2 * Copyright (c) 2004-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
75 #include <kern/zalloc.h>
77 #include <net/route.h>
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
85 #include <netinet6/in6_pcb.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/ip6_var.h>
89 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_cache.h>
98 #include <netinet/tcp_debug.h>
100 #include <sys/kdebug.h>
103 #include <netinet6/ipsec.h>
106 #include <libkern/OSAtomic.h>
108 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
109 int, tcp_do_sack
, 1, "Enable/Disable TCP SACK support");
110 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack_maxholes
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
111 static int, tcp_sack_maxholes
, 128,
112 "Maximum number of TCP SACK holes allowed per connection");
114 SYSCTL_SKMEM_TCP_INT(OID_AUTO
, sack_globalmaxholes
,
115 CTLFLAG_RW
| CTLFLAG_LOCKED
, static int, tcp_sack_globalmaxholes
, 65536,
116 "Global maximum number of TCP SACK holes");
118 static SInt32 tcp_sack_globalholes
= 0;
119 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, sack_globalholes
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
120 &tcp_sack_globalholes
, 0,
121 "Global number of TCP SACK holes currently allocated");
123 static int tcp_detect_reordering
= 1;
124 static int tcp_dsack_ignore_hw_duplicates
= 0;
126 #if (DEVELOPMENT || DEBUG)
127 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, detect_reordering
,
128 CTLFLAG_RW
| CTLFLAG_LOCKED
,
129 &tcp_detect_reordering
, 0, "");
131 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, ignore_hw_duplicates
,
132 CTLFLAG_RW
| CTLFLAG_LOCKED
,
133 &tcp_dsack_ignore_hw_duplicates
, 0, "");
134 #endif /* (DEVELOPMENT || DEBUG) */
136 extern struct zone
*sack_hole_zone
;
138 #define TCP_VALIDATE_SACK_SEQ_NUMBERS(_tp_, _sb_, _ack_) \
139 (SEQ_GT((_sb_)->end, (_sb_)->start) && \
140 SEQ_GT((_sb_)->start, (_tp_)->snd_una) && \
141 SEQ_GT((_sb_)->start, (_ack_)) && \
142 SEQ_LT((_sb_)->start, (_tp_)->snd_max) && \
143 SEQ_GT((_sb_)->end, (_tp_)->snd_una) && \
144 SEQ_LEQ((_sb_)->end, (_tp_)->snd_max))
147 * This function is called upon receipt of new valid data (while not in header
148 * prediction mode), and it updates the ordered list of sacks.
151 tcp_update_sack_list(struct tcpcb
*tp
, tcp_seq rcv_start
, tcp_seq rcv_end
)
154 * First reported block MUST be the most recent one. Subsequent
155 * blocks SHOULD be in the order in which they arrived at the
156 * receiver. These two conditions make the implementation fully
157 * compliant with RFC 2018.
159 struct sackblk head_blk
, saved_blks
[MAX_SACK_BLKS
];
160 int num_head
, num_saved
, i
;
162 /* SACK block for the received segment. */
163 head_blk
.start
= rcv_start
;
164 head_blk
.end
= rcv_end
;
167 * Merge updated SACK blocks into head_blk, and
168 * save unchanged SACK blocks into saved_blks[].
169 * num_saved will have the number of the saved SACK blocks.
172 for (i
= 0; i
< tp
->rcv_numsacks
; i
++) {
173 tcp_seq start
= tp
->sackblks
[i
].start
;
174 tcp_seq end
= tp
->sackblks
[i
].end
;
175 if (SEQ_GEQ(start
, end
) || SEQ_LEQ(start
, tp
->rcv_nxt
)) {
177 * Discard this SACK block.
179 } else if (SEQ_LEQ(head_blk
.start
, end
) &&
180 SEQ_GEQ(head_blk
.end
, start
)) {
182 * Merge this SACK block into head_blk.
183 * This SACK block itself will be discarded.
185 if (SEQ_GT(head_blk
.start
, start
))
186 head_blk
.start
= start
;
187 if (SEQ_LT(head_blk
.end
, end
))
191 * Save this SACK block.
193 saved_blks
[num_saved
].start
= start
;
194 saved_blks
[num_saved
].end
= end
;
200 * Update SACK list in tp->sackblks[].
203 if (SEQ_GT(head_blk
.start
, tp
->rcv_nxt
)) {
205 * The received data segment is an out-of-order segment.
206 * Put head_blk at the top of SACK list.
208 tp
->sackblks
[0] = head_blk
;
211 * If the number of saved SACK blocks exceeds its limit,
212 * discard the last SACK block.
214 if (num_saved
>= MAX_SACK_BLKS
)
219 * Copy the saved SACK blocks back.
221 bcopy(saved_blks
, &tp
->sackblks
[num_head
],
222 sizeof(struct sackblk
) * num_saved
);
225 /* Save the number of SACK blocks. */
226 tp
->rcv_numsacks
= num_head
+ num_saved
;
228 /* If we are requesting SACK recovery, reset the stretch-ack state
229 * so that connection will generate more acks after recovery and
230 * sender's cwnd will open.
232 if ((tp
->t_flags
& TF_STRETCHACK
) != 0 && tp
->rcv_numsacks
> 0)
233 tcp_reset_stretch_ack(tp
);
236 if (tp
->acc_iaj
> 0 && tp
->rcv_numsacks
> 0)
238 #endif /* TRAFFIC_MGT */
242 * Delete all receiver-side SACK information.
245 tcp_clean_sackreport( struct tcpcb
*tp
)
248 tp
->rcv_numsacks
= 0;
249 bzero(&tp
->sackblks
[0], sizeof (struct sackblk
) * MAX_SACK_BLKS
);
253 * Allocate struct sackhole.
255 static struct sackhole
*
256 tcp_sackhole_alloc(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
)
258 struct sackhole
*hole
;
260 if (tp
->snd_numholes
>= tcp_sack_maxholes
||
261 tcp_sack_globalholes
>= tcp_sack_globalmaxholes
) {
262 tcpstat
.tcps_sack_sboverflow
++;
266 hole
= (struct sackhole
*)zalloc(sack_hole_zone
);
275 OSIncrementAtomic(&tcp_sack_globalholes
);
281 * Free struct sackhole.
284 tcp_sackhole_free(struct tcpcb
*tp
, struct sackhole
*hole
)
286 zfree(sack_hole_zone
, hole
);
289 OSDecrementAtomic(&tcp_sack_globalholes
);
293 * Insert new SACK hole into scoreboard.
295 static struct sackhole
*
296 tcp_sackhole_insert(struct tcpcb
*tp
, tcp_seq start
, tcp_seq end
,
297 struct sackhole
*after
)
299 struct sackhole
*hole
;
301 /* Allocate a new SACK hole. */
302 hole
= tcp_sackhole_alloc(tp
, start
, end
);
305 hole
->rxmit_start
= tcp_now
;
306 /* Insert the new SACK hole into scoreboard */
308 TAILQ_INSERT_AFTER(&tp
->snd_holes
, after
, hole
, scblink
);
310 TAILQ_INSERT_TAIL(&tp
->snd_holes
, hole
, scblink
);
312 /* Update SACK hint. */
313 if (tp
->sackhint
.nexthole
== NULL
)
314 tp
->sackhint
.nexthole
= hole
;
320 * Remove SACK hole from scoreboard.
323 tcp_sackhole_remove(struct tcpcb
*tp
, struct sackhole
*hole
)
325 /* Update SACK hint. */
326 if (tp
->sackhint
.nexthole
== hole
)
327 tp
->sackhint
.nexthole
= TAILQ_NEXT(hole
, scblink
);
329 /* Remove this SACK hole. */
330 TAILQ_REMOVE(&tp
->snd_holes
, hole
, scblink
);
332 /* Free this SACK hole. */
333 tcp_sackhole_free(tp
, hole
);
336 * When a new ack with SACK is received, check if it indicates packet
337 * reordering. If there is packet reordering, the socket is marked and
338 * the late time offset by which the packet was reordered with
339 * respect to its closest neighboring packets is computed.
342 tcp_sack_detect_reordering(struct tcpcb
*tp
, struct sackhole
*s
,
343 tcp_seq sacked_seq
, tcp_seq snd_fack
)
345 int32_t rext
= 0, reordered
= 0;
348 * If the SACK hole is past snd_fack, this is from new SACK
349 * information, so we can ignore it.
351 if (SEQ_GT(s
->end
, snd_fack
))
354 * If there has been a retransmit timeout, then the timestamp on
355 * the SACK segment will be newer. This might lead to a
356 * false-positive. Avoid re-ordering detection in this case.
358 if (tp
->t_rxtshift
> 0)
362 * Detect reordering from SACK information by checking
363 * if recently sacked data was never retransmitted from this hole.
365 if (SEQ_LT(s
->rxmit
, sacked_seq
)) {
367 tcpstat
.tcps_avoid_rxmt
++;
371 if (tcp_detect_reordering
== 1 &&
372 !(tp
->t_flagsext
& TF_PKTS_REORDERED
)) {
373 tp
->t_flagsext
|= TF_PKTS_REORDERED
;
374 tcpstat
.tcps_detect_reordering
++;
377 tcpstat
.tcps_reordered_pkts
++;
378 tp
->t_reordered_pkts
++;
381 * If reordering is seen on a connection wth ECN enabled,
382 * increment the heuristic
384 if (TCP_ECN_ENABLED(tp
)) {
385 INP_INC_IFNET_STAT(tp
->t_inpcb
, ecn_fallback_reorder
);
386 tcpstat
.tcps_ecn_fallback_reorder
++;
387 tcp_heuristic_ecn_aggressive(tp
);
390 VERIFY(SEQ_GEQ(snd_fack
, s
->rxmit
));
392 if (s
->rxmit_start
> 0) {
393 rext
= timer_diff(tcp_now
, 0, s
->rxmit_start
, 0);
398 * We take the maximum reorder window to schedule
399 * DELAYFR timer as that will take care of jitter
400 * on the network path.
402 * Computing average and standard deviation seems
403 * to cause unnecessary retransmissions when there
406 * We set a maximum of SRTT/2 and a minimum of
407 * 10 ms on the reorder window.
409 tp
->t_reorderwin
= max(tp
->t_reorderwin
, rext
);
410 tp
->t_reorderwin
= min(tp
->t_reorderwin
,
411 (tp
->t_srtt
>> (TCP_RTT_SHIFT
- 1)));
412 tp
->t_reorderwin
= max(tp
->t_reorderwin
, 10);
418 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
419 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
420 * the sequence space).
423 tcp_sack_doack(struct tcpcb
*tp
, struct tcpopt
*to
, struct tcphdr
*th
,
424 u_int32_t
*newbytes_acked
)
426 struct sackhole
*cur
, *temp
;
427 struct sackblk sack
, sack_blocks
[TCP_MAX_SACK
+ 1], *sblkp
;
428 int i
, j
, num_sack_blks
;
429 tcp_seq old_snd_fack
= 0, th_ack
= th
->th_ack
;
433 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
434 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
436 if (SEQ_LT(tp
->snd_una
, th_ack
) && !TAILQ_EMPTY(&tp
->snd_holes
)) {
437 sack_blocks
[num_sack_blks
].start
= tp
->snd_una
;
438 sack_blocks
[num_sack_blks
++].end
= th_ack
;
441 * Append received valid SACK blocks to sack_blocks[].
442 * Check that the SACK block range is valid.
444 for (i
= 0; i
< to
->to_nsacks
; i
++) {
445 bcopy((to
->to_sacks
+ i
* TCPOLEN_SACK
),
446 &sack
, sizeof(sack
));
447 sack
.start
= ntohl(sack
.start
);
448 sack
.end
= ntohl(sack
.end
);
449 if (TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &sack
, th_ack
))
450 sack_blocks
[num_sack_blks
++] = sack
;
454 * Return if SND.UNA is not advanced and no valid SACK block
457 if (num_sack_blks
== 0)
460 VERIFY(num_sack_blks
<= (TCP_MAX_SACK
+ 1));
462 * Sort the SACK blocks so we can update the scoreboard
463 * with just one pass. The overhead of sorting upto 4+1 elements
464 * is less than making upto 4+1 passes over the scoreboard.
466 for (i
= 0; i
< num_sack_blks
; i
++) {
467 for (j
= i
+ 1; j
< num_sack_blks
; j
++) {
468 if (SEQ_GT(sack_blocks
[i
].end
, sack_blocks
[j
].end
)) {
469 sack
= sack_blocks
[i
];
470 sack_blocks
[i
] = sack_blocks
[j
];
471 sack_blocks
[j
] = sack
;
475 if (TAILQ_EMPTY(&tp
->snd_holes
)) {
477 * Empty scoreboard. Need to initialize snd_fack (it may be
478 * uninitialized or have a bogus value). Scoreboard holes
479 * (from the sack blocks received) are created later below (in
480 * the logic that adds holes to the tail of the scoreboard).
482 tp
->snd_fack
= SEQ_MAX(tp
->snd_una
, th_ack
);
483 *newbytes_acked
+= (tp
->snd_fack
- tp
->snd_una
);
486 old_snd_fack
= tp
->snd_fack
;
488 * In the while-loop below, incoming SACK blocks (sack_blocks[])
489 * and SACK holes (snd_holes) are traversed from their tails with
490 * just one pass in order to reduce the number of compares especially
491 * when the bandwidth-delay product is large.
492 * Note: Typically, in the first RTT of SACK recovery, the highest
493 * three or four SACK blocks with the same ack number are received.
494 * In the second RTT, if retransmitted data segments are not lost,
495 * the highest three or four SACK blocks with ack number advancing
498 sblkp
= &sack_blocks
[num_sack_blks
- 1]; /* Last SACK block */
499 if (SEQ_LT(tp
->snd_fack
, sblkp
->start
)) {
501 * The highest SACK block is beyond fack.
502 * Append new SACK hole at the tail.
503 * If the second or later highest SACK blocks are also
504 * beyond the current fack, they will be inserted by
505 * way of hole splitting in the while-loop below.
507 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
,sblkp
->start
,NULL
);
509 tp
->snd_fack
= sblkp
->end
;
510 *newbytes_acked
+= (sblkp
->end
- sblkp
->start
);
512 /* Go to the previous sack block. */
516 * We failed to add a new hole based on the current
517 * sack block. Skip over all the sack blocks that
518 * fall completely to the right of snd_fack and proceed
519 * to trim the scoreboard based on the remaining sack
520 * blocks. This also trims the scoreboard for th_ack
521 * (which is sack_blocks[0]).
523 while (sblkp
>= sack_blocks
&&
524 SEQ_LT(tp
->snd_fack
, sblkp
->start
))
526 if (sblkp
>= sack_blocks
&&
527 SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
528 *newbytes_acked
+= (sblkp
->end
- tp
->snd_fack
);
529 tp
->snd_fack
= sblkp
->end
;
532 } else if (SEQ_LT(tp
->snd_fack
, sblkp
->end
)) {
533 /* fack is advanced. */
534 *newbytes_acked
+= (sblkp
->end
- tp
->snd_fack
);
535 tp
->snd_fack
= sblkp
->end
;
537 /* We must have at least one SACK hole in scoreboard */
538 cur
= TAILQ_LAST(&tp
->snd_holes
, sackhole_head
); /* Last SACK hole */
540 * Since the incoming sack blocks are sorted, we can process them
541 * making one sweep of the scoreboard.
543 while (sblkp
>= sack_blocks
&& cur
!= NULL
) {
544 if (SEQ_GEQ(sblkp
->start
, cur
->end
)) {
546 * SACKs data beyond the current hole.
547 * Go to the previous sack block.
552 if (SEQ_LEQ(sblkp
->end
, cur
->start
)) {
554 * SACKs data before the current hole.
555 * Go to the previous hole.
557 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
560 tp
->sackhint
.sack_bytes_rexmit
-= (cur
->rxmit
- cur
->start
);
561 if (SEQ_LEQ(sblkp
->start
, cur
->start
)) {
562 /* Data acks at least the beginning of hole */
563 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
564 /* Acks entire hole, so delete hole */
565 *newbytes_acked
+= (cur
->end
- cur
->start
);
567 tcp_sack_detect_reordering(tp
, cur
,
568 cur
->end
, old_snd_fack
);
570 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
571 tcp_sackhole_remove(tp
, temp
);
573 * The sack block may ack all or part of the next
574 * hole too, so continue onto the next hole.
578 /* Move start of hole forward */
579 *newbytes_acked
+= (sblkp
->end
- cur
->start
);
580 tcp_sack_detect_reordering(tp
, cur
,
581 sblkp
->end
, old_snd_fack
);
582 cur
->start
= sblkp
->end
;
583 cur
->rxmit
= SEQ_MAX(cur
->rxmit
, cur
->start
);
586 /* Data acks at least the end of hole */
587 if (SEQ_GEQ(sblkp
->end
, cur
->end
)) {
588 /* Move end of hole backward */
589 *newbytes_acked
+= (cur
->end
- sblkp
->start
);
590 tcp_sack_detect_reordering(tp
, cur
,
591 cur
->end
, old_snd_fack
);
592 cur
->end
= sblkp
->start
;
593 cur
->rxmit
= SEQ_MIN(cur
->rxmit
, cur
->end
);
596 * ACKs some data in the middle of a hole;
597 * need to split current hole
599 *newbytes_acked
+= (sblkp
->end
- sblkp
->start
);
600 tcp_sack_detect_reordering(tp
, cur
,
601 sblkp
->end
, old_snd_fack
);
602 temp
= tcp_sackhole_insert(tp
, sblkp
->end
,
605 if (SEQ_GT(cur
->rxmit
, temp
->rxmit
)) {
606 temp
->rxmit
= cur
->rxmit
;
607 tp
->sackhint
.sack_bytes_rexmit
611 cur
->end
= sblkp
->start
;
612 cur
->rxmit
= SEQ_MIN(cur
->rxmit
,
615 * Reset the rxmit_start to that of
616 * the current hole as that will
617 * help to compute the reorder
620 temp
->rxmit_start
= cur
->rxmit_start
;
624 tp
->sackhint
.sack_bytes_rexmit
+= (cur
->rxmit
- cur
->start
);
626 * Testing sblkp->start against cur->start tells us whether
627 * we're done with the sack block or the sack hole.
628 * Accordingly, we advance one or the other.
630 if (SEQ_LEQ(sblkp
->start
, cur
->start
))
631 cur
= TAILQ_PREV(cur
, sackhole_head
, scblink
);
638 * Free all SACK holes to clear the scoreboard.
641 tcp_free_sackholes(struct tcpcb
*tp
)
645 while ((q
= TAILQ_FIRST(&tp
->snd_holes
)) != NULL
)
646 tcp_sackhole_remove(tp
, q
);
647 tp
->sackhint
.sack_bytes_rexmit
= 0;
648 tp
->sackhint
.nexthole
= NULL
;
649 tp
->sack_newdata
= 0;
654 * Partial ack handling within a sack recovery episode.
655 * Keeping this very simple for now. When a partial ack
656 * is received, force snd_cwnd to a value that will allow
657 * the sender to transmit no more than 2 segments.
658 * If necessary, a better scheme can be adopted at a
659 * later point, but for now, the goal is to prevent the
660 * sender from bursting a large amount of data in the midst
664 tcp_sack_partialack(struct tcpcb
*tp
, struct tcphdr
*th
)
668 tp
->t_timer
[TCPT_REXMT
] = 0;
670 /* send one or 2 segments based on how much new data was acked */
671 if (((BYTES_ACKED(th
, tp
)) / tp
->t_maxseg
) > 2)
673 tp
->snd_cwnd
= (tp
->sackhint
.sack_bytes_rexmit
+
674 (tp
->snd_nxt
- tp
->sack_newdata
) +
675 num_segs
* tp
->t_maxseg
);
676 if (tp
->snd_cwnd
> tp
->snd_ssthresh
)
677 tp
->snd_cwnd
= tp
->snd_ssthresh
;
678 if (SEQ_LT(tp
->snd_fack
, tp
->snd_recover
) &&
679 tp
->snd_fack
== th
->th_ack
&& TAILQ_EMPTY(&tp
->snd_holes
)) {
680 struct sackhole
*temp
;
682 * we received a partial ack but there is no sack_hole
683 * that will cover the remaining seq space. In this case,
684 * create a hole from snd_fack to snd_recover so that
685 * the sack recovery will continue.
687 temp
= tcp_sackhole_insert(tp
, tp
->snd_fack
,
688 tp
->snd_recover
, NULL
);
690 tp
->snd_fack
= tp
->snd_recover
;
692 (void) tcp_output(tp
);
696 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
697 * now to sanity check the hint.
699 static struct sackhole
*
700 tcp_sack_output_debug(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
704 *sack_bytes_rexmt
= 0;
705 TAILQ_FOREACH(p
, &tp
->snd_holes
, scblink
) {
706 if (SEQ_LT(p
->rxmit
, p
->end
)) {
707 if (SEQ_LT(p
->rxmit
, tp
->snd_una
)) {/* old SACK hole */
710 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
713 *sack_bytes_rexmt
+= (p
->rxmit
- p
->start
);
719 * Returns the next hole to retransmit and the number of retransmitted bytes
720 * from the scoreboard. We store both the next hole and the number of
721 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
722 * reception). This avoids scoreboard traversals completely.
724 * The loop here will traverse *at most* one link. Here's the argument.
725 * For the loop to traverse more than 1 link before finding the next hole to
726 * retransmit, we would need to have at least 1 node following the current hint
727 * with (rxmit == end). But, for all holes following the current hint,
728 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
729 * in order to traverse more 1 link in the loop below, we need to have at least
730 * one node following the current hint with (start == rxmit == end).
731 * But that can't happen, (start == end) means that all the data in that hole
732 * has been sacked, in which case, the hole would have been removed from the
736 tcp_sack_output(struct tcpcb
*tp
, int *sack_bytes_rexmt
)
738 struct sackhole
*hole
= NULL
, *dbg_hole
= NULL
;
741 dbg_hole
= tcp_sack_output_debug(tp
, &dbg_bytes_rexmt
);
742 *sack_bytes_rexmt
= tp
->sackhint
.sack_bytes_rexmit
;
743 hole
= tp
->sackhint
.nexthole
;
744 if (hole
== NULL
|| SEQ_LT(hole
->rxmit
, hole
->end
))
746 while ((hole
= TAILQ_NEXT(hole
, scblink
)) != NULL
) {
747 if (SEQ_LT(hole
->rxmit
, hole
->end
)) {
748 tp
->sackhint
.nexthole
= hole
;
753 if (dbg_hole
!= hole
) {
754 printf("%s: Computed sack hole not the same as cached value\n", __func__
);
757 if (*sack_bytes_rexmt
!= dbg_bytes_rexmt
) {
758 printf("%s: Computed sack_bytes_retransmitted (%d) not "
759 "the same as cached value (%d)\n",
760 __func__
, dbg_bytes_rexmt
, *sack_bytes_rexmt
);
761 *sack_bytes_rexmt
= dbg_bytes_rexmt
;
767 * After a timeout, the SACK list may be rebuilt. This SACK information
768 * should be used to avoid retransmitting SACKed data. This function
769 * traverses the SACK list to see if snd_nxt should be moved forward.
772 tcp_sack_adjust(struct tcpcb
*tp
)
774 struct sackhole
*p
, *cur
= TAILQ_FIRST(&tp
->snd_holes
);
777 return; /* No holes */
778 if (SEQ_GEQ(tp
->snd_nxt
, tp
->snd_fack
))
779 return; /* We're already beyond any SACKed blocks */
781 * Two cases for which we want to advance snd_nxt:
782 * i) snd_nxt lies between end of one hole and beginning of another
783 * ii) snd_nxt lies between end of last hole and snd_fack
785 while ((p
= TAILQ_NEXT(cur
, scblink
)) != NULL
) {
786 if (SEQ_LT(tp
->snd_nxt
, cur
->end
))
788 if (SEQ_GEQ(tp
->snd_nxt
, p
->start
))
791 tp
->snd_nxt
= p
->start
;
795 if (SEQ_LT(tp
->snd_nxt
, cur
->end
))
797 tp
->snd_nxt
= tp
->snd_fack
;
802 * This function returns TRUE if more than (tcprexmtthresh - 1) * SMSS
803 * bytes with sequence numbers greater than snd_una have been SACKed.
806 tcp_sack_byte_islost(struct tcpcb
*tp
)
808 u_int32_t unacked_bytes
, sndhole_bytes
= 0;
809 struct sackhole
*sndhole
;
810 if (!SACK_ENABLED(tp
) || IN_FASTRECOVERY(tp
) ||
811 TAILQ_EMPTY(&tp
->snd_holes
) ||
812 (tp
->t_flagsext
& TF_PKTS_REORDERED
))
815 unacked_bytes
= tp
->snd_max
- tp
->snd_una
;
817 TAILQ_FOREACH(sndhole
, &tp
->snd_holes
, scblink
) {
818 sndhole_bytes
+= (sndhole
->end
- sndhole
->start
);
821 VERIFY(unacked_bytes
>= sndhole_bytes
);
822 return ((unacked_bytes
- sndhole_bytes
) >
823 ((tcprexmtthresh
- 1) * tp
->t_maxseg
));
827 * Process any DSACK options that might be present on an input packet
831 tcp_sack_process_dsack(struct tcpcb
*tp
, struct tcpopt
*to
,
834 struct sackblk first_sack
, second_sack
;
835 struct tcp_rxt_seg
*rxseg
;
837 bcopy(to
->to_sacks
, &first_sack
, sizeof(first_sack
));
838 first_sack
.start
= ntohl(first_sack
.start
);
839 first_sack
.end
= ntohl(first_sack
.end
);
841 if (to
->to_nsacks
> 1) {
842 bcopy((to
->to_sacks
+ TCPOLEN_SACK
), &second_sack
,
843 sizeof(second_sack
));
844 second_sack
.start
= ntohl(second_sack
.start
);
845 second_sack
.end
= ntohl(second_sack
.end
);
848 if (SEQ_LT(first_sack
.start
, th
->th_ack
) &&
849 SEQ_LEQ(first_sack
.end
, th
->th_ack
)) {
851 * There is a dsack option reporting a duplicate segment
852 * also covered by cumulative acknowledgement.
854 * Validate the sequence numbers before looking at dsack
855 * option. The duplicate notification can come after
856 * snd_una moves forward. In order to set a window of valid
857 * sequence numbers to look for, we set a maximum send
858 * window within which the DSACK option will be processed.
860 if (!(TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.start
, th
->th_ack
) &&
861 TCP_DSACK_SEQ_IN_WINDOW(tp
, first_sack
.end
, th
->th_ack
))) {
863 to
->to_sacks
+= TCPOLEN_SACK
;
864 tcpstat
.tcps_dsack_recvd_old
++;
867 * returning true here so that the ack will not be
868 * treated as duplicate ack.
872 } else if (to
->to_nsacks
> 1 &&
873 SEQ_LEQ(second_sack
.start
, first_sack
.start
) &&
874 SEQ_GEQ(second_sack
.end
, first_sack
.end
)) {
876 * there is a dsack option in the first block not
877 * covered by the cumulative acknowledgement but covered
878 * by the second sack block.
880 * verify the sequence numbes on the second sack block
881 * before processing the DSACK option. Returning false
882 * here will treat the ack as a duplicate ack.
884 if (!TCP_VALIDATE_SACK_SEQ_NUMBERS(tp
, &second_sack
,
887 to
->to_sacks
+= TCPOLEN_SACK
;
888 tcpstat
.tcps_dsack_recvd_old
++;
892 /* no dsack options, proceed with processing the sack */
896 /* Update the tcpopt pointer to exclude dsack block */
898 to
->to_sacks
+= TCPOLEN_SACK
;
899 tcpstat
.tcps_dsack_recvd
++;
902 /* ignore DSACK option, if DSACK is disabled */
903 if (tp
->t_flagsext
& TF_DISABLE_DSACK
)
906 /* If the DSACK is for TLP mark it as such */
907 if ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
908 first_sack
.end
== tp
->t_tlphighrxt
) {
909 if ((rxseg
= tcp_rxtseg_find(tp
, first_sack
.start
,
910 (first_sack
.end
- 1))) != NULL
)
911 rxseg
->rx_flags
|= TCP_RXT_DSACK_FOR_TLP
;
913 /* Update the sender's retransmit segment state */
914 if (((tp
->t_rxtshift
== 1 && first_sack
.start
== tp
->snd_una
) ||
915 ((tp
->t_flagsext
& TF_SENT_TLPROBE
) &&
916 first_sack
.end
== tp
->t_tlphighrxt
)) &&
917 TAILQ_EMPTY(&tp
->snd_holes
) &&
918 SEQ_GT(th
->th_ack
, tp
->snd_una
)) {
920 * If the dsack is for a retransmitted packet and one of
921 * the two cases is true, it indicates ack loss:
922 * - retransmit timeout and first_sack.start == snd_una
923 * - TLP probe and first_sack.end == tlphighrxt
925 * Ignore dsack and do not update state when there is
928 tcpstat
.tcps_dsack_ackloss
++;
931 } else if ((rxseg
= tcp_rxtseg_find(tp
, first_sack
.start
,
932 (first_sack
.end
- 1))) == NULL
) {
934 * Duplicate notification was not triggered by a
935 * retransmission. This might be due to network duplication,
936 * disable further DSACK processing.
938 if (!tcp_dsack_ignore_hw_duplicates
) {
939 tp
->t_flagsext
|= TF_DISABLE_DSACK
;
940 tcpstat
.tcps_dsack_disable
++;
944 * If the segment was retransmitted only once, mark it as
945 * spurious. Otherwise ignore the duplicate notification.
947 if (rxseg
->rx_count
== 1)
948 rxseg
->rx_flags
|= TCP_RXT_SPURIOUS
;
950 rxseg
->rx_flags
&= ~TCP_RXT_SPURIOUS
;