2 * Copyright (c) 2006-2018 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <IOKit/IOBSD.h>
43 #include <libkern/libkern.h>
44 #include <mach/coalition.h>
45 #include <mach/mach_time.h>
46 #include <mach/task.h>
47 #include <mach/host_priv.h>
48 #include <mach/mach_host.h>
50 #include <pexpert/pexpert.h>
51 #include <sys/coalition.h>
52 #include <sys/kern_event.h>
54 #include <sys/proc_info.h>
55 #include <sys/reason.h>
56 #include <sys/signal.h>
57 #include <sys/signalvar.h>
58 #include <sys/sysctl.h>
59 #include <sys/sysproto.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
67 #include <vm/vm_map.h>
68 #endif /* CONFIG_FREEZE */
70 #include <sys/kern_memorystatus.h>
72 #include <mach/machine/sdt.h>
73 #include <libkern/section_keywords.h>
75 /* For logging clarity */
76 static const char *memorystatus_kill_cause_name
[] = {
78 "jettisoned" , /* kMemorystatusKilled */
79 "highwater" , /* kMemorystatusKilledHiwat */
80 "vnode-limit" , /* kMemorystatusKilledVnodes */
81 "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */
82 "vm-thrashing" , /* kMemorystatusKilledVMThrashing */
83 "fc-thrashing" , /* kMemorystatusKilledFCThrashing */
84 "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */
85 "diagnostic" , /* kMemorystatusKilledDiagnostic */
86 "idle-exit" , /* kMemorystatusKilledIdleExit */
87 "zone-map-exhaustion" , /* kMemorystatusKilledZoneMapExhaustion */
91 memorystatus_priority_band_name(int32_t priority
)
94 case JETSAM_PRIORITY_FOREGROUND
:
96 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
97 return "AUDIO_AND_ACCESSORY";
98 case JETSAM_PRIORITY_CONDUCTOR
:
100 case JETSAM_PRIORITY_HOME
:
102 case JETSAM_PRIORITY_EXECUTIVE
:
104 case JETSAM_PRIORITY_IMPORTANT
:
106 case JETSAM_PRIORITY_CRITICAL
:
113 /* Does cause indicate vm or fc thrashing? */
115 is_reason_thrashing(unsigned cause
)
118 case kMemorystatusKilledVMThrashing
:
119 case kMemorystatusKilledFCThrashing
:
126 /* Is the zone map almost full? */
128 is_reason_zone_map_exhaustion(unsigned cause
)
130 if (cause
== kMemorystatusKilledZoneMapExhaustion
)
136 * Returns the current zone map size and capacity to include in the jetsam snapshot.
137 * Defined in zalloc.c
139 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
142 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
143 * Defined in zalloc.c
145 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
147 /* These are very verbose printfs(), enable with
148 * MEMORYSTATUS_DEBUG_LOG
150 #if MEMORYSTATUS_DEBUG_LOG
151 #define MEMORYSTATUS_DEBUG(cond, format, ...) \
153 if (cond) { printf(format, ##__VA_ARGS__); } \
156 #define MEMORYSTATUS_DEBUG(cond, format, ...)
160 * Active / Inactive limit support
161 * proc list must be locked
163 * The SET_*** macros are used to initialize a limit
164 * for the first time.
166 * The CACHE_*** macros are use to cache the limit that will
167 * soon be in effect down in the ledgers.
170 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
172 (p)->p_memstat_memlimit_active = (limit); \
174 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
176 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
180 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
182 (p)->p_memstat_memlimit_inactive = (limit); \
184 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
186 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
190 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
192 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
193 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
194 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
197 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
202 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
204 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
205 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
206 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
209 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
215 /* General tunables */
217 unsigned long delta_percentage
= 5;
218 unsigned long critical_threshold_percentage
= 5;
219 unsigned long idle_offset_percentage
= 5;
220 unsigned long pressure_threshold_percentage
= 15;
221 unsigned long freeze_threshold_percentage
= 50;
222 unsigned long policy_more_free_offset_percentage
= 5;
224 /* General memorystatus stuff */
226 struct klist memorystatus_klist
;
227 static lck_mtx_t memorystatus_klist_mutex
;
229 static void memorystatus_klist_lock(void);
230 static void memorystatus_klist_unlock(void);
232 static uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
233 static uint64_t memorystatus_apps_idle_delay_time
= 0;
236 * Memorystatus kevents
239 static int filt_memorystatusattach(struct knote
*kn
, struct kevent_internal_s
*kev
);
240 static void filt_memorystatusdetach(struct knote
*kn
);
241 static int filt_memorystatus(struct knote
*kn
, long hint
);
242 static int filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
);
243 static int filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
);
245 SECURITY_READ_ONLY_EARLY(struct filterops
) memorystatus_filtops
= {
246 .f_attach
= filt_memorystatusattach
,
247 .f_detach
= filt_memorystatusdetach
,
248 .f_event
= filt_memorystatus
,
249 .f_touch
= filt_memorystatustouch
,
250 .f_process
= filt_memorystatusprocess
,
254 kMemorystatusNoPressure
= 0x1,
255 kMemorystatusPressure
= 0x2,
256 kMemorystatusLowSwap
= 0x4,
257 kMemorystatusProcLimitWarn
= 0x8,
258 kMemorystatusProcLimitCritical
= 0x10
261 /* Idle guard handling */
263 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
264 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
266 static thread_call_t memorystatus_idle_demotion_call
;
268 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
269 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
270 static void memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clean_state
);
271 static void memorystatus_reschedule_idle_demotion_locked(void);
273 static void memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
);
275 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
277 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
279 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
280 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
281 void memorystatus_send_low_swap_note(void);
283 int memorystatus_wakeup
= 0;
285 unsigned int memorystatus_level
= 0;
287 static int memorystatus_list_count
= 0;
289 #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1)
291 typedef struct memstat_bucket
{
292 TAILQ_HEAD(, proc
) list
;
296 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
298 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
300 uint64_t memstat_idle_demotion_deadline
= 0;
302 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
303 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
305 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
306 #define isApp(p) (! (p->p_memstat_dirty & P_DIRTY_TRACK))
307 #define isSysProc(p) ((p->p_memstat_dirty & P_DIRTY_TRACK))
309 #define kJetsamAgingPolicyNone (0)
310 #define kJetsamAgingPolicyLegacy (1)
311 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
312 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
313 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
315 unsigned int jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
317 extern int corpse_for_fatal_memkill
;
318 extern unsigned long total_corpses_count(void) __attribute__((pure
));
319 extern void task_purge_all_corpses(void);
320 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
321 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
322 #if DEVELOPMENT || DEBUG
323 void memorystatus_abort_vm_map_fork(task_t
);
328 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
331 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
333 #pragma unused(oidp, arg1, arg2)
335 int error
= 0, val
= 0;
336 memstat_bucket_t
*old_bucket
= 0;
337 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
338 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
339 proc_t p
= NULL
, next_proc
= NULL
;
342 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
343 if (error
|| !req
->newptr
) {
347 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
348 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
353 * We need to synchronize with any potential adding/removal from aging bands
354 * that might be in progress currently. We use the proc_list_lock() just for
355 * consistency with all the routines dealing with 'aging' processes. We need
356 * a lighterweight lock.
360 old_system_procs_aging_band
= system_procs_aging_band
;
361 old_applications_aging_band
= applications_aging_band
;
365 case kJetsamAgingPolicyNone
:
366 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
367 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
370 case kJetsamAgingPolicyLegacy
:
372 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
374 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
375 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
378 case kJetsamAgingPolicySysProcsReclaimedFirst
:
379 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
380 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
383 case kJetsamAgingPolicyAppsReclaimedFirst
:
384 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
385 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
392 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
394 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
395 p
= TAILQ_FIRST(&old_bucket
->list
);
399 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
402 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
403 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
406 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
414 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
416 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
417 p
= TAILQ_FIRST(&old_bucket
->list
);
421 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
424 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
425 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
428 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
436 jetsam_aging_policy
= val
;
437 system_procs_aging_band
= new_system_procs_aging_band
;
438 applications_aging_band
= new_applications_aging_band
;
445 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RW
,
446 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
450 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
452 #pragma unused(oidp, arg1, arg2)
454 int error
= 0, val
= 0, old_time_in_secs
= 0;
455 uint64_t old_time_in_ns
= 0;
457 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
458 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
460 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
461 if (error
|| !req
->newptr
) {
465 if ((val
< 0) || (val
> INT32_MAX
)) {
466 printf("jetsam: new idle delay interval has invalid value.\n");
470 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
475 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
476 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
480 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
482 #pragma unused(oidp, arg1, arg2)
484 int error
= 0, val
= 0, old_time_in_secs
= 0;
485 uint64_t old_time_in_ns
= 0;
487 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
488 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
490 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
491 if (error
|| !req
->newptr
) {
495 if ((val
< 0) || (val
> INT32_MAX
)) {
496 printf("jetsam: new idle delay interval has invalid value.\n");
500 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
505 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
506 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
508 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
510 static unsigned int memorystatus_dirty_count
= 0;
512 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
516 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
518 #endif /* CONFIG_EMBEDDED */
521 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
523 user_addr_t level
= 0;
527 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
534 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
);
535 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
);
537 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
541 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
543 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
544 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
545 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
548 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
550 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
552 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
554 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
556 int proc_get_memstat_priority(proc_t
, boolean_t
);
558 static boolean_t memorystatus_idle_snapshot
= 0;
560 unsigned int memorystatus_delta
= 0;
562 /* Jetsam Loop Detection */
563 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
564 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
565 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
566 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
569 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
570 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
573 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
574 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
576 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
578 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
581 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
582 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
583 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
585 #if DEVELOPMENT || DEBUG
587 * Jetsam Loop Detection tunables.
590 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
591 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
592 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
593 #endif /* DEVELOPMENT || DEBUG */
595 static uint32_t kill_under_pressure_cause
= 0;
598 * default jetsam snapshot support
600 static memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
601 #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries
602 static unsigned int memorystatus_jetsam_snapshot_count
= 0;
603 static unsigned int memorystatus_jetsam_snapshot_max
= 0;
604 static uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
605 static uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
606 #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30
609 * snapshot support for memstats collected at boot.
611 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
613 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
614 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
615 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
617 static void memorystatus_clear_errors(void);
618 static void memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
);
619 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
620 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
621 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
622 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
623 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
625 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
627 static uint32_t memorystatus_build_state(proc_t p
);
628 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
630 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
, uint32_t *errors
);
631 static boolean_t
memorystatus_kill_top_process_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
);
632 static boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
);
633 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
);
635 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
637 /* Priority Band Sorting Routines */
638 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
639 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
640 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
641 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
644 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
645 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
646 static int memstat_asc_cmp(const void *a
, const void *b
);
650 extern unsigned int vm_page_free_count
;
651 extern unsigned int vm_page_active_count
;
652 extern unsigned int vm_page_inactive_count
;
653 extern unsigned int vm_page_throttled_count
;
654 extern unsigned int vm_page_purgeable_count
;
655 extern unsigned int vm_page_wire_count
;
656 #if CONFIG_SECLUDED_MEMORY
657 extern unsigned int vm_page_secluded_count
;
658 #endif /* CONFIG_SECLUDED_MEMORY */
661 unsigned int memorystatus_available_pages
= (unsigned int)-1;
662 unsigned int memorystatus_available_pages_pressure
= 0;
663 unsigned int memorystatus_available_pages_critical
= 0;
664 static unsigned int memorystatus_available_pages_critical_base
= 0;
665 static unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
667 #if DEVELOPMENT || DEBUG
668 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
670 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
671 #endif /* DEVELOPMENT || DEBUG */
673 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
674 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
675 static void memorystatus_update_levels_locked(boolean_t critical_only
);
676 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
678 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
679 extern void vm_thrashing_jetsam_done(void);
680 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
682 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
684 #else /* CONFIG_JETSAM */
686 uint64_t memorystatus_available_pages
= (uint64_t)-1;
687 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
688 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
690 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
691 #endif /* CONFIG_JETSAM */
693 unsigned int memorystatus_frozen_count
= 0;
694 unsigned int memorystatus_suspended_count
= 0;
696 #if VM_PRESSURE_EVENTS
698 boolean_t
memorystatus_warn_process(pid_t pid
, __unused boolean_t is_active
, __unused boolean_t is_fatal
, boolean_t exceeded
);
700 vm_pressure_level_t memorystatus_vm_pressure_level
= kVMPressureNormal
;
703 * We use this flag to signal if we have any HWM offenders
704 * on the system. This way we can reduce the number of wakeups
705 * of the memorystatus_thread when the system is between the
706 * "pressure" and "critical" threshold.
708 * The (re-)setting of this variable is done without any locks
709 * or synchronization simply because it is not possible (currently)
710 * to keep track of HWM offenders that drop down below their memory
711 * limit and/or exit. So, we choose to burn a couple of wasted wakeups
712 * by allowing the unguarded modification of this variable.
714 boolean_t memorystatus_hwm_candidates
= 0;
716 static int memorystatus_send_note(int event_code
, void *data
, size_t data_length
);
718 #endif /* VM_PRESSURE_EVENTS */
721 #if DEVELOPMENT || DEBUG
723 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
724 lck_grp_t
*disconnect_page_mappings_lck_grp
;
725 static lck_mtx_t disconnect_page_mappings_mutex
;
727 extern boolean_t kill_on_no_paging_space
;
728 #endif /* DEVELOPMENT || DEBUG */
735 boolean_t memorystatus_freeze_enabled
= FALSE
;
736 int memorystatus_freeze_wakeup
= 0;
738 lck_grp_attr_t
*freezer_lck_grp_attr
;
739 lck_grp_t
*freezer_lck_grp
;
740 static lck_mtx_t freezer_mutex
;
742 static inline boolean_t
memorystatus_can_freeze_processes(void);
743 static boolean_t
memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
);
745 static void memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
);
748 static unsigned int memorystatus_freeze_threshold
= 0;
750 static unsigned int memorystatus_freeze_pages_min
= 0;
751 static unsigned int memorystatus_freeze_pages_max
= 0;
753 static unsigned int memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
755 static unsigned int memorystatus_freeze_daily_mb_max
= FREEZE_DAILY_MB_MAX_DEFAULT
;
758 static uint64_t memorystatus_freeze_count
= 0;
759 static uint64_t memorystatus_freeze_pageouts
= 0;
762 static throttle_interval_t throttle_intervals
[] = {
763 { 60, 8, 0, 0, { 0, 0 }, FALSE
}, /* 1 hour intermediate interval, 8x burst */
764 { 24 * 60, 1, 0, 0, { 0, 0 }, FALSE
}, /* 24 hour long interval, no burst */
767 static uint64_t memorystatus_freeze_throttle_count
= 0;
769 static unsigned int memorystatus_suspended_footprint_total
= 0; /* pages */
771 extern uint64_t vm_swap_get_free_space(void);
773 static boolean_t
memorystatus_freeze_update_throttle(void);
775 #endif /* CONFIG_FREEZE */
779 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
781 #if DEVELOPMENT || DEBUG
783 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
786 memorystatus_debug_dump_bucket_locked (unsigned int bucket_index
)
790 int ledger_limit
= 0;
791 unsigned int b
= bucket_index
;
792 boolean_t traverse_all_buckets
= FALSE
;
794 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
795 traverse_all_buckets
= TRUE
;
798 traverse_all_buckets
= FALSE
;
803 * footprint reported in [pages / MB ]
804 * limits reported as:
805 * L-limit proc's Ledger limit
806 * C-limit proc's Cached limit, should match Ledger
807 * A-limit proc's Active limit
808 * IA-limit proc's Inactive limit
809 * F==Fatal, NF==NonFatal
812 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
813 printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
814 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
816 bytes
= get_task_phys_footprint(p
->task
);
817 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
818 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
820 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
821 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
822 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
824 p
->p_memstat_memlimit
,
825 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
826 p
->p_memstat_memlimit_active
,
827 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
828 p
->p_memstat_memlimit_inactive
,
829 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
830 (*p
->p_name
? p
->p_name
: "unknown"));
831 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
833 printf("memorystatus_debug_dump ***END***\n");
837 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
839 #pragma unused(oidp, arg2)
840 int bucket_index
= 0;
842 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
843 if (error
|| !req
->newptr
) {
846 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
847 if (error
|| !req
->newptr
) {
850 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
852 * All jetsam buckets will be dumped.
856 * Only a single bucket will be dumped.
861 memorystatus_debug_dump_bucket_locked(bucket_index
);
863 memorystatus_debug_dump_this_bucket
= bucket_index
;
868 * Debug aid to look at jetsam buckets and proc jetsam fields.
869 * Use this sysctl to act on a particular jetsam bucket.
870 * Writing the sysctl triggers the dump.
871 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
874 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
877 /* Debug aid to aid determination of limit */
880 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
882 #pragma unused(oidp, arg2)
885 int error
, enable
= 0;
886 boolean_t use_active
; /* use the active limit and active limit attributes */
889 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
890 if (error
|| !req
->newptr
) {
894 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
895 if (error
|| !req
->newptr
) {
899 if (!(enable
== 0 || enable
== 1)) {
905 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
907 use_active
= proc_jetsam_state_is_active_locked(p
);
911 if (use_active
== TRUE
) {
912 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
914 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
919 * Disabling limits does not touch the stored variants.
920 * Set the cached limit fields to system_wide defaults.
922 p
->p_memstat_memlimit
= -1;
923 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
928 * Enforce the cached limit by writing to the ledger.
930 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
932 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
935 memorystatus_highwater_enabled
= enable
;
943 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
945 #if VM_PRESSURE_EVENTS
948 * This routine is used for targeted notifications regardless of system memory pressure
949 * and regardless of whether or not the process has already been notified.
950 * It bypasses and has no effect on the only-one-notification per soft-limit policy.
952 * "memnote" is the current user.
956 sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS
958 #pragma unused(arg1, arg2)
960 int error
= 0, pid
= 0;
961 struct knote
*kn
= NULL
;
962 boolean_t found_knote
= FALSE
;
963 int fflags
= 0; /* filter flags for EVFILT_MEMORYSTATUS */
966 error
= sysctl_handle_quad(oidp
, &value
, 0, req
);
967 if (error
|| !req
->newptr
)
971 * Find the pid in the low 32 bits of value passed in.
973 pid
= (int)(value
& 0xFFFFFFFF);
976 * Find notification in the high 32 bits of the value passed in.
978 fflags
= (int)((value
>> 32) & 0xFFFFFFFF);
981 * For backwards compatibility, when no notification is
982 * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN
985 fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
986 // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags);
990 * See event.h ... fflags for EVFILT_MEMORYSTATUS
992 if (!((fflags
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
)||
993 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) ||
994 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) ||
995 (fflags
== NOTE_MEMORYSTATUS_LOW_SWAP
) ||
996 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) ||
997 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) ||
998 (((fflags
& NOTE_MEMORYSTATUS_MSL_STATUS
) != 0 &&
999 ((fflags
& ~NOTE_MEMORYSTATUS_MSL_STATUS
) == 0))))) {
1001 printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags
);
1007 * Forcibly send pid a memorystatus notification.
1010 memorystatus_klist_lock();
1012 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
1013 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
1014 pid_t knote_pid
= knote_proc
->p_pid
;
1016 if (knote_pid
== pid
) {
1018 * Forcibly send this pid a memorystatus notification.
1020 kn
->kn_fflags
= fflags
;
1026 KNOTE(&memorystatus_klist
, 0);
1027 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value
, fflags
, pid
);
1030 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value
, fflags
, pid
);
1034 memorystatus_klist_unlock();
1039 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_send
, CTLTYPE_QUAD
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1040 0, 0, &sysctl_memorystatus_vm_pressure_send
, "Q", "");
1042 #endif /* VM_PRESSURE_EVENTS */
1044 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1047 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1048 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1049 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1050 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1052 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1053 static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic
= 0;
1055 /* Diagnostic code */
1058 kJetsamDiagnosticModeNone
= 0,
1059 kJetsamDiagnosticModeAll
= 1,
1060 kJetsamDiagnosticModeStopAtFirstActive
= 2,
1061 kJetsamDiagnosticModeCount
1062 } jetsam_diagnostic_mode
= kJetsamDiagnosticModeNone
;
1064 static int jetsam_diagnostic_suspended_one_active_proc
= 0;
1067 sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS
1069 #pragma unused(arg1, arg2)
1071 const char *diagnosticStrings
[] = {
1072 "jetsam: diagnostic mode: resetting critical level.",
1073 "jetsam: diagnostic mode: will examine all processes",
1074 "jetsam: diagnostic mode: will stop at first active process"
1077 int error
, val
= jetsam_diagnostic_mode
;
1078 boolean_t changed
= FALSE
;
1080 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
1081 if (error
|| !req
->newptr
)
1083 if ((val
< 0) || (val
>= kJetsamDiagnosticModeCount
)) {
1084 printf("jetsam: diagnostic mode: invalid value - %d\n", val
);
1090 if ((unsigned int) val
!= jetsam_diagnostic_mode
) {
1091 jetsam_diagnostic_mode
= val
;
1093 memorystatus_jetsam_policy
&= ~kPolicyDiagnoseActive
;
1095 switch (jetsam_diagnostic_mode
) {
1096 case kJetsamDiagnosticModeNone
:
1097 /* Already cleared */
1099 case kJetsamDiagnosticModeAll
:
1100 memorystatus_jetsam_policy
|= kPolicyDiagnoseAll
;
1102 case kJetsamDiagnosticModeStopAtFirstActive
:
1103 memorystatus_jetsam_policy
|= kPolicyDiagnoseFirst
;
1106 /* Already validated */
1110 memorystatus_update_levels_locked(FALSE
);
1117 printf("%s\n", diagnosticStrings
[val
]);
1123 SYSCTL_PROC(_debug
, OID_AUTO
, jetsam_diagnostic_mode
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
,
1124 &jetsam_diagnostic_mode
, 0, sysctl_jetsam_diagnostic_mode
, "I", "Jetsam Diagnostic Mode");
1126 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jetsam_policy_offset_pages_diagnostic
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jetsam_policy_offset_pages_diagnostic
, 0, "");
1128 #if VM_PRESSURE_EVENTS
1130 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1132 #endif /* VM_PRESSURE_EVENTS */
1134 #endif /* CONFIG_JETSAM */
1138 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_daily_mb_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_daily_mb_max
, 0, "");
1140 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_threshold
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_threshold
, 0, "");
1142 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_min
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_min
, 0, "");
1143 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_max
, 0, "");
1145 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_count
, "");
1146 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_pageouts
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_pageouts
, "");
1147 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_throttle_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_count
, "");
1148 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_min_processes
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_suspended_threshold
, 0, "");
1150 boolean_t memorystatus_freeze_throttle_enabled
= TRUE
;
1151 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_throttle_enabled
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_enabled
, 0, "");
1153 #define VM_PAGES_FOR_ALL_PROCS (2)
1155 * Manual trigger of freeze and thaw for dev / debug kernels only.
1158 sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS
1160 #pragma unused(arg1, arg2)
1164 if (memorystatus_freeze_enabled
== FALSE
) {
1168 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1169 if (error
|| !req
->newptr
)
1172 if (pid
== VM_PAGES_FOR_ALL_PROCS
) {
1173 vm_pageout_anonymous_pages();
1178 lck_mtx_lock(&freezer_mutex
);
1182 uint32_t purgeable
, wired
, clean
, dirty
;
1184 uint32_t max_pages
= 0;
1186 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
1188 unsigned int avail_swap_space
= 0; /* in pages. */
1191 * Freezer backed by the compressor and swap file(s)
1192 * while will hold compressed data.
1194 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
1196 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
1200 * We only have the compressor without any swap.
1202 max_pages
= UINT32_MAX
- 1;
1205 error
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
1211 lck_mtx_unlock(&freezer_mutex
);
1215 lck_mtx_unlock(&freezer_mutex
);
1219 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_freeze
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1220 0, 0, &sysctl_memorystatus_freeze
, "I", "");
1223 sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS
1225 #pragma unused(arg1, arg2)
1230 if (memorystatus_freeze_enabled
== FALSE
) {
1234 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1235 if (error
|| !req
->newptr
)
1238 if (pid
== VM_PAGES_FOR_ALL_PROCS
) {
1239 do_fastwake_warmup_all();
1244 error
= task_thaw(p
->task
);
1256 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_thaw
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1257 0, 0, &sysctl_memorystatus_available_pages_thaw
, "I", "");
1259 #endif /* CONFIG_FREEZE */
1261 #endif /* DEVELOPMENT || DEBUG */
1263 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1266 thread_t
*new_thread
);
1268 #if DEVELOPMENT || DEBUG
1271 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1273 #pragma unused(arg1, arg2)
1274 int error
= 0, pid
= 0;
1277 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1278 if (error
|| !req
->newptr
)
1281 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1284 vm_pageout_disconnect_all_pages();
1289 error
= task_disconnect_page_mappings(p
->task
);
1298 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1303 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1304 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1306 #endif /* DEVELOPMENT || DEBUG */
1310 * Picks the sorting routine for a given jetsam priority band.
1313 * bucket_index - jetsam priority band to be sorted.
1314 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1315 * Currently sort_order is only meaningful when handling
1322 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1324 int coal_sort_order
;
1327 * Verify the jetsam priority
1329 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1333 #if DEVELOPMENT || DEBUG
1334 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1335 coal_sort_order
= COALITION_SORT_DEFAULT
;
1337 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1340 /* Verify default */
1341 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1342 coal_sort_order
= COALITION_SORT_DEFAULT
;
1350 if (memstat_bucket
[bucket_index
].count
== 0) {
1355 switch (bucket_index
) {
1356 case JETSAM_PRIORITY_FOREGROUND
:
1357 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1359 * Fall back to per process sorting when zero coalitions are found.
1361 memorystatus_sort_by_largest_process_locked(bucket_index
);
1365 memorystatus_sort_by_largest_process_locked(bucket_index
);
1374 * Sort processes by size for a single jetsam bucket.
1377 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1379 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1380 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1381 uint32_t pages
= 0, max_pages
= 0;
1382 memstat_bucket_t
*current_bucket
;
1384 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1388 current_bucket
= &memstat_bucket
[bucket_index
];
1390 p
= TAILQ_FIRST(¤t_bucket
->list
);
1393 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1398 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1399 /* traversing list until we find next largest process */
1401 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1402 if (pages
> max_pages
) {
1408 if (prev_max_proc
!= max_proc
) {
1409 /* found a larger process, place it in the list */
1410 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1411 if (insert_after_proc
== NULL
) {
1412 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1414 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1416 prev_max_proc
= max_proc
;
1419 insert_after_proc
= max_proc
;
1421 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1425 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
) {
1426 memstat_bucket_t
*current_bucket
;
1429 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1433 current_bucket
= &memstat_bucket
[*bucket_index
];
1434 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1435 if (!next_p
&& search
) {
1436 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1437 current_bucket
= &memstat_bucket
[*bucket_index
];
1438 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1445 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
) {
1446 memstat_bucket_t
*current_bucket
;
1449 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1453 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1454 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1455 current_bucket
= &memstat_bucket
[*bucket_index
];
1456 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1462 __private_extern__
void
1463 memorystatus_init(void)
1465 thread_t thread
= THREAD_NULL
;
1466 kern_return_t result
;
1470 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1471 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1474 #if DEVELOPMENT || DEBUG
1475 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1476 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1478 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1480 if (kill_on_no_paging_space
== TRUE
) {
1481 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1487 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1488 TAILQ_INIT(&memstat_bucket
[i
].list
);
1489 memstat_bucket
[i
].count
= 0;
1491 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1494 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1495 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1497 /* Apply overrides */
1498 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1499 if (delta_percentage
== 0) {
1500 delta_percentage
= 5;
1502 assert(delta_percentage
< 100);
1503 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1504 assert(critical_threshold_percentage
< 100);
1505 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1506 assert(idle_offset_percentage
< 100);
1507 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1508 assert(pressure_threshold_percentage
< 100);
1509 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1510 assert(freeze_threshold_percentage
< 100);
1512 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1513 sizeof (jetsam_aging_policy
))) {
1515 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1516 sizeof(jetsam_aging_policy
))) {
1518 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1522 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1523 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1526 switch (jetsam_aging_policy
) {
1528 case kJetsamAgingPolicyNone
:
1529 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1530 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1533 case kJetsamAgingPolicyLegacy
:
1535 * Legacy behavior where some daemons get a 10s protection once
1536 * AND only before the first clean->dirty->clean transition before
1537 * going into IDLE band.
1539 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1540 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1543 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1544 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1545 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1548 case kJetsamAgingPolicyAppsReclaimedFirst
:
1549 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1550 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1558 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1559 * band and must be below it in priority. This is so that we don't have to make
1560 * our 'aging' code worry about a mix of processes, some of which need to age
1561 * and some others that need to stay elevated in the jetsam bands.
1563 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1564 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1566 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1567 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof (memorystatus_idle_snapshot
))) {
1568 /* ...no boot-arg, so check the device tree */
1569 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1572 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1573 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1574 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1575 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1577 /* Jetsam Loop Detection */
1578 if (max_mem
<= (512 * 1024 * 1024)) {
1579 /* 512 MB devices */
1580 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1582 /* 1GB and larger devices */
1583 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1586 memorystatus_jld_enabled
= TRUE
;
1588 /* No contention at this point */
1589 memorystatus_update_levels_locked(FALSE
);
1591 #endif /* CONFIG_JETSAM */
1593 memorystatus_jetsam_snapshot_max
= maxproc
;
1594 memorystatus_jetsam_snapshot
=
1595 (memorystatus_jetsam_snapshot_t
*)kalloc(sizeof(memorystatus_jetsam_snapshot_t
) +
1596 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1597 if (!memorystatus_jetsam_snapshot
) {
1598 panic("Could not allocate memorystatus_jetsam_snapshot");
1601 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1603 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1606 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1609 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &thread
);
1610 if (result
== KERN_SUCCESS
) {
1611 thread_deallocate(thread
);
1613 panic("Could not create memorystatus_thread");
1617 /* Centralised for the purposes of allowing panic-on-jetsam */
1619 vm_run_compactor(void);
1622 * The jetsam no frills kill call
1623 * Return: 0 on success
1624 * error code on failure (EINVAL...)
1627 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
) {
1629 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1634 * Wrapper for processes exiting with memorystatus details
1637 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
) {
1640 __unused pid_t victim_pid
= p
->p_pid
;
1642 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1643 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1645 DTRACE_MEMORYSTATUS3(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
);
1646 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1647 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1648 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1651 #pragma unused(cause)
1654 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1655 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1656 (*p
->p_name
? p
->p_name
: "unknown"),
1657 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1658 (uint64_t)memorystatus_available_pages
);
1661 int jetsam_flags
= P_LTERM_JETSAM
;
1663 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1664 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1665 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1666 case kMemorystatusKilledVMThrashing
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1667 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1668 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1669 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1671 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1673 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1674 victim_pid
, cause
, vm_page_free_count
, error
, 0);
1678 return (error
== 0);
1686 memorystatus_check_levels_locked(void) {
1689 memorystatus_update_levels_locked(TRUE
);
1690 #else /* CONFIG_JETSAM */
1692 * Nothing to do here currently since we update
1693 * memorystatus_available_pages in vm_pressure_response.
1695 #endif /* CONFIG_JETSAM */
1699 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1700 * For an application: that means no longer in the FG band
1701 * For a daemon: that means no longer in its 'requested' jetsam priority band
1705 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, boolean_t effective_now
)
1708 boolean_t enable
= FALSE
;
1711 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1713 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1722 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1723 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1725 * No change in state.
1733 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1734 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1736 if (effective_now
) {
1737 if (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1738 if(memorystatus_highwater_enabled
) {
1740 * Process is about to transition from
1741 * inactive --> active
1742 * assign active state
1745 boolean_t use_active
= TRUE
;
1746 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1747 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1749 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, FALSE
, FALSE
);
1752 if (isProcessInAgingBands(p
)) {
1753 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1758 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1759 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1761 if (effective_now
) {
1762 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1763 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1766 if (isProcessInAgingBands(p
)) {
1767 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1785 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1788 uint64_t current_time
= 0, idle_delay_time
= 0;
1789 int demote_prio_band
= 0;
1790 memstat_bucket_t
*demotion_bucket
;
1792 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1794 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1796 current_time
= mach_absolute_time();
1800 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1802 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1804 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
)
1807 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1808 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1811 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1813 assert(p
->p_memstat_idledeadline
);
1815 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1817 if (current_time
>= p
->p_memstat_idledeadline
) {
1819 if ((isSysProc(p
) &&
1820 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1821 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1822 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1824 p
->p_memstat_idledeadline
+= idle_delay_time
;
1825 p
= TAILQ_NEXT(p
, p_memstat_list
);
1829 proc_t next_proc
= NULL
;
1831 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1832 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1834 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1841 // No further candidates
1848 memorystatus_reschedule_idle_demotion_locked();
1852 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1856 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1858 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1859 boolean_t present_in_apps_aging_bucket
= FALSE
;
1860 uint64_t idle_delay_time
= 0;
1862 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1866 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
1868 * This process isn't going to be making the trip to the lower bands.
1873 if (isProcessInAgingBands(p
)){
1875 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1876 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1879 if (isSysProc(p
) && system_procs_aging_band
) {
1880 present_in_sysprocs_aging_bucket
= TRUE
;
1882 } else if (isApp(p
) && applications_aging_band
) {
1883 present_in_apps_aging_bucket
= TRUE
;
1887 assert(!present_in_sysprocs_aging_bucket
);
1888 assert(!present_in_apps_aging_bucket
);
1890 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1891 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1894 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1897 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1900 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1901 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1904 assert(p
->p_memstat_idledeadline
);
1906 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1907 memorystatus_scheduled_idle_demotions_sysprocs
++;
1909 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1910 memorystatus_scheduled_idle_demotions_apps
++;
1915 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1917 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1918 boolean_t present_in_apps_aging_bucket
= FALSE
;
1920 if (!system_procs_aging_band
&& !applications_aging_band
) {
1924 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1928 if (isProcessInAgingBands(p
)) {
1930 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1931 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1934 if (isSysProc(p
) && system_procs_aging_band
) {
1935 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1936 assert(p
->p_memstat_idledeadline
);
1937 present_in_sysprocs_aging_bucket
= TRUE
;
1939 } else if (isApp(p
) && applications_aging_band
) {
1940 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1941 assert(p
->p_memstat_idledeadline
);
1942 present_in_apps_aging_bucket
= TRUE
;
1946 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1947 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1951 p
->p_memstat_idledeadline
= 0;
1952 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1955 if (isSysProc(p
) &&present_in_sysprocs_aging_bucket
== TRUE
) {
1956 memorystatus_scheduled_idle_demotions_sysprocs
--;
1957 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1959 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1960 memorystatus_scheduled_idle_demotions_apps
--;
1961 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1964 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1968 memorystatus_reschedule_idle_demotion_locked(void) {
1969 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1970 if (memstat_idle_demotion_deadline
) {
1971 /* Transitioned 1->0, so cancel next call */
1972 thread_call_cancel(memorystatus_idle_demotion_call
);
1973 memstat_idle_demotion_deadline
= 0;
1976 memstat_bucket_t
*demotion_bucket
;
1977 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1979 if (system_procs_aging_band
) {
1981 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1982 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1987 if (applications_aging_band
) {
1989 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1990 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1993 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1995 p
= (p1
== NULL
) ? p2
: p1
;
2003 assert(p
&& p
->p_memstat_idledeadline
);
2004 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
){
2005 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
2006 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
2017 memorystatus_add(proc_t p
, boolean_t locked
)
2019 memstat_bucket_t
*bucket
;
2021 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
2027 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
2029 /* Processes marked internal do not have priority tracked */
2030 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2034 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2036 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2037 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
2039 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2040 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
2042 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2044 * Entering the idle band.
2045 * Record idle start time.
2047 p
->p_memstat_idle_start
= mach_absolute_time();
2050 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
2053 memorystatus_list_count
++;
2055 memorystatus_check_levels_locked();
2067 * Moves a process from one jetsam bucket to another.
2068 * which changes the LRU position of the process.
2070 * Monitors transition between buckets and if necessary
2071 * will update cached memory limits accordingly.
2073 * skip_demotion_check:
2074 * - if the 'jetsam aging policy' is NOT 'legacy':
2075 * When this flag is TRUE, it means we are going
2076 * to age the ripe processes out of the aging bands and into the
2077 * IDLE band and apply their inactive memory limits.
2079 * - if the 'jetsam aging policy' is 'legacy':
2080 * When this flag is TRUE, it might mean the above aging mechanism
2082 * It might be that we have a process that has used up its 'idle deferral'
2083 * stay that is given to it once per lifetime. And in this case, the process
2084 * won't be going through any aging codepaths. But we still need to apply
2085 * the right inactive limits and so we explicitly set this to TRUE if the
2086 * new priority for the process is the IDLE band.
2089 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2091 memstat_bucket_t
*old_bucket
, *new_bucket
;
2093 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2095 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2096 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2100 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2101 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2103 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2105 #if DEVELOPMENT || DEBUG
2106 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2107 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2108 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2109 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2110 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? ( ! (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) /* OR type (fatal vs non-fatal) */
2111 panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2112 #endif /* DEVELOPMENT || DEBUG */
2114 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2116 if (skip_demotion_check
== FALSE
) {
2120 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2121 * the processes from the aging bands and balancing the demotion counts.
2122 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2125 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2126 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2128 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2130 } else if (isApp(p
)) {
2133 * Check to see if the application is being lowered in jetsam priority. If so, and:
2134 * - it has an 'elevated inactive jetsam band' attribute, then put it in the JETSAM_PRIORITY_ELEVATED_INACTIVE band.
2135 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2138 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2139 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2142 if (applications_aging_band
) {
2143 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2144 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2147 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2148 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2149 priority
= applications_aging_band
;
2150 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2157 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2158 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2161 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2162 old_bucket
->count
--;
2164 new_bucket
= &memstat_bucket
[priority
];
2166 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2168 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2169 new_bucket
->count
++;
2171 if (memorystatus_highwater_enabled
) {
2173 boolean_t use_active
;
2176 * If cached limit data is updated, then the limits
2177 * will be enforced by writing to the ledgers.
2179 boolean_t ledger_update_needed
= TRUE
;
2182 * Here, we must update the cached memory limit if the task
2183 * is transitioning between:
2184 * active <--> inactive
2187 * dirty <--> clean is ignored
2189 * We bypass non-idle processes that have opted into dirty tracking because
2190 * a move between buckets does not imply a transition between the
2191 * dirty <--> clean state.
2194 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2196 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2197 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2200 ledger_update_needed
= FALSE
;
2203 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2205 * inactive --> active
2207 * assign active state
2209 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2212 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2214 * active --> inactive
2216 * assign inactive state
2218 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2222 * The transition between jetsam priority buckets apparently did
2223 * not affect active/inactive state.
2224 * This is not unusual... especially during startup when
2225 * processes are getting established in their respective bands.
2227 ledger_update_needed
= FALSE
;
2231 * Enforce the new limits by writing to the ledger
2233 if (ledger_update_needed
) {
2234 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2236 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2237 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2238 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2239 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2244 * Record idle start or idle delta.
2246 if (p
->p_memstat_effectivepriority
== priority
) {
2248 * This process is not transitioning between
2249 * jetsam priority buckets. Do nothing.
2251 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2254 * Transitioning out of the idle priority bucket.
2255 * Record idle delta.
2257 assert(p
->p_memstat_idle_start
!= 0);
2258 now
= mach_absolute_time();
2259 if (now
> p
->p_memstat_idle_start
) {
2260 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2262 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2264 * Transitioning into the idle priority bucket.
2265 * Record idle start.
2267 p
->p_memstat_idle_start
= mach_absolute_time();
2270 p
->p_memstat_effectivepriority
= priority
;
2272 #if CONFIG_SECLUDED_MEMORY
2273 if (secluded_for_apps
&&
2274 task_could_use_secluded_mem(p
->task
)) {
2275 task_set_can_use_secluded_mem(
2277 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2279 #endif /* CONFIG_SECLUDED_MEMORY */
2281 memorystatus_check_levels_locked();
2286 * Description: Update the jetsam priority and memory limit attributes for a given process.
2289 * p init this process's jetsam information.
2290 * priority The jetsam priority band
2291 * user_data user specific data, unused by the kernel
2292 * effective guards against race if process's update already occurred
2293 * update_memlimit When true we know this is the init step via the posix_spawn path.
2295 * memlimit_active Value in megabytes; The monitored footprint level while the
2296 * process is active. Exceeding it may result in termination
2297 * based on it's associated fatal flag.
2299 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2300 * this describes whether or not it should be immediately fatal.
2302 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2303 * process is inactive. Exceeding it may result in termination
2304 * based on it's associated fatal flag.
2306 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2307 * this describes whether or not it should be immediatly fatal.
2309 * Returns: 0 Success
2314 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t effective
, boolean_t update_memlimit
,
2315 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2316 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2319 boolean_t head_insert
= false;
2321 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2323 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2325 if (priority
== -1) {
2326 /* Use as shorthand for default priority */
2327 priority
= JETSAM_PRIORITY_DEFAULT
;
2328 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2329 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2330 priority
= JETSAM_PRIORITY_IDLE
;
2331 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2332 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2333 priority
= JETSAM_PRIORITY_IDLE
;
2335 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2343 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2345 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2348 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2352 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2354 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2361 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2362 p
->p_memstat_userdata
= user_data
;
2363 p
->p_memstat_requestedpriority
= priority
;
2365 if (update_memlimit
) {
2367 boolean_t use_active
;
2370 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2371 * Forked processes do not come through this path, so no ledger limits exist.
2372 * (That's why forked processes can consume unlimited memory.)
2375 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2376 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2377 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2378 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2380 if (memlimit_active
<= 0) {
2382 * This process will have a system_wide task limit when active.
2383 * System_wide task limit is always fatal.
2384 * It's quite common to see non-fatal flag passed in here.
2385 * It's not an error, we just ignore it.
2389 * For backward compatibility with some unexplained launchd behavior,
2390 * we allow a zero sized limit. But we still enforce system_wide limit
2391 * when written to the ledgers.
2394 if (memlimit_active
< 0) {
2395 memlimit_active
= -1; /* enforces system_wide task limit */
2397 memlimit_active_is_fatal
= TRUE
;
2400 if (memlimit_inactive
<= 0) {
2402 * This process will have a system_wide task limit when inactive.
2403 * System_wide task limit is always fatal.
2406 memlimit_inactive
= -1;
2407 memlimit_inactive_is_fatal
= TRUE
;
2411 * Initialize the active limit variants for this process.
2413 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2416 * Initialize the inactive limit variants for this process.
2418 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2421 * Initialize the cached limits for target process.
2422 * When the target process is dirty tracked, it's typically
2423 * in a clean state. Non dirty tracked processes are
2424 * typically active (Foreground or above).
2425 * But just in case, we don't make assumptions...
2428 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2429 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2432 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2437 * Enforce the cached limit by writing to the ledger.
2439 if (memorystatus_highwater_enabled
) {
2441 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2443 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2444 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2445 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2446 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2451 * We can't add to the aging bands buckets here.
2452 * But, we could be removing it from those buckets.
2453 * Check and take appropriate steps if so.
2456 if (isProcessInAgingBands(p
)) {
2458 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2459 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2461 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2463 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2464 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2465 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2466 * is any other aging policy, then we don't need to worry because all processes
2467 * will go through the aging bands and then the demotion thread will take care to
2468 * move them into the IDLE band and apply the required limits.
2470 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2474 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2480 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2486 memorystatus_remove(proc_t p
, boolean_t locked
)
2489 memstat_bucket_t
*bucket
;
2490 boolean_t reschedule
= FALSE
;
2492 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2498 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2500 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2502 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2504 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2507 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2509 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2517 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2518 uint64_t now
= mach_absolute_time();
2519 if (now
> p
->p_memstat_idle_start
) {
2520 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2524 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2527 memorystatus_list_count
--;
2529 /* If awaiting demotion to the idle band, clean up */
2531 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2532 memorystatus_reschedule_idle_demotion_locked();
2535 memorystatus_check_levels_locked();
2538 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2539 memorystatus_frozen_count
--;
2542 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2543 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
2544 memorystatus_suspended_count
--;
2562 * Validate dirty tracking flags with process state.
2568 * The proc_list_lock is held by the caller.
2572 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
) {
2573 /* See that the process isn't marked for termination */
2574 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2578 /* Idle exit requires that process be tracked */
2579 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2580 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2584 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2585 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2586 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2590 /* Deferral is only relevant if idle exit is specified */
2591 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2592 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2600 memorystatus_update_idle_priority_locked(proc_t p
) {
2603 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2605 assert(isSysProc(p
));
2607 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2609 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2611 priority
= p
->p_memstat_requestedpriority
;
2614 if (priority
!= p
->p_memstat_effectivepriority
) {
2616 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2617 (priority
== JETSAM_PRIORITY_IDLE
)) {
2620 * This process is on its way into the IDLE band. The system is
2621 * using 'legacy' jetsam aging policy. That means, this process
2622 * has already used up its idle-deferral aging time that is given
2623 * once per its lifetime. So we need to set the INACTIVE limits
2624 * explicitly because it won't be going through the demotion paths
2625 * that take care to apply the limits appropriately.
2628 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2631 * This process has the 'elevated inactive jetsam band' attribute.
2632 * So, there will be no trip to IDLE after all.
2633 * Instead, we pin the process in the elevated band,
2634 * where its ACTIVE limits will apply.
2637 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2640 memorystatus_update_priority_locked(p
, priority
, false, true);
2643 memorystatus_update_priority_locked(p
, priority
, false, false);
2649 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2650 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2651 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2652 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2654 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2655 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2656 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2657 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2658 * band. The deferral can be cleared early by clearing the appropriate flag.
2660 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2661 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2662 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2666 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
) {
2667 unsigned int old_dirty
;
2668 boolean_t reschedule
= FALSE
;
2669 boolean_t already_deferred
= FALSE
;
2670 boolean_t defer_now
= FALSE
;
2673 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2674 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2678 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2680 * Process is on its way out.
2686 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2691 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2696 old_dirty
= p
->p_memstat_dirty
;
2698 /* These bits are cumulative, as per <rdar://problem/11159924> */
2699 if (pcontrol
& PROC_DIRTY_TRACK
) {
2700 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2703 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2704 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2707 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2708 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2711 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2712 already_deferred
= TRUE
;
2716 /* This can be set and cleared exactly once. */
2717 if (pcontrol
& PROC_DIRTY_DEFER
) {
2719 if ( !(old_dirty
& P_DIRTY_DEFER
)) {
2720 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2726 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2727 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2728 defer_now
? "Y" : "N",
2729 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2732 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2733 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2734 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2736 if (defer_now
&& !already_deferred
) {
2739 * Request to defer a clean process that's idle-exit enabled
2740 * and not already in the jetsam deferred band. Most likely a
2743 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2746 } else if (!defer_now
) {
2749 * The process isn't asking for the 'aging' facility.
2750 * Could be that it is:
2753 if (already_deferred
) {
2755 * already in the aging bands. Traditionally,
2756 * some processes have tried to use this to
2757 * opt out of the 'aging' facility.
2760 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2763 * agnostic to the 'aging' facility. In that case,
2764 * we'll go ahead and opt it in because this is likely
2765 * a new launch (clean process, dirty tracking enabled)
2768 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2777 * We are trying to operate on a dirty process. Dirty processes have to
2778 * be removed from the deferred band. The question is do we reset the
2779 * deferred state or not?
2781 * This could be a legal request like:
2782 * - this process had opted into the 'aging' band
2783 * - but it's now dirty and requests to opt out.
2784 * In this case, we remove the process from the band and reset its
2785 * state too. It'll opt back in properly when needed.
2787 * OR, this request could be a user-space bug. E.g.:
2788 * - this process had opted into the 'aging' band when clean
2789 * - and, then issues another request to again put it into the band except
2790 * this time the process is dirty.
2791 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2792 * the deferred band with its state intact. So our request below is no-op.
2793 * But we do it here anyways for coverage.
2795 * memorystatus_update_idle_priority_locked()
2796 * single-mindedly treats a dirty process as "cannot be in the aging band".
2799 if (!defer_now
&& already_deferred
) {
2800 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2804 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2806 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2811 memorystatus_update_idle_priority_locked(p
);
2814 memorystatus_reschedule_idle_demotion_locked();
2826 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
) {
2828 boolean_t kill
= false;
2829 boolean_t reschedule
= FALSE
;
2830 boolean_t was_dirty
= FALSE
;
2831 boolean_t now_dirty
= FALSE
;
2833 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2834 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2838 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2840 * Process is on its way out.
2846 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2851 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2854 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2855 /* Dirty tracking not enabled */
2857 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2859 * Process is set to be terminated and we're attempting to mark it dirty.
2860 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2864 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2865 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2866 /* Mark the process as having been dirtied at some point */
2867 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2868 memorystatus_dirty_count
++;
2870 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2871 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2872 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2873 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2875 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2876 /* Kill previously terminated processes if set clean */
2879 p
->p_memstat_dirty
&= ~flag
;
2880 memorystatus_dirty_count
--;
2892 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2895 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
2896 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
2898 /* Manage idle exit deferral, if applied */
2899 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2902 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
2903 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
2905 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
2906 * in that band on it's way to IDLE.
2909 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2911 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
2913 * The process will move from its aging band to its higher requested
2916 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2918 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2923 * Process is back from "dirty" to "clean".
2926 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
2927 if (mach_absolute_time() >= p
->p_memstat_idledeadline
) {
2929 * The process' deadline has expired. It currently
2930 * does not reside in any of the aging buckets.
2932 * It's on its way to the JETSAM_PRIORITY_IDLE
2933 * bucket via memorystatus_update_idle_priority_locked()
2936 * So all we need to do is reset all the state on the
2937 * process that's related to the aging bucket i.e.
2938 * the AGING_IN_PROGRESS flag and the timer deadline.
2941 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2945 * It still has some protection window left and so
2946 * we just re-arm the timer without modifying any
2947 * state on the process iff it still wants into that band.
2950 if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2951 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2957 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2963 memorystatus_update_idle_priority_locked(p
);
2965 if (memorystatus_highwater_enabled
) {
2966 boolean_t ledger_update_needed
= TRUE
;
2967 boolean_t use_active
;
2970 * We are in this path because this process transitioned between
2971 * dirty <--> clean state. Update the cached memory limits.
2974 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2976 * process is pinned in elevated band
2980 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2982 ledger_update_needed
= TRUE
;
2985 * process is clean...but if it has opted into pressured-exit
2986 * we don't apply the INACTIVE limit till the process has aged
2987 * out and is entering the IDLE band.
2988 * See memorystatus_update_priority_locked() for that.
2991 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
2992 ledger_update_needed
= FALSE
;
2994 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2996 ledger_update_needed
= TRUE
;
3001 * Enforce the new limits by writing to the ledger.
3003 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3004 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3005 * We aren't traversing the jetsam bucket list here, so we should be safe.
3006 * See rdar://21394491.
3009 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3011 if (p
->p_memstat_memlimit
> 0) {
3012 ledger_limit
= p
->p_memstat_memlimit
;
3017 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3019 proc_rele_locked(p
);
3021 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3022 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3023 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3024 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3029 /* If the deferral state changed, reschedule the demotion timer */
3031 memorystatus_reschedule_idle_demotion_locked();
3036 if (proc_ref_locked(p
) == p
) {
3038 psignal(p
, SIGKILL
);
3040 proc_rele_locked(p
);
3051 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
) {
3055 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3057 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3061 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3063 * Process is on its way out.
3069 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3074 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3075 /* Dirty tracking not enabled */
3080 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
)) == 0) {
3085 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3086 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3089 /* This can be set and cleared exactly once. */
3090 if (pcontrol
& PROC_DIRTY_DEFER
) {
3092 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3094 p
->p_memstat_dirty
&= ~P_DIRTY_DEFER
;
3096 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3097 memorystatus_update_idle_priority_locked(p
);
3098 memorystatus_reschedule_idle_demotion_locked();
3110 memorystatus_dirty_get(proc_t p
) {
3115 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3116 ret
|= PROC_DIRTY_TRACKED
;
3117 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3118 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3120 if (p
->p_memstat_dirty
& P_DIRTY
) {
3121 ret
|= PROC_DIRTY_IS_DIRTY
;
3123 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3124 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3134 memorystatus_on_terminate(proc_t p
) {
3139 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3141 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3142 /* Clean; mark as terminated and issue SIGKILL */
3145 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3155 memorystatus_on_suspend(proc_t p
)
3159 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
3163 p
->p_memstat_suspendedfootprint
= pages
;
3164 memorystatus_suspended_footprint_total
+= pages
;
3165 memorystatus_suspended_count
++;
3167 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3172 memorystatus_on_resume(proc_t p
)
3182 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3184 memorystatus_frozen_count
--;
3185 p
->p_memstat_state
|= P_MEMSTAT_PRIOR_THAW
;
3188 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
3189 memorystatus_suspended_count
--;
3194 p
->p_memstat_state
&= ~(P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
);
3200 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3201 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3207 memorystatus_on_inactivity(proc_t p
)
3211 /* Wake the freeze thread */
3212 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3217 * The proc_list_lock is held by the caller.
3220 memorystatus_build_state(proc_t p
) {
3221 uint32_t snapshot_state
= 0;
3224 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3225 snapshot_state
|= kMemorystatusSuspended
;
3227 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3228 snapshot_state
|= kMemorystatusFrozen
;
3230 if (p
->p_memstat_state
& P_MEMSTAT_PRIOR_THAW
) {
3231 snapshot_state
|= kMemorystatusWasThawed
;
3235 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3236 snapshot_state
|= kMemorystatusTracked
;
3238 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3239 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3241 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3242 snapshot_state
|= kMemorystatusDirty
;
3245 return snapshot_state
;
3249 kill_idle_exit_proc(void)
3251 proc_t p
, victim_p
= PROC_NULL
;
3252 uint64_t current_time
;
3253 boolean_t killed
= FALSE
;
3255 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3257 /* Pick next idle exit victim. */
3258 current_time
= mach_absolute_time();
3260 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3261 if (jetsam_reason
== OS_REASON_NULL
) {
3262 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3267 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3269 /* No need to look beyond the idle band */
3270 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3274 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
|P_DIRTY_IS_DIRTY
|P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3275 if (current_time
>= p
->p_memstat_idledeadline
) {
3276 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3277 victim_p
= proc_ref_locked(p
);
3282 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3288 printf("memorystatus: killing_idle_process pid %d [%s]\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"));
3289 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
);
3290 proc_rele(victim_p
);
3292 os_reason_free(jetsam_reason
);
3299 memorystatus_thread_wake(void) {
3300 thread_wakeup((event_t
)&memorystatus_wakeup
);
3303 extern void vm_pressure_response(void);
3306 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3309 assert_wait_timeout(&memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, 1000 * NSEC_PER_USEC
);
3311 assert_wait(&memorystatus_wakeup
, THREAD_UNINT
);
3314 return thread_block(continuation
);
3318 memorystatus_avail_pages_below_pressure(void)
3322 * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
3323 * key off of the system having dynamic swap support. With full swap support,
3324 * the system shouldn't really need to worry about various page thresholds.
3326 return (memorystatus_available_pages
<= memorystatus_available_pages_pressure
);
3327 #else /* CONFIG_EMBEDDED */
3329 #endif /* CONFIG_EMBEDDED */
3333 memorystatus_avail_pages_below_critical(void)
3336 return (memorystatus_available_pages
<= memorystatus_available_pages_critical
);
3337 #else /* CONFIG_EMBEDDED */
3339 #endif /* CONFIG_EMBEDDED */
3343 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3346 #pragma unused(cause)
3348 * Don't generate logs for steady-state idle-exit kills,
3349 * unless it is overridden for debug or by the device
3353 return ((priority
!= JETSAM_PRIORITY_IDLE
) || memorystatus_idle_snapshot
);
3355 #else /* CONFIG_EMBEDDED */
3357 * Don't generate logs for steady-state idle-exit kills,
3359 * - it is overridden for debug or by the device
3362 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3365 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3366 return ((priority
!= JETSAM_PRIORITY_IDLE
) || memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
);
3367 #endif /* CONFIG_EMBEDDED */
3371 memorystatus_action_needed(void)
3374 return (is_reason_thrashing(kill_under_pressure_cause
) ||
3375 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3376 memorystatus_available_pages
<= memorystatus_available_pages_pressure
);
3377 #else /* CONFIG_EMBEDDED */
3378 return (is_reason_thrashing(kill_under_pressure_cause
) ||
3379 is_reason_zone_map_exhaustion(kill_under_pressure_cause
));
3380 #endif /* CONFIG_EMBEDDED */
3384 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
)
3386 boolean_t purged
= FALSE
;
3387 boolean_t killed
= memorystatus_kill_hiwat_proc(errors
, &purged
);
3390 *hwm_kill
= *hwm_kill
+ 1;
3391 *post_snapshot
= TRUE
;
3394 if (purged
== FALSE
) {
3395 /* couldn't purge and couldn't kill */
3396 memorystatus_hwm_candidates
= FALSE
;
3401 /* No highwater processes to kill. Continue or stop for now? */
3402 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3403 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3404 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3406 * We are _not_ out of pressure but we are above the critical threshold and there's:
3407 * - no compressor thrashing
3408 * - enough zone memory
3409 * - no more HWM processes left.
3410 * For now, don't kill any other processes.
3413 if (*hwm_kill
== 0) {
3414 memorystatus_thread_wasted_wakeup
++;
3417 *is_critical
= FALSE
;
3421 #endif /* CONFIG_JETSAM */
3427 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
)
3429 if (memorystatus_jld_enabled
== TRUE
) {
3432 uint32_t errors
= 0;
3434 /* Jetsam Loop Detection - locals */
3435 memstat_bucket_t
*bucket
;
3436 int jld_bucket_count
= 0;
3437 struct timeval jld_now_tstamp
= {0,0};
3438 uint64_t jld_now_msecs
= 0;
3439 int elevated_bucket_count
= 0;
3441 /* Jetsam Loop Detection - statics */
3442 static uint64_t jld_timestamp_msecs
= 0;
3443 static int jld_idle_kill_candidates
= 0; /* Number of available processes in band 0,1 at start */
3444 static int jld_eval_aggressive_count
= 0; /* Bumps the max priority in aggressive loop */
3445 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3447 * Jetsam Loop Detection: attempt to detect
3448 * rapid daemon relaunches in the lower bands.
3451 microuptime(&jld_now_tstamp
);
3454 * Ignore usecs in this calculation.
3455 * msecs granularity is close enough.
3457 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3460 switch (jetsam_aging_policy
) {
3461 case kJetsamAgingPolicyLegacy
:
3462 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3463 jld_bucket_count
= bucket
->count
;
3464 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3465 jld_bucket_count
+= bucket
->count
;
3467 case kJetsamAgingPolicySysProcsReclaimedFirst
:
3468 case kJetsamAgingPolicyAppsReclaimedFirst
:
3469 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3470 jld_bucket_count
= bucket
->count
;
3471 bucket
= &memstat_bucket
[system_procs_aging_band
];
3472 jld_bucket_count
+= bucket
->count
;
3473 bucket
= &memstat_bucket
[applications_aging_band
];
3474 jld_bucket_count
+= bucket
->count
;
3476 case kJetsamAgingPolicyNone
:
3478 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3479 jld_bucket_count
= bucket
->count
;
3483 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3484 elevated_bucket_count
= bucket
->count
;
3489 * memorystatus_jld_eval_period_msecs is a tunable
3490 * memorystatus_jld_eval_aggressive_count is a tunable
3491 * memorystatus_jld_eval_aggressive_priority_band_max is a tunable
3493 if ( (jld_bucket_count
== 0) ||
3494 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3497 * Refresh evaluation parameters
3499 jld_timestamp_msecs
= jld_now_msecs
;
3500 jld_idle_kill_candidates
= jld_bucket_count
;
3501 *jld_idle_kills
= 0;
3502 jld_eval_aggressive_count
= 0;
3503 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3506 if (*jld_idle_kills
> jld_idle_kill_candidates
) {
3507 jld_eval_aggressive_count
++;
3509 #if DEVELOPMENT || DEBUG
3510 printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n",
3511 jld_eval_aggressive_count
,
3512 jld_timestamp_msecs
,
3514 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3515 jld_eval_aggressive_count
,
3516 jld_idle_kill_candidates
,
3518 #endif /* DEVELOPMENT || DEBUG */
3520 if ((jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) &&
3521 (total_corpses_count() > 0) && (*corpse_list_purged
== FALSE
)) {
3523 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3524 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3525 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3527 task_purge_all_corpses();
3528 *corpse_list_purged
= TRUE
;
3530 else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3532 * Bump up the jetsam priority limit (eg: the bucket index)
3533 * Enforce bucket index sanity.
3535 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3536 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3538 * Do nothing. Stick with the default level.
3541 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3545 /* Visit elevated processes first */
3546 while (elevated_bucket_count
) {
3548 elevated_bucket_count
--;
3551 * memorystatus_kill_elevated_process() drops a reference,
3552 * so take another one so we can continue to use this exit reason
3553 * even after it returns.
3556 os_reason_ref(jetsam_reason
);
3557 killed
= memorystatus_kill_elevated_process(
3560 jld_eval_aggressive_count
,
3564 *post_snapshot
= TRUE
;
3565 if (memorystatus_avail_pages_below_pressure()) {
3567 * Still under pressure.
3568 * Find another pinned processes.
3576 * No pinned processes left to kill.
3577 * Abandon elevated band.
3584 * memorystatus_kill_top_process_aggressive() allocates its own
3585 * jetsam_reason so the kMemorystatusKilledVMThrashing cause
3586 * is consistent throughout the aggressive march.
3588 killed
= memorystatus_kill_top_process_aggressive(
3589 kMemorystatusKilledVMThrashing
,
3590 jld_eval_aggressive_count
,
3591 jld_priority_band_max
,
3595 /* Always generate logs after aggressive kill */
3596 *post_snapshot
= TRUE
;
3597 *jld_idle_kills
= 0;
3610 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3612 static boolean_t is_vm_privileged
= FALSE
;
3614 boolean_t post_snapshot
= FALSE
;
3615 uint32_t errors
= 0;
3616 uint32_t hwm_kill
= 0;
3617 boolean_t sort_flag
= TRUE
;
3618 boolean_t corpse_list_purged
= FALSE
;
3619 int jld_idle_kills
= 0;
3621 if (is_vm_privileged
== FALSE
) {
3623 * It's the first time the thread has run, so just mark the thread as privileged and block.
3624 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3626 thread_wire(host_priv_self(), current_thread(), TRUE
);
3627 is_vm_privileged
= TRUE
;
3629 if (vm_restricted_to_single_processor
== TRUE
)
3630 thread_vm_bind_group_add();
3631 thread_set_thread_name(current_thread(), "VM_memorystatus");
3632 memorystatus_thread_block(0, memorystatus_thread
);
3635 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3636 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
,0);
3639 * Jetsam aware version.
3641 * The VM pressure notification thread is working it's way through clients in parallel.
3643 * So, while the pressure notification thread is targeting processes in order of
3644 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3645 * any processes that have exceeded their highwater mark.
3647 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3648 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3650 while (memorystatus_action_needed()) {
3654 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3655 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3657 cause
= kill_under_pressure_cause
;
3659 case kMemorystatusKilledFCThrashing
:
3660 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3662 case kMemorystatusKilledVMThrashing
:
3663 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMTHRASHING
;
3665 case kMemorystatusKilledZoneMapExhaustion
:
3666 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
3668 case kMemorystatusKilledVMPageShortage
:
3671 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3672 cause
= kMemorystatusKilledVMPageShortage
;
3677 boolean_t is_critical
= TRUE
;
3678 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
)) {
3679 if (is_critical
== FALSE
) {
3681 * For now, don't kill any other processes.
3689 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3690 if (jetsam_reason
== OS_REASON_NULL
) {
3691 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3694 if (memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
)) {
3699 * memorystatus_kill_top_process() drops a reference,
3700 * so take another one so we can continue to use this exit reason
3701 * even after it returns
3703 os_reason_ref(jetsam_reason
);
3706 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
);
3710 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
3712 post_snapshot
= TRUE
;
3715 /* Jetsam Loop Detection */
3716 if (memorystatus_jld_enabled
== TRUE
) {
3717 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
3721 * We've reached into bands beyond idle deferred.
3722 * We make no attempt to monitor them
3727 if ((priority
>= JETSAM_PRIORITY_UI_SUPPORT
) && (total_corpses_count() > 0) && (corpse_list_purged
== FALSE
)) {
3729 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
3730 * then we attempt to relieve pressure by purging corpse memory.
3732 task_purge_all_corpses();
3733 corpse_list_purged
= TRUE
;
3738 if (memorystatus_avail_pages_below_critical()) {
3740 * Still under pressure and unable to kill a process - purge corpse memory
3742 if (total_corpses_count() > 0) {
3743 task_purge_all_corpses();
3744 corpse_list_purged
= TRUE
;
3747 if (memorystatus_avail_pages_below_critical()) {
3749 * Still under pressure and unable to kill a process - panic
3751 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages
);
3758 * We do not want to over-kill when thrashing has been detected.
3759 * To avoid that, we reset the flag here and notify the
3762 if (is_reason_thrashing(kill_under_pressure_cause
)) {
3763 kill_under_pressure_cause
= 0;
3765 vm_thrashing_jetsam_done();
3766 #endif /* CONFIG_JETSAM */
3767 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
3768 kill_under_pressure_cause
= 0;
3771 os_reason_free(jetsam_reason
);
3774 kill_under_pressure_cause
= 0;
3777 memorystatus_clear_errors();
3780 if (post_snapshot
) {
3782 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
3783 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
3784 uint64_t timestamp_now
= mach_absolute_time();
3785 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
3786 memorystatus_jetsam_snapshot
->js_gencount
++;
3787 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
3788 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
3790 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
3793 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
3801 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
3802 memorystatus_available_pages
, 0, 0, 0, 0);
3804 memorystatus_thread_block(0, memorystatus_thread
);
3809 * when an idle-exitable proc was killed
3811 * when there are no more idle-exitable procs found
3812 * when the attempt to kill an idle-exitable proc failed
3814 boolean_t
memorystatus_idle_exit_from_VM(void) {
3817 * This routine should no longer be needed since we are
3818 * now using jetsam bands on all platforms and so will deal
3819 * with IDLE processes within the memorystatus thread itself.
3821 * But we still use it because we observed that macos systems
3822 * started heavy compression/swapping with a bunch of
3823 * idle-exitable processes alive and doing nothing. We decided
3824 * to rather kill those processes than start swapping earlier.
3827 return(kill_idle_exit_proc());
3831 * Callback invoked when allowable physical memory footprint exceeded
3832 * (dirty pages + IOKit mappings)
3834 * This is invoked for both advisory, non-fatal per-task high watermarks,
3835 * as well as the fatal task memory limits.
3838 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
3840 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3842 proc_t p
= current_proc();
3844 #if VM_PRESSURE_EVENTS
3845 if (warning
== TRUE
) {
3847 * This is a warning path which implies that the current process is close, but has
3848 * not yet exceeded its per-process memory limit.
3850 if (memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
3851 /* Print warning, since it's possible that task has not registered for pressure notifications */
3852 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
3856 #endif /* VM_PRESSURE_EVENTS */
3858 if (memlimit_is_fatal
) {
3860 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
3861 * has violated either the system-wide per-task memory limit OR its own task limit.
3863 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
3864 if (jetsam_reason
== NULL
) {
3865 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
3866 } else if (corpse_for_fatal_memkill
!= 0) {
3867 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
3868 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
3871 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
3872 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
3876 * HWM offender exists. Done without locks or synchronization.
3877 * See comment near its declaration for more details.
3879 memorystatus_hwm_candidates
= TRUE
;
3881 #if VM_PRESSURE_EVENTS
3883 * The current process is not in the warning path.
3884 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
3885 * Failure to send note is ignored here.
3887 (void)memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
3889 #endif /* VM_PRESSURE_EVENTS */
3894 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
3896 proc_t p
= current_proc();
3899 * The limit violation is logged here, but only once per process per limit.
3900 * Soft memory limit is a non-fatal high-water-mark
3901 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
3904 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
3905 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, (memlimit_is_active
? "Active" : "Inactive"),
3906 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
3907 (memlimit_is_fatal
? "fatal" : "non-fatal"));
3915 * Evaluates process state to determine which limit
3916 * should be applied (active vs. inactive limit).
3918 * Processes that have the 'elevated inactive jetsam band' attribute
3919 * are first evaluated based on their current priority band.
3920 * presently elevated ==> active
3922 * Processes that opt into dirty tracking are evaluated
3923 * based on clean vs dirty state.
3925 * clean ==> inactive
3927 * Process that do not opt into dirty tracking are
3928 * evalulated based on priority level.
3929 * Foreground or above ==> active
3930 * Below Foreground ==> inactive
3932 * Return: TRUE if active
3937 proc_jetsam_state_is_active_locked(proc_t p
) {
3939 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
3940 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
3942 * process has the 'elevated inactive jetsam band' attribute
3943 * and process is present in the elevated band
3944 * implies active state
3947 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3949 * process has opted into dirty tracking
3950 * active state is based on dirty vs. clean
3952 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3955 * implies active state
3961 * implies inactive state
3965 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
3967 * process is Foreground or higher
3968 * implies active state
3973 * process found below Foreground
3974 * implies inactive state
3981 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
3984 uint32_t errors
= 0;
3986 if (victim_pid
== -1) {
3987 /* No pid, so kill first process */
3988 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
);
3990 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
3994 memorystatus_clear_errors();
3998 /* Fire off snapshot notification */
4000 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4001 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4002 uint64_t timestamp_now
= mach_absolute_time();
4003 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4004 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4005 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4007 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4010 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4022 * Jetsam a specific process.
4025 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
4028 uint64_t killtime
= 0;
4030 clock_usec_t tv_usec
;
4033 /* TODO - add a victim queue and push this into the main jetsam thread */
4035 p
= proc_find(victim_pid
);
4037 os_reason_free(jetsam_reason
);
4043 if (memorystatus_jetsam_snapshot_count
== 0) {
4044 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
4047 killtime
= mach_absolute_time();
4048 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4049 tv_msec
= tv_usec
/ 1000;
4051 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4055 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
4056 (unsigned long)tv_sec
, tv_msec
, victim_pid
, (*p
->p_name
? p
->p_name
: "unknown"),
4057 memorystatus_kill_cause_name
[cause
], p
->p_memstat_effectivepriority
, (uint64_t)memorystatus_available_pages
);
4059 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4067 * Toggle the P_MEMSTAT_TERMINATED state.
4068 * Takes the proc_list_lock.
4071 proc_memstat_terminated(proc_t p
, boolean_t set
)
4073 #if DEVELOPMENT || DEBUG
4077 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4079 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4084 #pragma unused(p, set)
4088 #endif /* DEVELOPMENT || DEBUG */
4095 * This is invoked when cpulimits have been exceeded while in fatal mode.
4096 * The jetsam_flags do not apply as those are for memory related kills.
4097 * We call this routine so that the offending process is killed with
4098 * a non-zero exit status.
4101 jetsam_on_ledger_cpulimit_exceeded(void)
4104 int jetsam_flags
= 0; /* make it obvious */
4105 proc_t p
= current_proc();
4106 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4108 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4109 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4111 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4112 if (jetsam_reason
== OS_REASON_NULL
) {
4113 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4116 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4119 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4123 #endif /* CONFIG_JETSAM */
4126 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4131 *count
= get_task_memory_region_count(task
);
4135 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4136 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4138 #if DEVELOPMENT || DEBUG
4141 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4142 * set a new pidwatch value
4144 * get the current pidwatch value
4146 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4148 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4149 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4150 * - set to -1ull if the map_fork() is aborted for other reasons.
4153 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4155 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4156 #pragma unused(oidp, arg1, arg2)
4158 uint64_t new_value
= 0;
4159 uint64_t old_value
= 0;
4163 * The pid is held in the low 32 bits.
4164 * The 'allowed' flags are in the upper 32 bits.
4166 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4168 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4170 if (error
|| !req
->newptr
) {
4172 * No new value passed in.
4178 * A new pid was passed in via req->newptr.
4179 * Ignore any attempt to set the higher order bits.
4181 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4182 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4187 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4188 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4192 * Record if a watched process fails to qualify for a vm_map_fork().
4195 memorystatus_abort_vm_map_fork(task_t task
)
4197 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4198 proc_t p
= get_bsdtask_info(task
);
4199 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4200 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4206 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4208 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4209 proc_t p
= get_bsdtask_info(task
);
4210 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4211 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4216 #else /* DEVELOPMENT || DEBUG */
4220 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4222 #pragma unused(task)
4226 #endif /* DEVELOPMENT || DEBUG */
4229 * Called during EXC_RESOURCE handling when a process exceeds a soft
4230 * memory limit. This is the corpse fork path and here we decide if
4231 * vm_map_fork will be allowed when creating the corpse.
4232 * The task being considered is suspended.
4234 * By default, a vm_map_fork is allowed to proceed.
4236 * A few simple policy assumptions:
4237 * Desktop platform is not considered in this path.
4238 * The vm_map_fork is always allowed.
4240 * If the device has a zero system-wide task limit,
4241 * then the vm_map_fork is allowed.
4243 * And if a process's memory footprint calculates less
4244 * than or equal to half of the system-wide task limit,
4245 * then the vm_map_fork is allowed. This calculation
4246 * is based on the assumption that a process can
4247 * munch memory up to the system-wide task limit.
4250 memorystatus_allowed_vm_map_fork(task_t task
)
4252 boolean_t is_allowed
= TRUE
; /* default */
4256 uint64_t footprint_in_bytes
;
4257 uint64_t purgeable_in_bytes
;
4258 uint64_t max_allowed_bytes
;
4260 if (max_task_footprint_mb
== 0) {
4261 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4262 return (is_allowed
);
4265 purgeable_in_bytes
= get_task_purgeable_size(task
);
4266 footprint_in_bytes
= get_task_phys_footprint(task
);
4269 * Maximum is half the system-wide task limit.
4271 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 1;
4273 if (footprint_in_bytes
> purgeable_in_bytes
) {
4274 footprint_in_bytes
-= purgeable_in_bytes
;
4277 if (footprint_in_bytes
> max_allowed_bytes
) {
4278 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4279 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4280 return (!is_allowed
);
4282 #endif /* CONFIG_EMBEDDED */
4284 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4285 return (is_allowed
);
4290 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4297 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4298 assert(((uint32_t)pages
) == pages
);
4299 *footprint
= (uint32_t)pages
;
4301 if (max_footprint
) {
4302 pages
= (get_task_phys_footprint_recent_max(task
) / PAGE_SIZE_64
);
4303 assert(((uint32_t)pages
) == pages
);
4304 *max_footprint
= (uint32_t)pages
;
4306 if (max_footprint_lifetime
) {
4307 pages
= (get_task_resident_max(task
) / PAGE_SIZE_64
);
4308 assert(((uint32_t)pages
) == pages
);
4309 *max_footprint_lifetime
= (uint32_t)pages
;
4311 if (purgeable_pages
) {
4312 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4313 assert(((uint32_t)pages
) == pages
);
4314 *purgeable_pages
= (uint32_t)pages
;
4319 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4320 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4321 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4322 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4323 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4327 if (internal_pages
) {
4328 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4331 if (internal_compressed_pages
) {
4332 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4335 if (purgeable_nonvolatile_pages
) {
4336 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4339 if (purgeable_nonvolatile_compressed_pages
) {
4340 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4343 if (alternate_accounting_pages
) {
4344 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4347 if (alternate_accounting_compressed_pages
) {
4348 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4351 if (iokit_mapped_pages
) {
4352 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4355 if (page_table_pages
) {
4356 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4361 * This routine only acts on the global jetsam event snapshot.
4362 * Updating the process's entry can race when the memorystatus_thread
4363 * has chosen to kill a process that is racing to exit on another core.
4366 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4368 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4369 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4370 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4374 if (memorystatus_jetsam_snapshot_count
== 0) {
4376 * No active snapshot.
4383 * Sanity check as this routine should only be called
4384 * from a jetsam kill path.
4386 assert(kill_cause
!= 0 && killtime
!= 0);
4388 snapshot
= memorystatus_jetsam_snapshot
;
4389 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4391 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4392 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4394 entry
= &snapshot_list
[i
];
4396 if (entry
->killed
|| entry
->jse_killtime
) {
4398 * We apparently raced on the exit path
4399 * for this process, as it's snapshot entry
4400 * has already recorded a kill.
4402 assert(entry
->killed
&& entry
->jse_killtime
);
4407 * Update the entry we just found in the snapshot.
4410 entry
->killed
= kill_cause
;
4411 entry
->jse_killtime
= killtime
;
4412 entry
->jse_gencount
= snapshot
->js_gencount
;
4413 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4416 * If a process has moved between bands since snapshot was
4417 * initialized, then likely these fields changed too.
4419 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4421 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4422 entry
->priority
= p
->p_memstat_effectivepriority
;
4423 entry
->state
= memorystatus_build_state(p
);
4424 entry
->user_data
= p
->p_memstat_userdata
;
4425 entry
->fds
= p
->p_fd
->fd_nfiles
;
4429 * Always update the page counts on a kill.
4433 uint32_t max_pages
= 0;
4434 uint32_t max_pages_lifetime
= 0;
4435 uint32_t purgeable_pages
= 0;
4437 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4438 entry
->pages
= (uint64_t)pages
;
4439 entry
->max_pages
= (uint64_t)max_pages
;
4440 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4441 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4443 uint64_t internal_pages
= 0;
4444 uint64_t internal_compressed_pages
= 0;
4445 uint64_t purgeable_nonvolatile_pages
= 0;
4446 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4447 uint64_t alternate_accounting_pages
= 0;
4448 uint64_t alternate_accounting_compressed_pages
= 0;
4449 uint64_t iokit_mapped_pages
= 0;
4450 uint64_t page_table_pages
= 0;
4452 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4453 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4454 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4455 &iokit_mapped_pages
, &page_table_pages
);
4457 entry
->jse_internal_pages
= internal_pages
;
4458 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4459 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4460 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4461 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4462 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4463 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4464 entry
->jse_page_table_pages
= page_table_pages
;
4466 uint64_t region_count
= 0;
4467 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4468 entry
->jse_memory_region_count
= region_count
;
4474 if (entry
== NULL
) {
4476 * The entry was not found in the snapshot, so the process must have
4477 * launched after the snapshot was initialized.
4478 * Let's try to append the new entry.
4480 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4482 * A populated snapshot buffer exists
4483 * and there is room to init a new entry.
4485 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4487 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4489 if(memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4491 entry
= &snapshot_list
[next
];
4492 entry
->killed
= kill_cause
;
4493 entry
->jse_killtime
= killtime
;
4495 snapshot
->entry_count
= ++next
;
4496 memorystatus_jetsam_snapshot_count
= next
;
4498 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4500 * We just used the last slot in the snapshot buffer.
4501 * We only want to log it once... so we do it here
4502 * when we notice we've hit the max.
4504 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4505 memorystatus_jetsam_snapshot_count
);
4512 if (entry
== NULL
) {
4514 * If we reach here, the snapshot buffer could not be updated.
4515 * Most likely, the buffer is full, in which case we would have
4516 * logged a warning in the previous call.
4518 * For now, we will stop appending snapshot entries.
4519 * When the buffer is consumed, the snapshot state will reset.
4522 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4523 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4530 void memorystatus_pages_update(unsigned int pages_avail
)
4532 memorystatus_available_pages
= pages_avail
;
4534 #if VM_PRESSURE_EVENTS
4536 * Since memorystatus_available_pages changes, we should
4537 * re-evaluate the pressure levels on the system and
4538 * check if we need to wake the pressure thread.
4539 * We also update memorystatus_level in that routine.
4541 vm_pressure_response();
4543 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4545 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4546 memorystatus_thread_wake();
4549 #else /* VM_PRESSURE_EVENTS */
4551 boolean_t critical
, delta
;
4553 if (!memorystatus_delta
) {
4557 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4558 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4559 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4561 if (critical
|| delta
) {
4562 unsigned int total_pages
;
4564 total_pages
= (unsigned int) atop_64(max_mem
);
4565 #if CONFIG_SECLUDED_MEMORY
4566 total_pages
-= vm_page_secluded_count
;
4567 #endif /* CONFIG_SECLUDED_MEMORY */
4568 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4569 memorystatus_thread_wake();
4571 #endif /* VM_PRESSURE_EVENTS */
4573 #endif /* CONFIG_JETSAM */
4576 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4579 clock_usec_t tv_usec
;
4581 uint32_t max_pages
= 0;
4582 uint32_t max_pages_lifetime
= 0;
4583 uint32_t purgeable_pages
= 0;
4584 uint64_t internal_pages
= 0;
4585 uint64_t internal_compressed_pages
= 0;
4586 uint64_t purgeable_nonvolatile_pages
= 0;
4587 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4588 uint64_t alternate_accounting_pages
= 0;
4589 uint64_t alternate_accounting_compressed_pages
= 0;
4590 uint64_t iokit_mapped_pages
= 0;
4591 uint64_t page_table_pages
=0;
4592 uint64_t region_count
= 0;
4593 uint64_t cids
[COALITION_NUM_TYPES
];
4595 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4597 entry
->pid
= p
->p_pid
;
4598 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4599 entry
->priority
= p
->p_memstat_effectivepriority
;
4601 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4602 entry
->pages
= (uint64_t)pages
;
4603 entry
->max_pages
= (uint64_t)max_pages
;
4604 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4605 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4607 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4608 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4609 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4610 &iokit_mapped_pages
, &page_table_pages
);
4612 entry
->jse_internal_pages
= internal_pages
;
4613 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4614 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4615 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4616 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4617 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4618 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4619 entry
->jse_page_table_pages
= page_table_pages
;
4621 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4622 entry
->jse_memory_region_count
= region_count
;
4624 entry
->state
= memorystatus_build_state(p
);
4625 entry
->user_data
= p
->p_memstat_userdata
;
4626 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4627 entry
->fds
= p
->p_fd
->fd_nfiles
;
4629 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4630 entry
->cpu_time
.tv_sec
= tv_sec
;
4631 entry
->cpu_time
.tv_usec
= tv_usec
;
4633 assert(p
->p_stats
!= NULL
);
4634 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4635 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4636 entry
->killed
= 0; /* the jetsam kill cause */
4637 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4639 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4641 proc_coalitionids(p
, cids
);
4642 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4648 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4650 kern_return_t kr
= KERN_SUCCESS
;
4651 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4652 vm_statistics64_data_t vm_stat
;
4654 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
4655 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4656 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
4658 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
4659 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
4660 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
4661 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
4662 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
4663 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
4665 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
4666 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
4667 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
4668 snapshot
->stats
.compressions
= vm_stat
.compressions
;
4669 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
4670 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
4671 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
4674 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
4675 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
4676 &snapshot
->stats
.largest_zone_size
);
4680 * Collect vm statistics at boot.
4681 * Called only once (see kern_exec.c)
4682 * Data can be consumed at any time.
4685 memorystatus_init_at_boot_snapshot() {
4686 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
4687 memorystatus_at_boot_snapshot
.entry_count
= 0;
4688 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
4689 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
4693 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
4696 unsigned int b
= 0, i
= 0;
4698 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4699 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4700 unsigned int snapshot_max
= 0;
4704 * This is an on_demand snapshot
4706 snapshot
= od_snapshot
;
4707 snapshot_list
= od_snapshot
->entries
;
4708 snapshot_max
= ods_list_count
;
4711 * This is a jetsam event snapshot
4713 snapshot
= memorystatus_jetsam_snapshot
;
4714 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4715 snapshot_max
= memorystatus_jetsam_snapshot_max
;
4719 * Init the snapshot header information
4721 memorystatus_init_snapshot_vmstats(snapshot
);
4722 snapshot
->snapshot_time
= mach_absolute_time();
4723 snapshot
->notification_time
= 0;
4724 snapshot
->js_gencount
= 0;
4726 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
4729 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
4731 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
4735 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4737 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
4738 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
4740 if (++i
== snapshot_max
) {
4745 snapshot
->entry_count
= i
;
4748 /* update the system buffer count */
4749 memorystatus_jetsam_snapshot_count
= i
;
4753 #if DEVELOPMENT || DEBUG
4757 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
) {
4759 memorystatus_jetsam_panic_options_t debug
;
4761 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
4765 ret
= copyin(buffer
, &debug
, buffer_size
);
4770 /* Panic bits match kMemorystatusKilled* enum */
4771 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
4773 /* Copyout new value */
4774 debug
.data
= memorystatus_jetsam_panic_debug
;
4775 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
4779 #endif /* CONFIG_JETSAM */
4782 * Triggers a sort_order on a specified jetsam priority band.
4783 * This is for testing only, used to force a path through the sort
4787 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
) {
4791 unsigned int bucket_index
= 0;
4793 if (priority
== -1) {
4794 /* Use as shorthand for default priority */
4795 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
4797 bucket_index
= (unsigned int)priority
;
4800 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
4805 #endif /* DEVELOPMENT || DEBUG */
4808 * Prepare the process to be killed (set state, update snapshot) and kill it.
4810 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
4813 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
)
4816 uint32_t aPid_ep
= 0;
4818 uint64_t killtime
= 0;
4820 clock_usec_t tv_usec
;
4822 boolean_t retval
= FALSE
;
4823 uint64_t num_pages_purged
= 0;
4826 aPid_ep
= p
->p_memstat_effectivepriority
;
4828 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
4830 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
4832 boolean_t success
= FALSE
;
4834 networking_memstatus_callout(p
, cause
);
4835 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
4837 if (num_pages_purged
) {
4839 * We actually purged something and so let's
4840 * check if we need to continue with the kill.
4842 if (cause
== kMemorystatusKilledHiwat
) {
4843 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
4844 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
4845 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
4847 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
4852 memorystatus_purge_before_jetsam_success
++;
4854 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: purged %llu pages from pid %d [%s] and avoided %s\n",
4855 num_pages_purged
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
4864 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
4865 MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
4866 (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) ? "suspending": "killing",
4867 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
4868 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
4869 p
->p_memstat_memlimit
);
4870 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
4872 killtime
= mach_absolute_time();
4873 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4874 tv_msec
= tv_usec
/ 1000;
4876 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
4877 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
4878 if (cause
== kMemorystatusKilledHiwat
) {
4879 MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] for diagnosis - memorystatus_available_pages: %d\n",
4880 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), memorystatus_available_pages
);
4882 int activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
4883 if (activeProcess
) {
4884 MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memorystatus_available_pages: %d\n",
4885 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), memorystatus_available_pages
);
4887 if (memorystatus_jetsam_policy
& kPolicyDiagnoseFirst
) {
4888 jetsam_diagnostic_suspended_one_active_proc
= 1;
4889 printf("jetsam: returning after suspending first active proc - %d\n", aPid
);
4894 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledDiagnostic
, killtime
);
4895 p
->p_memstat_state
|= P_MEMSTAT_DIAG_SUSPENDED
;
4898 task_suspend(p
->task
);
4902 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
4904 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4906 char kill_reason_string
[128];
4908 if (cause
== kMemorystatusKilledHiwat
) {
4909 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
4911 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
4912 strlcpy(kill_reason_string
, "killing_idle_process", 128);
4914 strlcpy(kill_reason_string
, "killing_top_process", 128);
4918 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
4919 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
4920 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
4921 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
4924 * memorystatus_do_kill drops a reference, so take another one so we can
4925 * continue to use this exit reason even after memorystatus_do_kill()
4928 os_reason_ref(jetsam_reason
);
4930 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4939 * Jetsam the first process in the queue.
4942 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
4943 int32_t *priority
, uint32_t *errors
)
4946 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4947 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
4950 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
4952 #ifndef CONFIG_FREEZE
4956 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
4957 memorystatus_available_pages
, 0, 0, 0, 0);
4961 if (sort_flag
== TRUE
) {
4962 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
4965 local_max_kill_prio
= max_kill_priority
;
4967 force_new_snapshot
= FALSE
;
4969 #else /* CONFIG_JETSAM */
4971 if (sort_flag
== TRUE
) {
4972 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
4976 * On macos, we currently only have 2 reasons to be here:
4978 * kMemorystatusKilledZoneMapExhaustion
4980 * kMemorystatusKilledVMThrashing
4982 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
4983 * any and all processes as eligible kill candidates since we need to avoid a panic.
4985 * Since this function can be called async. it is harder to toggle the max_kill_priority
4986 * value before and after a call. And so we use this local variable to set the upper band
4987 * on the eligible kill bands.
4989 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
4990 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
4992 local_max_kill_prio
= max_kill_priority
;
4996 * And, because we are here under extreme circumstances, we force a snapshot even for
4999 force_new_snapshot
= TRUE
;
5001 #endif /* CONFIG_JETSAM */
5005 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5006 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5007 #if DEVELOPMENT || DEBUG
5008 int procSuspendedForDiagnosis
;
5009 #endif /* DEVELOPMENT || DEBUG */
5012 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5014 #if DEVELOPMENT || DEBUG
5015 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
5016 #endif /* DEVELOPMENT || DEBUG */
5019 aPid_ep
= p
->p_memstat_effectivepriority
;
5021 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5022 continue; /* with lock held */
5025 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5026 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
5027 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
5030 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5032 if (cause
== kMemorystatusKilledVnodes
)
5035 * If the system runs out of vnodes, we systematically jetsam
5036 * processes in hopes of stumbling onto a vnode gain that helps
5037 * the system recover. The process that happens to trigger
5038 * this path has no known relationship to the vnode shortage.
5039 * Deadlock avoidance: attempt to safeguard the caller.
5042 if (p
== current_proc()) {
5043 /* do not jetsam the current process */
5050 boolean_t reclaim_proc
= !(p
->p_memstat_state
& (P_MEMSTAT_LOCKED
| P_MEMSTAT_NORECLAIM
));
5051 if (any
|| reclaim_proc
) {
5062 if (proc_ref_locked(p
) == p
) {
5064 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5065 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5066 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5067 * acquisition of the proc lock.
5069 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5074 * We need to restart the search again because
5075 * proc_ref_locked _can_ drop the proc_list lock
5076 * and we could have lost our stored next_p via
5077 * an exit() on another core.
5080 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5085 * Capture a snapshot if none exists and:
5086 * - we are forcing a new snapshot creation, either because:
5087 * - on a particular platform we need these snapshots every time, OR
5088 * - a boot-arg/embedded device tree property has been set.
5089 * - priority was not requested (this is something other than an ambient kill)
5090 * - the priority was requested *and* the targeted process is not at idle priority
5092 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5093 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5094 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5095 new_snapshot
= TRUE
;
5098 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
); /* purged and/or killed 'p' */
5103 *priority
= aPid_ep
;
5108 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5116 * Failure - first unwind the state,
5117 * then fall through to restart the search.
5120 proc_rele_locked(p
);
5121 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5122 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5126 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5133 os_reason_free(jetsam_reason
);
5135 /* Clear snapshot if freshly captured and no target was found */
5136 if (new_snapshot
&& !killed
) {
5138 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5142 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5143 memorystatus_available_pages
, killed
? aPid
: 0, 0, 0, 0);
5149 * Jetsam aggressively
5152 memorystatus_kill_top_process_aggressive(uint32_t cause
, int aggr_count
,
5153 int32_t priority_max
, uint32_t *errors
)
5156 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5157 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5160 int32_t aPid_ep
= 0;
5161 unsigned int memorystatus_level_snapshot
= 0;
5162 uint64_t killtime
= 0;
5164 clock_usec_t tv_usec
;
5166 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5168 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5169 memorystatus_available_pages
, priority_max
, 0, 0, 0);
5171 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5173 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5174 if (jetsam_reason
== OS_REASON_NULL
) {
5175 printf("memorystatus_kill_top_process_aggressive: failed to allocate exit reason\n");
5180 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5182 #if DEVELOPMENT || DEBUG
5184 int procSuspendedForDiagnosis
;
5185 #endif /* DEVELOPMENT || DEBUG */
5187 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5188 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5191 * We have raced with next_p running on another core.
5192 * It may be exiting or it may have moved to a different
5193 * jetsam priority band. This means we have lost our
5194 * place in line while traversing the jetsam list. We
5195 * attempt to recover by rewinding to the beginning of the band
5196 * we were already traversing. By doing this, we do not guarantee
5197 * that no process escapes this aggressive march, but we can make
5198 * skipping an entire range of processes less likely. (PR-21069019)
5201 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5202 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5204 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5209 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5211 if (p
->p_memstat_effectivepriority
> priority_max
) {
5213 * Bail out of this killing spree if we have
5214 * reached beyond the priority_max jetsam band.
5215 * That is, we kill up to and through the
5216 * priority_max jetsam band.
5222 #if DEVELOPMENT || DEBUG
5223 activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
5224 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
5225 #endif /* DEVELOPMENT || DEBUG */
5228 aPid_ep
= p
->p_memstat_effectivepriority
;
5230 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5234 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5235 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
5236 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
5239 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5242 * Capture a snapshot if none exists.
5244 if (memorystatus_jetsam_snapshot_count
== 0) {
5245 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5246 new_snapshot
= TRUE
;
5250 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5251 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5252 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5253 * acquisition of the proc lock.
5255 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5257 killtime
= mach_absolute_time();
5258 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5259 tv_msec
= tv_usec
/ 1000;
5261 /* Shift queue, update stats */
5262 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5265 * In order to kill the target process, we will drop the proc_list_lock.
5266 * To guaranteee that p and next_p don't disappear out from under the lock,
5267 * we must take a ref on both.
5268 * If we cannot get a reference, then it's likely we've raced with
5269 * that process exiting on another core.
5271 if (proc_ref_locked(p
) == p
) {
5273 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5277 * We must have raced with next_p exiting on another core.
5278 * Recover by getting the next eligible process in the band.
5281 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5282 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5285 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5290 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5291 (unsigned long)tv_sec
, tv_msec
,
5292 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5293 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5294 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
5296 memorystatus_level_snapshot
= memorystatus_level
;
5299 * memorystatus_do_kill() drops a reference, so take another one so we can
5300 * continue to use this exit reason even after memorystatus_do_kill()
5303 os_reason_ref(jetsam_reason
);
5304 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
5314 * Continue the killing spree.
5318 proc_rele_locked(next_p
);
5321 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5322 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5323 #if DEVELOPMENT || DEBUG
5324 printf("Disabling Lenient mode after one-time deployment.\n");
5325 #endif /* DEVELOPMENT || DEBUG */
5326 memorystatus_aggressive_jetsam_lenient
= FALSE
;
5335 * Failure - first unwind the state,
5336 * then fall through to restart the search.
5339 proc_rele_locked(p
);
5341 proc_rele_locked(next_p
);
5343 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5344 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5350 * Failure - restart the search at the beginning of
5351 * the band we were already traversing.
5353 * We might have raced with "p" exiting on another core, resulting in no
5354 * ref on "p". Or, we may have failed to kill "p".
5356 * Either way, we fall thru to here, leaving the proc in the
5357 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
5359 * And, we hold the the proc_list_lock at this point.
5362 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5368 os_reason_free(jetsam_reason
);
5370 /* Clear snapshot if freshly captured and no target was found */
5371 if (new_snapshot
&& (kill_count
== 0)) {
5372 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5375 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5376 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5378 if (kill_count
> 0) {
5387 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
)
5390 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5391 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5394 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5395 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
5396 memorystatus_available_pages
, 0, 0, 0, 0);
5398 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
5399 if (jetsam_reason
== OS_REASON_NULL
) {
5400 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
5405 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5407 uint64_t footprint_in_bytes
= 0;
5408 uint64_t memlimit_in_bytes
= 0;
5412 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5415 aPid_ep
= p
->p_memstat_effectivepriority
;
5417 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5421 /* skip if no limit set */
5422 if (p
->p_memstat_memlimit
<= 0) {
5426 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5427 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5428 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5430 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5431 if (!skip
&& (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
)) {
5432 if (p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
) {
5436 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5440 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5452 if (memorystatus_jetsam_snapshot_count
== 0) {
5453 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5454 new_snapshot
= TRUE
;
5457 if (proc_ref_locked(p
) == p
) {
5459 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5460 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5461 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5462 * acquisition of the proc lock.
5464 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5469 * We need to restart the search again because
5470 * proc_ref_locked _can_ drop the proc_list lock
5471 * and we could have lost our stored next_p via
5472 * an exit() on another core.
5475 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5479 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
); /* purged and/or killed 'p' */
5483 if (killed
== FALSE
) {
5484 /* purged 'p'..don't reset HWM candidate count */
5488 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5495 * Failure - first unwind the state,
5496 * then fall through to restart the search.
5499 proc_rele_locked(p
);
5500 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5501 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5505 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5512 os_reason_free(jetsam_reason
);
5514 /* Clear snapshot if freshly captured and no target was found */
5515 if (new_snapshot
&& !killed
) {
5517 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5521 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5522 memorystatus_available_pages
, killed
? aPid
: 0, 0, 0, 0);
5528 * Jetsam a process pinned in the elevated band.
5530 * Return: true -- at least one pinned process was jetsammed
5531 * false -- no pinned process was jetsammed
5534 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
)
5537 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5538 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5540 unsigned int i
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
5542 uint64_t killtime
= 0;
5544 clock_usec_t tv_usec
;
5548 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5549 memorystatus_available_pages
, 0, 0, 0, 0);
5553 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5557 next_p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
5560 aPid_ep
= p
->p_memstat_effectivepriority
;
5563 * Only pick a process pinned in this elevated band
5565 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5569 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5574 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5579 #if DEVELOPMENT || DEBUG
5580 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5582 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5583 memorystatus_available_pages
);
5584 #endif /* DEVELOPMENT || DEBUG */
5586 if (memorystatus_jetsam_snapshot_count
== 0) {
5587 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5588 new_snapshot
= TRUE
;
5591 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5593 killtime
= mach_absolute_time();
5594 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5595 tv_msec
= tv_usec
/ 1000;
5597 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5599 if (proc_ref_locked(p
) == p
) {
5603 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5604 (unsigned long)tv_sec
, tv_msec
,
5606 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5607 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
5610 * memorystatus_do_kill drops a reference, so take another one so we can
5611 * continue to use this exit reason even after memorystatus_do_kill()
5614 os_reason_ref(jetsam_reason
);
5615 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
5625 * Failure - first unwind the state,
5626 * then fall through to restart the search.
5629 proc_rele_locked(p
);
5630 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5631 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5636 * Failure - restart the search.
5638 * We might have raced with "p" exiting on another core, resulting in no
5639 * ref on "p". Or, we may have failed to kill "p".
5641 * Either way, we fall thru to here, leaving the proc in the
5642 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5644 * And, we hold the the proc_list_lock at this point.
5647 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5653 os_reason_free(jetsam_reason
);
5655 /* Clear snapshot if freshly captured and no target was found */
5656 if (new_snapshot
&& (kill_count
== 0)) {
5658 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5662 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5663 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5669 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
) {
5671 * TODO: allow a general async path
5673 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
5674 * add the appropriate exit reason code mapping.
5676 if ((victim_pid
!= -1) || (cause
!= kMemorystatusKilledVMPageShortage
&& cause
!= kMemorystatusKilledVMThrashing
&&
5677 cause
!= kMemorystatusKilledFCThrashing
&& cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
5681 kill_under_pressure_cause
= cause
;
5682 memorystatus_thread_wake();
5687 memorystatus_kill_on_VM_thrashing(boolean_t async
) {
5689 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing
);
5691 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMTHRASHING
);
5692 if (jetsam_reason
== OS_REASON_NULL
) {
5693 printf("memorystatus_kill_on_VM_thrashing -- sync: failed to allocate jetsam reason\n");
5696 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing
, jetsam_reason
);
5702 memorystatus_kill_on_VM_page_shortage(boolean_t async
) {
5704 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
5706 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
5707 if (jetsam_reason
== OS_REASON_NULL
) {
5708 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
5711 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
5716 memorystatus_kill_on_FC_thrashing(boolean_t async
) {
5720 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
5722 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
5723 if (jetsam_reason
== OS_REASON_NULL
) {
5724 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
5727 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
5732 memorystatus_kill_on_vnode_limit(void) {
5733 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
5734 if (jetsam_reason
== OS_REASON_NULL
) {
5735 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
5738 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
5741 #endif /* CONFIG_JETSAM */
5744 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
) {
5745 boolean_t res
= FALSE
;
5747 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
5749 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
5750 if (jetsam_reason
== OS_REASON_NULL
) {
5751 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
5754 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
5761 __private_extern__
void
5762 memorystatus_freeze_init(void)
5764 kern_return_t result
;
5767 freezer_lck_grp_attr
= lck_grp_attr_alloc_init();
5768 freezer_lck_grp
= lck_grp_alloc_init("freezer", freezer_lck_grp_attr
);
5770 lck_mtx_init(&freezer_mutex
, freezer_lck_grp
, NULL
);
5772 result
= kernel_thread_start(memorystatus_freeze_thread
, NULL
, &thread
);
5773 if (result
== KERN_SUCCESS
) {
5774 thread_deallocate(thread
);
5776 panic("Could not create memorystatus_freeze_thread");
5781 * Synchronously freeze the passed proc. Called with a reference to the proc held.
5783 * Returns EINVAL or the value returned by task_freeze().
5786 memorystatus_freeze_process_sync(proc_t p
)
5790 boolean_t memorystatus_freeze_swap_low
= FALSE
;
5792 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5793 memorystatus_available_pages
, 0, 0, 0, 0);
5795 lck_mtx_lock(&freezer_mutex
);
5801 if (memorystatus_freeze_enabled
== FALSE
) {
5805 if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
5809 if (memorystatus_freeze_update_throttle()) {
5810 printf("memorystatus_freeze_process_sync: in throttle, ignorning freeze\n");
5811 memorystatus_freeze_throttle_count
++;
5818 uint32_t purgeable
, wired
, clean
, dirty
, state
;
5819 uint32_t max_pages
, pages
, i
;
5823 state
= p
->p_memstat_state
;
5825 /* Ensure the process is eligible for freezing */
5826 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5831 /* Only freeze processes meeting our minimum resident page criteria */
5832 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5833 if (pages
< memorystatus_freeze_pages_min
) {
5838 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5840 unsigned int avail_swap_space
= 0; /* in pages. */
5843 * Freezer backed by the compressor and swap file(s)
5844 * while will hold compressed data.
5846 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5848 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5850 if (max_pages
< memorystatus_freeze_pages_min
) {
5856 * We only have the compressor without any swap.
5858 max_pages
= UINT32_MAX
- 1;
5861 /* Mark as locked temporarily to avoid kill */
5862 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5865 ret
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5867 DTRACE_MEMORYSTATUS6(memorystatus_freeze
, proc_t
, p
, unsigned int, memorystatus_available_pages
, boolean_t
, purgeable
, unsigned int, wired
, uint32_t, clean
, uint32_t, dirty
);
5869 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - "
5870 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5871 (ret
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5872 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5875 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5877 if (ret
== KERN_SUCCESS
) {
5878 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5880 memorystatus_frozen_count
++;
5882 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
5884 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5886 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5887 throttle_intervals
[i
].pageouts
+= dirty
;
5891 memorystatus_freeze_pageouts
+= dirty
;
5892 memorystatus_freeze_count
++;
5896 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
5903 lck_mtx_unlock(&freezer_mutex
);
5904 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
5905 memorystatus_available_pages
, aPid
, 0, 0, 0);
5911 memorystatus_freeze_top_process(boolean_t
*memorystatus_freeze_swap_low
)
5915 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5918 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5919 memorystatus_available_pages
, 0, 0, 0, 0);
5923 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5926 uint32_t purgeable
, wired
, clean
, dirty
;
5929 uint32_t max_pages
= 0;
5933 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5936 state
= p
->p_memstat_state
;
5938 /* Ensure the process is eligible for freezing */
5939 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5940 continue; // with lock held
5943 /* Only freeze processes meeting our minimum resident page criteria */
5944 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5945 if (pages
< memorystatus_freeze_pages_min
) {
5946 continue; // with lock held
5949 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5951 /* Ensure there's enough free space to freeze this process. */
5953 unsigned int avail_swap_space
= 0; /* in pages. */
5956 * Freezer backed by the compressor and swap file(s)
5957 * while will hold compressed data.
5959 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5961 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5963 if (max_pages
< memorystatus_freeze_pages_min
) {
5964 *memorystatus_freeze_swap_low
= TRUE
;
5970 * We only have the compressor pool.
5972 max_pages
= UINT32_MAX
- 1;
5975 /* Mark as locked temporarily to avoid kill */
5976 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5978 p
= proc_ref_locked(p
);
5984 kr
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5986 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - "
5987 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5988 (kr
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5989 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5992 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5995 if (KERN_SUCCESS
== kr
) {
5996 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5998 memorystatus_frozen_count
++;
6000 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
6002 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
6004 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
6005 throttle_intervals
[i
].pageouts
+= dirty
;
6009 memorystatus_freeze_pageouts
+= dirty
;
6010 memorystatus_freeze_count
++;
6014 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
6016 /* Return KERN_SUCESS */
6030 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
6031 memorystatus_available_pages
, aPid
, 0, 0, 0);
6036 static inline boolean_t
6037 memorystatus_can_freeze_processes(void)
6043 if (memorystatus_suspended_count
) {
6044 uint32_t average_resident_pages
, estimated_processes
;
6046 /* Estimate the number of suspended processes we can fit */
6047 average_resident_pages
= memorystatus_suspended_footprint_total
/ memorystatus_suspended_count
;
6048 estimated_processes
= memorystatus_suspended_count
+
6049 ((memorystatus_available_pages
- memorystatus_available_pages_critical
) / average_resident_pages
);
6051 /* If it's predicted that no freeze will occur, lower the threshold temporarily */
6052 if (estimated_processes
<= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
) {
6053 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_LOW
;
6055 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
6058 MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n",
6059 memorystatus_suspended_count
, average_resident_pages
, estimated_processes
);
6061 if ((memorystatus_suspended_count
- memorystatus_frozen_count
) > memorystatus_freeze_suspended_threshold
) {
6076 memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
)
6078 boolean_t can_freeze
= TRUE
;
6080 /* Only freeze if we're sufficiently low on memory; this holds off freeze right
6081 after boot, and is generally is a no-op once we've reached steady state. */
6082 if (memorystatus_available_pages
> memorystatus_freeze_threshold
) {
6086 /* Check minimum suspended process threshold. */
6087 if (!memorystatus_can_freeze_processes()) {
6090 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
6092 if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
6094 * In-core compressor used for freezing WITHOUT on-disk swap support.
6096 if (vm_compressor_low_on_space()) {
6097 if (*memorystatus_freeze_swap_low
) {
6098 *memorystatus_freeze_swap_low
= TRUE
;
6104 if (*memorystatus_freeze_swap_low
) {
6105 *memorystatus_freeze_swap_low
= FALSE
;
6112 * Freezing WITH on-disk swap support.
6114 * In-core compressor fronts the swap.
6116 if (vm_swap_low_on_space()) {
6117 if (*memorystatus_freeze_swap_low
) {
6118 *memorystatus_freeze_swap_low
= TRUE
;
6130 memorystatus_freeze_update_throttle_interval(mach_timespec_t
*ts
, struct throttle_interval_t
*interval
)
6132 unsigned int freeze_daily_pageouts_max
= memorystatus_freeze_daily_mb_max
* (1024 * 1024 / PAGE_SIZE
);
6133 if (CMP_MACH_TIMESPEC(ts
, &interval
->ts
) >= 0) {
6134 if (!interval
->max_pageouts
) {
6135 interval
->max_pageouts
= (interval
->burst_multiple
* (((uint64_t)interval
->mins
* freeze_daily_pageouts_max
) / (24 * 60)));
6137 printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval
->mins
);
6139 interval
->ts
.tv_sec
= interval
->mins
* 60;
6140 interval
->ts
.tv_nsec
= 0;
6141 ADD_MACH_TIMESPEC(&interval
->ts
, ts
);
6142 /* Since we update the throttle stats pre-freeze, adjust for overshoot here */
6143 if (interval
->pageouts
> interval
->max_pageouts
) {
6144 interval
->pageouts
-= interval
->max_pageouts
;
6146 interval
->pageouts
= 0;
6148 interval
->throttle
= FALSE
;
6149 } else if (!interval
->throttle
&& interval
->pageouts
>= interval
->max_pageouts
) {
6150 printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval
->mins
);
6151 interval
->throttle
= TRUE
;
6154 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n",
6155 interval
->pageouts
, interval
->max_pageouts
, interval
->mins
, (interval
->ts
.tv_sec
- ts
->tv_sec
) / 60,
6156 interval
->throttle
? "on" : "off");
6160 memorystatus_freeze_update_throttle(void)
6166 boolean_t throttled
= FALSE
;
6168 #if DEVELOPMENT || DEBUG
6169 if (!memorystatus_freeze_throttle_enabled
)
6173 clock_get_system_nanotime(&sec
, &nsec
);
6177 /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget.
6179 * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has
6180 * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in
6181 * order to allow for bursts of activity.
6183 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
6184 memorystatus_freeze_update_throttle_interval(&ts
, &throttle_intervals
[i
]);
6185 if (throttle_intervals
[i
].throttle
== TRUE
)
6193 memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
)
6195 static boolean_t memorystatus_freeze_swap_low
= FALSE
;
6197 lck_mtx_lock(&freezer_mutex
);
6198 if (memorystatus_freeze_enabled
) {
6199 if (memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
6200 /* Only freeze if we've not exceeded our pageout budgets.*/
6201 if (!memorystatus_freeze_update_throttle()) {
6202 memorystatus_freeze_top_process(&memorystatus_freeze_swap_low
);
6204 printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n");
6205 memorystatus_freeze_throttle_count
++; /* Throttled, update stats */
6209 lck_mtx_unlock(&freezer_mutex
);
6211 assert_wait((event_t
) &memorystatus_freeze_wakeup
, THREAD_UNINT
);
6212 thread_block((thread_continue_t
) memorystatus_freeze_thread
);
6216 sysctl_memorystatus_do_fastwake_warmup_all SYSCTL_HANDLER_ARGS
6218 #pragma unused(oidp, req, arg1, arg2)
6220 /* Need to be root or have entitlement */
6221 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
)) {
6225 if (memorystatus_freeze_enabled
== FALSE
) {
6229 do_fastwake_warmup_all();
6234 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_do_fastwake_warmup_all
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6235 0, 0, &sysctl_memorystatus_do_fastwake_warmup_all
, "I", "");
6237 #endif /* CONFIG_FREEZE */
6239 #if VM_PRESSURE_EVENTS
6241 #if CONFIG_MEMORYSTATUS
6244 memorystatus_send_note(int event_code
, void *data
, size_t data_length
) {
6246 struct kev_msg ev_msg
;
6248 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
6249 ev_msg
.kev_class
= KEV_SYSTEM_CLASS
;
6250 ev_msg
.kev_subclass
= KEV_MEMORYSTATUS_SUBCLASS
;
6252 ev_msg
.event_code
= event_code
;
6254 ev_msg
.dv
[0].data_length
= data_length
;
6255 ev_msg
.dv
[0].data_ptr
= data
;
6256 ev_msg
.dv
[1].data_length
= 0;
6258 ret
= kev_post_msg(&ev_msg
);
6260 printf("%s: kev_post_msg() failed, err %d\n", __func__
, ret
);
6267 memorystatus_warn_process(pid_t pid
, __unused boolean_t is_active
, __unused boolean_t is_fatal
, boolean_t limit_exceeded
) {
6269 boolean_t ret
= FALSE
;
6270 boolean_t found_knote
= FALSE
;
6271 struct knote
*kn
= NULL
;
6272 int send_knote_count
= 0;
6275 * See comment in sysctl_memorystatus_vm_pressure_send.
6278 memorystatus_klist_lock();
6280 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
6281 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
6282 pid_t knote_pid
= knote_proc
->p_pid
;
6284 if (knote_pid
== pid
) {
6286 * By setting the "fflags" here, we are forcing
6287 * a process to deal with the case where it's
6288 * bumping up into its memory limits. If we don't
6289 * do this here, we will end up depending on the
6290 * system pressure snapshot evaluation in
6291 * filt_memorystatus().
6295 if (!limit_exceeded
) {
6297 * Intentionally set either the unambiguous limit warning,
6298 * the system-wide critical or the system-wide warning
6302 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
6303 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
6306 } else if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
6307 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
6310 } else if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
6311 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
6317 * Send this notification when a process has exceeded a soft limit.
6319 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
6320 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
6325 #else /* CONFIG_EMBEDDED */
6326 if (!limit_exceeded
) {
6329 * Processes on desktop are not expecting to handle a system-wide
6330 * critical or system-wide warning notification from this path.
6331 * Intentionally set only the unambiguous limit warning here.
6333 * If the limit is soft, however, limit this to one notification per
6334 * active/inactive limit (per each registered listener).
6337 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
6341 * Restrict proc_limit_warn notifications when
6342 * non-fatal (soft) limit is at play.
6345 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
) {
6347 * Mark this knote for delivery.
6349 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
6351 * And suppress it from future notifications.
6353 kn
->kn_sfflags
&= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
;
6357 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
) {
6359 * Mark this knote for delivery.
6361 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
6363 * And suppress it from future notifications.
6365 kn
->kn_sfflags
&= ~NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
;
6371 * No restriction on proc_limit_warn notifications when
6372 * fatal (hard) limit is at play.
6374 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
6380 * Send this notification when a process has exceeded a soft limit,
6383 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
6387 * Restrict critical notifications for soft limits.
6391 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
) {
6393 * Suppress future proc_limit_critical notifications
6394 * for the active soft limit.
6396 kn
->kn_sfflags
&= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
;
6397 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
6402 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
) {
6404 * Suppress future proc_limit_critical_notifications
6405 * for the inactive soft limit.
6407 kn
->kn_sfflags
&= ~NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
;
6408 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
6414 * We should never be trying to send a critical notification for
6415 * a hard limit... the process would be killed before it could be
6418 panic("Caught sending pid %d a critical warning for a fatal limit.\n", pid
);
6422 #endif /* CONFIG_EMBEDDED */
6427 if (send_knote_count
> 0) {
6428 KNOTE(&memorystatus_klist
, 0);
6433 memorystatus_klist_unlock();
6439 * Can only be set by the current task on itself.
6442 memorystatus_low_mem_privileged_listener(uint32_t op_flags
)
6444 boolean_t set_privilege
= FALSE
;
6446 * Need an entitlement check here?
6448 if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
) {
6449 set_privilege
= TRUE
;
6450 } else if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
) {
6451 set_privilege
= FALSE
;
6456 return (task_low_mem_privileged_listener(current_task(), set_privilege
, NULL
));
6460 memorystatus_send_pressure_note(pid_t pid
) {
6461 MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid
);
6462 return memorystatus_send_note(kMemorystatusPressureNote
, &pid
, sizeof(pid
));
6466 memorystatus_send_low_swap_note(void) {
6468 struct knote
*kn
= NULL
;
6470 memorystatus_klist_lock();
6471 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
6472 /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the
6473 * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist
6474 * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with
6475 * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */
6476 if (is_knote_registered_modify_task_pressure_bits(kn
, NOTE_MEMORYSTATUS_LOW_SWAP
, NULL
, 0, 0) == TRUE
) {
6477 KNOTE(&memorystatus_klist
, kMemorystatusLowSwap
);
6482 memorystatus_klist_unlock();
6486 memorystatus_bg_pressure_eligible(proc_t p
) {
6487 boolean_t eligible
= FALSE
;
6491 MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p
->p_pid
, p
->p_memstat_state
);
6493 /* Foreground processes have already been dealt with at this point, so just test for eligibility */
6494 if (!(p
->p_memstat_state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
))) {
6504 memorystatus_is_foreground_locked(proc_t p
) {
6505 return ((p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND
) ||
6506 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND_SUPPORT
));
6510 * This is meant for stackshot and kperf -- it does not take the proc_list_lock
6511 * to access the p_memstat_dirty field.
6514 memorystatus_proc_is_dirty_unsafe(void *v
)
6519 proc_t p
= (proc_t
)v
;
6520 return (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) != 0;
6523 #endif /* CONFIG_MEMORYSTATUS */
6526 * Trigger levels to test the mechanism.
6527 * Can be used via a sysctl.
6529 #define TEST_LOW_MEMORY_TRIGGER_ONE 1
6530 #define TEST_LOW_MEMORY_TRIGGER_ALL 2
6531 #define TEST_PURGEABLE_TRIGGER_ONE 3
6532 #define TEST_PURGEABLE_TRIGGER_ALL 4
6533 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5
6534 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6
6536 boolean_t memorystatus_manual_testing_on
= FALSE
;
6537 vm_pressure_level_t memorystatus_manual_testing_level
= kVMPressureNormal
;
6539 extern struct knote
*
6540 vm_pressure_select_optimal_candidate_to_notify(struct klist
*, int, boolean_t
);
6543 * This value is the threshold that a process must meet to be considered for scavenging.
6546 #define VM_PRESSURE_MINIMUM_RSIZE 1 /* MB */
6547 #else /* CONFIG_EMBEDDED */
6548 #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */
6549 #endif /* CONFIG_EMBEDDED */
6551 #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */
6554 #define VM_PRESSURE_DEBUG(cond, format, ...) \
6556 if (cond) { printf(format, ##__VA_ARGS__); } \
6559 #define VM_PRESSURE_DEBUG(cond, format, ...)
6562 #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */
6564 void memorystatus_on_pageout_scan_end(void) {
6571 * knote_pressure_level - to check if the knote is registered for this notification level.
6573 * task - task whose bits we'll be modifying
6575 * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again.
6577 * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately.
6582 is_knote_registered_modify_task_pressure_bits(struct knote
*kn_max
, int knote_pressure_level
, task_t task
, vm_pressure_level_t pressure_level_to_clear
, vm_pressure_level_t pressure_level_to_set
)
6584 if (kn_max
->kn_sfflags
& knote_pressure_level
) {
6586 if (pressure_level_to_clear
&& task_has_been_notified(task
, pressure_level_to_clear
) == TRUE
) {
6588 task_clear_has_been_notified(task
, pressure_level_to_clear
);
6591 task_mark_has_been_notified(task
, pressure_level_to_set
);
6599 memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
)
6601 struct knote
*kn
= NULL
;
6603 memorystatus_klist_lock();
6604 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
6606 proc_t p
= PROC_NULL
;
6607 struct task
* t
= TASK_NULL
;
6609 p
= knote_get_kq(kn
)->kq_p
;
6611 if (p
!= proc_ref_locked(p
)) {
6618 t
= (struct task
*)(p
->task
);
6620 task_clear_has_been_notified(t
, pressure_level_to_clear
);
6625 memorystatus_klist_unlock();
6628 extern kern_return_t
vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process
);
6631 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
);
6634 * Used by the vm_pressure_thread which is
6635 * signalled from within vm_pageout_scan().
6637 static void vm_dispatch_memory_pressure(void);
6638 void consider_vm_pressure_events(void);
6640 void consider_vm_pressure_events(void)
6642 vm_dispatch_memory_pressure();
6644 static void vm_dispatch_memory_pressure(void)
6646 memorystatus_update_vm_pressure(FALSE
);
6649 extern vm_pressure_level_t
6650 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
6653 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
)
6655 struct knote
*kn
= NULL
, *kn_max
= NULL
;
6656 uint64_t resident_max
= 0; /* MB */
6657 struct timeval curr_tstamp
= {0, 0};
6658 int elapsed_msecs
= 0;
6659 int selected_task_importance
= 0;
6660 static int pressure_snapshot
= -1;
6661 boolean_t pressure_increase
= FALSE
;
6663 if (pressure_snapshot
== -1) {
6667 pressure_snapshot
= level
;
6668 pressure_increase
= TRUE
;
6671 if (level
&& (level
>= pressure_snapshot
)) {
6672 pressure_increase
= TRUE
;
6674 pressure_increase
= FALSE
;
6677 pressure_snapshot
= level
;
6680 if (pressure_increase
== TRUE
) {
6682 * We'll start by considering the largest
6683 * unimportant task in our list.
6685 selected_task_importance
= INT_MAX
;
6688 * We'll start by considering the largest
6689 * important task in our list.
6691 selected_task_importance
= 0;
6694 microuptime(&curr_tstamp
);
6696 SLIST_FOREACH(kn
, candidate_list
, kn_selnext
) {
6698 uint64_t resident_size
= 0; /* MB */
6699 proc_t p
= PROC_NULL
;
6700 struct task
* t
= TASK_NULL
;
6701 int curr_task_importance
= 0;
6702 boolean_t consider_knote
= FALSE
;
6703 boolean_t privileged_listener
= FALSE
;
6705 p
= knote_get_kq(kn
)->kq_p
;
6707 if (p
!= proc_ref_locked(p
)) {
6714 #if CONFIG_MEMORYSTATUS
6715 if (target_foreground_process
== TRUE
&& !memorystatus_is_foreground_locked(p
)) {
6717 * Skip process not marked foreground.
6722 #endif /* CONFIG_MEMORYSTATUS */
6724 t
= (struct task
*)(p
->task
);
6726 timevalsub(&curr_tstamp
, &p
->vm_pressure_last_notify_tstamp
);
6727 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6729 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(level
);
6731 if ((kn
->kn_sfflags
& dispatch_level
) == 0) {
6736 #if CONFIG_MEMORYSTATUS
6737 if (target_foreground_process
== FALSE
&& !memorystatus_bg_pressure_eligible(p
)) {
6738 VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p
->p_pid
);
6742 #endif /* CONFIG_MEMORYSTATUS */
6745 curr_task_importance
= p
->p_memstat_effectivepriority
;
6746 #else /* CONFIG_EMBEDDED */
6747 curr_task_importance
= task_importance_estimate(t
);
6748 #endif /* CONFIG_EMBEDDED */
6751 * Privileged listeners are only considered in the multi-level pressure scheme
6752 * AND only if the pressure is increasing.
6756 if (task_has_been_notified(t
, level
) == FALSE
) {
6759 * Is this a privileged listener?
6761 if (task_low_mem_privileged_listener(t
, FALSE
, &privileged_listener
) == 0) {
6763 if (privileged_listener
) {
6773 } else if (level
== 0) {
6776 * Task wasn't notified when the pressure was increasing and so
6777 * no need to notify it that the pressure is decreasing.
6779 if ((task_has_been_notified(t
, kVMPressureWarning
) == FALSE
) && (task_has_been_notified(t
, kVMPressureCritical
) == FALSE
)) {
6786 * We don't want a small process to block large processes from
6787 * being notified again. <rdar://problem/7955532>
6789 resident_size
= (get_task_phys_footprint(t
))/(1024*1024ULL); /* MB */
6791 if (resident_size
>= VM_PRESSURE_MINIMUM_RSIZE
) {
6795 * Warning or Critical Pressure.
6797 if (pressure_increase
) {
6798 if ((curr_task_importance
< selected_task_importance
) ||
6799 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6802 * We have found a candidate process which is:
6803 * a) at a lower importance than the current selected process
6805 * b) has importance equal to that of the current selected process but is larger
6808 consider_knote
= TRUE
;
6811 if ((curr_task_importance
> selected_task_importance
) ||
6812 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6815 * We have found a candidate process which is:
6816 * a) at a higher importance than the current selected process
6818 * b) has importance equal to that of the current selected process but is larger
6821 consider_knote
= TRUE
;
6824 } else if (level
== 0) {
6826 * Pressure back to normal.
6828 if ((curr_task_importance
> selected_task_importance
) ||
6829 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6831 consider_knote
= TRUE
;
6835 if (consider_knote
) {
6836 resident_max
= resident_size
;
6838 selected_task_importance
= curr_task_importance
;
6839 consider_knote
= FALSE
; /* reset for the next candidate */
6842 /* There was no candidate with enough resident memory to scavenge */
6843 VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p
->p_pid
, resident_size
);
6850 VM_DEBUG_CONSTANT_EVENT(vm_pressure_event
, VM_PRESSURE_EVENT
, DBG_FUNC_NONE
, knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
, 0, 0);
6851 VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
);
6857 #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */
6858 #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6859 #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6861 uint64_t next_warning_notification_sent_at_ts
= 0;
6862 uint64_t next_critical_notification_sent_at_ts
= 0;
6865 memorystatus_update_vm_pressure(boolean_t target_foreground_process
)
6867 struct knote
*kn_max
= NULL
;
6868 struct knote
*kn_cur
= NULL
, *kn_temp
= NULL
; /* for safe list traversal */
6869 pid_t target_pid
= -1;
6870 struct klist dispatch_klist
= { NULL
};
6871 proc_t target_proc
= PROC_NULL
;
6872 struct task
*task
= NULL
;
6873 boolean_t found_candidate
= FALSE
;
6875 static vm_pressure_level_t level_snapshot
= kVMPressureNormal
;
6876 static vm_pressure_level_t prev_level_snapshot
= kVMPressureNormal
;
6877 boolean_t smoothing_window_started
= FALSE
;
6878 struct timeval smoothing_window_start_tstamp
= {0, 0};
6879 struct timeval curr_tstamp
= {0, 0};
6880 int elapsed_msecs
= 0;
6881 uint64_t curr_ts
= mach_absolute_time();
6884 #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */
6886 int idle_kill_counter
= 0;
6889 * On desktop we take this opportunity to free up memory pressure
6890 * by immediately killing idle exitable processes. We use a delay
6891 * to avoid overkill. And we impose a max counter as a fail safe
6892 * in case daemons re-launch too fast.
6894 while ((memorystatus_vm_pressure_level
!= kVMPressureNormal
) && (idle_kill_counter
< MAX_IDLE_KILLS
)) {
6895 if (memorystatus_idle_exit_from_VM() == FALSE
) {
6896 /* No idle exitable processes left to kill */
6899 idle_kill_counter
++;
6901 if (memorystatus_manual_testing_on
== TRUE
) {
6903 * Skip the delay when testing
6904 * the pressure notification scheme.
6907 delay(1000000); /* 1 second */
6910 #endif /* !CONFIG_JETSAM */
6912 if (level_snapshot
!= kVMPressureNormal
) {
6915 * Check to see if we are still in the 'resting' period
6916 * after having notified all clients interested in
6917 * a particular pressure level.
6920 level_snapshot
= memorystatus_vm_pressure_level
;
6922 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6924 if (next_warning_notification_sent_at_ts
) {
6925 if (curr_ts
< next_warning_notification_sent_at_ts
) {
6926 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6927 return KERN_SUCCESS
;
6930 next_warning_notification_sent_at_ts
= 0;
6931 memorystatus_klist_reset_all_for_level(kVMPressureWarning
);
6933 } else if (level_snapshot
== kVMPressureCritical
) {
6935 if (next_critical_notification_sent_at_ts
) {
6936 if (curr_ts
< next_critical_notification_sent_at_ts
) {
6937 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6938 return KERN_SUCCESS
;
6940 next_critical_notification_sent_at_ts
= 0;
6941 memorystatus_klist_reset_all_for_level(kVMPressureCritical
);
6949 * There is a race window here. But it's not clear
6950 * how much we benefit from having extra synchronization.
6952 level_snapshot
= memorystatus_vm_pressure_level
;
6954 if (prev_level_snapshot
> level_snapshot
) {
6956 * Pressure decreased? Let's take a little breather
6957 * and see if this condition stays.
6959 if (smoothing_window_started
== FALSE
) {
6961 smoothing_window_started
= TRUE
;
6962 microuptime(&smoothing_window_start_tstamp
);
6965 microuptime(&curr_tstamp
);
6966 timevalsub(&curr_tstamp
, &smoothing_window_start_tstamp
);
6967 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6969 if (elapsed_msecs
< VM_PRESSURE_DECREASED_SMOOTHING_PERIOD
) {
6971 delay(INTER_NOTIFICATION_DELAY
);
6976 prev_level_snapshot
= level_snapshot
;
6977 smoothing_window_started
= FALSE
;
6979 memorystatus_klist_lock();
6980 kn_max
= vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist
, level_snapshot
, target_foreground_process
);
6982 if (kn_max
== NULL
) {
6983 memorystatus_klist_unlock();
6986 * No more level-based clients to notify.
6988 * Start the 'resting' window within which clients will not be re-notified.
6991 if (level_snapshot
!= kVMPressureNormal
) {
6992 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6993 nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
6995 /* Next warning notification (if nothing changes) won't be sent before...*/
6996 next_warning_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
6999 if (level_snapshot
== kVMPressureCritical
) {
7000 nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
7002 /* Next critical notification (if nothing changes) won't be sent before...*/
7003 next_critical_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
7006 return KERN_FAILURE
;
7009 target_proc
= knote_get_kq(kn_max
)->kq_p
;
7012 if (target_proc
!= proc_ref_locked(target_proc
)) {
7013 target_proc
= PROC_NULL
;
7015 memorystatus_klist_unlock();
7020 target_pid
= target_proc
->p_pid
;
7022 task
= (struct task
*)(target_proc
->task
);
7024 if (level_snapshot
!= kVMPressureNormal
) {
7026 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
7028 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_WARN
, task
, 0, kVMPressureWarning
) == TRUE
) {
7029 found_candidate
= TRUE
;
7032 if (level_snapshot
== kVMPressureCritical
) {
7034 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
, task
, 0, kVMPressureCritical
) == TRUE
) {
7035 found_candidate
= TRUE
;
7040 if (kn_max
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
7042 task_clear_has_been_notified(task
, kVMPressureWarning
);
7043 task_clear_has_been_notified(task
, kVMPressureCritical
);
7045 found_candidate
= TRUE
;
7049 if (found_candidate
== FALSE
) {
7050 proc_rele(target_proc
);
7051 memorystatus_klist_unlock();
7055 SLIST_FOREACH_SAFE(kn_cur
, &memorystatus_klist
, kn_selnext
, kn_temp
) {
7057 int knote_pressure_level
= convert_internal_pressure_level_to_dispatch_level(level_snapshot
);
7059 if (is_knote_registered_modify_task_pressure_bits(kn_cur
, knote_pressure_level
, task
, 0, level_snapshot
) == TRUE
) {
7060 proc_t knote_proc
= knote_get_kq(kn_cur
)->kq_p
;
7061 pid_t knote_pid
= knote_proc
->p_pid
;
7062 if (knote_pid
== target_pid
) {
7063 KNOTE_DETACH(&memorystatus_klist
, kn_cur
);
7064 KNOTE_ATTACH(&dispatch_klist
, kn_cur
);
7069 KNOTE(&dispatch_klist
, (level_snapshot
!= kVMPressureNormal
) ? kMemorystatusPressure
: kMemorystatusNoPressure
);
7071 SLIST_FOREACH_SAFE(kn_cur
, &dispatch_klist
, kn_selnext
, kn_temp
) {
7072 KNOTE_DETACH(&dispatch_klist
, kn_cur
);
7073 KNOTE_ATTACH(&memorystatus_klist
, kn_cur
);
7076 memorystatus_klist_unlock();
7078 microuptime(&target_proc
->vm_pressure_last_notify_tstamp
);
7079 proc_rele(target_proc
);
7081 if (memorystatus_manual_testing_on
== TRUE
&& target_foreground_process
== TRUE
) {
7085 if (memorystatus_manual_testing_on
== TRUE
) {
7087 * Testing out the pressure notification scheme.
7088 * No need for delays etc.
7092 uint32_t sleep_interval
= INTER_NOTIFICATION_DELAY
;
7094 unsigned int page_delta
= 0;
7095 unsigned int skip_delay_page_threshold
= 0;
7097 assert(memorystatus_available_pages_pressure
>= memorystatus_available_pages_critical_base
);
7099 page_delta
= (memorystatus_available_pages_pressure
- memorystatus_available_pages_critical_base
) / 2;
7100 skip_delay_page_threshold
= memorystatus_available_pages_pressure
- page_delta
;
7102 if (memorystatus_available_pages
<= skip_delay_page_threshold
) {
7104 * We are nearing the critcal mark fast and can't afford to wait between
7109 #endif /* CONFIG_JETSAM */
7111 if (sleep_interval
) {
7112 delay(sleep_interval
);
7117 return KERN_SUCCESS
;
7121 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level
)
7123 vm_pressure_level_t dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
7125 switch (internal_pressure_level
) {
7127 case kVMPressureNormal
:
7129 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
7133 case kVMPressureWarning
:
7134 case kVMPressureUrgent
:
7136 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
7140 case kVMPressureCritical
:
7142 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
7150 return dispatch_level
;
7154 sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS
7156 #pragma unused(arg1, arg2, oidp)
7160 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7164 #endif /* CONFIG_EMBEDDED */
7165 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level
);
7167 return SYSCTL_OUT(req
, &dispatch_level
, sizeof(dispatch_level
));
7170 #if DEBUG || DEVELOPMENT
7172 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
,
7173 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
7175 #else /* DEBUG || DEVELOPMENT */
7177 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
7178 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
7180 #endif /* DEBUG || DEVELOPMENT */
7182 extern int memorystatus_purge_on_warning
;
7183 extern int memorystatus_purge_on_critical
;
7186 sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS
7188 #pragma unused(arg1, arg2)
7192 int pressure_level
= 0;
7193 int trigger_request
= 0;
7196 error
= sysctl_handle_int(oidp
, &level
, 0, req
);
7197 if (error
|| !req
->newptr
) {
7201 memorystatus_manual_testing_on
= TRUE
;
7203 trigger_request
= (level
>> 16) & 0xFFFF;
7204 pressure_level
= (level
& 0xFFFF);
7206 if (trigger_request
< TEST_LOW_MEMORY_TRIGGER_ONE
||
7207 trigger_request
> TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
) {
7210 switch (pressure_level
) {
7211 case NOTE_MEMORYSTATUS_PRESSURE_NORMAL
:
7212 case NOTE_MEMORYSTATUS_PRESSURE_WARN
:
7213 case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
:
7220 * The pressure level is being set from user-space.
7221 * And user-space uses the constants in sys/event.h
7222 * So we translate those events to our internal levels here.
7224 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
7226 memorystatus_manual_testing_level
= kVMPressureNormal
;
7229 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
7231 memorystatus_manual_testing_level
= kVMPressureWarning
;
7232 force_purge
= memorystatus_purge_on_warning
;
7234 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
7236 memorystatus_manual_testing_level
= kVMPressureCritical
;
7237 force_purge
= memorystatus_purge_on_critical
;
7240 memorystatus_vm_pressure_level
= memorystatus_manual_testing_level
;
7242 /* purge according to the new pressure level */
7243 switch (trigger_request
) {
7244 case TEST_PURGEABLE_TRIGGER_ONE
:
7245 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
:
7246 if (force_purge
== 0) {
7247 /* no purging requested */
7250 vm_purgeable_object_purge_one_unlocked(force_purge
);
7252 case TEST_PURGEABLE_TRIGGER_ALL
:
7253 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
:
7254 if (force_purge
== 0) {
7255 /* no purging requested */
7258 while (vm_purgeable_object_purge_one_unlocked(force_purge
));
7262 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ONE
) ||
7263 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
)) {
7265 memorystatus_update_vm_pressure(TRUE
);
7268 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ALL
) ||
7269 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
)) {
7271 while (memorystatus_update_vm_pressure(FALSE
) == KERN_SUCCESS
) {
7276 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
7277 memorystatus_manual_testing_on
= FALSE
;
7283 SYSCTL_PROC(_kern
, OID_AUTO
, memorypressure_manual_trigger
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
7284 0, 0, &sysctl_memorypressure_manual_trigger
, "I", "");
7287 extern int memorystatus_purge_on_warning
;
7288 extern int memorystatus_purge_on_urgent
;
7289 extern int memorystatus_purge_on_critical
;
7291 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_warning
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_warning
, 0, "");
7292 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_urgent
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_urgent
, 0, "");
7293 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_critical
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_critical
, 0, "");
7296 #endif /* VM_PRESSURE_EVENTS */
7298 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
7300 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
7302 uint32_t list_count
, i
= 0;
7303 memorystatus_priority_entry_t
*list_entry
;
7306 list_count
= memorystatus_list_count
;
7307 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
7309 /* Just a size check? */
7314 /* Otherwise, validate the size of the buffer */
7315 if (*buffer_size
< *list_size
) {
7319 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
7324 memset(*list_ptr
, 0, *list_size
);
7326 *buffer_size
= *list_size
;
7329 list_entry
= *list_ptr
;
7333 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
7334 while (p
&& (*list_size
< *buffer_size
)) {
7335 list_entry
->pid
= p
->p_pid
;
7336 list_entry
->priority
= p
->p_memstat_effectivepriority
;
7337 list_entry
->user_data
= p
->p_memstat_userdata
;
7339 if (p
->p_memstat_memlimit
<= 0) {
7340 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
7342 list_entry
->limit
= p
->p_memstat_memlimit
;
7345 list_entry
->state
= memorystatus_build_state(p
);
7348 *list_size
+= sizeof(memorystatus_priority_entry_t
);
7350 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
7355 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
7361 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
) {
7363 memorystatus_priority_entry_t mp_entry
;
7365 /* Validate inputs */
7366 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
7370 proc_t p
= proc_find(pid
);
7375 memset (&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
7377 mp_entry
.pid
= p
->p_pid
;
7378 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
7379 mp_entry
.user_data
= p
->p_memstat_userdata
;
7380 if (p
->p_memstat_memlimit
<= 0) {
7381 task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
7383 mp_entry
.limit
= p
->p_memstat_memlimit
;
7385 mp_entry
.state
= memorystatus_build_state(p
);
7389 error
= copyout(&mp_entry
, buffer
, buffer_size
);
7395 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
7397 boolean_t size_only
;
7401 * When a non-zero pid is provided, the 'list' has only one entry.
7404 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
7407 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
7409 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
7412 memorystatus_priority_entry_t
*list
= NULL
;
7413 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
7417 error
= copyout(list
, buffer
, list_size
);
7422 kfree(list
, buffer_size
);
7427 *retval
= list_size
;
7434 memorystatus_clear_errors(void)
7439 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
7443 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
7445 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
7446 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
7448 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
7453 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
7458 memorystatus_update_levels_locked(boolean_t critical_only
) {
7460 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
7463 * If there's an entry in the first bucket, we have idle processes.
7466 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7467 if (first_bucket
->count
) {
7468 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
7470 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
7472 * The critical threshold must never exceed the pressure threshold
7474 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
7478 #if DEBUG || DEVELOPMENT
7479 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
7480 memorystatus_available_pages_critical
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
7482 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
7484 * The critical threshold must never exceed the pressure threshold
7486 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
7489 #endif /* DEBUG || DEVELOPMENT */
7491 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
7492 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
7495 if (critical_only
) {
7499 #if VM_PRESSURE_EVENTS
7500 memorystatus_available_pages_pressure
= (pressure_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
7501 #if DEBUG || DEVELOPMENT
7502 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
7503 memorystatus_available_pages_pressure
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
7511 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
7513 #pragma unused(arg1, arg2, oidp)
7514 int error
= 0, more_free
= 0;
7517 * TODO: Enable this privilege check?
7519 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
7524 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
7525 if (error
|| !req
->newptr
)
7528 if ((more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
)) ||
7529 (!more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0))) {
7532 * No change in state.
7540 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
7542 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
7545 memorystatus_update_levels_locked(TRUE
);
7551 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
7552 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
7554 #endif /* CONFIG_JETSAM */
7557 * Get the at_boot snapshot
7560 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7561 size_t input_size
= *snapshot_size
;
7564 * The at_boot snapshot has no entry list.
7566 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
7573 * Validate the size of the snapshot buffer
7575 if (input_size
< *snapshot_size
) {
7580 * Update the notification_time only
7582 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
7583 *snapshot
= &memorystatus_at_boot_snapshot
;
7585 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
7586 (long)input_size
, (long)*snapshot_size
, 0);
7591 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7592 size_t input_size
= *snapshot_size
;
7593 uint32_t ods_list_count
= memorystatus_list_count
;
7594 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
7596 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
7603 * Validate the size of the snapshot buffer.
7604 * This is inherently racey. May want to revisit
7605 * this error condition and trim the output when
7608 if (input_size
< *snapshot_size
) {
7613 * Allocate and initialize a snapshot buffer.
7615 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
7620 memset(ods
, 0, *snapshot_size
);
7623 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
7627 * Return the kernel allocated, on_demand buffer.
7628 * The caller of this routine will copy the data out
7629 * to user space and then free the kernel allocated
7634 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7635 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
7641 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7642 size_t input_size
= *snapshot_size
;
7644 if (memorystatus_jetsam_snapshot_count
> 0) {
7645 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
7654 if (input_size
< *snapshot_size
) {
7658 *snapshot
= memorystatus_jetsam_snapshot
;
7660 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7661 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
7668 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
7670 boolean_t size_only
;
7671 boolean_t is_default_snapshot
= FALSE
;
7672 boolean_t is_on_demand_snapshot
= FALSE
;
7673 boolean_t is_at_boot_snapshot
= FALSE
;
7674 memorystatus_jetsam_snapshot_t
*snapshot
;
7676 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
7680 is_default_snapshot
= TRUE
;
7681 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
7683 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7685 * Unsupported bit set in flag.
7690 if ((flags
& (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) ==
7691 (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7693 * Can't have both set at the same time.
7698 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
7699 is_on_demand_snapshot
= TRUE
;
7701 * When not requesting the size only, the following call will allocate
7702 * an on_demand snapshot buffer, which is freed below.
7704 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
7706 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
7707 is_at_boot_snapshot
= TRUE
;
7708 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
7711 * Invalid flag setting.
7722 * Copy the data out to user space and clear the snapshot buffer.
7723 * If working with the jetsam snapshot,
7724 * clearing the buffer means, reset the count.
7725 * If working with an on_demand snapshot
7726 * clearing the buffer means, free it.
7727 * If working with the at_boot snapshot
7728 * there is nothing to clear or update.
7731 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
7732 if (is_default_snapshot
) {
7734 * The jetsam snapshot is never freed, its count is simply reset.
7737 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7738 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7743 if (is_on_demand_snapshot
) {
7745 * The on_demand snapshot is always freed,
7746 * even if the copyout failed.
7749 kfree(snapshot
, buffer_size
);
7755 *retval
= buffer_size
;
7762 * Routine: memorystatus_cmd_grp_set_properties
7763 * Purpose: Update properties for a group of processes.
7765 * Supported Properties:
7767 * Move each process out of its effective priority
7768 * band and into a new priority band.
7769 * Maintains relative order from lowest to highest priority.
7770 * In single band, maintains relative order from head to tail.
7772 * eg: before [effectivepriority | pid]
7774 * [17 | p55, p67, p19 ]
7779 * after [ new band | pid]
7780 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7782 * Returns: 0 on success, else non-zero.
7784 * Caveat: We know there is a race window regarding recycled pids.
7785 * A process could be killed before the kernel can act on it here.
7786 * If a pid cannot be found in any of the jetsam priority bands,
7787 * then we simply ignore it. No harm.
7788 * But, if the pid has been recycled then it could be an issue.
7789 * In that scenario, we might move an unsuspecting process to the new
7790 * priority band. It's not clear how the kernel can safeguard
7791 * against this, but it would be an extremely rare case anyway.
7792 * The caller of this api might avoid such race conditions by
7793 * ensuring that the processes passed in the pid list are suspended.
7797 /* This internal structure can expand when we add support for more properties */
7798 typedef struct memorystatus_internal_properties
7801 int32_t priority
; /* see memorytstatus_priority_entry_t : priority */
7802 } memorystatus_internal_properties_t
;
7806 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7808 #pragma unused (flags)
7811 * We only handle setting priority
7816 memorystatus_priority_entry_t
*entries
= NULL
;
7817 uint32_t entry_count
= 0;
7819 /* This will be the ordered proc list */
7820 memorystatus_internal_properties_t
*table
= NULL
;
7821 size_t table_size
= 0;
7822 uint32_t table_count
= 0;
7825 uint32_t bucket_index
= 0;
7826 boolean_t head_insert
;
7827 int32_t new_priority
;
7832 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0) || ((buffer_size
% sizeof(memorystatus_priority_entry_t
)) != 0)) {
7837 entry_count
= (buffer_size
/ sizeof(memorystatus_priority_entry_t
));
7838 if ((entries
= (memorystatus_priority_entry_t
*)kalloc(buffer_size
)) == NULL
) {
7843 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, entry_count
, 0, 0, 0, 0);
7845 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7849 /* Verify sanity of input priorities */
7850 for (i
=0; i
< entry_count
; i
++) {
7851 if (entries
[i
].priority
== -1) {
7852 /* Use as shorthand for default priority */
7853 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7854 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7855 /* Both the aging bands are reserved for internal use;
7856 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7857 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7858 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7859 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7861 /* Deal with this later */
7862 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7869 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7870 if ( (table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
7874 memset(table
, 0, table_size
);
7878 * For each jetsam bucket entry, spin through the input property list.
7879 * When a matching pid is found, populate an adjacent table with the
7880 * appropriate proc pointer and new property values.
7881 * This traversal automatically preserves order from lowest
7882 * to highest priority.
7889 /* Create the ordered table */
7890 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7891 while (p
&& (table_count
< entry_count
)) {
7892 for (i
=0; i
< entry_count
; i
++ ) {
7893 if (p
->p_pid
== entries
[i
].pid
) {
7894 /* Build the table data */
7895 table
[table_count
].proc
= p
;
7896 table
[table_count
].priority
= entries
[i
].priority
;
7901 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7904 /* We now have ordered list of procs ready to move */
7905 for (i
=0; i
< table_count
; i
++) {
7909 /* Allow head inserts -- but relative order is now */
7910 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7911 new_priority
= JETSAM_PRIORITY_IDLE
;
7914 new_priority
= table
[i
].priority
;
7915 head_insert
= false;
7919 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7924 * Take appropriate steps if moving proc out of
7925 * either of the aging bands.
7927 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7928 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7931 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7937 * if (table_count != entry_count)
7938 * then some pids were not found in a jetsam band.
7939 * harmless but interesting...
7941 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, entry_count
, table_count
, 0, 0, 0);
7945 kfree(entries
, buffer_size
);
7947 kfree(table
, table_size
);
7954 * This routine is used to update a process's jetsam priority position and stored user_data.
7955 * It is not used for the setting of memory limits, which is why the last 6 args to the
7956 * memorystatus_update() call are 0 or FALSE.
7960 memorystatus_cmd_set_priority_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7962 memorystatus_priority_properties_t mpp_entry
;
7964 /* Validate inputs */
7965 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7969 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7979 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7984 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7992 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7994 memorystatus_memlimit_properties_t mmp_entry
;
7996 /* Validate inputs */
7997 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
8001 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
8004 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
8011 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
8012 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
8013 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
8014 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
8015 * to the task's ledgers via task_set_phys_footprint_limit().
8018 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
8020 memorystatus_memlimit_properties_t mmp_entry
;
8022 /* Validate inputs */
8023 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
8027 memset (&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
8029 proc_t p
= proc_find(pid
);
8035 * Get the active limit and attributes.
8036 * No locks taken since we hold a reference to the proc.
8039 if (p
->p_memstat_memlimit_active
> 0 ) {
8040 mmp_entry
.memlimit_active
= p
->p_memstat_memlimit_active
;
8042 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_active
);
8045 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
8046 mmp_entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
8050 * Get the inactive limit and attributes
8052 if (p
->p_memstat_memlimit_inactive
<= 0) {
8053 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_inactive
);
8055 mmp_entry
.memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
8057 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
8058 mmp_entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
8062 error
= copyout(&mmp_entry
, buffer
, buffer_size
);
8069 * SPI for kbd - pr24956468
8070 * This is a very simple snapshot that calculates how much a
8071 * process's phys_footprint exceeds a specific memory limit.
8072 * Only the inactive memory limit is supported for now.
8073 * The delta is returned as bytes in excess or zero.
8076 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
8078 uint64_t footprint_in_bytes
= 0;
8079 uint64_t delta_in_bytes
= 0;
8080 int32_t memlimit_mb
= 0;
8081 uint64_t memlimit_bytes
= 0;
8083 /* Validate inputs */
8084 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
8088 proc_t p
= proc_find(pid
);
8094 * Get the inactive limit.
8095 * No locks taken since we hold a reference to the proc.
8098 if (p
->p_memstat_memlimit_inactive
<= 0) {
8099 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
8101 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
8104 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8108 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
8111 * Computed delta always returns >= 0 bytes
8113 if (footprint_in_bytes
> memlimit_bytes
) {
8114 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
8117 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
8124 memorystatus_cmd_get_pressure_status(int32_t *retval
) {
8127 /* Need privilege for check */
8128 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
8133 /* Inherently racy, so it's not worth taking a lock here */
8134 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
8140 memorystatus_get_pressure_status_kdp() {
8141 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
8145 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
8147 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
8148 * So, with 2-level HWM preserving previous behavior will map as follows.
8149 * - treat the limit passed in as both an active and inactive limit.
8150 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
8152 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
8153 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
8154 * - so mapping is (active/non-fatal, inactive/non-fatal)
8156 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
8157 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
8158 * - so mapping is (active/fatal, inactive/fatal)
8163 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
) {
8165 memorystatus_memlimit_properties_t entry
;
8167 entry
.memlimit_active
= high_water_mark
;
8168 entry
.memlimit_active_attr
= 0;
8169 entry
.memlimit_inactive
= high_water_mark
;
8170 entry
.memlimit_inactive_attr
= 0;
8172 if (is_fatal_limit
== TRUE
) {
8173 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
8174 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
8177 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
8180 #endif /* CONFIG_JETSAM */
8183 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
) {
8185 int32_t memlimit_active
;
8186 boolean_t memlimit_active_is_fatal
;
8187 int32_t memlimit_inactive
;
8188 boolean_t memlimit_inactive_is_fatal
;
8189 uint32_t valid_attrs
= 0;
8192 proc_t p
= proc_find(pid
);
8198 * Check for valid attribute flags.
8200 valid_attrs
|= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
);
8201 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
8205 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
8211 * Setup the active memlimit properties
8213 memlimit_active
= entry
->memlimit_active
;
8214 if (entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
8215 memlimit_active_is_fatal
= TRUE
;
8217 memlimit_active_is_fatal
= FALSE
;
8221 * Setup the inactive memlimit properties
8223 memlimit_inactive
= entry
->memlimit_inactive
;
8224 if (entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
8225 memlimit_inactive_is_fatal
= TRUE
;
8227 memlimit_inactive_is_fatal
= FALSE
;
8231 * Setting a limit of <= 0 implies that the process has no
8232 * high-water-mark and has no per-task-limit. That means
8233 * the system_wide task limit is in place, which by the way,
8237 if (memlimit_active
<= 0) {
8239 * Enforce the fatal system_wide task limit while process is active.
8241 memlimit_active
= -1;
8242 memlimit_active_is_fatal
= TRUE
;
8245 if (memlimit_inactive
<= 0) {
8247 * Enforce the fatal system_wide task limit while process is inactive.
8249 memlimit_inactive
= -1;
8250 memlimit_inactive_is_fatal
= TRUE
;
8256 * Store the active limit variants in the proc.
8258 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
8261 * Store the inactive limit variants in the proc.
8263 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
8266 * Enforce appropriate limit variant by updating the cached values
8267 * and writing the ledger.
8268 * Limit choice is based on process active/inactive state.
8271 if (memorystatus_highwater_enabled
) {
8273 boolean_t use_active
;
8275 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
8276 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
8279 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
8283 /* Enforce the limit by writing to the ledgers */
8284 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
8286 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
8287 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
8288 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
8289 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
8290 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
8300 * Returns the jetsam priority (effective or requested) of the process
8301 * associated with this task.
8304 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
8307 if (effective_priority
) {
8308 return p
->p_memstat_effectivepriority
;
8310 return p
->p_memstat_requestedpriority
;
8317 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
) {
8319 os_reason_t jetsam_reason
= OS_REASON_NULL
;
8323 #pragma unused(jetsam_reason)
8326 /* Need to be root or have entitlement */
8327 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
)) {
8334 * Do not enforce it for snapshots.
8336 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
8337 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
8343 switch (args
->command
) {
8344 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
8345 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
8347 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
8348 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
8350 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
8351 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
8353 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
8354 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
8356 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
8357 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8359 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
8360 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8362 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
8363 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8365 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
8366 error
= memorystatus_cmd_get_pressure_status(ret
);
8369 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
8371 * This call does not distinguish between active and inactive limits.
8372 * Default behavior in 2-level HWM world is to set both.
8373 * Non-fatal limit is also assumed for both.
8375 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
8377 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
8379 * This call does not distinguish between active and inactive limits.
8380 * Default behavior in 2-level HWM world is to set both.
8381 * Fatal limit is also assumed for both.
8383 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
8385 #endif /* CONFIG_JETSAM */
8387 #if DEVELOPMENT || DEBUG
8388 case MEMORYSTATUS_CMD_TEST_JETSAM
:
8389 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
8390 if (jetsam_reason
== OS_REASON_NULL
) {
8391 printf("memorystatus_control: failed to allocate jetsam reason\n");
8394 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
8396 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
8397 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
8400 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
8401 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
8403 #endif /* CONFIG_JETSAM */
8404 #else /* DEVELOPMENT || DEBUG */
8405 #pragma unused(jetsam_reason)
8406 #endif /* DEVELOPMENT || DEBUG */
8407 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
8408 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
8409 #if DEVELOPMENT || DEBUG
8410 printf("Enabling Lenient Mode\n");
8411 #endif /* DEVELOPMENT || DEBUG */
8413 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
8414 memorystatus_aggressive_jetsam_lenient
= TRUE
;
8418 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
8419 #if DEVELOPMENT || DEBUG
8420 printf("Disabling Lenient mode\n");
8421 #endif /* DEVELOPMENT || DEBUG */
8422 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
8423 memorystatus_aggressive_jetsam_lenient
= FALSE
;
8426 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
8427 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
8428 error
= memorystatus_low_mem_privileged_listener(args
->command
);
8431 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
8432 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
8433 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, args
->flags
? TRUE
: FALSE
);
8446 filt_memorystatusattach(struct knote
*kn
, __unused
struct kevent_internal_s
*kev
)
8450 kn
->kn_flags
|= EV_CLEAR
;
8451 error
= memorystatus_knote_register(kn
);
8453 kn
->kn_flags
= EV_ERROR
;
8454 kn
->kn_data
= error
;
8460 filt_memorystatusdetach(struct knote
*kn
)
8462 memorystatus_knote_unregister(kn
);
8466 filt_memorystatus(struct knote
*kn __unused
, long hint
)
8470 case kMemorystatusNoPressure
:
8471 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
8472 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
8475 case kMemorystatusPressure
:
8476 if (memorystatus_vm_pressure_level
== kVMPressureWarning
|| memorystatus_vm_pressure_level
== kVMPressureUrgent
) {
8477 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
8478 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
8480 } else if (memorystatus_vm_pressure_level
== kVMPressureCritical
) {
8482 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
8483 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
8487 case kMemorystatusLowSwap
:
8488 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_LOW_SWAP
) {
8489 kn
->kn_fflags
= NOTE_MEMORYSTATUS_LOW_SWAP
;
8493 case kMemorystatusProcLimitWarn
:
8494 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
8495 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
8499 case kMemorystatusProcLimitCritical
:
8500 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
8501 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
8511 if (kn
->kn_fflags
!= 0) {
8512 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
8513 pid_t knote_pid
= knote_proc
->p_pid
;
8515 printf("filt_memorystatus: sending kn 0x%lx (event 0x%x) for pid (%d)\n",
8516 (unsigned long)kn
, kn
->kn_fflags
, knote_pid
);
8520 return (kn
->kn_fflags
!= 0);
8524 filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
)
8527 int prev_kn_sfflags
= 0;
8529 memorystatus_klist_lock();
8532 * copy in new kevent settings
8533 * (saving the "desired" data and fflags).
8536 prev_kn_sfflags
= kn
->kn_sfflags
;
8537 kn
->kn_sfflags
= (kev
->fflags
& EVFILT_MEMORYSTATUS_ALL_MASK
);
8539 #if !CONFIG_EMBEDDED
8541 * Only on desktop do we restrict notifications to
8542 * one per active/inactive state (soft limits only).
8544 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
8546 * Is there previous state to preserve?
8548 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
8550 * This knote was previously interested in proc_limit_warn,
8551 * so yes, preserve previous state.
8553 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
) {
8554 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
;
8556 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
) {
8557 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
;
8561 * This knote was not previously interested in proc_limit_warn,
8562 * but it is now. Set both states.
8564 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
;
8565 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
;
8569 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
8571 * Is there previous state to preserve?
8573 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
8575 * This knote was previously interested in proc_limit_critical,
8576 * so yes, preserve previous state.
8578 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
) {
8579 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
;
8581 if (prev_kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
) {
8582 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
;
8586 * This knote was not previously interested in proc_limit_critical,
8587 * but it is now. Set both states.
8589 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
;
8590 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
;
8593 #endif /* !CONFIG_EMBEDDED */
8595 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
8596 kn
->kn_udata
= kev
->udata
;
8599 * reset the output flags based on a
8600 * combination of the old events and
8601 * the new desired event list.
8603 //kn->kn_fflags &= kn->kn_sfflags;
8605 res
= (kn
->kn_fflags
!= 0);
8607 memorystatus_klist_unlock();
8613 filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
8615 #pragma unused(data)
8618 memorystatus_klist_lock();
8619 res
= (kn
->kn_fflags
!= 0);
8621 *kev
= kn
->kn_kevent
;
8622 kn
->kn_flags
|= EV_CLEAR
; /* automatic */
8626 memorystatus_klist_unlock();
8632 memorystatus_klist_lock(void) {
8633 lck_mtx_lock(&memorystatus_klist_mutex
);
8637 memorystatus_klist_unlock(void) {
8638 lck_mtx_unlock(&memorystatus_klist_mutex
);
8642 memorystatus_kevent_init(lck_grp_t
*grp
, lck_attr_t
*attr
) {
8643 lck_mtx_init(&memorystatus_klist_mutex
, grp
, attr
);
8644 klist_init(&memorystatus_klist
);
8648 memorystatus_knote_register(struct knote
*kn
) {
8651 memorystatus_klist_lock();
8654 * Support only userspace visible flags.
8656 if ((kn
->kn_sfflags
& EVFILT_MEMORYSTATUS_ALL_MASK
) == (unsigned int) kn
->kn_sfflags
) {
8658 #if !CONFIG_EMBEDDED
8659 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
8660 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_ACTIVE
;
8661 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN_INACTIVE
;
8664 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
8665 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_ACTIVE
;
8666 kn
->kn_sfflags
|= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL_INACTIVE
;
8668 #endif /* !CONFIG_EMBEDDED */
8670 KNOTE_ATTACH(&memorystatus_klist
, kn
);
8676 memorystatus_klist_unlock();
8682 memorystatus_knote_unregister(struct knote
*kn __unused
) {
8683 memorystatus_klist_lock();
8684 KNOTE_DETACH(&memorystatus_klist
, kn
);
8685 memorystatus_klist_unlock();
8690 #if CONFIG_JETSAM && VM_PRESSURE_EVENTS
8692 memorystatus_issue_pressure_kevent(boolean_t pressured
) {
8693 memorystatus_klist_lock();
8694 KNOTE(&memorystatus_klist
, pressured
? kMemorystatusPressure
: kMemorystatusNoPressure
);
8695 memorystatus_klist_unlock();
8698 #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */
8701 /* Coalition support */
8703 /* sorting info for a particular priority bucket */
8704 typedef struct memstat_sort_info
{
8705 coalition_t msi_coal
;
8706 uint64_t msi_page_count
;
8709 } memstat_sort_info_t
;
8712 * qsort from smallest page count to largest page count
8714 * return < 0 for a < b
8718 static int memstat_asc_cmp(const void *a
, const void *b
)
8720 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8721 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8723 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8727 * Return the number of pids rearranged during this sort.
8730 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8732 #define MAX_SORT_PIDS 80
8733 #define MAX_COAL_LEADERS 10
8735 unsigned int b
= bucket_index
;
8739 coalition_t coal
= COALITION_NULL
;
8741 int total_pids_moved
= 0;
8745 * The system is typically under memory pressure when in this
8746 * path, hence, we want to avoid dynamic memory allocation.
8748 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8749 pid_t pid_list
[MAX_SORT_PIDS
];
8751 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8756 * Clear the array that holds coalition leader information
8758 for (i
=0; i
< MAX_COAL_LEADERS
; i
++) {
8759 leaders
[i
].msi_coal
= COALITION_NULL
;
8760 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8761 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8762 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8765 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8767 if (coalition_is_leader(p
->task
, COALITION_TYPE_JETSAM
, &coal
)) {
8768 if (nleaders
< MAX_COAL_LEADERS
) {
8769 int coal_ntasks
= 0;
8770 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8771 leaders
[nleaders
].msi_coal
= coal
;
8772 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8773 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8774 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8778 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8779 * Abandoned coalitions will linger at the tail of the priority band
8780 * when this sort session ends.
8781 * TODO: should this be an assert?
8783 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8784 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8788 p
=memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8791 if (nleaders
== 0) {
8792 /* Nothing to sort */
8797 * Sort the coalition leader array, from smallest coalition page count
8798 * to largest coalition page count. When inserted in the priority bucket,
8799 * smallest coalition is handled first, resulting in the last to be jetsammed.
8802 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8806 for (i
= 0; i
< nleaders
; i
++) {
8807 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8808 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8809 leaders
[i
].msi_ntasks
);
8814 * During coalition sorting, processes in a priority band are rearranged
8815 * by being re-inserted at the head of the queue. So, when handling a
8816 * list, the first process that gets moved to the head of the queue,
8817 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8819 * So, for example, the coalition leader is expected to jetsam last,
8820 * after its coalition members. Therefore, the coalition leader is
8821 * inserted at the head of the queue first.
8823 * After processing a coalition, the jetsam order is as follows:
8824 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8828 * Coalition members are rearranged in the priority bucket here,
8829 * based on their coalition role.
8831 total_pids_moved
= 0;
8832 for (i
=0; i
< nleaders
; i
++) {
8834 /* a bit of bookkeeping */
8837 /* Coalition leaders are jetsammed last, so move into place first */
8838 pid_list
[0] = leaders
[i
].msi_pid
;
8839 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8841 /* xpc services should jetsam after extensions */
8842 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8843 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8846 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8847 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8850 /* extensions should jetsam after unmarked processes */
8851 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8852 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8855 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8856 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8859 /* undefined coalition members should be the first to jetsam */
8860 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8861 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8864 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8865 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8869 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8871 * All the pids in the coalition were found in this band.
8873 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8874 pids_moved
, leaders
[i
].msi_ntasks
);
8875 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8877 * Apparently new coalition members showed up during the sort?
8879 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8880 pids_moved
, leaders
[i
].msi_ntasks
);
8883 * Apparently not all the pids in the coalition were found in this band?
8885 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8886 pids_moved
, leaders
[i
].msi_ntasks
);
8890 total_pids_moved
+= pids_moved
;
8894 return(total_pids_moved
);
8899 * Traverse a list of pids, searching for each within the priority band provided.
8900 * If pid is found, move it to the front of the priority band.
8901 * Never searches outside the priority band provided.
8904 * bucket_index - jetsam priority band.
8905 * pid_list - pointer to a list of pids.
8906 * list_sz - number of pids in the list.
8908 * Pid list ordering is important in that,
8909 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8910 * The sort_order is set by the coalition default.
8913 * the number of pids found and hence moved within the priority band.
8916 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8918 memstat_bucket_t
*current_bucket
;
8922 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8926 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8930 current_bucket
= &memstat_bucket
[bucket_index
];
8931 for (i
=0; i
< list_sz
; i
++) {
8932 unsigned int b
= bucket_index
;
8934 proc_t aProc
= NULL
;
8938 list_index
= ((list_sz
- 1) - i
);
8939 aPid
= pid_list
[list_index
];
8941 /* never search beyond bucket_index provided */
8942 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8944 if (p
->p_pid
== aPid
) {
8948 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8951 if (aProc
== NULL
) {
8952 /* pid not found in this band, just skip it */
8955 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8956 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8964 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
8966 int32_t i
= JETSAM_PRIORITY_IDLE
;
8969 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8973 while(i
<= max_bucket_index
) {
8974 count
+= memstat_bucket
[i
++].count
;
8981 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
8984 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
)) {
8986 * Ineligible processes OR system processes e.g. launchd.
8993 * We would like to use memorystatus_update() here to move the processes
8994 * within the bands. Unfortunately memorystatus_update() calls
8995 * memorystatus_update_priority_locked() which uses any band transitions
8996 * as an indication to modify ledgers. For that it needs the task lock
8997 * and since we came into this function with the task lock held, we'll deadlock.
8999 * Unfortunately we can't completely disable ledger updates because we still
9000 * need the ledger updates for a subset of processes i.e. daemons.
9001 * When all processes on all platforms support memory limits, we can simply call
9002 * memorystatus_update().
9004 * It also has some logic to deal with 'aging' which, currently, is only applicable
9005 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
9006 * to do this explicit band transition.
9009 memstat_bucket_t
*current_bucket
, *new_bucket
;
9010 int32_t priority
= 0;
9014 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
9015 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
9017 * If the process is on its way out OR
9018 * jetsam has alread tried and failed to kill this process,
9019 * let's skip the whole jetsam band transition.
9026 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
9027 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
9028 priority
= JETSAM_PRIORITY_IDLE
;
9030 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
9032 * It is possible that someone pulled this process
9033 * out of the IDLE band without updating its app-nap
9040 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
9041 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
9042 priority
= p
->p_memstat_requestedpriority
;
9045 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
9046 current_bucket
->count
--;
9048 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
9049 new_bucket
->count
++;
9052 * Record idle start or idle delta.
9054 if (p
->p_memstat_effectivepriority
== priority
) {
9056 * This process is not transitioning between
9057 * jetsam priority buckets. Do nothing.
9059 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
9062 * Transitioning out of the idle priority bucket.
9063 * Record idle delta.
9065 assert(p
->p_memstat_idle_start
!= 0);
9066 now
= mach_absolute_time();
9067 if (now
> p
->p_memstat_idle_start
) {
9068 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
9070 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
9072 * Transitioning into the idle priority bucket.
9073 * Record idle start.
9075 p
->p_memstat_idle_start
= mach_absolute_time();
9078 p
->p_memstat_effectivepriority
= priority
;
9084 #else /* !CONFIG_JETSAM */
9086 #pragma unused(is_appnap)
9088 #endif /* !CONFIG_JETSAM */