2 * Copyright (c) 2000-2007, 2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/reason.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode_internal.h>
93 #include <sys/file_internal.h>
95 #include <sys/codesign.h>
96 #include <sys/sysproto.h>
98 #include <sys/persona.h>
100 #include <sys/doc_tombstone.h>
102 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
103 extern void (*dtrace_proc_waitfor_exec_ptr
)(proc_t
);
104 extern void dtrace_proc_fork(proc_t
, proc_t
, int);
107 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
108 * we will store its value before actually calling it.
110 static void (*dtrace_proc_waitfor_hook
)(proc_t
) = NULL
;
112 #include <sys/dtrace_ptss.h>
115 #include <security/audit/audit.h>
117 #include <mach/mach_types.h>
118 #include <kern/coalition.h>
119 #include <kern/kern_types.h>
120 #include <kern/kalloc.h>
121 #include <kern/mach_param.h>
122 #include <kern/task.h>
123 #include <kern/thread.h>
124 #include <kern/thread_call.h>
125 #include <kern/zalloc.h>
132 #include <security/mac_framework.h>
133 #include <security/mac_mach_internal.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_protos.h>
138 #include <vm/vm_shared_region.h>
140 #include <sys/shm_internal.h> /* for shmfork() */
141 #include <mach/task.h> /* for thread_create() */
142 #include <mach/thread_act.h> /* for thread_resume() */
146 #if CONFIG_MEMORYSTATUS
147 #include <sys/kern_memorystatus.h>
150 /* XXX routines which should have Mach prototypes, but don't */
151 void thread_set_parent(thread_t parent
, int pid
);
152 extern void act_thread_catt(void *ctx
);
153 void thread_set_child(thread_t child
, int pid
);
154 void *act_thread_csave(void);
155 extern boolean_t
task_is_exec_copy(task_t
);
158 thread_t
cloneproc(task_t
, coalition_t
*, proc_t
, int, int);
159 proc_t
forkproc(proc_t
);
160 void forkproc_free(proc_t
);
161 thread_t
fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child
, int inherit_memory
, int is64bit
, int in_exec
);
162 void proc_vfork_begin(proc_t parent_proc
);
163 void proc_vfork_end(proc_t parent_proc
);
165 #define DOFORK 0x1 /* fork() system call */
166 #define DOVFORK 0x2 /* vfork() system call */
171 * Description: start a vfork on a process
173 * Parameters: parent_proc process (re)entering vfork state
177 * Notes: Although this function increments a count, a count in
178 * excess of 1 is not currently supported. According to the
179 * POSIX standard, calling anything other than execve() or
180 * _exit() following a vfork(), including calling vfork()
181 * itself again, will result in undefined behaviour
184 proc_vfork_begin(proc_t parent_proc
)
186 proc_lock(parent_proc
);
187 parent_proc
->p_lflag
|= P_LVFORK
;
188 parent_proc
->p_vforkcnt
++;
189 proc_unlock(parent_proc
);
195 * Description: stop a vfork on a process
197 * Parameters: parent_proc process leaving vfork state
201 * Notes: Decrements the count; currently, reentrancy of vfork()
202 * is unsupported on the current process
205 proc_vfork_end(proc_t parent_proc
)
207 proc_lock(parent_proc
);
208 parent_proc
->p_vforkcnt
--;
209 if (parent_proc
->p_vforkcnt
< 0)
210 panic("vfork cnt is -ve");
211 if (parent_proc
->p_vforkcnt
== 0)
212 parent_proc
->p_lflag
&= ~P_LVFORK
;
213 proc_unlock(parent_proc
);
220 * Description: vfork system call
222 * Parameters: void [no arguments]
224 * Retval: 0 (to child process)
225 * !0 pid of child (to parent process)
226 * -1 error (see "Returns:")
228 * Returns: EAGAIN Administrative limit reached
229 * EINVAL vfork() called during vfork()
230 * ENOMEM Failed to allocate new process
232 * Note: After a successful call to this function, the parent process
233 * has its task, thread, and uthread lent to the child process,
234 * and control is returned to the caller; if this function is
235 * invoked as a system call, the return is to user space, and
236 * is effectively running on the child process.
238 * Subsequent calls that operate on process state are permitted,
239 * though discouraged, and will operate on the child process; any
240 * operations on the task, thread, or uthread will result in
241 * changes in the parent state, and, if inheritable, the child
242 * state, when a task, thread, and uthread are realized for the
243 * child process at execve() time, will also be effected. Given
244 * this, it's recemmended that people use the posix_spawn() call
247 * BLOCK DIAGRAM OF VFORK
251 * ,----------------. ,-------------.
253 * | parent_thread | ------> | parent_task |
255 * `----------------' `-------------'
256 * uthread | ^ bsd_info | ^
257 * v | vc_thread v | task
258 * ,----------------. ,-------------.
260 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
262 * `----------------' `-------------'
269 * ,----------------. ,-------------.
271 * ,----> | parent_thread | ------> | parent_task |
273 * | `----------------' `-------------'
274 * | uthread | ^ bsd_info | ^
275 * | v | vc_thread v | task
276 * | ,----------------. ,-------------.
278 * | | parent_uthread | <.list. | parent_proc |
280 * | `----------------' `-------------'
283 * | ,----------------.
285 * p_vforkact | child_proc | <-- current_proc()
290 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
292 thread_t child_thread
;
295 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
, NULL
)) != 0) {
298 uthread_t ut
= get_bsdthread_info(current_thread());
299 proc_t child_proc
= ut
->uu_proc
;
301 retval
[0] = child_proc
->p_pid
;
302 retval
[1] = 1; /* flag child return for user space */
305 * Drop the signal lock on the child which was taken on our
306 * behalf by forkproc()/cloneproc() to prevent signals being
307 * received by the child in a partially constructed state.
309 proc_signalend(child_proc
, 0);
310 proc_transend(child_proc
, 0);
312 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
313 DTRACE_PROC1(create
, proc_t
, child_proc
);
314 ut
->uu_flag
&= ~UT_VFORKING
;
324 * Description: common code used by all new process creation other than the
325 * bootstrap of the initial process on the system
327 * Parameters: parent_proc parent process of the process being
328 * child_threadp pointer to location to receive the
329 * Mach thread_t of the child process
331 * kind kind of creation being requested
332 * coalitions if spawn, the set of coalitions the
333 * child process should join, or NULL to
334 * inherit the parent's. On non-spawns,
335 * this param is ignored and the child
336 * always inherits the parent's
339 * Notes: Permissable values for 'kind':
341 * PROC_CREATE_FORK Create a complete process which will
342 * return actively running in both the
343 * parent and the child; the child copies
344 * the parent address space.
345 * PROC_CREATE_SPAWN Create a complete process which will
346 * return actively running in the parent
347 * only after returning actively running
348 * in the child; the child address space
349 * is newly created by an image activator,
350 * after which the child is run.
351 * PROC_CREATE_VFORK Creates a partial process which will
352 * borrow the parent task, thread, and
353 * uthread to return running in the child;
354 * the child address space and other parts
355 * are lazily created at execve() time, or
356 * the child is terminated, and the parent
357 * does not actively run until that
360 * At first it may seem strange that we return the child thread
361 * address rather than process structure, since the process is
362 * the only part guaranteed to be "new"; however, since we do
363 * not actualy adjust other references between Mach and BSD (see
364 * the block diagram above the implementation of vfork()), this
365 * is the only method which guarantees us the ability to get
366 * back to the other information.
369 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
, coalition_t
*coalitions
)
371 thread_t parent_thread
= (thread_t
)current_thread();
372 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
373 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
374 thread_t child_thread
= NULL
;
381 * Although process entries are dynamically created, we still keep
382 * a global limit on the maximum number we will create. Don't allow
383 * a nonprivileged user to use the last process; don't let root
384 * exceed the limit. The variable nprocs is the current number of
385 * processes, maxproc is the limit.
387 uid
= kauth_getruid();
389 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
390 #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED
392 * On the development kernel, panic so that the fact that we hit
393 * the process limit is obvious, as this may very well wedge the
396 panic("The process table is full; parent pid=%d", parent_proc
->p_pid
);
405 * Increment the count of procs running with this uid. Don't allow
406 * a nonprivileged user to exceed their current limit, which is
407 * always less than what an rlim_t can hold.
408 * (locking protection is provided by list lock held in chgproccnt)
410 count
= chgproccnt(uid
, 1);
412 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
413 #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED
415 * On the development kernel, panic so that the fact that we hit
416 * the per user process limit is obvious. This may be less dire
417 * than hitting the global process limit, but we cannot rely on
420 panic("The per-user process limit has been hit; parent pid=%d, uid=%d", parent_proc
->p_pid
, uid
);
428 * Determine if MAC policies applied to the process will allow
429 * it to fork. This is an advisory-only check.
431 err
= mac_proc_check_fork(parent_proc
);
438 case PROC_CREATE_VFORK
:
440 * Prevent a vfork while we are in vfork(); we should
441 * also likely preventing a fork here as well, and this
442 * check should then be outside the switch statement,
443 * since the proc struct contents will copy from the
444 * child and the tash/thread/uthread from the parent in
445 * that case. We do not support vfork() in vfork()
446 * because we don't have to; the same non-requirement
447 * is true of both fork() and posix_spawn() and any
448 * call other than execve() amd _exit(), but we've
449 * been historically lenient, so we continue to be so
452 * <rdar://6640521> Probably a source of random panics
454 if (parent_uthread
->uu_flag
& UT_VFORK
) {
455 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
461 * Flag us in progress; if we chose to support vfork() in
462 * vfork(), we would chain our parent at this point (in
463 * effect, a stack push). We don't, since we actually want
464 * to disallow everything not specified in the standard
466 proc_vfork_begin(parent_proc
);
468 /* The newly created process comes with signal lock held */
469 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
470 /* Failed to allocate new process */
471 proc_vfork_end(parent_proc
);
476 // XXX BEGIN: wants to move to be common code (and safe)
479 * allow policies to associate the credential/label that
480 * we referenced from the parent ... with the child
481 * JMM - this really isn't safe, as we can drop that
482 * association without informing the policy in other
483 * situations (keep long enough to get policies changed)
485 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
489 * Propogate change of PID - may get new cred if auditing.
491 * NOTE: This has no effect in the vfork case, since
492 * child_proc->task != current_task(), but we duplicate it
493 * because this is probably, ultimately, wrong, since we
494 * will be running in the "child" which is the parent task
495 * with the wrong token until we get to the execve() or
496 * _exit() call; a lot of "undefined" can happen before
499 * <rdar://6640530> disallow everything but exeve()/_exit()?
501 set_security_token(child_proc
);
503 AUDIT_ARG(pid
, child_proc
->p_pid
);
505 // XXX END: wants to move to be common code (and safe)
508 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
510 * Note: this is where we would "push" state instead of setting
511 * it for nested vfork() support (see proc_vfork_end() for
512 * description if issues here).
514 child_proc
->task
= parent_proc
->task
;
516 child_proc
->p_lflag
|= P_LINVFORK
;
517 child_proc
->p_vforkact
= parent_thread
;
518 child_proc
->p_stat
= SRUN
;
521 * Until UT_VFORKING is cleared at the end of the vfork
522 * syscall, the process identity of this thread is slightly
525 * As long as UT_VFORK and it's associated field (uu_proc)
526 * is set, current_proc() will always return the child process.
528 * However dtrace_proc_selfpid() returns the parent pid to
529 * ensure that e.g. the proc:::create probe actions accrue
530 * to the parent. (Otherwise the child magically seems to
531 * have created itself!)
533 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
534 parent_uthread
->uu_proc
= child_proc
;
535 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
536 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
538 /* temporarily drop thread-set-id state */
539 if (parent_uthread
->uu_flag
& UT_SETUID
) {
540 parent_uthread
->uu_flag
|= UT_WASSETUID
;
541 parent_uthread
->uu_flag
&= ~UT_SETUID
;
544 /* blow thread state information */
545 /* XXX is this actually necessary, given syscall return? */
546 thread_set_child(parent_thread
, child_proc
->p_pid
);
548 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
551 * Preserve synchronization semantics of vfork. If
552 * waiting for child to exec or exit, set P_PPWAIT
553 * on child, and sleep on our proc (in case of exit).
555 child_proc
->p_lflag
|= P_LPPWAIT
;
556 pinsertchild(parent_proc
, child_proc
); /* set visible */
560 case PROC_CREATE_SPAWN
:
562 * A spawned process differs from a forked process in that
563 * the spawned process does not carry around the parents
564 * baggage with regard to address space copying, dtrace,
571 case PROC_CREATE_FORK
:
573 * When we clone the parent process, we are going to inherit
574 * its task attributes and memory, since when we fork, we
575 * will, in effect, create a duplicate of it, with only minor
576 * differences. Contrarily, spawned processes do not inherit.
578 if ((child_thread
= cloneproc(parent_proc
->task
,
579 spawn
? coalitions
: NULL
,
581 spawn
? FALSE
: TRUE
,
583 /* Failed to create thread */
588 /* copy current thread state into the child thread (only for fork) */
590 thread_dup(child_thread
);
593 /* child_proc = child_thread->task->proc; */
594 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
596 // XXX BEGIN: wants to move to be common code (and safe)
599 * allow policies to associate the credential/label that
600 * we referenced from the parent ... with the child
601 * JMM - this really isn't safe, as we can drop that
602 * association without informing the policy in other
603 * situations (keep long enough to get policies changed)
605 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
609 * Propogate change of PID - may get new cred if auditing.
611 * NOTE: This has no effect in the vfork case, since
612 * child_proc->task != current_task(), but we duplicate it
613 * because this is probably, ultimately, wrong, since we
614 * will be running in the "child" which is the parent task
615 * with the wrong token until we get to the execve() or
616 * _exit() call; a lot of "undefined" can happen before
619 * <rdar://6640530> disallow everything but exeve()/_exit()?
621 set_security_token(child_proc
);
623 AUDIT_ARG(pid
, child_proc
->p_pid
);
625 // XXX END: wants to move to be common code (and safe)
628 * Blow thread state information; this is what gives the child
629 * process its "return" value from a fork() call.
631 * Note: this should probably move to fork() proper, since it
632 * is not relevent to spawn, and the value won't matter
633 * until we resume the child there. If you are in here
634 * refactoring code, consider doing this at the same time.
636 thread_set_child(child_thread
, child_proc
->p_pid
);
638 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
641 dtrace_proc_fork(parent_proc
, child_proc
, spawn
);
642 #endif /* CONFIG_DTRACE */
645 * Of note, we need to initialize the bank context behind
646 * the protection of the proc_trans lock to prevent a race with exit.
648 task_bank_init(get_threadtask(child_thread
));
654 panic("fork1 called with unknown kind %d", kind
);
659 /* return the thread pointer to the caller */
660 *child_threadp
= child_thread
;
664 * In the error case, we return a 0 value for the returned pid (but
665 * it is ignored in the trampoline due to the error return); this
666 * is probably not necessary.
669 (void)chgproccnt(uid
, -1);
679 * Description: "Return" to parent vfork thread() following execve/_exit;
680 * this is done by reassociating the parent process structure
681 * with the task, thread, and uthread.
683 * Refer to the ASCII art above vfork() to figure out the
684 * state we're undoing.
686 * Parameters: child_proc Child process
687 * retval System call return value array
688 * rval Return value to present to parent
692 * Notes: The caller resumes or exits the parent, as appropriate, after
693 * calling this function.
696 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
698 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
699 proc_t parent_proc
= get_bsdtask_info(parent_task
);
700 thread_t th
= current_thread();
701 uthread_t uth
= get_bsdthread_info(th
);
703 act_thread_catt(uth
->uu_userstate
);
705 /* clear vfork state in parent proc structure */
706 proc_vfork_end(parent_proc
);
708 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
709 uth
->uu_userstate
= 0;
710 uth
->uu_flag
&= ~UT_VFORK
;
711 /* restore thread-set-id state */
712 if (uth
->uu_flag
& UT_WASSETUID
) {
713 uth
->uu_flag
|= UT_SETUID
;
714 uth
->uu_flag
&= UT_WASSETUID
;
717 uth
->uu_sigmask
= uth
->uu_vforkmask
;
719 proc_lock(child_proc
);
720 child_proc
->p_lflag
&= ~P_LINVFORK
;
721 child_proc
->p_vforkact
= 0;
722 proc_unlock(child_proc
);
724 thread_set_parent(th
, rval
);
728 retval
[1] = 0; /* mark parent */
736 * Description: Common operations associated with the creation of a child
739 * Parameters: parent_task parent task
740 * parent_coalitions parent's set of coalitions
741 * child_proc child process
742 * inherit_memory TRUE, if the parents address space is
743 * to be inherited by the child
744 * is64bit TRUE, if the child being created will
745 * be associated with a 64 bit process
746 * rather than a 32 bit process
747 * in_exec TRUE, if called from execve or posix spawn set exec
748 * FALSE, if called from fork or vfexec
750 * Note: This code is called in the fork() case, from the execve() call
751 * graph, if implementing an execve() following a vfork(), from
752 * the posix_spawn() call graph (which implicitly includes a
753 * vfork() equivalent call, and in the system bootstrap case.
755 * It creates a new task and thread (and as a side effect of the
756 * thread creation, a uthread) in the parent coalition set, which is
757 * then associated with the process 'child'. If the parent
758 * process address space is to be inherited, then a flag
759 * indicates that the newly created task should inherit this from
762 * As a special concession to bootstrapping the initial process
763 * in the system, it's possible for 'parent_task' to be TASK_NULL;
764 * in this case, 'inherit_memory' MUST be FALSE.
767 fork_create_child(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t child_proc
, int inherit_memory
, int is64bit
, int in_exec
)
769 thread_t child_thread
= NULL
;
771 kern_return_t result
;
773 /* Create a new task for the child process */
774 result
= task_create_internal(parent_task
,
778 TF_LRETURNWAIT
| TF_LRETURNWAITER
, /* All created threads will wait in task_wait_to_return */
779 in_exec
? TPF_EXEC_COPY
: TPF_NONE
, /* Mark the task exec copy if in execve */
781 if (result
!= KERN_SUCCESS
) {
782 printf("%s: task_create_internal failed. Code: %d\n",
789 * Set the child process task to the new task if not in exec,
790 * will set the task for exec case in proc_exec_switch_task after image activation.
792 child_proc
->task
= child_task
;
795 /* Set child task process to child proc */
796 set_bsdtask_info(child_task
, child_proc
);
798 /* Propagate CPU limit timer from parent */
799 if (timerisset(&child_proc
->p_rlim_cpu
))
800 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
803 * Set child process BSD visible scheduler priority if nice value
804 * inherited from parent
806 if (child_proc
->p_nice
!= 0)
807 resetpriority(child_proc
);
810 * Create a new thread for the child process
811 * The new thread is waiting on the event triggered by 'task_clear_return_wait'
813 result
= thread_create_waiting(child_task
,
814 (thread_continue_t
)task_wait_to_return
,
815 task_get_return_wait_event(child_task
),
818 if (result
!= KERN_SUCCESS
) {
819 printf("%s: thread_create failed. Code: %d\n",
821 task_deallocate(child_task
);
826 * Tag thread as being the first thread in its task.
828 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
831 thread_yield_internal(1);
833 return(child_thread
);
840 * Description: fork system call.
842 * Parameters: parent Parent process to fork
843 * uap (void) [unused]
844 * retval Return value
847 * EAGAIN Resource unavailable, try again
849 * Notes: Attempts to create a new child process which inherits state
850 * from the parent process. If successful, the call returns
851 * having created an initially suspended child process with an
852 * extra Mach task and thread reference, for which the thread
853 * is initially suspended. Until we resume the child process,
854 * it is not yet running.
856 * The return information to the child is contained in the
857 * thread state structure of the new child, and does not
858 * become visible to the child through a normal return process,
859 * since it never made the call into the kernel itself in the
862 * After resuming the thread, this function returns directly to
863 * the parent process which invoked the fork() system call.
865 * Important: The child thread_resume occurs before the parent returns;
866 * depending on scheduling latency, this means that it is not
867 * deterministic as to whether the parent or child is scheduled
868 * to run first. It is entirely possible that the child could
869 * run to completion prior to the parent running.
872 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
874 thread_t child_thread
;
877 retval
[1] = 0; /* flag parent return for user space */
879 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
, NULL
)) == 0) {
883 /* Return to the parent */
884 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
885 retval
[0] = child_proc
->p_pid
;
888 * Drop the signal lock on the child which was taken on our
889 * behalf by forkproc()/cloneproc() to prevent signals being
890 * received by the child in a partially constructed state.
892 proc_signalend(child_proc
, 0);
893 proc_transend(child_proc
, 0);
895 /* flag the fork has occurred */
896 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
897 DTRACE_PROC1(create
, proc_t
, child_proc
);
900 if ((dtrace_proc_waitfor_hook
= dtrace_proc_waitfor_exec_ptr
) != NULL
)
901 (*dtrace_proc_waitfor_hook
)(child_proc
);
904 /* "Return" to the child */
905 task_clear_return_wait(get_threadtask(child_thread
));
907 /* drop the extra references we got during the creation */
908 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
909 task_deallocate(child_task
);
911 thread_deallocate(child_thread
);
921 * Description: Create a new process from a specified process.
923 * Parameters: parent_task The parent task to be cloned, or
924 * TASK_NULL is task characteristics
925 * are not to be inherited
926 * be cloned, or TASK_NULL if the new
927 * task is not to inherit the VM
928 * characteristics of the parent
929 * parent_proc The parent process to be cloned
930 * inherit_memory True if the child is to inherit
931 * memory from the parent; if this is
932 * non-NULL, then the parent_task must
934 * memstat_internal Whether to track the process in the
935 * jetsam priority list (if configured)
937 * Returns: !NULL pointer to new child thread
938 * NULL Failure (unspecified)
940 * Note: On return newly created child process has signal lock held
941 * to block delivery of signal to it if called with lock set.
942 * fork() code needs to explicity remove this lock before
943 * signals can be delivered
945 * In the case of bootstrap, this function can be called from
946 * bsd_utaskbootstrap() in order to bootstrap the first process;
947 * the net effect is to provide a uthread structure for the
948 * kernel process associated with the kernel task.
950 * XXX: Tristating using the value parent_task as the major key
951 * and inherit_memory as the minor key is something we should
952 * refactor later; we owe the current semantics, ultimately,
953 * to the semantics of task_create_internal. For now, we will
954 * live with this being somewhat awkward.
957 cloneproc(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
959 #if !CONFIG_MEMORYSTATUS
960 #pragma unused(memstat_internal)
964 thread_t child_thread
= NULL
;
966 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
967 /* Failed to allocate new process */
971 child_thread
= fork_create_child(parent_task
, parent_coalitions
, child_proc
, inherit_memory
, parent_proc
->p_flag
& P_LP64
, FALSE
);
973 if (child_thread
== NULL
) {
975 * Failed to create thread; now we must deconstruct the new
976 * process previously obtained from forkproc().
978 forkproc_free(child_proc
);
982 child_task
= get_threadtask(child_thread
);
983 if (parent_proc
->p_flag
& P_LP64
) {
984 task_set_64bit(child_task
, TRUE
);
985 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
987 task_set_64bit(child_task
, FALSE
);
988 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
991 #if CONFIG_MEMORYSTATUS
992 if (memstat_internal
) {
994 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
999 /* make child visible */
1000 pinsertchild(parent_proc
, child_proc
);
1003 * Make child runnable, set start time.
1005 child_proc
->p_stat
= SRUN
;
1007 return(child_thread
);
1012 * Destroy a process structure that resulted from a call to forkproc(), but
1013 * which must be returned to the system because of a subsequent failure
1014 * preventing it from becoming active.
1016 * Parameters: p The incomplete process from forkproc()
1020 * Note: This function should only be used in an error handler following
1021 * a call to forkproc().
1023 * Operations occur in reverse order of those in forkproc().
1026 forkproc_free(proc_t p
)
1029 persona_proc_drop(p
);
1030 #endif /* CONFIG_PERSONAS */
1033 pth_proc_hashdelete(p
);
1036 /* We held signal and a transition locks; drop them */
1037 proc_signalend(p
, 0);
1038 proc_transend(p
, 0);
1041 * If we have our own copy of the resource limits structure, we
1042 * need to free it. If it's a shared copy, we need to drop our
1045 proc_limitdrop(p
, 0);
1049 /* Need to drop references to the shared memory segment(s), if any */
1052 * Use shmexec(): we have no address space, so no mappings
1054 * XXX Yes, the routine is badly named.
1060 /* Need to undo the effects of the fdcopy(), if any */
1064 * Drop the reference on a text vnode pointer, if any
1065 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1066 * XXX if anyone ever uses this field, we will be extremely unhappy.
1069 vnode_rele(p
->p_textvp
);
1073 /* Stop the profiling clock */
1076 /* Update the audit session proc count */
1077 AUDIT_SESSION_PROCEXIT(p
);
1079 #if CONFIG_FINE_LOCK_GROUPS
1080 lck_mtx_destroy(&p
->p_mlock
, proc_mlock_grp
);
1081 lck_mtx_destroy(&p
->p_fdmlock
, proc_fdmlock_grp
);
1082 lck_mtx_destroy(&p
->p_ucred_mlock
, proc_ucred_mlock_grp
);
1084 lck_mtx_destroy(&p
->p_dtrace_sprlock
, proc_lck_grp
);
1086 lck_spin_destroy(&p
->p_slock
, proc_slock_grp
);
1087 #else /* CONFIG_FINE_LOCK_GROUPS */
1088 lck_mtx_destroy(&p
->p_mlock
, proc_lck_grp
);
1089 lck_mtx_destroy(&p
->p_fdmlock
, proc_lck_grp
);
1090 lck_mtx_destroy(&p
->p_ucred_mlock
, proc_lck_grp
);
1092 lck_mtx_destroy(&p
->p_dtrace_sprlock
, proc_lck_grp
);
1094 lck_spin_destroy(&p
->p_slock
, proc_lck_grp
);
1095 #endif /* CONFIG_FINE_LOCK_GROUPS */
1097 /* Release the credential reference */
1098 kauth_cred_unref(&p
->p_ucred
);
1101 /* Decrement the count of processes in the system */
1104 /* Take it out of process hash */
1105 LIST_REMOVE(p
, p_hash
);
1109 thread_call_free(p
->p_rcall
);
1111 /* Free allocated memory */
1112 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1113 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1114 proc_checkdeadrefs(p
);
1115 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1122 * Description: Create a new process structure, given a parent process
1125 * Parameters: parent_proc The parent process
1127 * Returns: !NULL The new process structure
1128 * NULL Error (insufficient free memory)
1130 * Note: When successful, the newly created process structure is
1131 * partially initialized; if a caller needs to deconstruct the
1132 * returned structure, they must call forkproc_free() to do so.
1135 forkproc(proc_t parent_proc
)
1137 proc_t child_proc
; /* Our new process */
1138 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1139 static uint64_t nextuniqueid
= 0;
1141 struct session
*sessp
;
1142 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1144 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1145 if (child_proc
== NULL
) {
1146 printf("forkproc: M_PROC zone exhausted\n");
1149 /* zero it out as we need to insert in hash */
1150 bzero(child_proc
, sizeof *child_proc
);
1152 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1153 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1154 if (child_proc
->p_stats
== NULL
) {
1155 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1156 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1160 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1161 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1162 if (child_proc
->p_sigacts
== NULL
) {
1163 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1164 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1165 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1170 /* allocate a callout for use by interval timers */
1171 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1172 if (child_proc
->p_rcall
== NULL
) {
1173 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1174 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1175 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1182 * Find an unused PID.
1190 * If the process ID prototype has wrapped around,
1191 * restart somewhat above 0, as the low-numbered procs
1192 * tend to include daemons that don't exit.
1194 if (nextpid
>= PID_MAX
) {
1200 /* if the pid stays in hash both for zombie and runniing state */
1201 if (pfind_locked(nextpid
) != PROC_NULL
) {
1206 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1210 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1216 child_proc
->p_pid
= nextpid
;
1217 child_proc
->p_responsible_pid
= nextpid
; /* initially responsible for self */
1218 child_proc
->p_idversion
= nextpidversion
++;
1219 /* kernel process is handcrafted and not from fork, so start from 1 */
1220 child_proc
->p_uniqueid
= ++nextuniqueid
;
1222 if (child_proc
->p_pid
!= 0) {
1223 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1224 panic("proc in the list already\n");
1227 /* Insert in the hash */
1228 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1229 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1232 if (child_proc
->p_uniqueid
== startup_serial_num_procs
) {
1234 * Turn off startup serial logging now that we have reached
1235 * the defined number of startup processes.
1237 startup_serial_logging_active
= false;
1241 * We've identified the PID we are going to use; initialize the new
1242 * process structure.
1244 child_proc
->p_stat
= SIDL
;
1245 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1248 * The zero'ing of the proc was at the allocation time due to need
1249 * for insertion to hash. Copy the section that is to be copied
1250 * directly from the parent.
1252 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1253 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1256 * Some flags are inherited from the parent.
1257 * Duplicate sub-structures as needed.
1258 * Increase reference counts on shared objects.
1259 * The p_stats and p_sigacts substructs are set in vm_fork.
1261 #if !CONFIG_EMBEDDED
1262 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
| P_SUGID
));
1263 #else /* !CONFIG_EMBEDDED */
1264 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_SUGID
));
1265 #endif /* !CONFIG_EMBEDDED */
1266 if (parent_proc
->p_flag
& P_PROFIL
)
1267 startprofclock(child_proc
);
1269 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_FORCE_HFS_CASE_SENSITIVITY
));
1272 * Note that if the current thread has an assumed identity, this
1273 * credential will be granted to the new process.
1275 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1276 /* update cred on proc */
1277 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1278 /* update audit session proc count */
1279 AUDIT_SESSION_PROCNEW(child_proc
);
1281 #if CONFIG_FINE_LOCK_GROUPS
1282 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1283 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1284 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_ucred_mlock_grp
, proc_lck_attr
);
1286 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1288 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1289 #else /* !CONFIG_FINE_LOCK_GROUPS */
1290 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1291 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1292 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_lck_grp
, proc_lck_attr
);
1294 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1296 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1297 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1298 klist_init(&child_proc
->p_klist
);
1300 if (child_proc
->p_textvp
!= NULLVP
) {
1301 /* bump references to the text vnode */
1302 /* Need to hold iocount across the ref call */
1303 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1304 error
= vnode_ref(child_proc
->p_textvp
);
1305 vnode_put(child_proc
->p_textvp
);
1307 child_proc
->p_textvp
= NULLVP
;
1312 * Copy the parents per process open file table to the child; if
1313 * there is a per-thread current working directory, set the childs
1314 * per-process current working directory to that instead of the
1317 * XXX may fail to copy descriptors to child
1319 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1322 if (parent_proc
->vm_shm
) {
1323 /* XXX may fail to attach shm to child */
1324 (void)shmfork(parent_proc
, child_proc
);
1328 * inherit the limit structure to child
1330 proc_limitfork(parent_proc
, child_proc
);
1332 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1333 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1334 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1337 /* Intialize new process stats, including start time */
1338 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1339 bzero(child_proc
->p_stats
, sizeof(*child_proc
->p_stats
));
1340 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1342 if (parent_proc
->p_sigacts
!= NULL
)
1343 (void)memcpy(child_proc
->p_sigacts
,
1344 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1346 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1348 sessp
= proc_session(parent_proc
);
1349 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1350 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1351 session_rele(sessp
);
1354 * block all signals to reach the process.
1355 * no transition race should be occuring with the child yet,
1356 * but indicate that the process is in (the creation) transition.
1358 proc_signalstart(child_proc
, 0);
1359 proc_transstart(child_proc
, 0, 0);
1361 child_proc
->p_pcaction
= 0;
1363 TAILQ_INIT(&child_proc
->p_uthlist
);
1364 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1365 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1367 /* Inherit the parent flags for code sign */
1368 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1371 * Copy work queue information
1373 * Note: This should probably only happen in the case where we are
1374 * creating a child that is a copy of the parent; since this
1375 * routine is called in the non-duplication case of vfork()
1376 * or posix_spawn(), then this information should likely not
1379 * <rdar://6640553> Work queue pointers that no longer point to code
1381 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1382 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1383 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1384 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1385 child_proc
->p_lflag
|= P_LREGISTER
;
1387 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1388 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1389 child_proc
->p_return_to_kernel_offset
= parent_proc
->p_return_to_kernel_offset
;
1390 child_proc
->p_mach_thread_self_offset
= parent_proc
->p_mach_thread_self_offset
;
1391 child_proc
->p_pth_tsd_offset
= parent_proc
->p_pth_tsd_offset
;
1393 pth_proc_hashinit(child_proc
);
1397 child_proc
->p_persona
= NULL
;
1398 error
= persona_proc_inherit(child_proc
, parent_proc
);
1400 printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc
->p_persona
));
1401 forkproc_free(child_proc
);
1407 #if CONFIG_MEMORYSTATUS
1408 /* Memorystatus init */
1409 child_proc
->p_memstat_state
= 0;
1410 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1411 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1412 child_proc
->p_memstat_userdata
= 0;
1413 child_proc
->p_memstat_idle_start
= 0;
1414 child_proc
->p_memstat_idle_delta
= 0;
1415 child_proc
->p_memstat_memlimit
= 0;
1416 child_proc
->p_memstat_memlimit_active
= 0;
1417 child_proc
->p_memstat_memlimit_inactive
= 0;
1419 child_proc
->p_memstat_suspendedfootprint
= 0;
1421 child_proc
->p_memstat_dirty
= 0;
1422 child_proc
->p_memstat_idledeadline
= 0;
1423 #endif /* CONFIG_MEMORYSTATUS */
1432 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
1433 lck_mtx_lock(&p
->p_mlock
);
1437 proc_unlock(proc_t p
)
1439 lck_mtx_unlock(&p
->p_mlock
);
1443 proc_spinlock(proc_t p
)
1445 lck_spin_lock(&p
->p_slock
);
1449 proc_spinunlock(proc_t p
)
1451 lck_spin_unlock(&p
->p_slock
);
1455 proc_list_lock(void)
1457 lck_mtx_lock(proc_list_mlock
);
1461 proc_list_unlock(void)
1463 lck_mtx_unlock(proc_list_mlock
);
1467 proc_ucred_lock(proc_t p
)
1469 lck_mtx_lock(&p
->p_ucred_mlock
);
1473 proc_ucred_unlock(proc_t p
)
1475 lck_mtx_unlock(&p
->p_ucred_mlock
);
1478 #include <kern/zalloc.h>
1480 struct zone
*uthread_zone
= NULL
;
1482 static lck_grp_t
*rethrottle_lock_grp
;
1483 static lck_attr_t
*rethrottle_lock_attr
;
1484 static lck_grp_attr_t
*rethrottle_lock_grp_attr
;
1487 uthread_zone_init(void)
1489 assert(uthread_zone
== NULL
);
1491 rethrottle_lock_grp_attr
= lck_grp_attr_alloc_init();
1492 rethrottle_lock_grp
= lck_grp_alloc_init("rethrottle", rethrottle_lock_grp_attr
);
1493 rethrottle_lock_attr
= lck_attr_alloc_init();
1495 uthread_zone
= zinit(sizeof(struct uthread
),
1496 thread_max
* sizeof(struct uthread
),
1497 THREAD_CHUNK
* sizeof(struct uthread
),
1502 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1506 uthread_t uth_parent
;
1509 if (uthread_zone
== NULL
)
1510 uthread_zone_init();
1512 ut
= (void *)zalloc(uthread_zone
);
1513 bzero(ut
, sizeof(struct uthread
));
1515 p
= (proc_t
) get_bsdtask_info(task
);
1516 uth
= (uthread_t
)ut
;
1517 uth
->uu_thread
= thread
;
1519 lck_spin_init(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
,
1520 rethrottle_lock_attr
);
1523 * Thread inherits credential from the creating thread, if both
1524 * are in the same task.
1526 * If the creating thread has no credential or is from another
1527 * task we can leave the new thread credential NULL. If it needs
1528 * one later, it will be lazily assigned from the task's process.
1530 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1531 if ((noinherit
== 0) && task
== current_task() &&
1532 uth_parent
!= NULL
&&
1533 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1535 * XXX The new thread is, in theory, being created in context
1536 * XXX of parent thread, so a direct reference to the parent
1539 kauth_cred_ref(uth_parent
->uu_ucred
);
1540 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1541 /* the credential we just inherited is an assumed credential */
1542 if (uth_parent
->uu_flag
& UT_SETUID
)
1543 uth
->uu_flag
|= UT_SETUID
;
1545 /* sometimes workqueue threads are created out task context */
1546 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1547 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1549 uth
->uu_ucred
= NOCRED
;
1553 if ((task
!= kernel_task
) && p
) {
1556 if (noinherit
!= 0) {
1557 /* workq threads will not inherit masks */
1558 uth
->uu_sigmask
= ~workq_threadmask
;
1559 } else if (uth_parent
) {
1560 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1561 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1563 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1565 uth
->uu_context
.vc_thread
= thread
;
1567 * Do not add the uthread to proc uthlist for exec copy task,
1568 * since they do not hold a ref on proc.
1570 if (!task_is_exec_copy(task
)) {
1571 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1576 if (p
->p_dtrace_ptss_pages
!= NULL
&& !task_is_exec_copy(task
)) {
1577 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1586 * This routine frees the thread name field of the uthread_t structure. Split out of
1587 * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork.
1590 uthread_cleanup_name(void *uthread
)
1592 uthread_t uth
= (uthread_t
)uthread
;
1596 * Set pth_name to NULL before calling free().
1597 * Previously there was a race condition in the
1598 * case this code was executing during a stackshot
1599 * where the stackshot could try and copy pth_name
1600 * after it had been freed and before if was marked
1603 if (uth
->pth_name
!= NULL
) {
1604 void *pth_name
= uth
->pth_name
;
1605 uth
->pth_name
= NULL
;
1606 kfree(pth_name
, MAXTHREADNAMESIZE
);
1612 * This routine frees all the BSD context in uthread except the credential.
1613 * It does not free the uthread structure as well
1616 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1618 struct _select
*sel
;
1619 uthread_t uth
= (uthread_t
)uthread
;
1620 proc_t p
= (proc_t
)bsd_info
;
1623 if (__improbable(uthread_get_proc_refcount(uthread
) != 0)) {
1624 panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread
);
1628 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1630 * task is marked as a low priority I/O type
1631 * and we've somehow managed to not dismiss the throttle
1632 * through the normal exit paths back to user space...
1633 * no need to throttle this thread since its going away
1634 * but we do need to update our bookeeping w/r to throttled threads
1636 * Calling this routine will clean up any throttle info reference
1637 * still inuse by the thread.
1639 throttle_lowpri_io(0);
1642 * Per-thread audit state should never last beyond system
1643 * call return. Since we don't audit the thread creation/
1644 * removal, the thread state pointer should never be
1645 * non-NULL when we get here.
1647 assert(uth
->uu_ar
== NULL
);
1649 if (uth
->uu_kqueue_bound
) {
1650 kevent_qos_internal_unbind(p
,
1651 0, /* didn't save qos_class */
1653 uth
->uu_kqueue_flags
);
1654 assert(uth
->uu_kqueue_override_is_sync
== 0);
1657 sel
= &uth
->uu_select
;
1658 /* cleanup the select bit space */
1660 FREE(sel
->ibits
, M_TEMP
);
1661 FREE(sel
->obits
, M_TEMP
);
1666 vnode_rele(uth
->uu_cdir
);
1667 uth
->uu_cdir
= NULLVP
;
1670 if (uth
->uu_wqset
) {
1671 if (waitq_set_is_valid(uth
->uu_wqset
))
1672 waitq_set_deinit(uth
->uu_wqset
);
1673 FREE(uth
->uu_wqset
, M_SELECT
);
1674 uth
->uu_wqset
= NULL
;
1675 uth
->uu_wqstate_sz
= 0;
1678 os_reason_free(uth
->uu_exit_reason
);
1680 if ((task
!= kernel_task
) && p
) {
1682 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1683 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1686 * Remove the thread from the process list and
1687 * transfer [appropriate] pending signals to the process.
1688 * Do not remove the uthread from proc uthlist for exec
1689 * copy task, since they does not have a ref on proc and
1690 * would not have been added to the list.
1692 if (get_bsdtask_info(task
) == p
&& !task_is_exec_copy(task
)) {
1695 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1696 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1700 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1701 uth
->t_dtrace_scratch
= NULL
;
1702 if (tmpptr
!= NULL
&& !task_is_exec_copy(task
)) {
1703 dtrace_ptss_release_entry(p
, tmpptr
);
1709 /* This routine releases the credential stored in uthread */
1711 uthread_cred_free(void *uthread
)
1713 uthread_t uth
= (uthread_t
)uthread
;
1715 /* and free the uthread itself */
1716 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1717 kauth_cred_t oldcred
= uth
->uu_ucred
;
1718 uth
->uu_ucred
= NOCRED
;
1719 kauth_cred_unref(&oldcred
);
1723 /* This routine frees the uthread structure held in thread structure */
1725 uthread_zone_free(void *uthread
)
1727 uthread_t uth
= (uthread_t
)uthread
;
1729 if (uth
->t_tombstone
) {
1730 kfree(uth
->t_tombstone
, sizeof(struct doc_tombstone
));
1731 uth
->t_tombstone
= NULL
;
1734 lck_spin_destroy(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
);
1736 uthread_cleanup_name(uthread
);
1737 /* and free the uthread itself */
1738 zfree(uthread_zone
, uthread
);