr
= IN6MASK16
,
1708 .sin6_len
= sizeof (struct sockaddr_in6
)
1716 init_policy_queue();
1718 /* initialize the "last resort" policy */
1719 bzero(&defaultaddrpolicy
, sizeof (defaultaddrpolicy
));
1720 defaultaddrpolicy
.label
= ADDR_LABEL_NOTAPP
;
1722 for (i
= 0; i
< sizeof (defaddrsel
) / sizeof (defaddrsel
[0]); i
++)
1723 add_addrsel_policyent(&defaddrsel
[i
]);
1727 struct in6_addrpolicy
*
1728 in6_addrsel_lookup_policy(struct sockaddr_in6
*key
)
1730 struct in6_addrpolicy
*match
= NULL
;
1733 match
= match_addrsel_policy(key
);
1736 match
= &defaultaddrpolicy
;
1744 static struct in6_addrpolicy
*
1745 match_addrsel_policy(struct sockaddr_in6
*key
)
1747 struct addrsel_policyent
*pent
;
1748 struct in6_addrpolicy
*bestpol
= NULL
, *pol
;
1749 int matchlen
, bestmatchlen
= -1;
1750 u_char
*mp
, *ep
, *k
, *p
, m
;
1752 TAILQ_FOREACH(pent
, &addrsel_policytab
, ape_entry
) {
1755 pol
= &pent
->ape_policy
;
1756 mp
= (u_char
*)&pol
->addrmask
.sin6_addr
;
1757 ep
= mp
+ 16; /* XXX: scope field? */
1758 k
= (u_char
*)&key
->sin6_addr
;
1759 p
= (u_char
*)&pol
->addr
.sin6_addr
;
1760 for (; mp
< ep
&& *mp
; mp
++, k
++, p
++) {
1763 goto next
; /* not match */
1764 if (m
== 0xff) /* short cut for a typical case */
1774 /* matched. check if this is better than the current best. */
1775 if (bestpol
== NULL
||
1776 matchlen
> bestmatchlen
) {
1778 bestmatchlen
= matchlen
;
1789 add_addrsel_policyent(const struct in6_addrpolicy
*newpolicy
)
1791 struct addrsel_policyent
*new, *pol
;
1793 MALLOC(new, struct addrsel_policyent
*, sizeof (*new), M_IFADDR
,
1798 /* duplication check */
1799 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1800 if (IN6_ARE_ADDR_EQUAL(&newpolicy
->addr
.sin6_addr
,
1801 &pol
->ape_policy
.addr
.sin6_addr
) &&
1802 IN6_ARE_ADDR_EQUAL(&newpolicy
->addrmask
.sin6_addr
,
1803 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1805 FREE(new, M_IFADDR
);
1806 return (EEXIST
); /* or override it? */
1810 bzero(new, sizeof (*new));
1812 /* XXX: should validate entry */
1813 new->ape_policy
= *newpolicy
;
1815 TAILQ_INSERT_TAIL(&addrsel_policytab
, new, ape_entry
);
1820 #ifdef ENABLE_ADDRSEL
1822 delete_addrsel_policyent(const struct in6_addrpolicy
*key
)
1824 struct addrsel_policyent
*pol
;
1829 /* search for the entry in the table */
1830 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1831 if (IN6_ARE_ADDR_EQUAL(&key
->addr
.sin6_addr
,
1832 &pol
->ape_policy
.addr
.sin6_addr
) &&
1833 IN6_ARE_ADDR_EQUAL(&key
->addrmask
.sin6_addr
,
1834 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1843 TAILQ_REMOVE(&addrsel_policytab
, pol
, ape_entry
);
1844 FREE(pol
, M_IFADDR
);
1850 #endif /* ENABLE_ADDRSEL */
1853 walk_addrsel_policy(int (*callback
)(const struct in6_addrpolicy
*, void *),
1856 struct addrsel_policyent
*pol
;
1860 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1861 if ((error
= (*callback
)(&pol
->ape_policy
, w
)) != 0) {
1870 * Subroutines to manage the address selection policy table via sysctl.
1873 struct sysctl_req
*w_req
;
1878 dump_addrsel_policyent(const struct in6_addrpolicy
*pol
, void *arg
)
1881 struct walkarg
*w
= arg
;
1883 error
= SYSCTL_OUT(w
->w_req
, pol
, sizeof (*pol
));
1889 in6_src_sysctl SYSCTL_HANDLER_ARGS
1891 #pragma unused(oidp, arg1, arg2)
1896 bzero(&w
, sizeof (w
));
1899 return (walk_addrsel_policy(dump_addrsel_policyent
, &w
));
1903 SYSCTL_NODE(_net_inet6_ip6
, IPV6CTL_ADDRCTLPOLICY
, addrctlpolicy
,
1904 CTLFLAG_RD
| CTLFLAG_LOCKED
, in6_src_sysctl
, "");
1906 in6_src_ioctl(u_long cmd
, caddr_t data
)
1909 struct in6_addrpolicy ent0
;
1911 if (cmd
!= SIOCAADDRCTL_POLICY
&& cmd
!= SIOCDADDRCTL_POLICY
)
1912 return (EOPNOTSUPP
); /* check for safety */
1914 bcopy(data
, &ent0
, sizeof (ent0
));
1916 if (ent0
.label
== ADDR_LABEL_NOTAPP
)
1918 /* check if the prefix mask is consecutive. */
1919 if (in6_mask2len(&ent0
.addrmask
.sin6_addr
, NULL
) < 0)
1921 /* clear trailing garbages (if any) of the prefix address. */
1922 for (i
= 0; i
< 4; i
++) {
1923 ent0
.addr
.sin6_addr
.s6_addr32
[i
] &=
1924 ent0
.addrmask
.sin6_addr
.s6_addr32
[i
];
1929 case SIOCAADDRCTL_POLICY
:
1930 #ifdef ENABLE_ADDRSEL
1931 return (add_addrsel_policyent(&ent0
));
1935 case SIOCDADDRCTL_POLICY
:
1936 #ifdef ENABLE_ADDRSEL
1937 return (delete_addrsel_policyent(&ent0
));
1943 return (0); /* XXX: compromise compilers */
1947 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
1948 * If the address scope of is link-local, embed the interface index in the
1949 * address. The routine determines our precedence
1950 * between advanced API scope/interface specification and basic API
1953 * this function should be nuked in the future, when we get rid of
1954 * embedded scopeid thing.
1956 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
1957 * there can be multiple interfaces that belong to a particular scope zone
1958 * (in specification, we have 1:N mapping between a scope zone and interfaces).
1959 * we may want to change the function to return something other than ifp.
1962 in6_embedscope(struct in6_addr
*in6
, const struct sockaddr_in6
*sin6
,
1963 struct in6pcb
*in6p
, struct ifnet
**ifpp
, struct ip6_pktopts
*opt
)
1965 struct ifnet
*ifp
= NULL
;
1967 struct ip6_pktopts
*optp
= NULL
;
1969 *in6
= sin6
->sin6_addr
;
1970 scopeid
= sin6
->sin6_scope_id
;
1975 * don't try to read sin6->sin6_addr beyond here, since the caller may
1976 * ask us to overwrite existing sockaddr_in6
1979 #ifdef ENABLE_DEFAULT_SCOPE
1981 scopeid
= scope6_addr2default(in6
);
1984 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
1985 struct in6_pktinfo
*pi
;
1986 struct ifnet
*im6o_multicast_ifp
= NULL
;
1988 if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
1989 in6p
->in6p_moptions
!= NULL
) {
1990 IM6O_LOCK(in6p
->in6p_moptions
);
1991 im6o_multicast_ifp
=
1992 in6p
->in6p_moptions
->im6o_multicast_ifp
;
1993 IM6O_UNLOCK(in6p
->in6p_moptions
);
1998 else if (in6p
!= NULL
)
1999 optp
= in6p
->in6p_outputopts
;
2001 * KAME assumption: link id == interface id
2003 if (in6p
!= NULL
&& optp
!= NULL
&&
2004 (pi
= optp
->ip6po_pktinfo
) != NULL
&&
2005 pi
->ipi6_ifindex
!= 0) {
2006 /* ifp is needed here if only we're returning it */
2008 ifnet_head_lock_shared();
2009 ifp
= ifindex2ifnet
[pi
->ipi6_ifindex
];
2012 in6
->s6_addr16
[1] = htons(pi
->ipi6_ifindex
);
2013 } else if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
2014 in6p
->in6p_moptions
!= NULL
&& im6o_multicast_ifp
!= NULL
) {
2015 ifp
= im6o_multicast_ifp
;
2016 in6
->s6_addr16
[1] = htons(ifp
->if_index
);
2017 } else if (scopeid
!= 0) {
2019 * Since scopeid is unsigned, we only have to check it
2020 * against if_index (ifnet_head_lock not needed since
2021 * if_index is an ever-increasing integer.)
2023 if (if_index
< scopeid
)
2024 return (ENXIO
); /* XXX EINVAL? */
2026 /* ifp is needed here only if we're returning it */
2028 ifnet_head_lock_shared();
2029 ifp
= ifindex2ifnet
[scopeid
];
2032 /* XXX assignment to 16bit from 32bit variable */
2033 in6
->s6_addr16
[1] = htons(scopeid
& 0xffff);
2038 ifnet_reference(ifp
); /* for caller */
2047 * generate standard sockaddr_in6 from embedded form.
2048 * touches sin6_addr and sin6_scope_id only.
2050 * this function should be nuked in the future, when we get rid of
2051 * embedded scopeid thing.
2055 struct sockaddr_in6
*sin6
,
2056 const struct in6_addr
*in6
,
2061 sin6
->sin6_addr
= *in6
;
2064 * don't try to read *in6 beyond here, since the caller may
2065 * ask us to overwrite existing sockaddr_in6
2068 sin6
->sin6_scope_id
= 0;
2069 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
2071 * KAME assumption: link id == interface id
2073 scopeid
= ntohs(sin6
->sin6_addr
.s6_addr16
[1]);
2078 * Since scopeid is unsigned, we only have to check it
2081 if (if_index
< scopeid
)
2083 if (ifp
&& ifp
->if_index
!= scopeid
)
2085 sin6
->sin6_addr
.s6_addr16
[1] = 0;
2086 sin6
->sin6_scope_id
= scopeid
;