]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-4570.71.2.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
80 #include <sys/stat.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/ev.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/tcp_var.h>
93 #include <sys/kdebug.h>
94 #include <libkern/OSAtomic.h>
95
96 #if CONFIG_MACF
97 #include <security/mac_framework.h>
98 #endif
99
100 #include <mach/vm_param.h>
101
102 #if MPTCP
103 #include <netinet/mptcp_var.h>
104 #endif
105
106 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
107 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
108
109 extern char *proc_best_name(proc_t p);
110
111 SYSCTL_DECL(_kern_ipc);
112
113 __private_extern__ u_int32_t net_io_policy_throttle_best_effort = 0;
114 SYSCTL_INT(_kern_ipc, OID_AUTO, throttle_best_effort,
115 CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttle_best_effort, 0, "");
116
117 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
118 static struct socket *sonewconn_internal(struct socket *, int);
119 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
120 struct mbuf *, struct mbuf *);
121 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
122 struct mbuf *);
123 static void soevent_ifdenied(struct socket *);
124
125 /*
126 * Primitive routines for operating on sockets and socket buffers
127 */
128 static int soqlimitcompat = 1;
129 static int soqlencomp = 0;
130
131 /*
132 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
133 * get scaled up or down to suit that memory configuration. high_sb_max is a
134 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
135 */
136
137 u_int32_t sb_max = SB_MAX; /* XXX should be static */
138 u_int32_t high_sb_max = SB_MAX;
139
140 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
141 int32_t total_sbmb_cnt __attribute__((aligned(8))) = 0;
142 int32_t total_sbmb_cnt_floor __attribute__((aligned(8))) = 0;
143 int32_t total_sbmb_cnt_peak __attribute__((aligned(8))) = 0;
144 int64_t sbmb_limreached __attribute__((aligned(8))) = 0;
145
146 u_int32_t net_io_policy_log = 0; /* log socket policy changes */
147 #if CONFIG_PROC_UUID_POLICY
148 u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */
149 #endif /* CONFIG_PROC_UUID_POLICY */
150
151 /*
152 * Procedures to manipulate state flags of socket
153 * and do appropriate wakeups. Normal sequence from the
154 * active (originating) side is that soisconnecting() is
155 * called during processing of connect() call,
156 * resulting in an eventual call to soisconnected() if/when the
157 * connection is established. When the connection is torn down
158 * soisdisconnecting() is called during processing of disconnect() call,
159 * and soisdisconnected() is called when the connection to the peer
160 * is totally severed. The semantics of these routines are such that
161 * connectionless protocols can call soisconnected() and soisdisconnected()
162 * only, bypassing the in-progress calls when setting up a ``connection''
163 * takes no time.
164 *
165 * From the passive side, a socket is created with
166 * two queues of sockets: so_incomp for connections in progress
167 * and so_comp for connections already made and awaiting user acceptance.
168 * As a protocol is preparing incoming connections, it creates a socket
169 * structure queued on so_incomp by calling sonewconn(). When the connection
170 * is established, soisconnected() is called, and transfers the
171 * socket structure to so_comp, making it available to accept().
172 *
173 * If a socket is closed with sockets on either
174 * so_incomp or so_comp, these sockets are dropped.
175 *
176 * If higher level protocols are implemented in
177 * the kernel, the wakeups done here will sometimes
178 * cause software-interrupt process scheduling.
179 */
180 void
181 soisconnecting(struct socket *so)
182 {
183 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
184 so->so_state |= SS_ISCONNECTING;
185
186 sflt_notify(so, sock_evt_connecting, NULL);
187 }
188
189 void
190 soisconnected(struct socket *so)
191 {
192 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
193 so->so_state |= SS_ISCONNECTED;
194
195 soreserve_preconnect(so, 0);
196
197 sflt_notify(so, sock_evt_connected, NULL);
198
199 if (so->so_head != NULL && (so->so_state & SS_INCOMP)) {
200 struct socket *head = so->so_head;
201 int locked = 0;
202
203 /*
204 * Enforce lock order when the protocol has per socket locks
205 */
206 if (head->so_proto->pr_getlock != NULL) {
207 socket_lock(head, 1);
208 so_acquire_accept_list(head, so);
209 locked = 1;
210 }
211 if (so->so_head == head && (so->so_state & SS_INCOMP)) {
212 so->so_state &= ~SS_INCOMP;
213 so->so_state |= SS_COMP;
214 TAILQ_REMOVE(&head->so_incomp, so, so_list);
215 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
216 head->so_incqlen--;
217
218 /*
219 * We have to release the accept list in
220 * case a socket callback calls sock_accept()
221 */
222 if (locked != 0) {
223 so_release_accept_list(head);
224 socket_unlock(so, 0);
225 }
226 postevent(head, 0, EV_RCONN);
227 sorwakeup(head);
228 wakeup_one((caddr_t)&head->so_timeo);
229
230 if (locked != 0) {
231 socket_unlock(head, 1);
232 socket_lock(so, 0);
233 }
234 } else if (locked != 0) {
235 so_release_accept_list(head);
236 socket_unlock(head, 1);
237 }
238 } else {
239 postevent(so, 0, EV_WCONN);
240 wakeup((caddr_t)&so->so_timeo);
241 sorwakeup(so);
242 sowwakeup(so);
243 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED |
244 SO_FILT_HINT_CONNINFO_UPDATED);
245 }
246 }
247
248 boolean_t
249 socanwrite(struct socket *so)
250 {
251 return ((so->so_state & SS_ISCONNECTED) ||
252 !(so->so_proto->pr_flags & PR_CONNREQUIRED) ||
253 (so->so_flags1 & SOF1_PRECONNECT_DATA));
254 }
255
256 void
257 soisdisconnecting(struct socket *so)
258 {
259 so->so_state &= ~SS_ISCONNECTING;
260 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
261 soevent(so, SO_FILT_HINT_LOCKED);
262 sflt_notify(so, sock_evt_disconnecting, NULL);
263 wakeup((caddr_t)&so->so_timeo);
264 sowwakeup(so);
265 sorwakeup(so);
266 }
267
268 void
269 soisdisconnected(struct socket *so)
270 {
271 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
272 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
273 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
274 SO_FILT_HINT_CONNINFO_UPDATED);
275 sflt_notify(so, sock_evt_disconnected, NULL);
276 wakeup((caddr_t)&so->so_timeo);
277 sowwakeup(so);
278 sorwakeup(so);
279
280 #if CONTENT_FILTER
281 /* Notify content filters as soon as we cannot send/receive data */
282 cfil_sock_notify_shutdown(so, SHUT_RDWR);
283 #endif /* CONTENT_FILTER */
284 }
285
286 /*
287 * This function will issue a wakeup like soisdisconnected but it will not
288 * notify the socket filters. This will avoid unlocking the socket
289 * in the midst of closing it.
290 */
291 void
292 sodisconnectwakeup(struct socket *so)
293 {
294 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
295 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
296 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
297 SO_FILT_HINT_CONNINFO_UPDATED);
298 wakeup((caddr_t)&so->so_timeo);
299 sowwakeup(so);
300 sorwakeup(so);
301
302 #if CONTENT_FILTER
303 /* Notify content filters as soon as we cannot send/receive data */
304 cfil_sock_notify_shutdown(so, SHUT_RDWR);
305 #endif /* CONTENT_FILTER */
306 }
307
308 /*
309 * When an attempt at a new connection is noted on a socket
310 * which accepts connections, sonewconn is called. If the
311 * connection is possible (subject to space constraints, etc.)
312 * then we allocate a new structure, propoerly linked into the
313 * data structure of the original socket, and return this.
314 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
315 */
316 static struct socket *
317 sonewconn_internal(struct socket *head, int connstatus)
318 {
319 int so_qlen, error = 0;
320 struct socket *so;
321 lck_mtx_t *mutex_held;
322
323 if (head->so_proto->pr_getlock != NULL)
324 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
325 else
326 mutex_held = head->so_proto->pr_domain->dom_mtx;
327 LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
328
329 if (!soqlencomp) {
330 /*
331 * This is the default case; so_qlen represents the
332 * sum of both incomplete and completed queues.
333 */
334 so_qlen = head->so_qlen;
335 } else {
336 /*
337 * When kern.ipc.soqlencomp is set to 1, so_qlen
338 * represents only the completed queue. Since we
339 * cannot let the incomplete queue goes unbounded
340 * (in case of SYN flood), we cap the incomplete
341 * queue length to at most somaxconn, and use that
342 * as so_qlen so that we fail immediately below.
343 */
344 so_qlen = head->so_qlen - head->so_incqlen;
345 if (head->so_incqlen > somaxconn)
346 so_qlen = somaxconn;
347 }
348
349 if (so_qlen >=
350 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
351 return ((struct socket *)0);
352 so = soalloc(1, SOCK_DOM(head), head->so_type);
353 if (so == NULL)
354 return ((struct socket *)0);
355 /* check if head was closed during the soalloc */
356 if (head->so_proto == NULL) {
357 sodealloc(so);
358 return ((struct socket *)0);
359 }
360
361 so->so_type = head->so_type;
362 so->so_options = head->so_options &~ SO_ACCEPTCONN;
363 so->so_linger = head->so_linger;
364 so->so_state = head->so_state | SS_NOFDREF;
365 so->so_proto = head->so_proto;
366 so->so_timeo = head->so_timeo;
367 so->so_pgid = head->so_pgid;
368 kauth_cred_ref(head->so_cred);
369 so->so_cred = head->so_cred;
370 so->last_pid = head->last_pid;
371 so->last_upid = head->last_upid;
372 memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid));
373 if (head->so_flags & SOF_DELEGATED) {
374 so->e_pid = head->e_pid;
375 so->e_upid = head->e_upid;
376 memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid));
377 }
378 /* inherit socket options stored in so_flags */
379 so->so_flags = head->so_flags &
380 (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID |
381 SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT |
382 SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT |
383 SOF_USELRO | SOF_DELEGATED);
384 so->so_usecount = 1;
385 so->next_lock_lr = 0;
386 so->next_unlock_lr = 0;
387
388 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
389 so->so_rcv.sb_so = so->so_snd.sb_so = so;
390 TAILQ_INIT(&so->so_evlist);
391
392 #if CONFIG_MACF_SOCKET
393 mac_socket_label_associate_accept(head, so);
394 #endif
395
396 /* inherit traffic management properties of listener */
397 so->so_flags1 |=
398 head->so_flags1 & (SOF1_TRAFFIC_MGT_SO_BACKGROUND);
399 so->so_background_thread = head->so_background_thread;
400 so->so_traffic_class = head->so_traffic_class;
401
402 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
403 sodealloc(so);
404 return ((struct socket *)0);
405 }
406 so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
407 so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
408
409 /*
410 * Must be done with head unlocked to avoid deadlock
411 * for protocol with per socket mutexes.
412 */
413 if (head->so_proto->pr_unlock)
414 socket_unlock(head, 0);
415 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
416 error) {
417 sodealloc(so);
418 if (head->so_proto->pr_unlock)
419 socket_lock(head, 0);
420 return ((struct socket *)0);
421 }
422 if (head->so_proto->pr_unlock) {
423 socket_lock(head, 0);
424 /*
425 * Radar 7385998 Recheck that the head is still accepting
426 * to avoid race condition when head is getting closed.
427 */
428 if ((head->so_options & SO_ACCEPTCONN) == 0) {
429 so->so_state &= ~SS_NOFDREF;
430 soclose(so);
431 return ((struct socket *)0);
432 }
433 }
434
435 atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1);
436
437 /* Insert in head appropriate lists */
438 so_acquire_accept_list(head, NULL);
439
440 so->so_head = head;
441
442 /*
443 * Since this socket is going to be inserted into the incomp
444 * queue, it can be picked up by another thread in
445 * tcp_dropdropablreq to get dropped before it is setup..
446 * To prevent this race, set in-progress flag which can be
447 * cleared later
448 */
449 so->so_flags |= SOF_INCOMP_INPROGRESS;
450
451 if (connstatus) {
452 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
453 so->so_state |= SS_COMP;
454 } else {
455 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
456 so->so_state |= SS_INCOMP;
457 head->so_incqlen++;
458 }
459 head->so_qlen++;
460
461 so_release_accept_list(head);
462
463 /* Attach socket filters for this protocol */
464 sflt_initsock(so);
465
466 if (connstatus) {
467 so->so_state |= connstatus;
468 sorwakeup(head);
469 wakeup((caddr_t)&head->so_timeo);
470 }
471 return (so);
472 }
473
474
475 struct socket *
476 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
477 {
478 int error = sflt_connectin(head, from);
479 if (error) {
480 return (NULL);
481 }
482
483 return (sonewconn_internal(head, connstatus));
484 }
485
486 /*
487 * Socantsendmore indicates that no more data will be sent on the
488 * socket; it would normally be applied to a socket when the user
489 * informs the system that no more data is to be sent, by the protocol
490 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
491 * will be received, and will normally be applied to the socket by a
492 * protocol when it detects that the peer will send no more data.
493 * Data queued for reading in the socket may yet be read.
494 */
495
496 void
497 socantsendmore(struct socket *so)
498 {
499 so->so_state |= SS_CANTSENDMORE;
500 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE);
501 sflt_notify(so, sock_evt_cantsendmore, NULL);
502 sowwakeup(so);
503 }
504
505 void
506 socantrcvmore(struct socket *so)
507 {
508 so->so_state |= SS_CANTRCVMORE;
509 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE);
510 sflt_notify(so, sock_evt_cantrecvmore, NULL);
511 sorwakeup(so);
512 }
513
514 /*
515 * Wait for data to arrive at/drain from a socket buffer.
516 */
517 int
518 sbwait(struct sockbuf *sb)
519 {
520 boolean_t nointr = (sb->sb_flags & SB_NOINTR);
521 void *lr_saved = __builtin_return_address(0);
522 struct socket *so = sb->sb_so;
523 lck_mtx_t *mutex_held;
524 struct timespec ts;
525 int error = 0;
526
527 if (so == NULL) {
528 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
529 __func__, sb, sb->sb_flags, lr_saved);
530 /* NOTREACHED */
531 } else if (so->so_usecount < 1) {
532 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
533 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
534 so->so_usecount, lr_saved, solockhistory_nr(so));
535 /* NOTREACHED */
536 }
537
538 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
539 error = EBADF;
540 if (so->so_flags & SOF_DEFUNCT) {
541 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
542 "(%d)\n", __func__, proc_selfpid(),
543 proc_best_name(current_proc()),
544 (uint64_t)VM_KERNEL_ADDRPERM(so),
545 SOCK_DOM(so), SOCK_TYPE(so), error);
546 }
547 return (error);
548 }
549
550 if (so->so_proto->pr_getlock != NULL)
551 mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
552 else
553 mutex_held = so->so_proto->pr_domain->dom_mtx;
554
555 LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
556
557 ts.tv_sec = sb->sb_timeo.tv_sec;
558 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
559
560 sb->sb_waiters++;
561 VERIFY(sb->sb_waiters != 0);
562
563 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
564 nointr ? PSOCK : PSOCK | PCATCH,
565 nointr ? "sbwait_nointr" : "sbwait", &ts);
566
567 VERIFY(sb->sb_waiters != 0);
568 sb->sb_waiters--;
569
570 if (so->so_usecount < 1) {
571 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
572 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
573 so->so_usecount, lr_saved, solockhistory_nr(so));
574 /* NOTREACHED */
575 }
576
577 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
578 error = EBADF;
579 if (so->so_flags & SOF_DEFUNCT) {
580 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
581 "(%d)\n", __func__, proc_selfpid(),
582 proc_best_name(current_proc()),
583 (uint64_t)VM_KERNEL_ADDRPERM(so),
584 SOCK_DOM(so), SOCK_TYPE(so), error);
585 }
586 }
587
588 return (error);
589 }
590
591 void
592 sbwakeup(struct sockbuf *sb)
593 {
594 if (sb->sb_waiters > 0)
595 wakeup((caddr_t)&sb->sb_cc);
596 }
597
598 /*
599 * Wakeup processes waiting on a socket buffer.
600 * Do asynchronous notification via SIGIO
601 * if the socket has the SS_ASYNC flag set.
602 */
603 void
604 sowakeup(struct socket *so, struct sockbuf *sb)
605 {
606 if (so->so_flags & SOF_DEFUNCT) {
607 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, "
608 "fl 0x%x [%s]\n", __func__, proc_selfpid(),
609 proc_best_name(current_proc()),
610 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
611 SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags,
612 (sb->sb_flags & SB_RECV) ? "rcv" : "snd");
613 }
614
615 sb->sb_flags &= ~SB_SEL;
616 selwakeup(&sb->sb_sel);
617 sbwakeup(sb);
618 if (so->so_state & SS_ASYNC) {
619 if (so->so_pgid < 0)
620 gsignal(-so->so_pgid, SIGIO);
621 else if (so->so_pgid > 0)
622 proc_signal(so->so_pgid, SIGIO);
623 }
624 if (sb->sb_flags & SB_KNOTE) {
625 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
626 }
627 if (sb->sb_flags & SB_UPCALL) {
628 void (*sb_upcall)(struct socket *, void *, int);
629 caddr_t sb_upcallarg;
630 int lock = !(sb->sb_flags & SB_UPCALL_LOCK);
631
632 sb_upcall = sb->sb_upcall;
633 sb_upcallarg = sb->sb_upcallarg;
634 /* Let close know that we're about to do an upcall */
635 so->so_upcallusecount++;
636
637 if (lock)
638 socket_unlock(so, 0);
639 (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT);
640 if (lock)
641 socket_lock(so, 0);
642
643 so->so_upcallusecount--;
644 /* Tell close that it's safe to proceed */
645 if ((so->so_flags & SOF_CLOSEWAIT) &&
646 so->so_upcallusecount == 0)
647 wakeup((caddr_t)&so->so_upcallusecount);
648 }
649 #if CONTENT_FILTER
650 /*
651 * Trap disconnection events for content filters
652 */
653 if ((so->so_flags & SOF_CONTENT_FILTER) != 0) {
654 if ((sb->sb_flags & SB_RECV)) {
655 if (so->so_state & (SS_CANTRCVMORE))
656 cfil_sock_notify_shutdown(so, SHUT_RD);
657 } else {
658 if (so->so_state & (SS_CANTSENDMORE))
659 cfil_sock_notify_shutdown(so, SHUT_WR);
660 }
661 }
662 #endif /* CONTENT_FILTER */
663 }
664
665 /*
666 * Socket buffer (struct sockbuf) utility routines.
667 *
668 * Each socket contains two socket buffers: one for sending data and
669 * one for receiving data. Each buffer contains a queue of mbufs,
670 * information about the number of mbufs and amount of data in the
671 * queue, and other fields allowing select() statements and notification
672 * on data availability to be implemented.
673 *
674 * Data stored in a socket buffer is maintained as a list of records.
675 * Each record is a list of mbufs chained together with the m_next
676 * field. Records are chained together with the m_nextpkt field. The upper
677 * level routine soreceive() expects the following conventions to be
678 * observed when placing information in the receive buffer:
679 *
680 * 1. If the protocol requires each message be preceded by the sender's
681 * name, then a record containing that name must be present before
682 * any associated data (mbuf's must be of type MT_SONAME).
683 * 2. If the protocol supports the exchange of ``access rights'' (really
684 * just additional data associated with the message), and there are
685 * ``rights'' to be received, then a record containing this data
686 * should be present (mbuf's must be of type MT_RIGHTS).
687 * 3. If a name or rights record exists, then it must be followed by
688 * a data record, perhaps of zero length.
689 *
690 * Before using a new socket structure it is first necessary to reserve
691 * buffer space to the socket, by calling sbreserve(). This should commit
692 * some of the available buffer space in the system buffer pool for the
693 * socket (currently, it does nothing but enforce limits). The space
694 * should be released by calling sbrelease() when the socket is destroyed.
695 */
696
697 /*
698 * Returns: 0 Success
699 * ENOBUFS
700 */
701 int
702 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
703 {
704 if (sbreserve(&so->so_snd, sndcc) == 0)
705 goto bad;
706 else
707 so->so_snd.sb_idealsize = sndcc;
708
709 if (sbreserve(&so->so_rcv, rcvcc) == 0)
710 goto bad2;
711 else
712 so->so_rcv.sb_idealsize = rcvcc;
713
714 if (so->so_rcv.sb_lowat == 0)
715 so->so_rcv.sb_lowat = 1;
716 if (so->so_snd.sb_lowat == 0)
717 so->so_snd.sb_lowat = MCLBYTES;
718 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
719 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
720 return (0);
721 bad2:
722 so->so_snd.sb_flags &= ~SB_SEL;
723 selthreadclear(&so->so_snd.sb_sel);
724 sbrelease(&so->so_snd);
725 bad:
726 return (ENOBUFS);
727 }
728
729 void
730 soreserve_preconnect(struct socket *so, unsigned int pre_cc)
731 {
732 /* As of now, same bytes for both preconnect read and write */
733 so->so_snd.sb_preconn_hiwat = pre_cc;
734 so->so_rcv.sb_preconn_hiwat = pre_cc;
735 }
736
737 /*
738 * Allot mbufs to a sockbuf.
739 * Attempt to scale mbmax so that mbcnt doesn't become limiting
740 * if buffering efficiency is near the normal case.
741 */
742 int
743 sbreserve(struct sockbuf *sb, u_int32_t cc)
744 {
745 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
746 return (0);
747 sb->sb_hiwat = cc;
748 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
749 if (sb->sb_lowat > sb->sb_hiwat)
750 sb->sb_lowat = sb->sb_hiwat;
751 return (1);
752 }
753
754 /*
755 * Free mbufs held by a socket, and reserved mbuf space.
756 */
757 /* WARNING needs to do selthreadclear() before calling this */
758 void
759 sbrelease(struct sockbuf *sb)
760 {
761 sbflush(sb);
762 sb->sb_hiwat = 0;
763 sb->sb_mbmax = 0;
764 }
765
766 /*
767 * Routines to add and remove
768 * data from an mbuf queue.
769 *
770 * The routines sbappend() or sbappendrecord() are normally called to
771 * append new mbufs to a socket buffer, after checking that adequate
772 * space is available, comparing the function sbspace() with the amount
773 * of data to be added. sbappendrecord() differs from sbappend() in
774 * that data supplied is treated as the beginning of a new record.
775 * To place a sender's address, optional access rights, and data in a
776 * socket receive buffer, sbappendaddr() should be used. To place
777 * access rights and data in a socket receive buffer, sbappendrights()
778 * should be used. In either case, the new data begins a new record.
779 * Note that unlike sbappend() and sbappendrecord(), these routines check
780 * for the caller that there will be enough space to store the data.
781 * Each fails if there is not enough space, or if it cannot find mbufs
782 * to store additional information in.
783 *
784 * Reliable protocols may use the socket send buffer to hold data
785 * awaiting acknowledgement. Data is normally copied from a socket
786 * send buffer in a protocol with m_copy for output to a peer,
787 * and then removing the data from the socket buffer with sbdrop()
788 * or sbdroprecord() when the data is acknowledged by the peer.
789 */
790
791 /*
792 * Append mbuf chain m to the last record in the
793 * socket buffer sb. The additional space associated
794 * the mbuf chain is recorded in sb. Empty mbufs are
795 * discarded and mbufs are compacted where possible.
796 */
797 int
798 sbappend(struct sockbuf *sb, struct mbuf *m)
799 {
800 struct socket *so = sb->sb_so;
801
802 if (m == NULL || (sb->sb_flags & SB_DROP)) {
803 if (m != NULL)
804 m_freem(m);
805 return (0);
806 }
807
808 SBLASTRECORDCHK(sb, "sbappend 1");
809
810 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
811 return (sbappendrecord(sb, m));
812
813 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
814 int error = sflt_data_in(so, NULL, &m, NULL, 0);
815 SBLASTRECORDCHK(sb, "sbappend 2");
816
817 #if CONTENT_FILTER
818 if (error == 0)
819 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
820 #endif /* CONTENT_FILTER */
821
822 if (error != 0) {
823 if (error != EJUSTRETURN)
824 m_freem(m);
825 return (0);
826 }
827 } else if (m) {
828 m->m_flags &= ~M_SKIPCFIL;
829 }
830
831 /* If this is the first record, it's also the last record */
832 if (sb->sb_lastrecord == NULL)
833 sb->sb_lastrecord = m;
834
835 sbcompress(sb, m, sb->sb_mbtail);
836 SBLASTRECORDCHK(sb, "sbappend 3");
837 return (1);
838 }
839
840 /*
841 * Similar to sbappend, except that this is optimized for stream sockets.
842 */
843 int
844 sbappendstream(struct sockbuf *sb, struct mbuf *m)
845 {
846 struct socket *so = sb->sb_so;
847
848 if (m == NULL || (sb->sb_flags & SB_DROP)) {
849 if (m != NULL)
850 m_freem(m);
851 return (0);
852 }
853
854 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
855 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
856 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
857 /* NOTREACHED */
858 }
859
860 SBLASTMBUFCHK(sb, __func__);
861
862 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
863 int error = sflt_data_in(so, NULL, &m, NULL, 0);
864 SBLASTRECORDCHK(sb, "sbappendstream 1");
865
866 #if CONTENT_FILTER
867 if (error == 0)
868 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
869 #endif /* CONTENT_FILTER */
870
871 if (error != 0) {
872 if (error != EJUSTRETURN)
873 m_freem(m);
874 return (0);
875 }
876 } else if (m) {
877 m->m_flags &= ~M_SKIPCFIL;
878 }
879
880 sbcompress(sb, m, sb->sb_mbtail);
881 sb->sb_lastrecord = sb->sb_mb;
882 SBLASTRECORDCHK(sb, "sbappendstream 2");
883 return (1);
884 }
885
886 #ifdef SOCKBUF_DEBUG
887 void
888 sbcheck(struct sockbuf *sb)
889 {
890 struct mbuf *m;
891 struct mbuf *n = 0;
892 u_int32_t len = 0, mbcnt = 0;
893 lck_mtx_t *mutex_held;
894
895 if (sb->sb_so->so_proto->pr_getlock != NULL)
896 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
897 else
898 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
899
900 LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
901
902 if (sbchecking == 0)
903 return;
904
905 for (m = sb->sb_mb; m; m = n) {
906 n = m->m_nextpkt;
907 for (; m; m = m->m_next) {
908 len += m->m_len;
909 mbcnt += MSIZE;
910 /* XXX pretty sure this is bogus */
911 if (m->m_flags & M_EXT)
912 mbcnt += m->m_ext.ext_size;
913 }
914 }
915 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
916 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
917 mbcnt, sb->sb_mbcnt);
918 }
919 }
920 #endif
921
922 void
923 sblastrecordchk(struct sockbuf *sb, const char *where)
924 {
925 struct mbuf *m = sb->sb_mb;
926
927 while (m && m->m_nextpkt)
928 m = m->m_nextpkt;
929
930 if (m != sb->sb_lastrecord) {
931 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
932 "last 0x%llx\n",
933 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
934 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord),
935 (uint64_t)VM_KERNEL_ADDRPERM(m));
936 printf("packet chain:\n");
937 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
938 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m));
939 panic("sblastrecordchk from %s", where);
940 }
941 }
942
943 void
944 sblastmbufchk(struct sockbuf *sb, const char *where)
945 {
946 struct mbuf *m = sb->sb_mb;
947 struct mbuf *n;
948
949 while (m && m->m_nextpkt)
950 m = m->m_nextpkt;
951
952 while (m && m->m_next)
953 m = m->m_next;
954
955 if (m != sb->sb_mbtail) {
956 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
957 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
958 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail),
959 (uint64_t)VM_KERNEL_ADDRPERM(m));
960 printf("packet tree:\n");
961 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
962 printf("\t");
963 for (n = m; n != NULL; n = n->m_next)
964 printf("0x%llx ",
965 (uint64_t)VM_KERNEL_ADDRPERM(n));
966 printf("\n");
967 }
968 panic("sblastmbufchk from %s", where);
969 }
970 }
971
972 /*
973 * Similar to sbappend, except the mbuf chain begins a new record.
974 */
975 int
976 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
977 {
978 struct mbuf *m;
979 int space = 0;
980
981 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
982 if (m0 != NULL)
983 m_freem(m0);
984 return (0);
985 }
986
987 for (m = m0; m != NULL; m = m->m_next)
988 space += m->m_len;
989
990 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
991 m_freem(m0);
992 return (0);
993 }
994
995 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
996 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
997 sock_data_filt_flag_record);
998
999 #if CONTENT_FILTER
1000 if (error == 0)
1001 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
1002 #endif /* CONTENT_FILTER */
1003
1004 if (error != 0) {
1005 SBLASTRECORDCHK(sb, "sbappendrecord 1");
1006 if (error != EJUSTRETURN)
1007 m_freem(m0);
1008 return (0);
1009 }
1010 } else if (m0) {
1011 m0->m_flags &= ~M_SKIPCFIL;
1012 }
1013
1014 /*
1015 * Note this permits zero length records.
1016 */
1017 sballoc(sb, m0);
1018 SBLASTRECORDCHK(sb, "sbappendrecord 2");
1019 if (sb->sb_lastrecord != NULL) {
1020 sb->sb_lastrecord->m_nextpkt = m0;
1021 } else {
1022 sb->sb_mb = m0;
1023 }
1024 sb->sb_lastrecord = m0;
1025 sb->sb_mbtail = m0;
1026
1027 m = m0->m_next;
1028 m0->m_next = 0;
1029 if (m && (m0->m_flags & M_EOR)) {
1030 m0->m_flags &= ~M_EOR;
1031 m->m_flags |= M_EOR;
1032 }
1033 sbcompress(sb, m, m0);
1034 SBLASTRECORDCHK(sb, "sbappendrecord 3");
1035 return (1);
1036 }
1037
1038 /*
1039 * As above except that OOB data
1040 * is inserted at the beginning of the sockbuf,
1041 * but after any other OOB data.
1042 */
1043 int
1044 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
1045 {
1046 struct mbuf *m;
1047 struct mbuf **mp;
1048
1049 if (m0 == 0)
1050 return (0);
1051
1052 SBLASTRECORDCHK(sb, "sbinsertoob 1");
1053
1054 if ((sb->sb_flags & SB_RECV && !(m0->m_flags & M_SKIPCFIL)) != 0) {
1055 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
1056 sock_data_filt_flag_oob);
1057
1058 SBLASTRECORDCHK(sb, "sbinsertoob 2");
1059
1060 #if CONTENT_FILTER
1061 if (error == 0)
1062 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
1063 #endif /* CONTENT_FILTER */
1064
1065 if (error) {
1066 if (error != EJUSTRETURN) {
1067 m_freem(m0);
1068 }
1069 return (0);
1070 }
1071 } else if (m0) {
1072 m0->m_flags &= ~M_SKIPCFIL;
1073 }
1074
1075 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
1076 m = *mp;
1077 again:
1078 switch (m->m_type) {
1079
1080 case MT_OOBDATA:
1081 continue; /* WANT next train */
1082
1083 case MT_CONTROL:
1084 m = m->m_next;
1085 if (m)
1086 goto again; /* inspect THIS train further */
1087 }
1088 break;
1089 }
1090 /*
1091 * Put the first mbuf on the queue.
1092 * Note this permits zero length records.
1093 */
1094 sballoc(sb, m0);
1095 m0->m_nextpkt = *mp;
1096 if (*mp == NULL) {
1097 /* m0 is actually the new tail */
1098 sb->sb_lastrecord = m0;
1099 }
1100 *mp = m0;
1101 m = m0->m_next;
1102 m0->m_next = 0;
1103 if (m && (m0->m_flags & M_EOR)) {
1104 m0->m_flags &= ~M_EOR;
1105 m->m_flags |= M_EOR;
1106 }
1107 sbcompress(sb, m, m0);
1108 SBLASTRECORDCHK(sb, "sbinsertoob 3");
1109 return (1);
1110 }
1111
1112 /*
1113 * Append address and data, and optionally, control (ancillary) data
1114 * to the receive queue of a socket. If present,
1115 * m0 must include a packet header with total length.
1116 * Returns 0 if no space in sockbuf or insufficient mbufs.
1117 *
1118 * Returns: 0 No space/out of mbufs
1119 * 1 Success
1120 */
1121 static int
1122 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
1123 struct mbuf *m0, struct mbuf *control)
1124 {
1125 struct mbuf *m, *n, *nlast;
1126 int space = asa->sa_len;
1127
1128 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1129 panic("sbappendaddr");
1130
1131 if (m0)
1132 space += m0->m_pkthdr.len;
1133 for (n = control; n; n = n->m_next) {
1134 space += n->m_len;
1135 if (n->m_next == 0) /* keep pointer to last control buf */
1136 break;
1137 }
1138 if (space > sbspace(sb))
1139 return (0);
1140 if (asa->sa_len > MLEN)
1141 return (0);
1142 MGET(m, M_DONTWAIT, MT_SONAME);
1143 if (m == 0)
1144 return (0);
1145 m->m_len = asa->sa_len;
1146 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
1147 if (n)
1148 n->m_next = m0; /* concatenate data to control */
1149 else
1150 control = m0;
1151 m->m_next = control;
1152
1153 SBLASTRECORDCHK(sb, "sbappendadddr 1");
1154
1155 for (n = m; n->m_next != NULL; n = n->m_next)
1156 sballoc(sb, n);
1157 sballoc(sb, n);
1158 nlast = n;
1159
1160 if (sb->sb_lastrecord != NULL) {
1161 sb->sb_lastrecord->m_nextpkt = m;
1162 } else {
1163 sb->sb_mb = m;
1164 }
1165 sb->sb_lastrecord = m;
1166 sb->sb_mbtail = nlast;
1167
1168 SBLASTMBUFCHK(sb, __func__);
1169 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1170
1171 postevent(0, sb, EV_RWBYTES);
1172 return (1);
1173 }
1174
1175 /*
1176 * Returns: 0 Error: No space/out of mbufs/etc.
1177 * 1 Success
1178 *
1179 * Imputed: (*error_out) errno for error
1180 * ENOBUFS
1181 * sflt_data_in:??? [whatever a filter author chooses]
1182 */
1183 int
1184 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1185 struct mbuf *control, int *error_out)
1186 {
1187 int result = 0;
1188 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1189
1190 if (error_out)
1191 *error_out = 0;
1192
1193 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1194 panic("sbappendaddrorfree");
1195
1196 if (sb->sb_flags & SB_DROP) {
1197 if (m0 != NULL)
1198 m_freem(m0);
1199 if (control != NULL && !sb_unix)
1200 m_freem(control);
1201 if (error_out != NULL)
1202 *error_out = EINVAL;
1203 return (0);
1204 }
1205
1206 /* Call socket data in filters */
1207 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1208 int error;
1209 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
1210 SBLASTRECORDCHK(sb, __func__);
1211
1212 #if CONTENT_FILTER
1213 if (error == 0)
1214 error = cfil_sock_data_in(sb->sb_so, asa, m0, control,
1215 0);
1216 #endif /* CONTENT_FILTER */
1217
1218 if (error) {
1219 if (error != EJUSTRETURN) {
1220 if (m0)
1221 m_freem(m0);
1222 if (control != NULL && !sb_unix)
1223 m_freem(control);
1224 if (error_out)
1225 *error_out = error;
1226 }
1227 return (0);
1228 }
1229 } else if (m0) {
1230 m0->m_flags &= ~M_SKIPCFIL;
1231 }
1232
1233 result = sbappendaddr_internal(sb, asa, m0, control);
1234 if (result == 0) {
1235 if (m0)
1236 m_freem(m0);
1237 if (control != NULL && !sb_unix)
1238 m_freem(control);
1239 if (error_out)
1240 *error_out = ENOBUFS;
1241 }
1242
1243 return (result);
1244 }
1245
1246 static int
1247 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1248 struct mbuf *control)
1249 {
1250 struct mbuf *m, *mlast, *n;
1251 int space = 0;
1252
1253 if (control == 0)
1254 panic("sbappendcontrol");
1255
1256 for (m = control; ; m = m->m_next) {
1257 space += m->m_len;
1258 if (m->m_next == 0)
1259 break;
1260 }
1261 n = m; /* save pointer to last control buffer */
1262 for (m = m0; m; m = m->m_next)
1263 space += m->m_len;
1264 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1265 return (0);
1266 n->m_next = m0; /* concatenate data to control */
1267 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1268
1269 for (m = control; m->m_next != NULL; m = m->m_next)
1270 sballoc(sb, m);
1271 sballoc(sb, m);
1272 mlast = m;
1273
1274 if (sb->sb_lastrecord != NULL) {
1275 sb->sb_lastrecord->m_nextpkt = control;
1276 } else {
1277 sb->sb_mb = control;
1278 }
1279 sb->sb_lastrecord = control;
1280 sb->sb_mbtail = mlast;
1281
1282 SBLASTMBUFCHK(sb, __func__);
1283 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1284
1285 postevent(0, sb, EV_RWBYTES);
1286 return (1);
1287 }
1288
1289 int
1290 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1291 int *error_out)
1292 {
1293 int result = 0;
1294 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1295
1296 if (error_out)
1297 *error_out = 0;
1298
1299 if (sb->sb_flags & SB_DROP) {
1300 if (m0 != NULL)
1301 m_freem(m0);
1302 if (control != NULL && !sb_unix)
1303 m_freem(control);
1304 if (error_out != NULL)
1305 *error_out = EINVAL;
1306 return (0);
1307 }
1308
1309 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1310 int error;
1311
1312 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
1313 SBLASTRECORDCHK(sb, __func__);
1314
1315 #if CONTENT_FILTER
1316 if (error == 0)
1317 error = cfil_sock_data_in(sb->sb_so, NULL, m0, control,
1318 0);
1319 #endif /* CONTENT_FILTER */
1320
1321 if (error) {
1322 if (error != EJUSTRETURN) {
1323 if (m0)
1324 m_freem(m0);
1325 if (control != NULL && !sb_unix)
1326 m_freem(control);
1327 if (error_out)
1328 *error_out = error;
1329 }
1330 return (0);
1331 }
1332 } else if (m0) {
1333 m0->m_flags &= ~M_SKIPCFIL;
1334 }
1335
1336 result = sbappendcontrol_internal(sb, m0, control);
1337 if (result == 0) {
1338 if (m0)
1339 m_freem(m0);
1340 if (control != NULL && !sb_unix)
1341 m_freem(control);
1342 if (error_out)
1343 *error_out = ENOBUFS;
1344 }
1345
1346 return (result);
1347 }
1348
1349 /*
1350 * Append a contiguous TCP data blob with TCP sequence number as control data
1351 * as a new msg to the receive socket buffer.
1352 */
1353 int
1354 sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum,
1355 int unordered)
1356 {
1357 struct mbuf *m_eor = NULL;
1358 u_int32_t data_len = 0;
1359 int ret = 0;
1360 struct socket *so = sb->sb_so;
1361
1362 VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0);
1363 VERIFY(so->so_msg_state != NULL);
1364 VERIFY(sb->sb_flags & SB_RECV);
1365
1366 /* Keep the TCP sequence number in the mbuf pkthdr */
1367 m->m_pkthdr.msg_seq = seqnum;
1368
1369 /* find last mbuf and set M_EOR */
1370 for (m_eor = m; ; m_eor = m_eor->m_next) {
1371 /*
1372 * If the msg is unordered, we need to account for
1373 * these bytes in receive socket buffer size. Otherwise,
1374 * the receive window advertised will shrink because
1375 * of the additional unordered bytes added to the
1376 * receive buffer.
1377 */
1378 if (unordered) {
1379 m_eor->m_flags |= M_UNORDERED_DATA;
1380 data_len += m_eor->m_len;
1381 so->so_msg_state->msg_uno_bytes += m_eor->m_len;
1382 } else {
1383 m_eor->m_flags &= ~M_UNORDERED_DATA;
1384 }
1385 if (m_eor->m_next == NULL)
1386 break;
1387 }
1388
1389 /* set EOR flag at end of byte blob */
1390 m_eor->m_flags |= M_EOR;
1391
1392 /* expand the receive socket buffer to allow unordered data */
1393 if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) {
1394 /*
1395 * Could not allocate memory for unordered data, it
1396 * means this packet will have to be delivered in order
1397 */
1398 printf("%s: could not reserve space for unordered data\n",
1399 __func__);
1400 }
1401
1402 if (!unordered && (sb->sb_mbtail != NULL) &&
1403 !(sb->sb_mbtail->m_flags & M_UNORDERED_DATA)) {
1404 sb->sb_mbtail->m_flags &= ~M_EOR;
1405 sbcompress(sb, m, sb->sb_mbtail);
1406 ret = 1;
1407 } else {
1408 ret = sbappendrecord(sb, m);
1409 }
1410 VERIFY(sb->sb_mbtail->m_flags & M_EOR);
1411 return (ret);
1412 }
1413
1414 /*
1415 * TCP streams have message based out of order delivery support, or have
1416 * Multipath TCP support, or are regular TCP sockets
1417 */
1418 int
1419 sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum,
1420 int unordered)
1421 {
1422 int ret = 0;
1423
1424 if ((m != NULL) &&
1425 m_pktlen(m) <= 0 &&
1426 !((so->so_flags & SOF_MP_SUBFLOW) &&
1427 (m->m_flags & M_PKTHDR) &&
1428 (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN))) {
1429 m_freem(m);
1430 return (ret);
1431 }
1432
1433 if (so->so_flags & SOF_ENABLE_MSGS) {
1434 ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered);
1435 }
1436 #if MPTCP
1437 else if (so->so_flags & SOF_MP_SUBFLOW) {
1438 ret = sbappendmptcpstream_rcv(&so->so_rcv, m);
1439 }
1440 #endif /* MPTCP */
1441 else {
1442 ret = sbappendstream(&so->so_rcv, m);
1443 }
1444 return (ret);
1445 }
1446
1447 #if MPTCP
1448 int
1449 sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m)
1450 {
1451 struct socket *so = sb->sb_so;
1452
1453 VERIFY(m == NULL || (m->m_flags & M_PKTHDR));
1454 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1455 VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) ==
1456 (SB_RECV|SB_NOCOMPRESS));
1457
1458 if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) ||
1459 (so->so_state & SS_CANTRCVMORE)) {
1460 if (m && (m->m_flags & M_PKTHDR) &&
1461 m_pktlen(m) == 0 &&
1462 (m->m_pkthdr.pkt_flags & PKTF_MPTCP_DFIN)) {
1463 mptcp_input(tptomptp(sototcpcb(so))->mpt_mpte, m);
1464 return (1);
1465 } else if (m != NULL) {
1466 m_freem(m);
1467 }
1468 return (0);
1469 }
1470 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1471 VERIFY(so->so_flags & SOF_MP_SUBFLOW);
1472
1473 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
1474 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__,
1475 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1476 /* NOTREACHED */
1477 }
1478
1479 SBLASTMBUFCHK(sb, __func__);
1480
1481 /* No filter support (SB_RECV) on mptcp subflow sockets */
1482
1483 sbcompress(sb, m, sb->sb_mbtail);
1484 sb->sb_lastrecord = sb->sb_mb;
1485 SBLASTRECORDCHK(sb, __func__);
1486 return (1);
1487 }
1488 #endif /* MPTCP */
1489
1490 /*
1491 * Append message to send socket buffer based on priority.
1492 */
1493 int
1494 sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m)
1495 {
1496 struct socket *so = sb->sb_so;
1497 struct msg_priq *priq;
1498 int set_eor = 0;
1499
1500 VERIFY(so->so_msg_state != NULL);
1501
1502 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
1503 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1504 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1505
1506 SBLASTMBUFCHK(sb, __func__);
1507
1508 if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) {
1509 if (m != NULL)
1510 m_freem(m);
1511 return (0);
1512 }
1513
1514 priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri];
1515
1516 /* note if we need to propogate M_EOR to the last mbuf */
1517 if (m->m_flags & M_EOR) {
1518 set_eor = 1;
1519
1520 /* Reset M_EOR from the first mbuf */
1521 m->m_flags &= ~(M_EOR);
1522 }
1523
1524 if (priq->msgq_head == NULL) {
1525 VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL);
1526 priq->msgq_head = priq->msgq_lastmsg = m;
1527 } else {
1528 VERIFY(priq->msgq_tail->m_next == NULL);
1529
1530 /* Check if the last message has M_EOR flag set */
1531 if (priq->msgq_tail->m_flags & M_EOR) {
1532 /* Insert as a new message */
1533 priq->msgq_lastmsg->m_nextpkt = m;
1534
1535 /* move the lastmsg pointer */
1536 priq->msgq_lastmsg = m;
1537 } else {
1538 /* Append to the existing message */
1539 priq->msgq_tail->m_next = m;
1540 }
1541 }
1542
1543 /* Update accounting and the queue tail pointer */
1544
1545 while (m->m_next != NULL) {
1546 sballoc(sb, m);
1547 priq->msgq_bytes += m->m_len;
1548 m = m->m_next;
1549 }
1550 sballoc(sb, m);
1551 priq->msgq_bytes += m->m_len;
1552
1553 if (set_eor) {
1554 m->m_flags |= M_EOR;
1555
1556 /*
1557 * Since the user space can not write a new msg
1558 * without completing the previous one, we can
1559 * reset this flag to start sending again.
1560 */
1561 priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE);
1562 }
1563
1564 priq->msgq_tail = m;
1565
1566 SBLASTRECORDCHK(sb, "sbappendstream 2");
1567 postevent(0, sb, EV_RWBYTES);
1568 return (1);
1569 }
1570
1571 /*
1572 * Pull data from priority queues to the serial snd queue
1573 * right before sending.
1574 */
1575 void
1576 sbpull_unordered_data(struct socket *so, int32_t off, int32_t len)
1577 {
1578 int32_t topull, i;
1579 struct msg_priq *priq = NULL;
1580
1581 VERIFY(so->so_msg_state != NULL);
1582
1583 topull = (off + len) - so->so_msg_state->msg_serial_bytes;
1584
1585 i = MSG_PRI_MAX;
1586 while (i >= MSG_PRI_MIN && topull > 0) {
1587 struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL;
1588 priq = &so->so_msg_state->msg_priq[i];
1589 if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) &&
1590 priq->msgq_head == NULL) {
1591 /*
1592 * We were in the middle of sending
1593 * a message and we have not seen the
1594 * end of it.
1595 */
1596 VERIFY(priq->msgq_lastmsg == NULL &&
1597 priq->msgq_tail == NULL);
1598 return;
1599 }
1600 if (priq->msgq_head != NULL) {
1601 int32_t bytes = 0, topull_tmp = topull;
1602 /*
1603 * We found a msg while scanning the priority
1604 * queue from high to low priority.
1605 */
1606 m = priq->msgq_head;
1607 mqhead = m;
1608 mend = m;
1609
1610 /*
1611 * Move bytes from the priority queue to the
1612 * serial queue. Compute the number of bytes
1613 * being added.
1614 */
1615 while (mqhead->m_next != NULL && topull_tmp > 0) {
1616 bytes += mqhead->m_len;
1617 topull_tmp -= mqhead->m_len;
1618 mend = mqhead;
1619 mqhead = mqhead->m_next;
1620 }
1621
1622 if (mqhead->m_next == NULL) {
1623 /*
1624 * If we have only one more mbuf left,
1625 * move the last mbuf of this message to
1626 * serial queue and set the head of the
1627 * queue to be the next message.
1628 */
1629 bytes += mqhead->m_len;
1630 mend = mqhead;
1631 mqhead = m->m_nextpkt;
1632 if (!(mend->m_flags & M_EOR)) {
1633 /*
1634 * We have not seen the end of
1635 * this message, so we can not
1636 * pull anymore.
1637 */
1638 priq->msgq_flags |= MSGQ_MSG_NOTDONE;
1639 } else {
1640 /* Reset M_EOR */
1641 mend->m_flags &= ~(M_EOR);
1642 }
1643 } else {
1644 /* propogate the next msg pointer */
1645 mqhead->m_nextpkt = m->m_nextpkt;
1646 }
1647 priq->msgq_head = mqhead;
1648
1649 /*
1650 * if the lastmsg pointer points to
1651 * the mbuf that is being dequeued, update
1652 * it to point to the new head.
1653 */
1654 if (priq->msgq_lastmsg == m)
1655 priq->msgq_lastmsg = priq->msgq_head;
1656
1657 m->m_nextpkt = NULL;
1658 mend->m_next = NULL;
1659
1660 if (priq->msgq_head == NULL) {
1661 /* Moved all messages, update tail */
1662 priq->msgq_tail = NULL;
1663 VERIFY(priq->msgq_lastmsg == NULL);
1664 }
1665
1666 /* Move it to serial sb_mb queue */
1667 if (so->so_snd.sb_mb == NULL) {
1668 so->so_snd.sb_mb = m;
1669 } else {
1670 so->so_snd.sb_mbtail->m_next = m;
1671 }
1672
1673 priq->msgq_bytes -= bytes;
1674 VERIFY(priq->msgq_bytes >= 0);
1675 sbwakeup(&so->so_snd);
1676
1677 so->so_msg_state->msg_serial_bytes += bytes;
1678 so->so_snd.sb_mbtail = mend;
1679 so->so_snd.sb_lastrecord = so->so_snd.sb_mb;
1680
1681 topull =
1682 (off + len) - so->so_msg_state->msg_serial_bytes;
1683
1684 if (priq->msgq_flags & MSGQ_MSG_NOTDONE)
1685 break;
1686 } else {
1687 --i;
1688 }
1689 }
1690 sblastrecordchk(&so->so_snd, "sbpull_unordered_data");
1691 sblastmbufchk(&so->so_snd, "sbpull_unordered_data");
1692 }
1693
1694 /*
1695 * Compress mbuf chain m into the socket
1696 * buffer sb following mbuf n. If n
1697 * is null, the buffer is presumed empty.
1698 */
1699 static inline void
1700 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1701 {
1702 int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS));
1703 struct mbuf *o;
1704
1705 if (m == NULL) {
1706 /* There is nothing to compress; just update the tail */
1707 for (; n->m_next != NULL; n = n->m_next)
1708 ;
1709 sb->sb_mbtail = n;
1710 goto done;
1711 }
1712
1713 while (m != NULL) {
1714 eor |= m->m_flags & M_EOR;
1715 if (compress && m->m_len == 0 && (eor == 0 ||
1716 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1717 if (sb->sb_lastrecord == m)
1718 sb->sb_lastrecord = m->m_next;
1719 m = m_free(m);
1720 continue;
1721 }
1722 if (compress && n != NULL && (n->m_flags & M_EOR) == 0 &&
1723 #ifndef __APPLE__
1724 M_WRITABLE(n) &&
1725 #endif
1726 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1727 m->m_len <= M_TRAILINGSPACE(n) &&
1728 n->m_type == m->m_type) {
1729 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1730 (unsigned)m->m_len);
1731 n->m_len += m->m_len;
1732 sb->sb_cc += m->m_len;
1733 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1734 m->m_type != MT_OOBDATA) {
1735 /* XXX: Probably don't need */
1736 sb->sb_ctl += m->m_len;
1737 }
1738
1739 /* update send byte count */
1740 if (sb->sb_flags & SB_SNDBYTE_CNT) {
1741 inp_incr_sndbytes_total(sb->sb_so,
1742 m->m_len);
1743 inp_incr_sndbytes_unsent(sb->sb_so,
1744 m->m_len);
1745 }
1746 m = m_free(m);
1747 continue;
1748 }
1749 if (n != NULL)
1750 n->m_next = m;
1751 else
1752 sb->sb_mb = m;
1753 sb->sb_mbtail = m;
1754 sballoc(sb, m);
1755 n = m;
1756 m->m_flags &= ~M_EOR;
1757 m = m->m_next;
1758 n->m_next = NULL;
1759 }
1760 if (eor != 0) {
1761 if (n != NULL)
1762 n->m_flags |= eor;
1763 else
1764 printf("semi-panic: sbcompress\n");
1765 }
1766 done:
1767 SBLASTMBUFCHK(sb, __func__);
1768 postevent(0, sb, EV_RWBYTES);
1769 }
1770
1771 void
1772 sb_empty_assert(struct sockbuf *sb, const char *where)
1773 {
1774 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1775 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1776 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1777 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1778 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail,
1779 sb->sb_lastrecord);
1780 /* NOTREACHED */
1781 }
1782 }
1783
1784 static void
1785 sbflush_priq(struct msg_priq *priq)
1786 {
1787 struct mbuf *m;
1788 m = priq->msgq_head;
1789 if (m != NULL)
1790 m_freem_list(m);
1791 priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL;
1792 priq->msgq_bytes = priq->msgq_flags = 0;
1793 }
1794
1795 /*
1796 * Free all mbufs in a sockbuf.
1797 * Check that all resources are reclaimed.
1798 */
1799 void
1800 sbflush(struct sockbuf *sb)
1801 {
1802 void *lr_saved = __builtin_return_address(0);
1803 struct socket *so = sb->sb_so;
1804 u_int32_t i;
1805
1806 /* so_usecount may be 0 if we get here from sofreelastref() */
1807 if (so == NULL) {
1808 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1809 __func__, sb, sb->sb_flags, lr_saved);
1810 /* NOTREACHED */
1811 } else if (so->so_usecount < 0) {
1812 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1813 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
1814 so->so_usecount, lr_saved, solockhistory_nr(so));
1815 /* NOTREACHED */
1816 }
1817
1818 /*
1819 * Obtain lock on the socket buffer (SB_LOCK). This is required
1820 * to prevent the socket buffer from being unexpectedly altered
1821 * while it is used by another thread in socket send/receive.
1822 *
1823 * sblock() must not fail here, hence the assertion.
1824 */
1825 (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT);
1826 VERIFY(sb->sb_flags & SB_LOCK);
1827
1828 while (sb->sb_mbcnt > 0) {
1829 /*
1830 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1831 * we would loop forever. Panic instead.
1832 */
1833 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1834 break;
1835 sbdrop(sb, (int)sb->sb_cc);
1836 }
1837
1838 if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) {
1839 VERIFY(so->so_msg_state != NULL);
1840 for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) {
1841 sbflush_priq(&so->so_msg_state->msg_priq[i]);
1842 }
1843 so->so_msg_state->msg_serial_bytes = 0;
1844 so->so_msg_state->msg_uno_bytes = 0;
1845 }
1846
1847 sb_empty_assert(sb, __func__);
1848 postevent(0, sb, EV_RWBYTES);
1849
1850 sbunlock(sb, TRUE); /* keep socket locked */
1851 }
1852
1853 /*
1854 * Drop data from (the front of) a sockbuf.
1855 * use m_freem_list to free the mbuf structures
1856 * under a single lock... this is done by pruning
1857 * the top of the tree from the body by keeping track
1858 * of where we get to in the tree and then zeroing the
1859 * two pertinent pointers m_nextpkt and m_next
1860 * the socket buffer is then updated to point at the new
1861 * top of the tree and the pruned area is released via
1862 * m_freem_list.
1863 */
1864 void
1865 sbdrop(struct sockbuf *sb, int len)
1866 {
1867 struct mbuf *m, *free_list, *ml;
1868 struct mbuf *next, *last;
1869
1870 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1871 #if MPTCP
1872 if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) &&
1873 ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) ||
1874 (SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH) &&
1875 SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP))) &&
1876 !(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) {
1877 mptcp_preproc_sbdrop(sb->sb_so, m, (unsigned int)len);
1878 }
1879 if (m != NULL && len > 0 && !(sb->sb_flags & SB_RECV) &&
1880 (sb->sb_so->so_flags & SOF_MP_SUBFLOW) &&
1881 (sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC)) {
1882 mptcp_fallback_sbdrop(sb->sb_so, m, len);
1883 }
1884 #endif /* MPTCP */
1885 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1886
1887 free_list = last = m;
1888 ml = (struct mbuf *)0;
1889
1890 while (len > 0) {
1891 if (m == NULL) {
1892 if (next == NULL) {
1893 /*
1894 * temporarily replacing this panic with printf
1895 * because it occurs occasionally when closing
1896 * a socket when there is no harm in ignoring
1897 * it. This problem will be investigated
1898 * further.
1899 */
1900 /* panic("sbdrop"); */
1901 printf("sbdrop - count not zero\n");
1902 len = 0;
1903 /*
1904 * zero the counts. if we have no mbufs,
1905 * we have no data (PR-2986815)
1906 */
1907 sb->sb_cc = 0;
1908 sb->sb_mbcnt = 0;
1909 if (!(sb->sb_flags & SB_RECV) &&
1910 (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) {
1911 sb->sb_so->so_msg_state->
1912 msg_serial_bytes = 0;
1913 }
1914 break;
1915 }
1916 m = last = next;
1917 next = m->m_nextpkt;
1918 continue;
1919 }
1920 if (m->m_len > len) {
1921 m->m_len -= len;
1922 m->m_data += len;
1923 sb->sb_cc -= len;
1924 /* update the send byte count */
1925 if (sb->sb_flags & SB_SNDBYTE_CNT)
1926 inp_decr_sndbytes_total(sb->sb_so, len);
1927 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1928 m->m_type != MT_OOBDATA)
1929 sb->sb_ctl -= len;
1930 break;
1931 }
1932 len -= m->m_len;
1933 sbfree(sb, m);
1934
1935 ml = m;
1936 m = m->m_next;
1937 }
1938 while (m && m->m_len == 0) {
1939 sbfree(sb, m);
1940
1941 ml = m;
1942 m = m->m_next;
1943 }
1944 if (ml) {
1945 ml->m_next = (struct mbuf *)0;
1946 last->m_nextpkt = (struct mbuf *)0;
1947 m_freem_list(free_list);
1948 }
1949 if (m) {
1950 sb->sb_mb = m;
1951 m->m_nextpkt = next;
1952 } else {
1953 sb->sb_mb = next;
1954 }
1955
1956 /*
1957 * First part is an inline SB_EMPTY_FIXUP(). Second part
1958 * makes sure sb_lastrecord is up-to-date if we dropped
1959 * part of the last record.
1960 */
1961 m = sb->sb_mb;
1962 if (m == NULL) {
1963 sb->sb_mbtail = NULL;
1964 sb->sb_lastrecord = NULL;
1965 } else if (m->m_nextpkt == NULL) {
1966 sb->sb_lastrecord = m;
1967 }
1968
1969 #if CONTENT_FILTER
1970 cfil_sock_buf_update(sb);
1971 #endif /* CONTENT_FILTER */
1972
1973 postevent(0, sb, EV_RWBYTES);
1974
1975 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1976 }
1977
1978 /*
1979 * Drop a record off the front of a sockbuf
1980 * and move the next record to the front.
1981 */
1982 void
1983 sbdroprecord(struct sockbuf *sb)
1984 {
1985 struct mbuf *m, *mn;
1986
1987 m = sb->sb_mb;
1988 if (m) {
1989 sb->sb_mb = m->m_nextpkt;
1990 do {
1991 sbfree(sb, m);
1992 MFREE(m, mn);
1993 m = mn;
1994 } while (m);
1995 }
1996 SB_EMPTY_FIXUP(sb);
1997 postevent(0, sb, EV_RWBYTES);
1998 }
1999
2000 /*
2001 * Create a "control" mbuf containing the specified data
2002 * with the specified type for presentation on a socket buffer.
2003 */
2004 struct mbuf *
2005 sbcreatecontrol(caddr_t p, int size, int type, int level)
2006 {
2007 struct cmsghdr *cp;
2008 struct mbuf *m;
2009
2010 if (CMSG_SPACE((u_int)size) > MLEN)
2011 return ((struct mbuf *)NULL);
2012 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
2013 return ((struct mbuf *)NULL);
2014 cp = mtod(m, struct cmsghdr *);
2015 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
2016 /* XXX check size? */
2017 (void) memcpy(CMSG_DATA(cp), p, size);
2018 m->m_len = CMSG_SPACE(size);
2019 cp->cmsg_len = CMSG_LEN(size);
2020 cp->cmsg_level = level;
2021 cp->cmsg_type = type;
2022 return (m);
2023 }
2024
2025 struct mbuf **
2026 sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp)
2027 {
2028 struct mbuf *m;
2029 struct cmsghdr *cp;
2030
2031 if (*mp == NULL) {
2032 *mp = sbcreatecontrol(p, size, type, level);
2033 return (mp);
2034 }
2035
2036 if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) {
2037 mp = &(*mp)->m_next;
2038 *mp = sbcreatecontrol(p, size, type, level);
2039 return (mp);
2040 }
2041
2042 m = *mp;
2043
2044 cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
2045 /* CMSG_SPACE ensures 32-bit alignment */
2046 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
2047 m->m_len += CMSG_SPACE(size);
2048
2049 /* XXX check size? */
2050 (void) memcpy(CMSG_DATA(cp), p, size);
2051 cp->cmsg_len = CMSG_LEN(size);
2052 cp->cmsg_level = level;
2053 cp->cmsg_type = type;
2054
2055 return (mp);
2056 }
2057
2058
2059 /*
2060 * Some routines that return EOPNOTSUPP for entry points that are not
2061 * supported by a protocol. Fill in as needed.
2062 */
2063 int
2064 pru_abort_notsupp(struct socket *so)
2065 {
2066 #pragma unused(so)
2067 return (EOPNOTSUPP);
2068 }
2069
2070 int
2071 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2072 {
2073 #pragma unused(so, nam)
2074 return (EOPNOTSUPP);
2075 }
2076
2077 int
2078 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
2079 {
2080 #pragma unused(so, proto, p)
2081 return (EOPNOTSUPP);
2082 }
2083
2084 int
2085 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2086 {
2087 #pragma unused(so, nam, p)
2088 return (EOPNOTSUPP);
2089 }
2090
2091 int
2092 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2093 {
2094 #pragma unused(so, nam, p)
2095 return (EOPNOTSUPP);
2096 }
2097
2098 int
2099 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2100 {
2101 #pragma unused(so1, so2)
2102 return (EOPNOTSUPP);
2103 }
2104
2105 int
2106 pru_connectx_notsupp(struct socket *so, struct sockaddr *src,
2107 struct sockaddr *dst, struct proc *p, uint32_t ifscope,
2108 sae_associd_t aid, sae_connid_t *pcid, uint32_t flags, void *arg,
2109 uint32_t arglen, struct uio *uio, user_ssize_t *bytes_written)
2110 {
2111 #pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2112 return (EOPNOTSUPP);
2113 }
2114
2115 int
2116 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2117 struct ifnet *ifp, struct proc *p)
2118 {
2119 #pragma unused(so, cmd, data, ifp, p)
2120 return (EOPNOTSUPP);
2121 }
2122
2123 int
2124 pru_detach_notsupp(struct socket *so)
2125 {
2126 #pragma unused(so)
2127 return (EOPNOTSUPP);
2128 }
2129
2130 int
2131 pru_disconnect_notsupp(struct socket *so)
2132 {
2133 #pragma unused(so)
2134 return (EOPNOTSUPP);
2135 }
2136
2137 int
2138 pru_disconnectx_notsupp(struct socket *so, sae_associd_t aid, sae_connid_t cid)
2139 {
2140 #pragma unused(so, aid, cid)
2141 return (EOPNOTSUPP);
2142 }
2143
2144 int
2145 pru_listen_notsupp(struct socket *so, struct proc *p)
2146 {
2147 #pragma unused(so, p)
2148 return (EOPNOTSUPP);
2149 }
2150
2151 int
2152 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2153 {
2154 #pragma unused(so, nam)
2155 return (EOPNOTSUPP);
2156 }
2157
2158 int
2159 pru_rcvd_notsupp(struct socket *so, int flags)
2160 {
2161 #pragma unused(so, flags)
2162 return (EOPNOTSUPP);
2163 }
2164
2165 int
2166 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2167 {
2168 #pragma unused(so, m, flags)
2169 return (EOPNOTSUPP);
2170 }
2171
2172 int
2173 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2174 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2175 {
2176 #pragma unused(so, flags, m, addr, control, p)
2177 return (EOPNOTSUPP);
2178 }
2179
2180 int
2181 pru_send_list_notsupp(struct socket *so, int flags, struct mbuf *m,
2182 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2183 {
2184 #pragma unused(so, flags, m, addr, control, p)
2185 return (EOPNOTSUPP);
2186 }
2187
2188 /*
2189 * This isn't really a ``null'' operation, but it's the default one
2190 * and doesn't do anything destructive.
2191 */
2192 int
2193 pru_sense_null(struct socket *so, void *ub, int isstat64)
2194 {
2195 if (isstat64 != 0) {
2196 struct stat64 *sb64;
2197
2198 sb64 = (struct stat64 *)ub;
2199 sb64->st_blksize = so->so_snd.sb_hiwat;
2200 } else {
2201 struct stat *sb;
2202
2203 sb = (struct stat *)ub;
2204 sb->st_blksize = so->so_snd.sb_hiwat;
2205 }
2206
2207 return (0);
2208 }
2209
2210
2211 int
2212 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2213 struct mbuf *top, struct mbuf *control, int flags)
2214 {
2215 #pragma unused(so, addr, uio, top, control, flags)
2216 return (EOPNOTSUPP);
2217 }
2218
2219 int
2220 pru_sosend_list_notsupp(struct socket *so, struct uio **uio,
2221 u_int uiocnt, int flags)
2222 {
2223 #pragma unused(so, uio, uiocnt, flags)
2224 return (EOPNOTSUPP);
2225 }
2226
2227 int
2228 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2229 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2230 {
2231 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2232 return (EOPNOTSUPP);
2233 }
2234
2235 int
2236 pru_soreceive_list_notsupp(struct socket *so,
2237 struct recv_msg_elem *recv_msg_array, u_int uiocnt, int *flagsp)
2238 {
2239 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2240 return (EOPNOTSUPP);
2241 }
2242
2243 int
2244 pru_shutdown_notsupp(struct socket *so)
2245 {
2246 #pragma unused(so)
2247 return (EOPNOTSUPP);
2248 }
2249
2250 int
2251 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2252 {
2253 #pragma unused(so, nam)
2254 return (EOPNOTSUPP);
2255 }
2256
2257 int
2258 pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql)
2259 {
2260 #pragma unused(so, events, cred, wql)
2261 return (EOPNOTSUPP);
2262 }
2263
2264 int
2265 pru_socheckopt_null(struct socket *so, struct sockopt *sopt)
2266 {
2267 #pragma unused(so, sopt)
2268 /*
2269 * Allow all options for set/get by default.
2270 */
2271 return (0);
2272 }
2273
2274 static int
2275 pru_preconnect_null(struct socket *so)
2276 {
2277 #pragma unused(so)
2278 return (0);
2279 }
2280
2281 void
2282 pru_sanitize(struct pr_usrreqs *pru)
2283 {
2284 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2285 DEFAULT(pru->pru_abort, pru_abort_notsupp);
2286 DEFAULT(pru->pru_accept, pru_accept_notsupp);
2287 DEFAULT(pru->pru_attach, pru_attach_notsupp);
2288 DEFAULT(pru->pru_bind, pru_bind_notsupp);
2289 DEFAULT(pru->pru_connect, pru_connect_notsupp);
2290 DEFAULT(pru->pru_connect2, pru_connect2_notsupp);
2291 DEFAULT(pru->pru_connectx, pru_connectx_notsupp);
2292 DEFAULT(pru->pru_control, pru_control_notsupp);
2293 DEFAULT(pru->pru_detach, pru_detach_notsupp);
2294 DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp);
2295 DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp);
2296 DEFAULT(pru->pru_listen, pru_listen_notsupp);
2297 DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp);
2298 DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp);
2299 DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp);
2300 DEFAULT(pru->pru_send, pru_send_notsupp);
2301 DEFAULT(pru->pru_send_list, pru_send_list_notsupp);
2302 DEFAULT(pru->pru_sense, pru_sense_null);
2303 DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp);
2304 DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp);
2305 DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp);
2306 DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp);
2307 DEFAULT(pru->pru_soreceive_list, pru_soreceive_list_notsupp);
2308 DEFAULT(pru->pru_sosend, pru_sosend_notsupp);
2309 DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp);
2310 DEFAULT(pru->pru_socheckopt, pru_socheckopt_null);
2311 DEFAULT(pru->pru_preconnect, pru_preconnect_null);
2312 #undef DEFAULT
2313 }
2314
2315 /*
2316 * The following are macros on BSD and functions on Darwin
2317 */
2318
2319 /*
2320 * Do we need to notify the other side when I/O is possible?
2321 */
2322
2323 int
2324 sb_notify(struct sockbuf *sb)
2325 {
2326 return (sb->sb_waiters > 0 ||
2327 (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)));
2328 }
2329
2330 /*
2331 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2332 * This is problematical if the fields are unsigned, as the space might
2333 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2334 * overflow and return 0.
2335 */
2336 int
2337 sbspace(struct sockbuf *sb)
2338 {
2339 int pending = 0;
2340 int space = imin((int)(sb->sb_hiwat - sb->sb_cc),
2341 (int)(sb->sb_mbmax - sb->sb_mbcnt));
2342
2343 if (sb->sb_preconn_hiwat != 0)
2344 space = imin((int)(sb->sb_preconn_hiwat - sb->sb_cc), space);
2345
2346 if (space < 0)
2347 space = 0;
2348
2349 /* Compensate for data being processed by content filters */
2350 #if CONTENT_FILTER
2351 pending = cfil_sock_data_space(sb);
2352 #endif /* CONTENT_FILTER */
2353 if (pending > space)
2354 space = 0;
2355 else
2356 space -= pending;
2357
2358 return (space);
2359 }
2360
2361 /*
2362 * If this socket has priority queues, check if there is enough
2363 * space in the priority queue for this msg.
2364 */
2365 int
2366 msgq_sbspace(struct socket *so, struct mbuf *control)
2367 {
2368 int space = 0, error;
2369 u_int32_t msgpri = 0;
2370 VERIFY(so->so_type == SOCK_STREAM &&
2371 SOCK_PROTO(so) == IPPROTO_TCP);
2372 if (control != NULL) {
2373 error = tcp_get_msg_priority(control, &msgpri);
2374 if (error)
2375 return (0);
2376 } else {
2377 msgpri = MSG_PRI_0;
2378 }
2379 space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) -
2380 so->so_msg_state->msg_priq[msgpri].msgq_bytes;
2381 if (space < 0)
2382 space = 0;
2383 return (space);
2384 }
2385
2386 /* do we have to send all at once on a socket? */
2387 int
2388 sosendallatonce(struct socket *so)
2389 {
2390 return (so->so_proto->pr_flags & PR_ATOMIC);
2391 }
2392
2393 /* can we read something from so? */
2394 int
2395 soreadable(struct socket *so)
2396 {
2397 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2398 ((so->so_state & SS_CANTRCVMORE)
2399 #if CONTENT_FILTER
2400 && cfil_sock_data_pending(&so->so_rcv) == 0
2401 #endif /* CONTENT_FILTER */
2402 ) ||
2403 so->so_comp.tqh_first || so->so_error);
2404 }
2405
2406 /* can we write something to so? */
2407
2408 int
2409 sowriteable(struct socket *so)
2410 {
2411 if ((so->so_state & SS_CANTSENDMORE) ||
2412 so->so_error > 0)
2413 return (1);
2414 if (so_wait_for_if_feedback(so) || !socanwrite(so))
2415 return (0);
2416 if (so->so_flags1 & SOF1_PRECONNECT_DATA)
2417 return(1);
2418
2419 if (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat) {
2420 if (so->so_flags & SOF_NOTSENT_LOWAT) {
2421 if ((SOCK_DOM(so) == PF_INET6 ||
2422 SOCK_DOM(so) == PF_INET) &&
2423 so->so_type == SOCK_STREAM) {
2424 return (tcp_notsent_lowat_check(so));
2425 }
2426 #if MPTCP
2427 else if ((SOCK_DOM(so) == PF_MULTIPATH) &&
2428 (SOCK_PROTO(so) == IPPROTO_TCP)) {
2429 return (mptcp_notsent_lowat_check(so));
2430 }
2431 #endif
2432 else {
2433 return (1);
2434 }
2435 } else {
2436 return (1);
2437 }
2438 }
2439 return (0);
2440 }
2441
2442 /* adjust counters in sb reflecting allocation of m */
2443
2444 void
2445 sballoc(struct sockbuf *sb, struct mbuf *m)
2446 {
2447 u_int32_t cnt = 1;
2448 sb->sb_cc += m->m_len;
2449 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2450 m->m_type != MT_OOBDATA)
2451 sb->sb_ctl += m->m_len;
2452 sb->sb_mbcnt += MSIZE;
2453
2454 if (m->m_flags & M_EXT) {
2455 sb->sb_mbcnt += m->m_ext.ext_size;
2456 cnt += (m->m_ext.ext_size >> MSIZESHIFT);
2457 }
2458 OSAddAtomic(cnt, &total_sbmb_cnt);
2459 VERIFY(total_sbmb_cnt > 0);
2460 if (total_sbmb_cnt > total_sbmb_cnt_peak)
2461 total_sbmb_cnt_peak = total_sbmb_cnt;
2462
2463 /*
2464 * If data is being added to the send socket buffer,
2465 * update the send byte count
2466 */
2467 if (sb->sb_flags & SB_SNDBYTE_CNT) {
2468 inp_incr_sndbytes_total(sb->sb_so, m->m_len);
2469 inp_incr_sndbytes_unsent(sb->sb_so, m->m_len);
2470 }
2471 }
2472
2473 /* adjust counters in sb reflecting freeing of m */
2474 void
2475 sbfree(struct sockbuf *sb, struct mbuf *m)
2476 {
2477 int cnt = -1;
2478
2479 sb->sb_cc -= m->m_len;
2480 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2481 m->m_type != MT_OOBDATA)
2482 sb->sb_ctl -= m->m_len;
2483 sb->sb_mbcnt -= MSIZE;
2484 if (m->m_flags & M_EXT) {
2485 sb->sb_mbcnt -= m->m_ext.ext_size;
2486 cnt -= (m->m_ext.ext_size >> MSIZESHIFT);
2487 }
2488 OSAddAtomic(cnt, &total_sbmb_cnt);
2489 VERIFY(total_sbmb_cnt >= 0);
2490 if (total_sbmb_cnt < total_sbmb_cnt_floor)
2491 total_sbmb_cnt_floor = total_sbmb_cnt;
2492
2493 /*
2494 * If data is being removed from the send socket buffer,
2495 * update the send byte count
2496 */
2497 if (sb->sb_flags & SB_SNDBYTE_CNT)
2498 inp_decr_sndbytes_total(sb->sb_so, m->m_len);
2499 }
2500
2501 /*
2502 * Set lock on sockbuf sb; sleep if lock is already held.
2503 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2504 * Returns error without lock if sleep is interrupted.
2505 */
2506 int
2507 sblock(struct sockbuf *sb, uint32_t flags)
2508 {
2509 boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR));
2510 void *lr_saved = __builtin_return_address(0);
2511 struct socket *so = sb->sb_so;
2512 void * wchan;
2513 int error = 0;
2514 thread_t tp = current_thread();
2515
2516 VERIFY((flags & SBL_VALID) == flags);
2517
2518 /* so_usecount may be 0 if we get here from sofreelastref() */
2519 if (so == NULL) {
2520 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2521 __func__, sb, sb->sb_flags, lr_saved);
2522 /* NOTREACHED */
2523 } else if (so->so_usecount < 0) {
2524 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2525 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2526 so->so_usecount, lr_saved, solockhistory_nr(so));
2527 /* NOTREACHED */
2528 }
2529
2530 /*
2531 * The content filter thread must hold the sockbuf lock
2532 */
2533 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2534 /*
2535 * Don't panic if we are defunct because SB_LOCK has
2536 * been cleared by sodefunct()
2537 */
2538 if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK))
2539 panic("%s: SB_LOCK not held for %p\n",
2540 __func__, sb);
2541
2542 /* Keep the sockbuf locked */
2543 return (0);
2544 }
2545
2546 if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT))
2547 return (EWOULDBLOCK);
2548 /*
2549 * We may get here from sorflush(), in which case "sb" may not
2550 * point to the real socket buffer. Use the actual socket buffer
2551 * address from the socket instead.
2552 */
2553 wchan = (sb->sb_flags & SB_RECV) ?
2554 &so->so_rcv.sb_flags : &so->so_snd.sb_flags;
2555
2556 /*
2557 * A content filter thread has exclusive access to the sockbuf
2558 * until it clears the
2559 */
2560 while ((sb->sb_flags & SB_LOCK) ||
2561 ((so->so_flags & SOF_CONTENT_FILTER) &&
2562 sb->sb_cfil_thread != NULL)) {
2563 lck_mtx_t *mutex_held;
2564
2565 /*
2566 * XXX: This code should be moved up above outside of this loop;
2567 * however, we may get here as part of sofreelastref(), and
2568 * at that time pr_getlock() may no longer be able to return
2569 * us the lock. This will be fixed in future.
2570 */
2571 if (so->so_proto->pr_getlock != NULL)
2572 mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
2573 else
2574 mutex_held = so->so_proto->pr_domain->dom_mtx;
2575
2576 LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
2577
2578 sb->sb_wantlock++;
2579 VERIFY(sb->sb_wantlock != 0);
2580
2581 error = msleep(wchan, mutex_held,
2582 nointr ? PSOCK : PSOCK | PCATCH,
2583 nointr ? "sb_lock_nointr" : "sb_lock", NULL);
2584
2585 VERIFY(sb->sb_wantlock != 0);
2586 sb->sb_wantlock--;
2587
2588 if (error == 0 && (so->so_flags & SOF_DEFUNCT) &&
2589 !(flags & SBL_IGNDEFUNCT)) {
2590 error = EBADF;
2591 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
2592 "(%d)\n", __func__, proc_selfpid(),
2593 proc_best_name(current_proc()),
2594 (uint64_t)VM_KERNEL_ADDRPERM(so),
2595 SOCK_DOM(so), SOCK_TYPE(so), error);
2596 }
2597
2598 if (error != 0)
2599 return (error);
2600 }
2601 sb->sb_flags |= SB_LOCK;
2602 return (0);
2603 }
2604
2605 /*
2606 * Release lock on sockbuf sb
2607 */
2608 void
2609 sbunlock(struct sockbuf *sb, boolean_t keeplocked)
2610 {
2611 void *lr_saved = __builtin_return_address(0);
2612 struct socket *so = sb->sb_so;
2613 thread_t tp = current_thread();
2614
2615 /* so_usecount may be 0 if we get here from sofreelastref() */
2616 if (so == NULL) {
2617 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2618 __func__, sb, sb->sb_flags, lr_saved);
2619 /* NOTREACHED */
2620 } else if (so->so_usecount < 0) {
2621 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2622 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2623 so->so_usecount, lr_saved, solockhistory_nr(so));
2624 /* NOTREACHED */
2625 }
2626
2627 /*
2628 * The content filter thread must hold the sockbuf lock
2629 */
2630 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2631 /*
2632 * Don't panic if we are defunct because SB_LOCK has
2633 * been cleared by sodefunct()
2634 */
2635 if (!(so->so_flags & SOF_DEFUNCT) &&
2636 !(sb->sb_flags & SB_LOCK) &&
2637 !(so->so_state & SS_DEFUNCT) &&
2638 !(so->so_flags1 & SOF1_DEFUNCTINPROG)) {
2639 panic("%s: SB_LOCK not held for %p\n",
2640 __func__, sb);
2641 }
2642 /* Keep the sockbuf locked and proceed */
2643 } else {
2644 VERIFY((sb->sb_flags & SB_LOCK) ||
2645 (so->so_state & SS_DEFUNCT) ||
2646 (so->so_flags1 & SOF1_DEFUNCTINPROG));
2647
2648 sb->sb_flags &= ~SB_LOCK;
2649
2650 if (sb->sb_wantlock > 0) {
2651 /*
2652 * We may get here from sorflush(), in which case "sb"
2653 * may not point to the real socket buffer. Use the
2654 * actual socket buffer address from the socket instead.
2655 */
2656 wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags :
2657 &so->so_snd.sb_flags);
2658 }
2659 }
2660
2661 if (!keeplocked) { /* unlock on exit */
2662 lck_mtx_t *mutex_held;
2663
2664 if (so->so_proto->pr_getlock != NULL)
2665 mutex_held = (*so->so_proto->pr_getlock)(so, PR_F_WILLUNLOCK);
2666 else
2667 mutex_held = so->so_proto->pr_domain->dom_mtx;
2668
2669 LCK_MTX_ASSERT(mutex_held, LCK_MTX_ASSERT_OWNED);
2670
2671 VERIFY(so->so_usecount > 0);
2672 so->so_usecount--;
2673 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2674 so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
2675 lck_mtx_unlock(mutex_held);
2676 }
2677 }
2678
2679 void
2680 sorwakeup(struct socket *so)
2681 {
2682 if (sb_notify(&so->so_rcv))
2683 sowakeup(so, &so->so_rcv);
2684 }
2685
2686 void
2687 sowwakeup(struct socket *so)
2688 {
2689 if (sb_notify(&so->so_snd))
2690 sowakeup(so, &so->so_snd);
2691 }
2692
2693 void
2694 soevent(struct socket *so, long hint)
2695 {
2696 if (so->so_flags & SOF_KNOTE)
2697 KNOTE(&so->so_klist, hint);
2698
2699 soevupcall(so, hint);
2700
2701 /*
2702 * Don't post an event if this a subflow socket or
2703 * the app has opted out of using cellular interface
2704 */
2705 if ((hint & SO_FILT_HINT_IFDENIED) &&
2706 !(so->so_flags & SOF_MP_SUBFLOW) &&
2707 !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) &&
2708 !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE))
2709 soevent_ifdenied(so);
2710 }
2711
2712 void
2713 soevupcall(struct socket *so, u_int32_t hint)
2714 {
2715 if (so->so_event != NULL) {
2716 caddr_t so_eventarg = so->so_eventarg;
2717
2718 hint &= so->so_eventmask;
2719 if (hint != 0)
2720 so->so_event(so, so_eventarg, hint);
2721 }
2722 }
2723
2724 static void
2725 soevent_ifdenied(struct socket *so)
2726 {
2727 struct kev_netpolicy_ifdenied ev_ifdenied;
2728
2729 bzero(&ev_ifdenied, sizeof (ev_ifdenied));
2730 /*
2731 * The event consumer is interested about the effective {upid,pid,uuid}
2732 * info which can be different than the those related to the process
2733 * that recently performed a system call on the socket, i.e. when the
2734 * socket is delegated.
2735 */
2736 if (so->so_flags & SOF_DELEGATED) {
2737 ev_ifdenied.ev_data.eupid = so->e_upid;
2738 ev_ifdenied.ev_data.epid = so->e_pid;
2739 uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid);
2740 } else {
2741 ev_ifdenied.ev_data.eupid = so->last_upid;
2742 ev_ifdenied.ev_data.epid = so->last_pid;
2743 uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid);
2744 }
2745
2746 if (++so->so_ifdenied_notifies > 1) {
2747 /*
2748 * Allow for at most one kernel event to be generated per
2749 * socket; so_ifdenied_notifies is reset upon changes in
2750 * the UUID policy. See comments in inp_update_policy.
2751 */
2752 if (net_io_policy_log) {
2753 uuid_string_t buf;
2754
2755 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2756 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2757 "euuid %s%s has %d redundant events supressed\n",
2758 __func__, so->last_pid,
2759 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
2760 SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf,
2761 ((so->so_flags & SOF_DELEGATED) ?
2762 " [delegated]" : ""), so->so_ifdenied_notifies);
2763 }
2764 } else {
2765 if (net_io_policy_log) {
2766 uuid_string_t buf;
2767
2768 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2769 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2770 "euuid %s%s event posted\n", __func__,
2771 so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so),
2772 SOCK_DOM(so), SOCK_TYPE(so),
2773 ev_ifdenied.ev_data.epid, buf,
2774 ((so->so_flags & SOF_DELEGATED) ?
2775 " [delegated]" : ""));
2776 }
2777 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data,
2778 sizeof (ev_ifdenied));
2779 }
2780 }
2781
2782 /*
2783 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2784 */
2785 struct sockaddr *
2786 dup_sockaddr(struct sockaddr *sa, int canwait)
2787 {
2788 struct sockaddr *sa2;
2789
2790 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
2791 canwait ? M_WAITOK : M_NOWAIT);
2792 if (sa2)
2793 bcopy(sa, sa2, sa->sa_len);
2794 return (sa2);
2795 }
2796
2797 /*
2798 * Create an external-format (``xsocket'') structure using the information
2799 * in the kernel-format socket structure pointed to by so. This is done
2800 * to reduce the spew of irrelevant information over this interface,
2801 * to isolate user code from changes in the kernel structure, and
2802 * potentially to provide information-hiding if we decide that
2803 * some of this information should be hidden from users.
2804 */
2805 void
2806 sotoxsocket(struct socket *so, struct xsocket *xso)
2807 {
2808 xso->xso_len = sizeof (*xso);
2809 xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
2810 xso->so_type = so->so_type;
2811 xso->so_options = (short)(so->so_options & 0xffff);
2812 xso->so_linger = so->so_linger;
2813 xso->so_state = so->so_state;
2814 xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
2815 if (so->so_proto) {
2816 xso->xso_protocol = SOCK_PROTO(so);
2817 xso->xso_family = SOCK_DOM(so);
2818 } else {
2819 xso->xso_protocol = xso->xso_family = 0;
2820 }
2821 xso->so_qlen = so->so_qlen;
2822 xso->so_incqlen = so->so_incqlen;
2823 xso->so_qlimit = so->so_qlimit;
2824 xso->so_timeo = so->so_timeo;
2825 xso->so_error = so->so_error;
2826 xso->so_pgid = so->so_pgid;
2827 xso->so_oobmark = so->so_oobmark;
2828 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2829 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2830 xso->so_uid = kauth_cred_getuid(so->so_cred);
2831 }
2832
2833
2834 #if !CONFIG_EMBEDDED
2835
2836 void
2837 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
2838 {
2839 xso->xso_len = sizeof (*xso);
2840 xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
2841 xso->so_type = so->so_type;
2842 xso->so_options = (short)(so->so_options & 0xffff);
2843 xso->so_linger = so->so_linger;
2844 xso->so_state = so->so_state;
2845 xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
2846 if (so->so_proto) {
2847 xso->xso_protocol = SOCK_PROTO(so);
2848 xso->xso_family = SOCK_DOM(so);
2849 } else {
2850 xso->xso_protocol = xso->xso_family = 0;
2851 }
2852 xso->so_qlen = so->so_qlen;
2853 xso->so_incqlen = so->so_incqlen;
2854 xso->so_qlimit = so->so_qlimit;
2855 xso->so_timeo = so->so_timeo;
2856 xso->so_error = so->so_error;
2857 xso->so_pgid = so->so_pgid;
2858 xso->so_oobmark = so->so_oobmark;
2859 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2860 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2861 xso->so_uid = kauth_cred_getuid(so->so_cred);
2862 }
2863
2864 #endif /* !CONFIG_EMBEDDED */
2865
2866 /*
2867 * This does the same for sockbufs. Note that the xsockbuf structure,
2868 * since it is always embedded in a socket, does not include a self
2869 * pointer nor a length. We make this entry point public in case
2870 * some other mechanism needs it.
2871 */
2872 void
2873 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
2874 {
2875 xsb->sb_cc = sb->sb_cc;
2876 xsb->sb_hiwat = sb->sb_hiwat;
2877 xsb->sb_mbcnt = sb->sb_mbcnt;
2878 xsb->sb_mbmax = sb->sb_mbmax;
2879 xsb->sb_lowat = sb->sb_lowat;
2880 xsb->sb_flags = sb->sb_flags;
2881 xsb->sb_timeo = (short)
2882 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
2883 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
2884 xsb->sb_timeo = 1;
2885 }
2886
2887 /*
2888 * Based on the policy set by an all knowing decison maker, throttle sockets
2889 * that either have been marked as belonging to "background" process.
2890 */
2891 inline int
2892 soisthrottled(struct socket *so)
2893 {
2894 return (so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND);
2895 }
2896
2897 inline int
2898 soisprivilegedtraffic(struct socket *so)
2899 {
2900 return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0);
2901 }
2902
2903 inline int
2904 soissrcbackground(struct socket *so)
2905 {
2906 return ((so->so_flags1 & SOF1_TRAFFIC_MGT_SO_BACKGROUND) ||
2907 IS_SO_TC_BACKGROUND(so->so_traffic_class));
2908 }
2909
2910 inline int
2911 soissrcrealtime(struct socket *so)
2912 {
2913 return (so->so_traffic_class >= SO_TC_AV &&
2914 so->so_traffic_class <= SO_TC_VO);
2915 }
2916
2917 inline int
2918 soissrcbesteffort(struct socket *so)
2919 {
2920 return (so->so_traffic_class == SO_TC_BE ||
2921 so->so_traffic_class == SO_TC_RD ||
2922 so->so_traffic_class == SO_TC_OAM);
2923 }
2924
2925 void
2926 soclearfastopen(struct socket *so)
2927 {
2928 if (so->so_flags1 & SOF1_PRECONNECT_DATA)
2929 so->so_flags1 &= ~SOF1_PRECONNECT_DATA;
2930
2931 if (so->so_flags1 & SOF1_DATA_IDEMPOTENT)
2932 so->so_flags1 &= ~SOF1_DATA_IDEMPOTENT;
2933 }
2934
2935 void
2936 sonullevent(struct socket *so, void *arg, uint32_t hint)
2937 {
2938 #pragma unused(so, arg, hint)
2939 }
2940
2941 /*
2942 * Here is the definition of some of the basic objects in the kern.ipc
2943 * branch of the MIB.
2944 */
2945 SYSCTL_NODE(_kern, KERN_IPC, ipc,
2946 CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC");
2947
2948 /* Check that the maximum socket buffer size is within a range */
2949
2950 static int
2951 sysctl_sb_max SYSCTL_HANDLER_ARGS
2952 {
2953 #pragma unused(oidp, arg1, arg2)
2954 u_int32_t new_value;
2955 int changed = 0;
2956 int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t),
2957 &new_value, &changed);
2958 if (!error && changed) {
2959 if (new_value > LOW_SB_MAX && new_value <= high_sb_max) {
2960 sb_max = new_value;
2961 } else {
2962 error = ERANGE;
2963 }
2964 }
2965 return (error);
2966 }
2967
2968 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
2969 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
2970 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
2971
2972 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor,
2973 CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "");
2974
2975 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters,
2976 CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "");
2977
2978 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl,
2979 CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
2980
2981 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes,
2982 CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
2983
2984 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat,
2985 CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1,
2986 "Enable socket queue limit compatibility");
2987
2988 /*
2989 * Hack alert -- rdar://33572856
2990 * A loopback test we cannot change was failing because it sets
2991 * SO_SENDTIMEO to 5 seconds and that's also the value
2992 * of the minimum persist timer. Because of the persist timer,
2993 * the connection was not idle for 5 seconds and SO_SNDTIMEO
2994 * was not triggering at 5 seconds causing the test failure.
2995 * As a workaround we check the sysctl soqlencomp the test is already
2996 * setting to set disable auto tuning of the receive buffer.
2997 */
2998
2999 extern u_int32_t tcp_do_autorcvbuf;
3000
3001 static int
3002 sysctl_soqlencomp SYSCTL_HANDLER_ARGS
3003 {
3004 #pragma unused(oidp, arg1, arg2)
3005 u_int32_t new_value;
3006 int changed = 0;
3007 int error = sysctl_io_number(req, soqlencomp, sizeof (u_int32_t),
3008 &new_value, &changed);
3009 if (!error && changed) {
3010 soqlencomp = new_value;
3011 if (new_value != 0) {
3012 tcp_do_autorcvbuf = 0;
3013 tcptv_persmin_val = 6 * TCP_RETRANSHZ;
3014 }
3015 }
3016 return (error);
3017 }
3018 SYSCTL_PROC(_kern_ipc, OID_AUTO, soqlencomp,
3019 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
3020 &soqlencomp, 0, &sysctl_soqlencomp, "IU", "");
3021
3022 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt, CTLFLAG_RD | CTLFLAG_LOCKED,
3023 &total_sbmb_cnt, 0, "");
3024 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_peak, CTLFLAG_RD | CTLFLAG_LOCKED,
3025 &total_sbmb_cnt_peak, 0, "");
3026 SYSCTL_INT(_kern_ipc, OID_AUTO, sbmb_cnt_floor, CTLFLAG_RD | CTLFLAG_LOCKED,
3027 &total_sbmb_cnt_floor, 0, "");
3028 SYSCTL_QUAD(_kern_ipc, OID_AUTO, sbmb_limreached, CTLFLAG_RD | CTLFLAG_LOCKED,
3029 &sbmb_limreached, "");
3030
3031
3032 SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
3033
3034 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED,
3035 &net_io_policy_log, 0, "");
3036
3037 #if CONFIG_PROC_UUID_POLICY
3038 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED,
3039 &net_io_policy_uuid, 0, "");
3040 #endif /* CONFIG_PROC_UUID_POLICY */