2 * Copyright (c) 1998-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/tcp_var.h>
93 #include <sys/kdebug.h>
94 #include <libkern/OSAtomic.h>
97 #include <security/mac_framework.h>
100 #include <mach/vm_param.h>
103 #include <netinet/mptcp_var.h>
106 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
107 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
109 extern char *proc_best_name(proc_t p
);
111 SYSCTL_DECL(_kern_ipc
);
113 __private_extern__ u_int32_t net_io_policy_throttle_best_effort
= 0;
114 SYSCTL_INT(_kern_ipc
, OID_AUTO
, throttle_best_effort
,
115 CTLFLAG_RW
| CTLFLAG_LOCKED
, &net_io_policy_throttle_best_effort
, 0, "");
117 static inline void sbcompress(struct sockbuf
*, struct mbuf
*, struct mbuf
*);
118 static struct socket
*sonewconn_internal(struct socket
*, int);
119 static int sbappendaddr_internal(struct sockbuf
*, struct sockaddr
*,
120 struct mbuf
*, struct mbuf
*);
121 static int sbappendcontrol_internal(struct sockbuf
*, struct mbuf
*,
123 static void soevent_ifdenied(struct socket
*);
126 * Primitive routines for operating on sockets and socket buffers
128 static int soqlimitcompat
= 1;
129 static int soqlencomp
= 0;
132 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
133 * get scaled up or down to suit that memory configuration. high_sb_max is a
134 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
137 u_int32_t sb_max
= SB_MAX
; /* XXX should be static */
138 u_int32_t high_sb_max
= SB_MAX
;
140 static u_int32_t sb_efficiency
= 8; /* parameter for sbreserve() */
141 int32_t total_sbmb_cnt
__attribute__((aligned(8))) = 0;
142 int32_t total_sbmb_cnt_floor
__attribute__((aligned(8))) = 0;
143 int32_t total_sbmb_cnt_peak
__attribute__((aligned(8))) = 0;
144 int64_t sbmb_limreached
__attribute__((aligned(8))) = 0;
146 u_int32_t net_io_policy_log
= 0; /* log socket policy changes */
147 #if CONFIG_PROC_UUID_POLICY
148 u_int32_t net_io_policy_uuid
= 1; /* enable UUID socket policy */
149 #endif /* CONFIG_PROC_UUID_POLICY */
152 * Procedures to manipulate state flags of socket
153 * and do appropriate wakeups. Normal sequence from the
154 * active (originating) side is that soisconnecting() is
155 * called during processing of connect() call,
156 * resulting in an eventual call to soisconnected() if/when the
157 * connection is established. When the connection is torn down
158 * soisdisconnecting() is called during processing of disconnect() call,
159 * and soisdisconnected() is called when the connection to the peer
160 * is totally severed. The semantics of these routines are such that
161 * connectionless protocols can call soisconnected() and soisdisconnected()
162 * only, bypassing the in-progress calls when setting up a ``connection''
165 * From the passive side, a socket is created with
166 * two queues of sockets: so_incomp for connections in progress
167 * and so_comp for connections already made and awaiting user acceptance.
168 * As a protocol is preparing incoming connections, it creates a socket
169 * structure queued on so_incomp by calling sonewconn(). When the connection
170 * is established, soisconnected() is called, and transfers the
171 * socket structure to so_comp, making it available to accept().
173 * If a socket is closed with sockets on either
174 * so_incomp or so_comp, these sockets are dropped.
176 * If higher level protocols are implemented in
177 * the kernel, the wakeups done here will sometimes
178 * cause software-interrupt process scheduling.
181 soisconnecting(struct socket
*so
)
183 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
184 so
->so_state
|= SS_ISCONNECTING
;
186 sflt_notify(so
, sock_evt_connecting
, NULL
);
190 soisconnected(struct socket
*so
)
192 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
193 so
->so_state
|= SS_ISCONNECTED
;
195 soreserve_preconnect(so
, 0);
197 sflt_notify(so
, sock_evt_connected
, NULL
);
199 if (so
->so_head
!= NULL
&& (so
->so_state
& SS_INCOMP
)) {
200 struct socket
*head
= so
->so_head
;
204 * Enforce lock order when the protocol has per socket locks
206 if (head
->so_proto
->pr_getlock
!= NULL
) {
207 socket_lock(head
, 1);
208 so_acquire_accept_list(head
, so
);
211 if (so
->so_head
== head
&& (so
->so_state
& SS_INCOMP
)) {
212 so
->so_state
&= ~SS_INCOMP
;
213 so
->so_state
|= SS_COMP
;
214 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
215 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
219 * We have to release the accept list in
220 * case a socket callback calls sock_accept()
223 so_release_accept_list(head
);
224 socket_unlock(so
, 0);
226 postevent(head
, 0, EV_RCONN
);
228 wakeup_one((caddr_t
)&head
->so_timeo
);
231 socket_unlock(head
, 1);
234 } else if (locked
!= 0) {
235 so_release_accept_list(head
);
236 socket_unlock(head
, 1);
239 postevent(so
, 0, EV_WCONN
);
240 wakeup((caddr_t
)&so
->so_timeo
);
243 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CONNECTED
|
244 SO_FILT_HINT_CONNINFO_UPDATED
);
249 socanwrite(struct socket
*so
)
251 return ((so
->so_state
& SS_ISCONNECTED
) ||
252 !(so
->so_proto
->pr_flags
& PR_CONNREQUIRED
) ||
253 (so
->so_flags1
& SOF1_PRECONNECT_DATA
));
257 soisdisconnecting(struct socket
*so
)
259 so
->so_state
&= ~SS_ISCONNECTING
;
260 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
261 soevent(so
, SO_FILT_HINT_LOCKED
);
262 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
263 wakeup((caddr_t
)&so
->so_timeo
);
269 soisdisconnected(struct socket
*so
)
271 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
272 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
273 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
274 SO_FILT_HINT_CONNINFO_UPDATED
);
275 sflt_notify(so
, sock_evt_disconnected
, NULL
);
276 wakeup((caddr_t
)&so
->so_timeo
);
281 /* Notify content filters as soon as we cannot send/receive data */
282 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
283 #endif /* CONTENT_FILTER */
287 * This function will issue a wakeup like soisdisconnected but it will not
288 * notify the socket filters. This will avoid unlocking the socket
289 * in the midst of closing it.
292 sodisconnectwakeup(struct socket
*so
)
294 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
295 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
296 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_DISCONNECTED
|
297 SO_FILT_HINT_CONNINFO_UPDATED
);
298 wakeup((caddr_t
)&so
->so_timeo
);
303 /* Notify content filters as soon as we cannot send/receive data */
304 cfil_sock_notify_shutdown(so
, SHUT_RDWR
);
305 #endif /* CONTENT_FILTER */
309 * When an attempt at a new connection is noted on a socket
310 * which accepts connections, sonewconn is called. If the
311 * connection is possible (subject to space constraints, etc.)
312 * then we allocate a new structure, propoerly linked into the
313 * data structure of the original socket, and return this.
314 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
316 static struct socket
*
317 sonewconn_internal(struct socket
*head
, int connstatus
)
319 int so_qlen
, error
= 0;
321 lck_mtx_t
*mutex_held
;
323 if (head
->so_proto
->pr_getlock
!= NULL
)
324 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
326 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
327 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
331 * This is the default case; so_qlen represents the
332 * sum of both incomplete and completed queues.
334 so_qlen
= head
->so_qlen
;
337 * When kern.ipc.soqlencomp is set to 1, so_qlen
338 * represents only the completed queue. Since we
339 * cannot let the incomplete queue goes unbounded
340 * (in case of SYN flood), we cap the incomplete
341 * queue length to at most somaxconn, and use that
342 * as so_qlen so that we fail immediately below.
344 so_qlen
= head
->so_qlen
- head
->so_incqlen
;
345 if (head
->so_incqlen
> somaxconn
)
350 (soqlimitcompat
? head
->so_qlimit
: (3 * head
->so_qlimit
/ 2)))
351 return ((struct socket
*)0);
352 so
= soalloc(1, SOCK_DOM(head
), head
->so_type
);
354 return ((struct socket
*)0);
355 /* check if head was closed during the soalloc */
356 if (head
->so_proto
== NULL
) {
358 return ((struct socket
*)0);
361 so
->so_type
= head
->so_type
;
362 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
363 so
->so_linger
= head
->so_linger
;
364 so
->so_state
= head
->so_state
| SS_NOFDREF
;
365 so
->so_proto
= head
->so_proto
;
366 so
->so_timeo
= head
->so_timeo
;
367 so
->so_pgid
= head
->so_pgid
;
368 kauth_cred_ref(head
->so_cred
);
369 so
->so_cred
= head
->so_cred
;
370 so
->last_pid
= head
->last_pid
;
371 so
->last_upid
= head
->last_upid
;
372 memcpy(so
->last_uuid
, head
->last_uuid
, sizeof (so
->last_uuid
));
373 if (head
->so_flags
& SOF_DELEGATED
) {
374 so
->e_pid
= head
->e_pid
;
375 so
->e_upid
= head
->e_upid
;
376 memcpy(so
->e_uuid
, head
->e_uuid
, sizeof (so
->e_uuid
));
378 /* inherit socket options stored in so_flags */
379 so
->so_flags
= head
->so_flags
&
380 (SOF_NOSIGPIPE
| SOF_NOADDRAVAIL
| SOF_REUSESHAREUID
|
381 SOF_NOTIFYCONFLICT
| SOF_BINDRANDOMPORT
| SOF_NPX_SETOPTSHUT
|
382 SOF_NODEFUNCT
| SOF_PRIVILEGED_TRAFFIC_CLASS
| SOF_NOTSENT_LOWAT
|
383 SOF_USELRO
| SOF_DELEGATED
);
385 so
->next_lock_lr
= 0;
386 so
->next_unlock_lr
= 0;
388 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
389 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
390 TAILQ_INIT(&so
->so_evlist
);
392 #if CONFIG_MACF_SOCKET
393 mac_socket_label_associate_accept(head
, so
);
396 /* inherit traffic management properties of listener */
398 head
->so_flags1
& (SOF1_TRAFFIC_MGT_SO_BACKGROUND
);
399 so
->so_background_thread
= head
->so_background_thread
;
400 so
->so_traffic_class
= head
->so_traffic_class
;
402 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
404 return ((struct socket
*)0);
406 so
->so_rcv
.sb_flags
|= (head
->so_rcv
.sb_flags
& SB_USRSIZE
);
407 so
->so_snd
.sb_flags
|= (head
->so_snd
.sb_flags
& SB_USRSIZE
);
410 * Must be done with head unlocked to avoid deadlock
411 * for protocol with per socket mutexes.
413 if (head
->so_proto
->pr_unlock
)
414 socket_unlock(head
, 0);
415 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) ||
418 if (head
->so_proto
->pr_unlock
)
419 socket_lock(head
, 0);
420 return ((struct socket
*)0);
422 if (head
->so_proto
->pr_unlock
) {
423 socket_lock(head
, 0);
425 * Radar 7385998 Recheck that the head is still accepting
426 * to avoid race condition when head is getting closed.
428 if ((head
->so_options
& SO_ACCEPTCONN
) == 0) {
429 so
->so_state
&= ~SS_NOFDREF
;
431 return ((struct socket
*)0);
435 atomic_add_32(&so
->so_proto
->pr_domain
->dom_refs
, 1);
437 /* Insert in head appropriate lists */
438 so_acquire_accept_list(head
, NULL
);
443 * Since this socket is going to be inserted into the incomp
444 * queue, it can be picked up by another thread in
445 * tcp_dropdropablreq to get dropped before it is setup..
446 * To prevent this race, set in-progress flag which can be
449 so
->so_flags
|= SOF_INCOMP_INPROGRESS
;
452 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
453 so
->so_state
|= SS_COMP
;
455 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
456 so
->so_state
|= SS_INCOMP
;
461 so_release_accept_list(head
);
463 /* Attach socket filters for this protocol */
467 so
->so_state
|= connstatus
;
469 wakeup((caddr_t
)&head
->so_timeo
);
476 sonewconn(struct socket
*head
, int connstatus
, const struct sockaddr
*from
)
478 int error
= sflt_connectin(head
, from
);
483 return (sonewconn_internal(head
, connstatus
));
487 * Socantsendmore indicates that no more data will be sent on the
488 * socket; it would normally be applied to a socket when the user
489 * informs the system that no more data is to be sent, by the protocol
490 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
491 * will be received, and will normally be applied to the socket by a
492 * protocol when it detects that the peer will send no more data.
493 * Data queued for reading in the socket may yet be read.
497 socantsendmore(struct socket
*so
)
499 so
->so_state
|= SS_CANTSENDMORE
;
500 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTSENDMORE
);
501 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
506 socantrcvmore(struct socket
*so
)
508 so
->so_state
|= SS_CANTRCVMORE
;
509 soevent(so
, SO_FILT_HINT_LOCKED
| SO_FILT_HINT_CANTRCVMORE
);
510 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
515 * Wait for data to arrive at/drain from a socket buffer.
518 sbwait(struct sockbuf
*sb
)
520 boolean_t nointr
= (sb
->sb_flags
& SB_NOINTR
);
521 void *lr_saved
= __builtin_return_address(0);
522 struct socket
*so
= sb
->sb_so
;
523 lck_mtx_t
*mutex_held
;
528 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
529 __func__
, sb
, sb
->sb_flags
, lr_saved
);
531 } else if (so
->so_usecount
< 1) {
532 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
533 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
534 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
538 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
540 if (so
->so_flags
& SOF_DEFUNCT
) {
541 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
542 "(%d)\n", __func__
, proc_selfpid(),
543 proc_best_name(current_proc()),
544 (uint64_t)VM_KERNEL_ADDRPERM(so
),
545 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
550 if (so
->so_proto
->pr_getlock
!= NULL
)
551 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, PR_F_WILLUNLOCK
);
553 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
555 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
557 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
558 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
561 VERIFY(sb
->sb_waiters
!= 0);
563 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
564 nointr
? PSOCK
: PSOCK
| PCATCH
,
565 nointr
? "sbwait_nointr" : "sbwait", &ts
);
567 VERIFY(sb
->sb_waiters
!= 0);
570 if (so
->so_usecount
< 1) {
571 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
572 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
573 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
577 if ((so
->so_state
& SS_DRAINING
) || (so
->so_flags
& SOF_DEFUNCT
)) {
579 if (so
->so_flags
& SOF_DEFUNCT
) {
580 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
581 "(%d)\n", __func__
, proc_selfpid(),
582 proc_best_name(current_proc()),
583 (uint64_t)VM_KERNEL_ADDRPERM(so
),
584 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
592 sbwakeup(struct sockbuf
*sb
)
594 if (sb
->sb_waiters
> 0)
595 wakeup((caddr_t
)&sb
->sb_cc
);
599 * Wakeup processes waiting on a socket buffer.
600 * Do asynchronous notification via SIGIO
601 * if the socket has the SS_ASYNC flag set.
604 sowakeup(struct socket
*so
, struct sockbuf
*sb
)
606 if (so
->so_flags
& SOF_DEFUNCT
) {
607 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] si 0x%x, "
608 "fl 0x%x [%s]\n", __func__
, proc_selfpid(),
609 proc_best_name(current_proc()),
610 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
611 SOCK_TYPE(so
), (uint32_t)sb
->sb_sel
.si_flags
, sb
->sb_flags
,
612 (sb
->sb_flags
& SB_RECV
) ? "rcv" : "snd");
615 sb
->sb_flags
&= ~SB_SEL
;
616 selwakeup(&sb
->sb_sel
);
618 if (so
->so_state
& SS_ASYNC
) {
620 gsignal(-so
->so_pgid
, SIGIO
);
621 else if (so
->so_pgid
> 0)
622 proc_signal(so
->so_pgid
, SIGIO
);
624 if (sb
->sb_flags
& SB_KNOTE
) {
625 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
627 if (sb
->sb_flags
& SB_UPCALL
) {
628 void (*sb_upcall
)(struct socket
*, void *, int);
629 caddr_t sb_upcallarg
;
630 int lock
= !(sb
->sb_flags
& SB_UPCALL_LOCK
);
632 sb_upcall
= sb
->sb_upcall
;
633 sb_upcallarg
= sb
->sb_upcallarg
;
634 /* Let close know that we're about to do an upcall */
635 so
->so_upcallusecount
++;
638 socket_unlock(so
, 0);
639 (*sb_upcall
)(so
, sb_upcallarg
, M_DONTWAIT
);
643 so
->so_upcallusecount
--;
644 /* Tell close that it's safe to proceed */
645 if ((so
->so_flags
& SOF_CLOSEWAIT
) &&
646 so
->so_upcallusecount
== 0)
647 wakeup((caddr_t
)&so
->so_upcallusecount
);
651 * Trap disconnection events for content filters
653 if ((so
->so_flags
& SOF_CONTENT_FILTER
) != 0) {
654 if ((sb
->sb_flags
& SB_RECV
)) {
655 if (so
->so_state
& (SS_CANTRCVMORE
))
656 cfil_sock_notify_shutdown(so
, SHUT_RD
);
658 if (so
->so_state
& (SS_CANTSENDMORE
))
659 cfil_sock_notify_shutdown(so
, SHUT_WR
);
662 #endif /* CONTENT_FILTER */
666 * Socket buffer (struct sockbuf) utility routines.
668 * Each socket contains two socket buffers: one for sending data and
669 * one for receiving data. Each buffer contains a queue of mbufs,
670 * information about the number of mbufs and amount of data in the
671 * queue, and other fields allowing select() statements and notification
672 * on data availability to be implemented.
674 * Data stored in a socket buffer is maintained as a list of records.
675 * Each record is a list of mbufs chained together with the m_next
676 * field. Records are chained together with the m_nextpkt field. The upper
677 * level routine soreceive() expects the following conventions to be
678 * observed when placing information in the receive buffer:
680 * 1. If the protocol requires each message be preceded by the sender's
681 * name, then a record containing that name must be present before
682 * any associated data (mbuf's must be of type MT_SONAME).
683 * 2. If the protocol supports the exchange of ``access rights'' (really
684 * just additional data associated with the message), and there are
685 * ``rights'' to be received, then a record containing this data
686 * should be present (mbuf's must be of type MT_RIGHTS).
687 * 3. If a name or rights record exists, then it must be followed by
688 * a data record, perhaps of zero length.
690 * Before using a new socket structure it is first necessary to reserve
691 * buffer space to the socket, by calling sbreserve(). This should commit
692 * some of the available buffer space in the system buffer pool for the
693 * socket (currently, it does nothing but enforce limits). The space
694 * should be released by calling sbrelease() when the socket is destroyed.
702 soreserve(struct socket
*so
, u_int32_t sndcc
, u_int32_t rcvcc
)
704 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
707 so
->so_snd
.sb_idealsize
= sndcc
;
709 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
712 so
->so_rcv
.sb_idealsize
= rcvcc
;
714 if (so
->so_rcv
.sb_lowat
== 0)
715 so
->so_rcv
.sb_lowat
= 1;
716 if (so
->so_snd
.sb_lowat
== 0)
717 so
->so_snd
.sb_lowat
= MCLBYTES
;
718 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
719 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
722 so
->so_snd
.sb_flags
&= ~SB_SEL
;
723 selthreadclear(&so
->so_snd
.sb_sel
);
724 sbrelease(&so
->so_snd
);
730 soreserve_preconnect(struct socket
*so
, unsigned int pre_cc
)
732 /* As of now, same bytes for both preconnect read and write */
733 so
->so_snd
.sb_preconn_hiwat
= pre_cc
;
734 so
->so_rcv
.sb_preconn_hiwat
= pre_cc
;
738 * Allot mbufs to a sockbuf.
739 * Attempt to scale mbmax so that mbcnt doesn't become limiting
740 * if buffering efficiency is near the normal case.
743 sbreserve(struct sockbuf
*sb
, u_int32_t cc
)
745 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
748 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
749 if (sb
->sb_lowat
> sb
->sb_hiwat
)
750 sb
->sb_lowat
= sb
->sb_hiwat
;
755 * Free mbufs held by a socket, and reserved mbuf space.
757 /* WARNING needs to do selthreadclear() before calling this */
759 sbrelease(struct sockbuf
*sb
)
767 * Routines to add and remove
768 * data from an mbuf queue.
770 * The routines sbappend() or sbappendrecord() are normally called to
771 * append new mbufs to a socket buffer, after checking that adequate
772 * space is available, comparing the function sbspace() with the amount
773 * of data to be added. sbappendrecord() differs from sbappend() in
774 * that data supplied is treated as the beginning of a new record.
775 * To place a sender's address, optional access rights, and data in a
776 * socket receive buffer, sbappendaddr() should be used. To place
777 * access rights and data in a socket receive buffer, sbappendrights()
778 * should be used. In either case, the new data begins a new record.
779 * Note that unlike sbappend() and sbappendrecord(), these routines check
780 * for the caller that there will be enough space to store the data.
781 * Each fails if there is not enough space, or if it cannot find mbufs
782 * to store additional information in.
784 * Reliable protocols may use the socket send buffer to hold data
785 * awaiting acknowledgement. Data is normally copied from a socket
786 * send buffer in a protocol with m_copy for output to a peer,
787 * and then removing the data from the socket buffer with sbdrop()
788 * or sbdroprecord() when the data is acknowledged by the peer.
792 * Append mbuf chain m to the last record in the
793 * socket buffer sb. The additional space associated
794 * the mbuf chain is recorded in sb. Empty mbufs are
795 * discarded and mbufs are compacted where possible.
798 sbappend(struct sockbuf
*sb
, struct mbuf
*m
)
800 struct socket
*so
= sb
->sb_so
;
802 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
808 SBLASTRECORDCHK(sb
, "sbappend 1");
810 if (sb
->sb_lastrecord
!= NULL
&& (sb
->sb_mbtail
->m_flags
& M_EOR
))
811 return (sbappendrecord(sb
, m
));
813 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
814 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
815 SBLASTRECORDCHK(sb
, "sbappend 2");
819 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
820 #endif /* CONTENT_FILTER */
823 if (error
!= EJUSTRETURN
)
828 m
->m_flags
&= ~M_SKIPCFIL
;
831 /* If this is the first record, it's also the last record */
832 if (sb
->sb_lastrecord
== NULL
)
833 sb
->sb_lastrecord
= m
;
835 sbcompress(sb
, m
, sb
->sb_mbtail
);
836 SBLASTRECORDCHK(sb
, "sbappend 3");
841 * Similar to sbappend, except that this is optimized for stream sockets.
844 sbappendstream(struct sockbuf
*sb
, struct mbuf
*m
)
846 struct socket
*so
= sb
->sb_so
;
848 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
854 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
855 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
856 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
860 SBLASTMBUFCHK(sb
, __func__
);
862 if (sb
->sb_flags
& SB_RECV
&& !(m
&& m
->m_flags
& M_SKIPCFIL
)) {
863 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0);
864 SBLASTRECORDCHK(sb
, "sbappendstream 1");
868 error
= cfil_sock_data_in(so
, NULL
, m
, NULL
, 0);
869 #endif /* CONTENT_FILTER */
872 if (error
!= EJUSTRETURN
)
877 m
->m_flags
&= ~M_SKIPCFIL
;
880 sbcompress(sb
, m
, sb
->sb_mbtail
);
881 sb
->sb_lastrecord
= sb
->sb_mb
;
882 SBLASTRECORDCHK(sb
, "sbappendstream 2");
888 sbcheck(struct sockbuf
*sb
)
892 u_int32_t len
= 0, mbcnt
= 0;
893 lck_mtx_t
*mutex_held
;
895 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
896 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
898 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
900 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
905 for (m
= sb
->sb_mb
; m
; m
= n
) {
907 for (; m
; m
= m
->m_next
) {
910 /* XXX pretty sure this is bogus */
911 if (m
->m_flags
& M_EXT
)
912 mbcnt
+= m
->m_ext
.ext_size
;
915 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
916 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
917 mbcnt
, sb
->sb_mbcnt
);
923 sblastrecordchk(struct sockbuf
*sb
, const char *where
)
925 struct mbuf
*m
= sb
->sb_mb
;
927 while (m
&& m
->m_nextpkt
)
930 if (m
!= sb
->sb_lastrecord
) {
931 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
933 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
934 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_lastrecord
),
935 (uint64_t)VM_KERNEL_ADDRPERM(m
));
936 printf("packet chain:\n");
937 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
)
938 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m
));
939 panic("sblastrecordchk from %s", where
);
944 sblastmbufchk(struct sockbuf
*sb
, const char *where
)
946 struct mbuf
*m
= sb
->sb_mb
;
949 while (m
&& m
->m_nextpkt
)
952 while (m
&& m
->m_next
)
955 if (m
!= sb
->sb_mbtail
) {
956 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
957 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mb
),
958 (uint64_t)VM_KERNEL_ADDRPERM(sb
->sb_mbtail
),
959 (uint64_t)VM_KERNEL_ADDRPERM(m
));
960 printf("packet tree:\n");
961 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
) {
963 for (n
= m
; n
!= NULL
; n
= n
->m_next
)
965 (uint64_t)VM_KERNEL_ADDRPERM(n
));
968 panic("sblastmbufchk from %s", where
);
973 * Similar to sbappend, except the mbuf chain begins a new record.
976 sbappendrecord(struct sockbuf
*sb
, struct mbuf
*m0
)
981 if (m0
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
987 for (m
= m0
; m
!= NULL
; m
= m
->m_next
)
990 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
)) {
995 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
996 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
997 sock_data_filt_flag_record
);
1001 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
1002 #endif /* CONTENT_FILTER */
1005 SBLASTRECORDCHK(sb
, "sbappendrecord 1");
1006 if (error
!= EJUSTRETURN
)
1011 m0
->m_flags
&= ~M_SKIPCFIL
;
1015 * Note this permits zero length records.
1018 SBLASTRECORDCHK(sb
, "sbappendrecord 2");
1019 if (sb
->sb_lastrecord
!= NULL
) {
1020 sb
->sb_lastrecord
->m_nextpkt
= m0
;
1024 sb
->sb_lastrecord
= m0
;
1029 if (m
&& (m0
->m_flags
& M_EOR
)) {
1030 m0
->m_flags
&= ~M_EOR
;
1031 m
->m_flags
|= M_EOR
;
1033 sbcompress(sb
, m
, m0
);
1034 SBLASTRECORDCHK(sb
, "sbappendrecord 3");
1039 * As above except that OOB data
1040 * is inserted at the beginning of the sockbuf,
1041 * but after any other OOB data.
1044 sbinsertoob(struct sockbuf
*sb
, struct mbuf
*m0
)
1052 SBLASTRECORDCHK(sb
, "sbinsertoob 1");
1054 if ((sb
->sb_flags
& SB_RECV
&& !(m0
->m_flags
& M_SKIPCFIL
)) != 0) {
1055 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
1056 sock_data_filt_flag_oob
);
1058 SBLASTRECORDCHK(sb
, "sbinsertoob 2");
1062 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, NULL
, 0);
1063 #endif /* CONTENT_FILTER */
1066 if (error
!= EJUSTRETURN
) {
1072 m0
->m_flags
&= ~M_SKIPCFIL
;
1075 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
1078 switch (m
->m_type
) {
1081 continue; /* WANT next train */
1086 goto again
; /* inspect THIS train further */
1091 * Put the first mbuf on the queue.
1092 * Note this permits zero length records.
1095 m0
->m_nextpkt
= *mp
;
1097 /* m0 is actually the new tail */
1098 sb
->sb_lastrecord
= m0
;
1103 if (m
&& (m0
->m_flags
& M_EOR
)) {
1104 m0
->m_flags
&= ~M_EOR
;
1105 m
->m_flags
|= M_EOR
;
1107 sbcompress(sb
, m
, m0
);
1108 SBLASTRECORDCHK(sb
, "sbinsertoob 3");
1113 * Append address and data, and optionally, control (ancillary) data
1114 * to the receive queue of a socket. If present,
1115 * m0 must include a packet header with total length.
1116 * Returns 0 if no space in sockbuf or insufficient mbufs.
1118 * Returns: 0 No space/out of mbufs
1122 sbappendaddr_internal(struct sockbuf
*sb
, struct sockaddr
*asa
,
1123 struct mbuf
*m0
, struct mbuf
*control
)
1125 struct mbuf
*m
, *n
, *nlast
;
1126 int space
= asa
->sa_len
;
1128 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1129 panic("sbappendaddr");
1132 space
+= m0
->m_pkthdr
.len
;
1133 for (n
= control
; n
; n
= n
->m_next
) {
1135 if (n
->m_next
== 0) /* keep pointer to last control buf */
1138 if (space
> sbspace(sb
))
1140 if (asa
->sa_len
> MLEN
)
1142 MGET(m
, M_DONTWAIT
, MT_SONAME
);
1145 m
->m_len
= asa
->sa_len
;
1146 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
1148 n
->m_next
= m0
; /* concatenate data to control */
1151 m
->m_next
= control
;
1153 SBLASTRECORDCHK(sb
, "sbappendadddr 1");
1155 for (n
= m
; n
->m_next
!= NULL
; n
= n
->m_next
)
1160 if (sb
->sb_lastrecord
!= NULL
) {
1161 sb
->sb_lastrecord
->m_nextpkt
= m
;
1165 sb
->sb_lastrecord
= m
;
1166 sb
->sb_mbtail
= nlast
;
1168 SBLASTMBUFCHK(sb
, __func__
);
1169 SBLASTRECORDCHK(sb
, "sbappendadddr 2");
1171 postevent(0, sb
, EV_RWBYTES
);
1176 * Returns: 0 Error: No space/out of mbufs/etc.
1179 * Imputed: (*error_out) errno for error
1181 * sflt_data_in:??? [whatever a filter author chooses]
1184 sbappendaddr(struct sockbuf
*sb
, struct sockaddr
*asa
, struct mbuf
*m0
,
1185 struct mbuf
*control
, int *error_out
)
1188 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1193 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1194 panic("sbappendaddrorfree");
1196 if (sb
->sb_flags
& SB_DROP
) {
1199 if (control
!= NULL
&& !sb_unix
)
1201 if (error_out
!= NULL
)
1202 *error_out
= EINVAL
;
1206 /* Call socket data in filters */
1207 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1209 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0);
1210 SBLASTRECORDCHK(sb
, __func__
);
1214 error
= cfil_sock_data_in(sb
->sb_so
, asa
, m0
, control
,
1216 #endif /* CONTENT_FILTER */
1219 if (error
!= EJUSTRETURN
) {
1222 if (control
!= NULL
&& !sb_unix
)
1230 m0
->m_flags
&= ~M_SKIPCFIL
;
1233 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
1237 if (control
!= NULL
&& !sb_unix
)
1240 *error_out
= ENOBUFS
;
1247 sbappendcontrol_internal(struct sockbuf
*sb
, struct mbuf
*m0
,
1248 struct mbuf
*control
)
1250 struct mbuf
*m
, *mlast
, *n
;
1254 panic("sbappendcontrol");
1256 for (m
= control
; ; m
= m
->m_next
) {
1261 n
= m
; /* save pointer to last control buffer */
1262 for (m
= m0
; m
; m
= m
->m_next
)
1264 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
))
1266 n
->m_next
= m0
; /* concatenate data to control */
1267 SBLASTRECORDCHK(sb
, "sbappendcontrol 1");
1269 for (m
= control
; m
->m_next
!= NULL
; m
= m
->m_next
)
1274 if (sb
->sb_lastrecord
!= NULL
) {
1275 sb
->sb_lastrecord
->m_nextpkt
= control
;
1277 sb
->sb_mb
= control
;
1279 sb
->sb_lastrecord
= control
;
1280 sb
->sb_mbtail
= mlast
;
1282 SBLASTMBUFCHK(sb
, __func__
);
1283 SBLASTRECORDCHK(sb
, "sbappendcontrol 2");
1285 postevent(0, sb
, EV_RWBYTES
);
1290 sbappendcontrol(struct sockbuf
*sb
, struct mbuf
*m0
, struct mbuf
*control
,
1294 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1299 if (sb
->sb_flags
& SB_DROP
) {
1302 if (control
!= NULL
&& !sb_unix
)
1304 if (error_out
!= NULL
)
1305 *error_out
= EINVAL
;
1309 if (sb
->sb_flags
& SB_RECV
&& !(m0
&& m0
->m_flags
& M_SKIPCFIL
)) {
1312 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0);
1313 SBLASTRECORDCHK(sb
, __func__
);
1317 error
= cfil_sock_data_in(sb
->sb_so
, NULL
, m0
, control
,
1319 #endif /* CONTENT_FILTER */
1322 if (error
!= EJUSTRETURN
) {
1325 if (control
!= NULL
&& !sb_unix
)
1333 m0
->m_flags
&= ~M_SKIPCFIL
;
1336 result
= sbappendcontrol_internal(sb
, m0
, control
);
1340 if (control
!= NULL
&& !sb_unix
)
1343 *error_out
= ENOBUFS
;
1350 * Append a contiguous TCP data blob with TCP sequence number as control data
1351 * as a new msg to the receive socket buffer.
1354 sbappendmsgstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
, uint32_t seqnum
,
1357 struct mbuf
*m_eor
= NULL
;
1358 u_int32_t data_len
= 0;
1360 struct socket
*so
= sb
->sb_so
;
1362 VERIFY((m
->m_flags
& M_PKTHDR
) && m_pktlen(m
) > 0);
1363 VERIFY(so
->so_msg_state
!= NULL
);
1364 VERIFY(sb
->sb_flags
& SB_RECV
);
1366 /* Keep the TCP sequence number in the mbuf pkthdr */
1367 m
->m_pkthdr
.msg_seq
= seqnum
;
1369 /* find last mbuf and set M_EOR */
1370 for (m_eor
= m
; ; m_eor
= m_eor
->m_next
) {
1372 * If the msg is unordered, we need to account for
1373 * these bytes in receive socket buffer size. Otherwise,
1374 * the receive window advertised will shrink because
1375 * of the additional unordered bytes added to the
1379 m_eor
->m_flags
|= M_UNORDERED_DATA
;
1380 data_len
+= m_eor
->m_len
;
1381 so
->so_msg_state
->msg_uno_bytes
+= m_eor
->m_len
;
1383 m_eor
->m_flags
&= ~M_UNORDERED_DATA
;
1385 if (m_eor
->m_next
== NULL
)
1389 /* set EOR flag at end of byte blob */
1390 m_eor
->m_flags
|= M_EOR
;
1392 /* expand the receive socket buffer to allow unordered data */
1393 if (unordered
&& !sbreserve(sb
, sb
->sb_hiwat
+ data_len
)) {
1395 * Could not allocate memory for unordered data, it
1396 * means this packet will have to be delivered in order
1398 printf("%s: could not reserve space for unordered data\n",
1402 if (!unordered
&& (sb
->sb_mbtail
!= NULL
) &&
1403 !(sb
->sb_mbtail
->m_flags
& M_UNORDERED_DATA
)) {
1404 sb
->sb_mbtail
->m_flags
&= ~M_EOR
;
1405 sbcompress(sb
, m
, sb
->sb_mbtail
);
1408 ret
= sbappendrecord(sb
, m
);
1410 VERIFY(sb
->sb_mbtail
->m_flags
& M_EOR
);
1415 * TCP streams have message based out of order delivery support, or have
1416 * Multipath TCP support, or are regular TCP sockets
1419 sbappendstream_rcvdemux(struct socket
*so
, struct mbuf
*m
, uint32_t seqnum
,
1426 !((so
->so_flags
& SOF_MP_SUBFLOW
) &&
1427 (m
->m_flags
& M_PKTHDR
) &&
1428 (m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
))) {
1433 if (so
->so_flags
& SOF_ENABLE_MSGS
) {
1434 ret
= sbappendmsgstream_rcv(&so
->so_rcv
, m
, seqnum
, unordered
);
1437 else if (so
->so_flags
& SOF_MP_SUBFLOW
) {
1438 ret
= sbappendmptcpstream_rcv(&so
->so_rcv
, m
);
1442 ret
= sbappendstream(&so
->so_rcv
, m
);
1449 sbappendmptcpstream_rcv(struct sockbuf
*sb
, struct mbuf
*m
)
1451 struct socket
*so
= sb
->sb_so
;
1453 VERIFY(m
== NULL
|| (m
->m_flags
& M_PKTHDR
));
1454 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1455 VERIFY((sb
->sb_flags
& (SB_RECV
|SB_NOCOMPRESS
)) ==
1456 (SB_RECV
|SB_NOCOMPRESS
));
1458 if (m
== NULL
|| m_pktlen(m
) == 0 || (sb
->sb_flags
& SB_DROP
) ||
1459 (so
->so_state
& SS_CANTRCVMORE
)) {
1460 if (m
&& (m
->m_flags
& M_PKTHDR
) &&
1462 (m
->m_pkthdr
.pkt_flags
& PKTF_MPTCP_DFIN
)) {
1463 mptcp_input(tptomptp(sototcpcb(so
))->mpt_mpte
, m
);
1465 } else if (m
!= NULL
) {
1470 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1471 VERIFY(so
->so_flags
& SOF_MP_SUBFLOW
);
1473 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
)) {
1474 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__
,
1475 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1479 SBLASTMBUFCHK(sb
, __func__
);
1481 /* No filter support (SB_RECV) on mptcp subflow sockets */
1483 sbcompress(sb
, m
, sb
->sb_mbtail
);
1484 sb
->sb_lastrecord
= sb
->sb_mb
;
1485 SBLASTRECORDCHK(sb
, __func__
);
1491 * Append message to send socket buffer based on priority.
1494 sbappendmsg_snd(struct sockbuf
*sb
, struct mbuf
*m
)
1496 struct socket
*so
= sb
->sb_so
;
1497 struct msg_priq
*priq
;
1500 VERIFY(so
->so_msg_state
!= NULL
);
1502 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
))
1503 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1504 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
1506 SBLASTMBUFCHK(sb
, __func__
);
1508 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
) || so
->so_msg_state
== NULL
) {
1514 priq
= &so
->so_msg_state
->msg_priq
[m
->m_pkthdr
.msg_pri
];
1516 /* note if we need to propogate M_EOR to the last mbuf */
1517 if (m
->m_flags
& M_EOR
) {
1520 /* Reset M_EOR from the first mbuf */
1521 m
->m_flags
&= ~(M_EOR
);
1524 if (priq
->msgq_head
== NULL
) {
1525 VERIFY(priq
->msgq_tail
== NULL
&& priq
->msgq_lastmsg
== NULL
);
1526 priq
->msgq_head
= priq
->msgq_lastmsg
= m
;
1528 VERIFY(priq
->msgq_tail
->m_next
== NULL
);
1530 /* Check if the last message has M_EOR flag set */
1531 if (priq
->msgq_tail
->m_flags
& M_EOR
) {
1532 /* Insert as a new message */
1533 priq
->msgq_lastmsg
->m_nextpkt
= m
;
1535 /* move the lastmsg pointer */
1536 priq
->msgq_lastmsg
= m
;
1538 /* Append to the existing message */
1539 priq
->msgq_tail
->m_next
= m
;
1543 /* Update accounting and the queue tail pointer */
1545 while (m
->m_next
!= NULL
) {
1547 priq
->msgq_bytes
+= m
->m_len
;
1551 priq
->msgq_bytes
+= m
->m_len
;
1554 m
->m_flags
|= M_EOR
;
1557 * Since the user space can not write a new msg
1558 * without completing the previous one, we can
1559 * reset this flag to start sending again.
1561 priq
->msgq_flags
&= ~(MSGQ_MSG_NOTDONE
);
1564 priq
->msgq_tail
= m
;
1566 SBLASTRECORDCHK(sb
, "sbappendstream 2");
1567 postevent(0, sb
, EV_RWBYTES
);
1572 * Pull data from priority queues to the serial snd queue
1573 * right before sending.
1576 sbpull_unordered_data(struct socket
*so
, int32_t off
, int32_t len
)
1579 struct msg_priq
*priq
= NULL
;
1581 VERIFY(so
->so_msg_state
!= NULL
);
1583 topull
= (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1586 while (i
>= MSG_PRI_MIN
&& topull
> 0) {
1587 struct mbuf
*m
= NULL
, *mqhead
= NULL
, *mend
= NULL
;
1588 priq
= &so
->so_msg_state
->msg_priq
[i
];
1589 if ((priq
->msgq_flags
& MSGQ_MSG_NOTDONE
) &&
1590 priq
->msgq_head
== NULL
) {
1592 * We were in the middle of sending
1593 * a message and we have not seen the
1596 VERIFY(priq
->msgq_lastmsg
== NULL
&&
1597 priq
->msgq_tail
== NULL
);
1600 if (priq
->msgq_head
!= NULL
) {
1601 int32_t bytes
= 0, topull_tmp
= topull
;
1603 * We found a msg while scanning the priority
1604 * queue from high to low priority.
1606 m
= priq
->msgq_head
;
1611 * Move bytes from the priority queue to the
1612 * serial queue. Compute the number of bytes
1615 while (mqhead
->m_next
!= NULL
&& topull_tmp
> 0) {
1616 bytes
+= mqhead
->m_len
;
1617 topull_tmp
-= mqhead
->m_len
;
1619 mqhead
= mqhead
->m_next
;
1622 if (mqhead
->m_next
== NULL
) {
1624 * If we have only one more mbuf left,
1625 * move the last mbuf of this message to
1626 * serial queue and set the head of the
1627 * queue to be the next message.
1629 bytes
+= mqhead
->m_len
;
1631 mqhead
= m
->m_nextpkt
;
1632 if (!(mend
->m_flags
& M_EOR
)) {
1634 * We have not seen the end of
1635 * this message, so we can not
1638 priq
->msgq_flags
|= MSGQ_MSG_NOTDONE
;
1641 mend
->m_flags
&= ~(M_EOR
);
1644 /* propogate the next msg pointer */
1645 mqhead
->m_nextpkt
= m
->m_nextpkt
;
1647 priq
->msgq_head
= mqhead
;
1650 * if the lastmsg pointer points to
1651 * the mbuf that is being dequeued, update
1652 * it to point to the new head.
1654 if (priq
->msgq_lastmsg
== m
)
1655 priq
->msgq_lastmsg
= priq
->msgq_head
;
1657 m
->m_nextpkt
= NULL
;
1658 mend
->m_next
= NULL
;
1660 if (priq
->msgq_head
== NULL
) {
1661 /* Moved all messages, update tail */
1662 priq
->msgq_tail
= NULL
;
1663 VERIFY(priq
->msgq_lastmsg
== NULL
);
1666 /* Move it to serial sb_mb queue */
1667 if (so
->so_snd
.sb_mb
== NULL
) {
1668 so
->so_snd
.sb_mb
= m
;
1670 so
->so_snd
.sb_mbtail
->m_next
= m
;
1673 priq
->msgq_bytes
-= bytes
;
1674 VERIFY(priq
->msgq_bytes
>= 0);
1675 sbwakeup(&so
->so_snd
);
1677 so
->so_msg_state
->msg_serial_bytes
+= bytes
;
1678 so
->so_snd
.sb_mbtail
= mend
;
1679 so
->so_snd
.sb_lastrecord
= so
->so_snd
.sb_mb
;
1682 (off
+ len
) - so
->so_msg_state
->msg_serial_bytes
;
1684 if (priq
->msgq_flags
& MSGQ_MSG_NOTDONE
)
1690 sblastrecordchk(&so
->so_snd
, "sbpull_unordered_data");
1691 sblastmbufchk(&so
->so_snd
, "sbpull_unordered_data");
1695 * Compress mbuf chain m into the socket
1696 * buffer sb following mbuf n. If n
1697 * is null, the buffer is presumed empty.
1700 sbcompress(struct sockbuf
*sb
, struct mbuf
*m
, struct mbuf
*n
)
1702 int eor
= 0, compress
= (!(sb
->sb_flags
& SB_NOCOMPRESS
));
1706 /* There is nothing to compress; just update the tail */
1707 for (; n
->m_next
!= NULL
; n
= n
->m_next
)
1714 eor
|= m
->m_flags
& M_EOR
;
1715 if (compress
&& m
->m_len
== 0 && (eor
== 0 ||
1716 (((o
= m
->m_next
) || (o
= n
)) && o
->m_type
== m
->m_type
))) {
1717 if (sb
->sb_lastrecord
== m
)
1718 sb
->sb_lastrecord
= m
->m_next
;
1722 if (compress
&& n
!= NULL
&& (n
->m_flags
& M_EOR
) == 0 &&
1726 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1727 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1728 n
->m_type
== m
->m_type
) {
1729 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1730 (unsigned)m
->m_len
);
1731 n
->m_len
+= m
->m_len
;
1732 sb
->sb_cc
+= m
->m_len
;
1733 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1734 m
->m_type
!= MT_OOBDATA
) {
1735 /* XXX: Probably don't need */
1736 sb
->sb_ctl
+= m
->m_len
;
1739 /* update send byte count */
1740 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
1741 inp_incr_sndbytes_total(sb
->sb_so
,
1743 inp_incr_sndbytes_unsent(sb
->sb_so
,
1756 m
->m_flags
&= ~M_EOR
;
1764 printf("semi-panic: sbcompress\n");
1767 SBLASTMBUFCHK(sb
, __func__
);
1768 postevent(0, sb
, EV_RWBYTES
);
1772 sb_empty_assert(struct sockbuf
*sb
, const char *where
)
1774 if (!(sb
->sb_cc
== 0 && sb
->sb_mb
== NULL
&& sb
->sb_mbcnt
== 0 &&
1775 sb
->sb_mbtail
== NULL
&& sb
->sb_lastrecord
== NULL
)) {
1776 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1777 "lastrecord %p\n", where
, sb
, sb
->sb_so
, sb
->sb_cc
,
1778 sb
->sb_mbcnt
, sb
->sb_mb
, sb
->sb_mbtail
,
1785 sbflush_priq(struct msg_priq
*priq
)
1788 m
= priq
->msgq_head
;
1791 priq
->msgq_head
= priq
->msgq_tail
= priq
->msgq_lastmsg
= NULL
;
1792 priq
->msgq_bytes
= priq
->msgq_flags
= 0;
1796 * Free all mbufs in a sockbuf.
1797 * Check that all resources are reclaimed.
1800 sbflush(struct sockbuf
*sb
)
1802 void *lr_saved
= __builtin_return_address(0);
1803 struct socket
*so
= sb
->sb_so
;
1806 /* so_usecount may be 0 if we get here from sofreelastref() */
1808 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1809 __func__
, sb
, sb
->sb_flags
, lr_saved
);
1811 } else if (so
->so_usecount
< 0) {
1812 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1813 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
1814 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
1819 * Obtain lock on the socket buffer (SB_LOCK). This is required
1820 * to prevent the socket buffer from being unexpectedly altered
1821 * while it is used by another thread in socket send/receive.
1823 * sblock() must not fail here, hence the assertion.
1825 (void) sblock(sb
, SBL_WAIT
| SBL_NOINTR
| SBL_IGNDEFUNCT
);
1826 VERIFY(sb
->sb_flags
& SB_LOCK
);
1828 while (sb
->sb_mbcnt
> 0) {
1830 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1831 * we would loop forever. Panic instead.
1833 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1835 sbdrop(sb
, (int)sb
->sb_cc
);
1838 if (!(sb
->sb_flags
& SB_RECV
) && (so
->so_flags
& SOF_ENABLE_MSGS
)) {
1839 VERIFY(so
->so_msg_state
!= NULL
);
1840 for (i
= MSG_PRI_MIN
; i
<= MSG_PRI_MAX
; ++i
) {
1841 sbflush_priq(&so
->so_msg_state
->msg_priq
[i
]);
1843 so
->so_msg_state
->msg_serial_bytes
= 0;
1844 so
->so_msg_state
->msg_uno_bytes
= 0;
1847 sb_empty_assert(sb
, __func__
);
1848 postevent(0, sb
, EV_RWBYTES
);
1850 sbunlock(sb
, TRUE
); /* keep socket locked */
1854 * Drop data from (the front of) a sockbuf.
1855 * use m_freem_list to free the mbuf structures
1856 * under a single lock... this is done by pruning
1857 * the top of the tree from the body by keeping track
1858 * of where we get to in the tree and then zeroing the
1859 * two pertinent pointers m_nextpkt and m_next
1860 * the socket buffer is then updated to point at the new
1861 * top of the tree and the pruned area is released via
1865 sbdrop(struct sockbuf
*sb
, int len
)
1867 struct mbuf
*m
, *free_list
, *ml
;
1868 struct mbuf
*next
, *last
;
1870 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1872 if (m
!= NULL
&& len
> 0 && !(sb
->sb_flags
& SB_RECV
) &&
1873 ((sb
->sb_so
->so_flags
& SOF_MP_SUBFLOW
) ||
1874 (SOCK_CHECK_DOM(sb
->sb_so
, PF_MULTIPATH
) &&
1875 SOCK_CHECK_PROTO(sb
->sb_so
, IPPROTO_TCP
))) &&
1876 !(sb
->sb_so
->so_flags1
& SOF1_POST_FALLBACK_SYNC
)) {
1877 mptcp_preproc_sbdrop(sb
->sb_so
, m
, (unsigned int)len
);
1879 if (m
!= NULL
&& len
> 0 && !(sb
->sb_flags
& SB_RECV
) &&
1880 (sb
->sb_so
->so_flags
& SOF_MP_SUBFLOW
) &&
1881 (sb
->sb_so
->so_flags1
& SOF1_POST_FALLBACK_SYNC
)) {
1882 mptcp_fallback_sbdrop(sb
->sb_so
, m
, len
);
1885 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1887 free_list
= last
= m
;
1888 ml
= (struct mbuf
*)0;
1894 * temporarily replacing this panic with printf
1895 * because it occurs occasionally when closing
1896 * a socket when there is no harm in ignoring
1897 * it. This problem will be investigated
1900 /* panic("sbdrop"); */
1901 printf("sbdrop - count not zero\n");
1904 * zero the counts. if we have no mbufs,
1905 * we have no data (PR-2986815)
1909 if (!(sb
->sb_flags
& SB_RECV
) &&
1910 (sb
->sb_so
->so_flags
& SOF_ENABLE_MSGS
)) {
1911 sb
->sb_so
->so_msg_state
->
1912 msg_serial_bytes
= 0;
1917 next
= m
->m_nextpkt
;
1920 if (m
->m_len
> len
) {
1924 /* update the send byte count */
1925 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
1926 inp_decr_sndbytes_total(sb
->sb_so
, len
);
1927 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1928 m
->m_type
!= MT_OOBDATA
)
1938 while (m
&& m
->m_len
== 0) {
1945 ml
->m_next
= (struct mbuf
*)0;
1946 last
->m_nextpkt
= (struct mbuf
*)0;
1947 m_freem_list(free_list
);
1951 m
->m_nextpkt
= next
;
1957 * First part is an inline SB_EMPTY_FIXUP(). Second part
1958 * makes sure sb_lastrecord is up-to-date if we dropped
1959 * part of the last record.
1963 sb
->sb_mbtail
= NULL
;
1964 sb
->sb_lastrecord
= NULL
;
1965 } else if (m
->m_nextpkt
== NULL
) {
1966 sb
->sb_lastrecord
= m
;
1970 cfil_sock_buf_update(sb
);
1971 #endif /* CONTENT_FILTER */
1973 postevent(0, sb
, EV_RWBYTES
);
1975 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1979 * Drop a record off the front of a sockbuf
1980 * and move the next record to the front.
1983 sbdroprecord(struct sockbuf
*sb
)
1985 struct mbuf
*m
, *mn
;
1989 sb
->sb_mb
= m
->m_nextpkt
;
1997 postevent(0, sb
, EV_RWBYTES
);
2001 * Create a "control" mbuf containing the specified data
2002 * with the specified type for presentation on a socket buffer.
2005 sbcreatecontrol(caddr_t p
, int size
, int type
, int level
)
2010 if (CMSG_SPACE((u_int
)size
) > MLEN
)
2011 return ((struct mbuf
*)NULL
);
2012 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
2013 return ((struct mbuf
*)NULL
);
2014 cp
= mtod(m
, struct cmsghdr
*);
2015 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
2016 /* XXX check size? */
2017 (void) memcpy(CMSG_DATA(cp
), p
, size
);
2018 m
->m_len
= CMSG_SPACE(size
);
2019 cp
->cmsg_len
= CMSG_LEN(size
);
2020 cp
->cmsg_level
= level
;
2021 cp
->cmsg_type
= type
;
2026 sbcreatecontrol_mbuf(caddr_t p
, int size
, int type
, int level
, struct mbuf
**mp
)
2032 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2036 if (CMSG_SPACE((u_int
)size
) + (*mp
)->m_len
> MLEN
) {
2037 mp
= &(*mp
)->m_next
;
2038 *mp
= sbcreatecontrol(p
, size
, type
, level
);
2044 cp
= (struct cmsghdr
*)(void *)(mtod(m
, char *) + m
->m_len
);
2045 /* CMSG_SPACE ensures 32-bit alignment */
2046 VERIFY(IS_P2ALIGNED(cp
, sizeof (u_int32_t
)));
2047 m
->m_len
+= CMSG_SPACE(size
);
2049 /* XXX check size? */
2050 (void) memcpy(CMSG_DATA(cp
), p
, size
);
2051 cp
->cmsg_len
= CMSG_LEN(size
);
2052 cp
->cmsg_level
= level
;
2053 cp
->cmsg_type
= type
;
2060 * Some routines that return EOPNOTSUPP for entry points that are not
2061 * supported by a protocol. Fill in as needed.
2064 pru_abort_notsupp(struct socket
*so
)
2067 return (EOPNOTSUPP
);
2071 pru_accept_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2073 #pragma unused(so, nam)
2074 return (EOPNOTSUPP
);
2078 pru_attach_notsupp(struct socket
*so
, int proto
, struct proc
*p
)
2080 #pragma unused(so, proto, p)
2081 return (EOPNOTSUPP
);
2085 pru_bind_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2087 #pragma unused(so, nam, p)
2088 return (EOPNOTSUPP
);
2092 pru_connect_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2094 #pragma unused(so, nam, p)
2095 return (EOPNOTSUPP
);
2099 pru_connect2_notsupp(struct socket
*so1
, struct socket
*so2
)
2101 #pragma unused(so1, so2)
2102 return (EOPNOTSUPP
);
2106 pru_connectx_notsupp(struct socket
*so
, struct sockaddr
*src
,
2107 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2108 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2109 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2111 #pragma unused(so, src, dst, p, ifscope, aid, pcid, flags, arg, arglen, uio, bytes_written)
2112 return (EOPNOTSUPP
);
2116 pru_control_notsupp(struct socket
*so
, u_long cmd
, caddr_t data
,
2117 struct ifnet
*ifp
, struct proc
*p
)
2119 #pragma unused(so, cmd, data, ifp, p)
2120 return (EOPNOTSUPP
);
2124 pru_detach_notsupp(struct socket
*so
)
2127 return (EOPNOTSUPP
);
2131 pru_disconnect_notsupp(struct socket
*so
)
2134 return (EOPNOTSUPP
);
2138 pru_disconnectx_notsupp(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2140 #pragma unused(so, aid, cid)
2141 return (EOPNOTSUPP
);
2145 pru_listen_notsupp(struct socket
*so
, struct proc
*p
)
2147 #pragma unused(so, p)
2148 return (EOPNOTSUPP
);
2152 pru_peeraddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2154 #pragma unused(so, nam)
2155 return (EOPNOTSUPP
);
2159 pru_rcvd_notsupp(struct socket
*so
, int flags
)
2161 #pragma unused(so, flags)
2162 return (EOPNOTSUPP
);
2166 pru_rcvoob_notsupp(struct socket
*so
, struct mbuf
*m
, int flags
)
2168 #pragma unused(so, m, flags)
2169 return (EOPNOTSUPP
);
2173 pru_send_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2174 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2176 #pragma unused(so, flags, m, addr, control, p)
2177 return (EOPNOTSUPP
);
2181 pru_send_list_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
2182 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2184 #pragma unused(so, flags, m, addr, control, p)
2185 return (EOPNOTSUPP
);
2189 * This isn't really a ``null'' operation, but it's the default one
2190 * and doesn't do anything destructive.
2193 pru_sense_null(struct socket
*so
, void *ub
, int isstat64
)
2195 if (isstat64
!= 0) {
2196 struct stat64
*sb64
;
2198 sb64
= (struct stat64
*)ub
;
2199 sb64
->st_blksize
= so
->so_snd
.sb_hiwat
;
2203 sb
= (struct stat
*)ub
;
2204 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
2212 pru_sosend_notsupp(struct socket
*so
, struct sockaddr
*addr
, struct uio
*uio
,
2213 struct mbuf
*top
, struct mbuf
*control
, int flags
)
2215 #pragma unused(so, addr, uio, top, control, flags)
2216 return (EOPNOTSUPP
);
2220 pru_sosend_list_notsupp(struct socket
*so
, struct uio
**uio
,
2221 u_int uiocnt
, int flags
)
2223 #pragma unused(so, uio, uiocnt, flags)
2224 return (EOPNOTSUPP
);
2228 pru_soreceive_notsupp(struct socket
*so
, struct sockaddr
**paddr
,
2229 struct uio
*uio
, struct mbuf
**mp0
, struct mbuf
**controlp
, int *flagsp
)
2231 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2232 return (EOPNOTSUPP
);
2236 pru_soreceive_list_notsupp(struct socket
*so
,
2237 struct recv_msg_elem
*recv_msg_array
, u_int uiocnt
, int *flagsp
)
2239 #pragma unused(so, recv_msg_array, uiocnt, flagsp)
2240 return (EOPNOTSUPP
);
2244 pru_shutdown_notsupp(struct socket
*so
)
2247 return (EOPNOTSUPP
);
2251 pru_sockaddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
2253 #pragma unused(so, nam)
2254 return (EOPNOTSUPP
);
2258 pru_sopoll_notsupp(struct socket
*so
, int events
, kauth_cred_t cred
, void *wql
)
2260 #pragma unused(so, events, cred, wql)
2261 return (EOPNOTSUPP
);
2265 pru_socheckopt_null(struct socket
*so
, struct sockopt
*sopt
)
2267 #pragma unused(so, sopt)
2269 * Allow all options for set/get by default.
2275 pru_preconnect_null(struct socket
*so
)
2282 pru_sanitize(struct pr_usrreqs
*pru
)
2284 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2285 DEFAULT(pru
->pru_abort
, pru_abort_notsupp
);
2286 DEFAULT(pru
->pru_accept
, pru_accept_notsupp
);
2287 DEFAULT(pru
->pru_attach
, pru_attach_notsupp
);
2288 DEFAULT(pru
->pru_bind
, pru_bind_notsupp
);
2289 DEFAULT(pru
->pru_connect
, pru_connect_notsupp
);
2290 DEFAULT(pru
->pru_connect2
, pru_connect2_notsupp
);
2291 DEFAULT(pru
->pru_connectx
, pru_connectx_notsupp
);
2292 DEFAULT(pru
->pru_control
, pru_control_notsupp
);
2293 DEFAULT(pru
->pru_detach
, pru_detach_notsupp
);
2294 DEFAULT(pru
->pru_disconnect
, pru_disconnect_notsupp
);
2295 DEFAULT(pru
->pru_disconnectx
, pru_disconnectx_notsupp
);
2296 DEFAULT(pru
->pru_listen
, pru_listen_notsupp
);
2297 DEFAULT(pru
->pru_peeraddr
, pru_peeraddr_notsupp
);
2298 DEFAULT(pru
->pru_rcvd
, pru_rcvd_notsupp
);
2299 DEFAULT(pru
->pru_rcvoob
, pru_rcvoob_notsupp
);
2300 DEFAULT(pru
->pru_send
, pru_send_notsupp
);
2301 DEFAULT(pru
->pru_send_list
, pru_send_list_notsupp
);
2302 DEFAULT(pru
->pru_sense
, pru_sense_null
);
2303 DEFAULT(pru
->pru_shutdown
, pru_shutdown_notsupp
);
2304 DEFAULT(pru
->pru_sockaddr
, pru_sockaddr_notsupp
);
2305 DEFAULT(pru
->pru_sopoll
, pru_sopoll_notsupp
);
2306 DEFAULT(pru
->pru_soreceive
, pru_soreceive_notsupp
);
2307 DEFAULT(pru
->pru_soreceive_list
, pru_soreceive_list_notsupp
);
2308 DEFAULT(pru
->pru_sosend
, pru_sosend_notsupp
);
2309 DEFAULT(pru
->pru_sosend_list
, pru_sosend_list_notsupp
);
2310 DEFAULT(pru
->pru_socheckopt
, pru_socheckopt_null
);
2311 DEFAULT(pru
->pru_preconnect
, pru_preconnect_null
);
2316 * The following are macros on BSD and functions on Darwin
2320 * Do we need to notify the other side when I/O is possible?
2324 sb_notify(struct sockbuf
*sb
)
2326 return (sb
->sb_waiters
> 0 ||
2327 (sb
->sb_flags
& (SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)));
2331 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2332 * This is problematical if the fields are unsigned, as the space might
2333 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2334 * overflow and return 0.
2337 sbspace(struct sockbuf
*sb
)
2340 int space
= imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
2341 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
));
2343 if (sb
->sb_preconn_hiwat
!= 0)
2344 space
= imin((int)(sb
->sb_preconn_hiwat
- sb
->sb_cc
), space
);
2349 /* Compensate for data being processed by content filters */
2351 pending
= cfil_sock_data_space(sb
);
2352 #endif /* CONTENT_FILTER */
2353 if (pending
> space
)
2362 * If this socket has priority queues, check if there is enough
2363 * space in the priority queue for this msg.
2366 msgq_sbspace(struct socket
*so
, struct mbuf
*control
)
2368 int space
= 0, error
;
2369 u_int32_t msgpri
= 0;
2370 VERIFY(so
->so_type
== SOCK_STREAM
&&
2371 SOCK_PROTO(so
) == IPPROTO_TCP
);
2372 if (control
!= NULL
) {
2373 error
= tcp_get_msg_priority(control
, &msgpri
);
2379 space
= (so
->so_snd
.sb_idealsize
/ MSG_PRI_COUNT
) -
2380 so
->so_msg_state
->msg_priq
[msgpri
].msgq_bytes
;
2386 /* do we have to send all at once on a socket? */
2388 sosendallatonce(struct socket
*so
)
2390 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
2393 /* can we read something from so? */
2395 soreadable(struct socket
*so
)
2397 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
2398 ((so
->so_state
& SS_CANTRCVMORE
)
2400 && cfil_sock_data_pending(&so
->so_rcv
) == 0
2401 #endif /* CONTENT_FILTER */
2403 so
->so_comp
.tqh_first
|| so
->so_error
);
2406 /* can we write something to so? */
2409 sowriteable(struct socket
*so
)
2411 if ((so
->so_state
& SS_CANTSENDMORE
) ||
2414 if (so_wait_for_if_feedback(so
) || !socanwrite(so
))
2416 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
)
2419 if (sbspace(&(so
)->so_snd
) >= (so
)->so_snd
.sb_lowat
) {
2420 if (so
->so_flags
& SOF_NOTSENT_LOWAT
) {
2421 if ((SOCK_DOM(so
) == PF_INET6
||
2422 SOCK_DOM(so
) == PF_INET
) &&
2423 so
->so_type
== SOCK_STREAM
) {
2424 return (tcp_notsent_lowat_check(so
));
2427 else if ((SOCK_DOM(so
) == PF_MULTIPATH
) &&
2428 (SOCK_PROTO(so
) == IPPROTO_TCP
)) {
2429 return (mptcp_notsent_lowat_check(so
));
2442 /* adjust counters in sb reflecting allocation of m */
2445 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
2448 sb
->sb_cc
+= m
->m_len
;
2449 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2450 m
->m_type
!= MT_OOBDATA
)
2451 sb
->sb_ctl
+= m
->m_len
;
2452 sb
->sb_mbcnt
+= MSIZE
;
2454 if (m
->m_flags
& M_EXT
) {
2455 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
2456 cnt
+= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2458 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2459 VERIFY(total_sbmb_cnt
> 0);
2460 if (total_sbmb_cnt
> total_sbmb_cnt_peak
)
2461 total_sbmb_cnt_peak
= total_sbmb_cnt
;
2464 * If data is being added to the send socket buffer,
2465 * update the send byte count
2467 if (sb
->sb_flags
& SB_SNDBYTE_CNT
) {
2468 inp_incr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2469 inp_incr_sndbytes_unsent(sb
->sb_so
, m
->m_len
);
2473 /* adjust counters in sb reflecting freeing of m */
2475 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
2479 sb
->sb_cc
-= m
->m_len
;
2480 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
2481 m
->m_type
!= MT_OOBDATA
)
2482 sb
->sb_ctl
-= m
->m_len
;
2483 sb
->sb_mbcnt
-= MSIZE
;
2484 if (m
->m_flags
& M_EXT
) {
2485 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
2486 cnt
-= (m
->m_ext
.ext_size
>> MSIZESHIFT
);
2488 OSAddAtomic(cnt
, &total_sbmb_cnt
);
2489 VERIFY(total_sbmb_cnt
>= 0);
2490 if (total_sbmb_cnt
< total_sbmb_cnt_floor
)
2491 total_sbmb_cnt_floor
= total_sbmb_cnt
;
2494 * If data is being removed from the send socket buffer,
2495 * update the send byte count
2497 if (sb
->sb_flags
& SB_SNDBYTE_CNT
)
2498 inp_decr_sndbytes_total(sb
->sb_so
, m
->m_len
);
2502 * Set lock on sockbuf sb; sleep if lock is already held.
2503 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2504 * Returns error without lock if sleep is interrupted.
2507 sblock(struct sockbuf
*sb
, uint32_t flags
)
2509 boolean_t nointr
= ((sb
->sb_flags
& SB_NOINTR
) || (flags
& SBL_NOINTR
));
2510 void *lr_saved
= __builtin_return_address(0);
2511 struct socket
*so
= sb
->sb_so
;
2514 thread_t tp
= current_thread();
2516 VERIFY((flags
& SBL_VALID
) == flags
);
2518 /* so_usecount may be 0 if we get here from sofreelastref() */
2520 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2521 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2523 } else if (so
->so_usecount
< 0) {
2524 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2525 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2526 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2531 * The content filter thread must hold the sockbuf lock
2533 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2535 * Don't panic if we are defunct because SB_LOCK has
2536 * been cleared by sodefunct()
2538 if (!(so
->so_flags
& SOF_DEFUNCT
) && !(sb
->sb_flags
& SB_LOCK
))
2539 panic("%s: SB_LOCK not held for %p\n",
2542 /* Keep the sockbuf locked */
2546 if ((sb
->sb_flags
& SB_LOCK
) && !(flags
& SBL_WAIT
))
2547 return (EWOULDBLOCK
);
2549 * We may get here from sorflush(), in which case "sb" may not
2550 * point to the real socket buffer. Use the actual socket buffer
2551 * address from the socket instead.
2553 wchan
= (sb
->sb_flags
& SB_RECV
) ?
2554 &so
->so_rcv
.sb_flags
: &so
->so_snd
.sb_flags
;
2557 * A content filter thread has exclusive access to the sockbuf
2558 * until it clears the
2560 while ((sb
->sb_flags
& SB_LOCK
) ||
2561 ((so
->so_flags
& SOF_CONTENT_FILTER
) &&
2562 sb
->sb_cfil_thread
!= NULL
)) {
2563 lck_mtx_t
*mutex_held
;
2566 * XXX: This code should be moved up above outside of this loop;
2567 * however, we may get here as part of sofreelastref(), and
2568 * at that time pr_getlock() may no longer be able to return
2569 * us the lock. This will be fixed in future.
2571 if (so
->so_proto
->pr_getlock
!= NULL
)
2572 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, PR_F_WILLUNLOCK
);
2574 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2576 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2579 VERIFY(sb
->sb_wantlock
!= 0);
2581 error
= msleep(wchan
, mutex_held
,
2582 nointr
? PSOCK
: PSOCK
| PCATCH
,
2583 nointr
? "sb_lock_nointr" : "sb_lock", NULL
);
2585 VERIFY(sb
->sb_wantlock
!= 0);
2588 if (error
== 0 && (so
->so_flags
& SOF_DEFUNCT
) &&
2589 !(flags
& SBL_IGNDEFUNCT
)) {
2591 SODEFUNCTLOG("%s[%d, %s]: defunct so 0x%llx [%d,%d] "
2592 "(%d)\n", __func__
, proc_selfpid(),
2593 proc_best_name(current_proc()),
2594 (uint64_t)VM_KERNEL_ADDRPERM(so
),
2595 SOCK_DOM(so
), SOCK_TYPE(so
), error
);
2601 sb
->sb_flags
|= SB_LOCK
;
2606 * Release lock on sockbuf sb
2609 sbunlock(struct sockbuf
*sb
, boolean_t keeplocked
)
2611 void *lr_saved
= __builtin_return_address(0);
2612 struct socket
*so
= sb
->sb_so
;
2613 thread_t tp
= current_thread();
2615 /* so_usecount may be 0 if we get here from sofreelastref() */
2617 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2618 __func__
, sb
, sb
->sb_flags
, lr_saved
);
2620 } else if (so
->so_usecount
< 0) {
2621 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2622 "lrh= %s\n", __func__
, sb
, sb
->sb_flags
, so
,
2623 so
->so_usecount
, lr_saved
, solockhistory_nr(so
));
2628 * The content filter thread must hold the sockbuf lock
2630 if ((so
->so_flags
& SOF_CONTENT_FILTER
) && sb
->sb_cfil_thread
== tp
) {
2632 * Don't panic if we are defunct because SB_LOCK has
2633 * been cleared by sodefunct()
2635 if (!(so
->so_flags
& SOF_DEFUNCT
) &&
2636 !(sb
->sb_flags
& SB_LOCK
) &&
2637 !(so
->so_state
& SS_DEFUNCT
) &&
2638 !(so
->so_flags1
& SOF1_DEFUNCTINPROG
)) {
2639 panic("%s: SB_LOCK not held for %p\n",
2642 /* Keep the sockbuf locked and proceed */
2644 VERIFY((sb
->sb_flags
& SB_LOCK
) ||
2645 (so
->so_state
& SS_DEFUNCT
) ||
2646 (so
->so_flags1
& SOF1_DEFUNCTINPROG
));
2648 sb
->sb_flags
&= ~SB_LOCK
;
2650 if (sb
->sb_wantlock
> 0) {
2652 * We may get here from sorflush(), in which case "sb"
2653 * may not point to the real socket buffer. Use the
2654 * actual socket buffer address from the socket instead.
2656 wakeup((sb
->sb_flags
& SB_RECV
) ? &so
->so_rcv
.sb_flags
:
2657 &so
->so_snd
.sb_flags
);
2661 if (!keeplocked
) { /* unlock on exit */
2662 lck_mtx_t
*mutex_held
;
2664 if (so
->so_proto
->pr_getlock
!= NULL
)
2665 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, PR_F_WILLUNLOCK
);
2667 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
2669 LCK_MTX_ASSERT(mutex_held
, LCK_MTX_ASSERT_OWNED
);
2671 VERIFY(so
->so_usecount
> 0);
2673 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2674 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2675 lck_mtx_unlock(mutex_held
);
2680 sorwakeup(struct socket
*so
)
2682 if (sb_notify(&so
->so_rcv
))
2683 sowakeup(so
, &so
->so_rcv
);
2687 sowwakeup(struct socket
*so
)
2689 if (sb_notify(&so
->so_snd
))
2690 sowakeup(so
, &so
->so_snd
);
2694 soevent(struct socket
*so
, long hint
)
2696 if (so
->so_flags
& SOF_KNOTE
)
2697 KNOTE(&so
->so_klist
, hint
);
2699 soevupcall(so
, hint
);
2702 * Don't post an event if this a subflow socket or
2703 * the app has opted out of using cellular interface
2705 if ((hint
& SO_FILT_HINT_IFDENIED
) &&
2706 !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
2707 !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
) &&
2708 !(so
->so_restrictions
& SO_RESTRICT_DENY_EXPENSIVE
))
2709 soevent_ifdenied(so
);
2713 soevupcall(struct socket
*so
, u_int32_t hint
)
2715 if (so
->so_event
!= NULL
) {
2716 caddr_t so_eventarg
= so
->so_eventarg
;
2718 hint
&= so
->so_eventmask
;
2720 so
->so_event(so
, so_eventarg
, hint
);
2725 soevent_ifdenied(struct socket
*so
)
2727 struct kev_netpolicy_ifdenied ev_ifdenied
;
2729 bzero(&ev_ifdenied
, sizeof (ev_ifdenied
));
2731 * The event consumer is interested about the effective {upid,pid,uuid}
2732 * info which can be different than the those related to the process
2733 * that recently performed a system call on the socket, i.e. when the
2734 * socket is delegated.
2736 if (so
->so_flags
& SOF_DELEGATED
) {
2737 ev_ifdenied
.ev_data
.eupid
= so
->e_upid
;
2738 ev_ifdenied
.ev_data
.epid
= so
->e_pid
;
2739 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->e_uuid
);
2741 ev_ifdenied
.ev_data
.eupid
= so
->last_upid
;
2742 ev_ifdenied
.ev_data
.epid
= so
->last_pid
;
2743 uuid_copy(ev_ifdenied
.ev_data
.euuid
, so
->last_uuid
);
2746 if (++so
->so_ifdenied_notifies
> 1) {
2748 * Allow for at most one kernel event to be generated per
2749 * socket; so_ifdenied_notifies is reset upon changes in
2750 * the UUID policy. See comments in inp_update_policy.
2752 if (net_io_policy_log
) {
2755 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2756 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2757 "euuid %s%s has %d redundant events supressed\n",
2758 __func__
, so
->last_pid
,
2759 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
2760 SOCK_TYPE(so
), ev_ifdenied
.ev_data
.epid
, buf
,
2761 ((so
->so_flags
& SOF_DELEGATED
) ?
2762 " [delegated]" : ""), so
->so_ifdenied_notifies
);
2765 if (net_io_policy_log
) {
2768 uuid_unparse(ev_ifdenied
.ev_data
.euuid
, buf
);
2769 log(LOG_DEBUG
, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2770 "euuid %s%s event posted\n", __func__
,
2771 so
->last_pid
, (uint64_t)VM_KERNEL_ADDRPERM(so
),
2772 SOCK_DOM(so
), SOCK_TYPE(so
),
2773 ev_ifdenied
.ev_data
.epid
, buf
,
2774 ((so
->so_flags
& SOF_DELEGATED
) ?
2775 " [delegated]" : ""));
2777 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED
, &ev_ifdenied
.ev_data
,
2778 sizeof (ev_ifdenied
));
2783 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2786 dup_sockaddr(struct sockaddr
*sa
, int canwait
)
2788 struct sockaddr
*sa2
;
2790 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
2791 canwait
? M_WAITOK
: M_NOWAIT
);
2793 bcopy(sa
, sa2
, sa
->sa_len
);
2798 * Create an external-format (``xsocket'') structure using the information
2799 * in the kernel-format socket structure pointed to by so. This is done
2800 * to reduce the spew of irrelevant information over this interface,
2801 * to isolate user code from changes in the kernel structure, and
2802 * potentially to provide information-hiding if we decide that
2803 * some of this information should be hidden from users.
2806 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
2808 xso
->xso_len
= sizeof (*xso
);
2809 xso
->xso_so
= (_XSOCKET_PTR(struct socket
*))VM_KERNEL_ADDRPERM(so
);
2810 xso
->so_type
= so
->so_type
;
2811 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2812 xso
->so_linger
= so
->so_linger
;
2813 xso
->so_state
= so
->so_state
;
2814 xso
->so_pcb
= (_XSOCKET_PTR(caddr_t
))VM_KERNEL_ADDRPERM(so
->so_pcb
);
2816 xso
->xso_protocol
= SOCK_PROTO(so
);
2817 xso
->xso_family
= SOCK_DOM(so
);
2819 xso
->xso_protocol
= xso
->xso_family
= 0;
2821 xso
->so_qlen
= so
->so_qlen
;
2822 xso
->so_incqlen
= so
->so_incqlen
;
2823 xso
->so_qlimit
= so
->so_qlimit
;
2824 xso
->so_timeo
= so
->so_timeo
;
2825 xso
->so_error
= so
->so_error
;
2826 xso
->so_pgid
= so
->so_pgid
;
2827 xso
->so_oobmark
= so
->so_oobmark
;
2828 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2829 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2830 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2834 #if !CONFIG_EMBEDDED
2837 sotoxsocket64(struct socket
*so
, struct xsocket64
*xso
)
2839 xso
->xso_len
= sizeof (*xso
);
2840 xso
->xso_so
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
);
2841 xso
->so_type
= so
->so_type
;
2842 xso
->so_options
= (short)(so
->so_options
& 0xffff);
2843 xso
->so_linger
= so
->so_linger
;
2844 xso
->so_state
= so
->so_state
;
2845 xso
->so_pcb
= (u_int64_t
)VM_KERNEL_ADDRPERM(so
->so_pcb
);
2847 xso
->xso_protocol
= SOCK_PROTO(so
);
2848 xso
->xso_family
= SOCK_DOM(so
);
2850 xso
->xso_protocol
= xso
->xso_family
= 0;
2852 xso
->so_qlen
= so
->so_qlen
;
2853 xso
->so_incqlen
= so
->so_incqlen
;
2854 xso
->so_qlimit
= so
->so_qlimit
;
2855 xso
->so_timeo
= so
->so_timeo
;
2856 xso
->so_error
= so
->so_error
;
2857 xso
->so_pgid
= so
->so_pgid
;
2858 xso
->so_oobmark
= so
->so_oobmark
;
2859 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
2860 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
2861 xso
->so_uid
= kauth_cred_getuid(so
->so_cred
);
2864 #endif /* !CONFIG_EMBEDDED */
2867 * This does the same for sockbufs. Note that the xsockbuf structure,
2868 * since it is always embedded in a socket, does not include a self
2869 * pointer nor a length. We make this entry point public in case
2870 * some other mechanism needs it.
2873 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
2875 xsb
->sb_cc
= sb
->sb_cc
;
2876 xsb
->sb_hiwat
= sb
->sb_hiwat
;
2877 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
2878 xsb
->sb_mbmax
= sb
->sb_mbmax
;
2879 xsb
->sb_lowat
= sb
->sb_lowat
;
2880 xsb
->sb_flags
= sb
->sb_flags
;
2881 xsb
->sb_timeo
= (short)
2882 (sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
2883 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
2888 * Based on the policy set by an all knowing decison maker, throttle sockets
2889 * that either have been marked as belonging to "background" process.
2892 soisthrottled(struct socket
*so
)
2894 return (so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
);
2898 soisprivilegedtraffic(struct socket
*so
)
2900 return ((so
->so_flags
& SOF_PRIVILEGED_TRAFFIC_CLASS
) ? 1 : 0);
2904 soissrcbackground(struct socket
*so
)
2906 return ((so
->so_flags1
& SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ||
2907 IS_SO_TC_BACKGROUND(so
->so_traffic_class
));
2911 soissrcrealtime(struct socket
*so
)
2913 return (so
->so_traffic_class
>= SO_TC_AV
&&
2914 so
->so_traffic_class
<= SO_TC_VO
);
2918 soissrcbesteffort(struct socket
*so
)
2920 return (so
->so_traffic_class
== SO_TC_BE
||
2921 so
->so_traffic_class
== SO_TC_RD
||
2922 so
->so_traffic_class
== SO_TC_OAM
);
2926 soclearfastopen(struct socket
*so
)
2928 if (so
->so_flags1
& SOF1_PRECONNECT_DATA
)
2929 so
->so_flags1
&= ~SOF1_PRECONNECT_DATA
;
2931 if (so
->so_flags1
& SOF1_DATA_IDEMPOTENT
)
2932 so
->so_flags1
&= ~SOF1_DATA_IDEMPOTENT
;
2936 sonullevent(struct socket
*so
, void *arg
, uint32_t hint
)
2938 #pragma unused(so, arg, hint)
2942 * Here is the definition of some of the basic objects in the kern.ipc
2943 * branch of the MIB.
2945 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
,
2946 CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
, 0, "IPC");
2948 /* Check that the maximum socket buffer size is within a range */
2951 sysctl_sb_max SYSCTL_HANDLER_ARGS
2953 #pragma unused(oidp, arg1, arg2)
2954 u_int32_t new_value
;
2956 int error
= sysctl_io_number(req
, sb_max
, sizeof (u_int32_t
),
2957 &new_value
, &changed
);
2958 if (!error
&& changed
) {
2959 if (new_value
> LOW_SB_MAX
&& new_value
<= high_sb_max
) {
2968 SYSCTL_PROC(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
,
2969 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
2970 &sb_max
, 0, &sysctl_sb_max
, "IU", "Maximum socket buffer size");
2972 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
,
2973 CTLFLAG_RW
| CTLFLAG_LOCKED
, &sb_efficiency
, 0, "");
2975 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
,
2976 CTLFLAG_RD
| CTLFLAG_LOCKED
, &nmbclusters
, 0, "");
2978 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njcl
,
2979 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njcl
, 0, "");
2981 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njclbytes
,
2982 CTLFLAG_RD
| CTLFLAG_LOCKED
, &njclbytes
, 0, "");
2984 SYSCTL_INT(_kern_ipc
, KIPC_SOQLIMITCOMPAT
, soqlimitcompat
,
2985 CTLFLAG_RW
| CTLFLAG_LOCKED
, &soqlimitcompat
, 1,
2986 "Enable socket queue limit compatibility");
2989 * Hack alert -- rdar://33572856
2990 * A loopback test we cannot change was failing because it sets
2991 * SO_SENDTIMEO to 5 seconds and that's also the value
2992 * of the minimum persist timer. Because of the persist timer,
2993 * the connection was not idle for 5 seconds and SO_SNDTIMEO
2994 * was not triggering at 5 seconds causing the test failure.
2995 * As a workaround we check the sysctl soqlencomp the test is already
2996 * setting to set disable auto tuning of the receive buffer.
2999 extern u_int32_t tcp_do_autorcvbuf
;
3002 sysctl_soqlencomp SYSCTL_HANDLER_ARGS
3004 #pragma unused(oidp, arg1, arg2)
3005 u_int32_t new_value
;
3007 int error
= sysctl_io_number(req
, soqlencomp
, sizeof (u_int32_t
),
3008 &new_value
, &changed
);
3009 if (!error
&& changed
) {
3010 soqlencomp
= new_value
;
3011 if (new_value
!= 0) {
3012 tcp_do_autorcvbuf
= 0;
3013 tcptv_persmin_val
= 6 * TCP_RETRANSHZ
;
3018 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, soqlencomp
,
3019 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
3020 &soqlencomp
, 0, &sysctl_soqlencomp
, "IU", "");
3022 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3023 &total_sbmb_cnt
, 0, "");
3024 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_peak
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3025 &total_sbmb_cnt_peak
, 0, "");
3026 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbmb_cnt_floor
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3027 &total_sbmb_cnt_floor
, 0, "");
3028 SYSCTL_QUAD(_kern_ipc
, OID_AUTO
, sbmb_limreached
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
3029 &sbmb_limreached
, "");
3032 SYSCTL_NODE(_kern_ipc
, OID_AUTO
, io_policy
, CTLFLAG_RW
, 0, "network IO policy");
3034 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, log
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3035 &net_io_policy_log
, 0, "");
3037 #if CONFIG_PROC_UUID_POLICY
3038 SYSCTL_INT(_kern_ipc_io_policy
, OID_AUTO
, uuid
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
3039 &net_io_policy_uuid
, 0, "");
3040 #endif /* CONFIG_PROC_UUID_POLICY */