2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @Apple_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
23 #include <sys/errno.h>
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/proc_internal.h>
28 #include <sys/sysctl.h>
29 #include <sys/kdebug.h>
30 #include <sys/kauth.h>
31 #include <sys/ktrace.h>
32 #include <sys/sysproto.h>
33 #include <sys/bsdtask_info.h>
34 #include <sys/random.h>
36 #include <mach/clock_types.h>
37 #include <mach/mach_types.h>
38 #include <mach/mach_time.h>
39 #include <mach/mach_vm.h>
40 #include <machine/machine_routines.h>
42 #include <mach/machine.h>
43 #include <mach/vm_map.h>
45 #if defined(__i386__) || defined(__x86_64__)
46 #include <i386/rtclock_protos.h>
48 #include <i386/machine_routines.h>
52 #include <kern/clock.h>
54 #include <kern/thread.h>
55 #include <kern/task.h>
56 #include <kern/debug.h>
57 #include <kern/kalloc.h>
58 #include <kern/cpu_data.h>
59 #include <kern/assert.h>
60 #include <kern/telemetry.h>
61 #include <kern/sched_prim.h>
62 #include <vm/vm_kern.h>
64 #include <kperf/kperf.h>
65 #include <pexpert/device_tree.h>
67 #include <sys/malloc.h>
68 #include <sys/mcache.h>
70 #include <sys/vnode.h>
71 #include <sys/vnode_internal.h>
72 #include <sys/fcntl.h>
73 #include <sys/file_internal.h>
75 #include <sys/param.h> /* for isset() */
77 #include <mach/mach_host.h> /* for host_info() */
78 #include <libkern/OSAtomic.h>
80 #include <machine/pal_routines.h>
81 #include <machine/atomic.h>
86 * https://coreoswiki.apple.com/wiki/pages/U6z3i0q9/Consistent_Logging_Implementers_Guide.html
88 * IOP(s) are auxiliary cores that want to participate in kdebug event logging.
89 * They are registered dynamically. Each is assigned a cpu_id at registration.
91 * NOTE: IOP trace events may not use the same clock hardware as "normal"
92 * cpus. There is an effort made to synchronize the IOP timebase with the
93 * AP, but it should be understood that there may be discrepancies.
95 * Once registered, an IOP is permanent, it cannot be unloaded/unregistered.
96 * The current implementation depends on this for thread safety.
98 * New registrations occur by allocating an kd_iop struct and assigning
99 * a provisional cpu_id of list_head->cpu_id + 1. Then a CAS to claim the
100 * list_head pointer resolves any races.
102 * You may safely walk the kd_iops list at any time, without holding locks.
104 * When allocating buffers, the current kd_iops head is captured. Any operations
105 * that depend on the buffer state (such as flushing IOP traces on reads,
106 * etc.) should use the captured list head. This will allow registrations to
107 * take place while trace is in use.
110 typedef struct kd_iop
{
111 kd_callback_t callback
;
113 uint64_t last_timestamp
; /* Prevent timer rollback */
117 static kd_iop_t
* kd_iops
= NULL
;
122 * A typefilter is a 8KB bitmap that is used to selectively filter events
123 * being recorded. It is able to individually address every class & subclass.
125 * There is a shared typefilter in the kernel which is lazily allocated. Once
126 * allocated, the shared typefilter is never deallocated. The shared typefilter
127 * is also mapped on demand into userspace processes that invoke kdebug_trace
128 * API from Libsyscall. When mapped into a userspace process, the memory is
129 * read only, and does not have a fixed address.
131 * It is a requirement that the kernel's shared typefilter always pass DBG_TRACE
132 * events. This is enforced automatically, by having the needed bits set any
133 * time the shared typefilter is mutated.
136 typedef uint8_t* typefilter_t
;
138 static typefilter_t kdbg_typefilter
;
139 static mach_port_t kdbg_typefilter_memory_entry
;
142 * There are 3 combinations of page sizes:
148 * The typefilter is exactly 8KB. In the first two scenarios, we would like
149 * to use 2 pages exactly; in the third scenario we must make certain that
150 * a full page is allocated so we do not inadvertantly share 8KB of random
151 * data to userspace. The round_page_32 macro rounds to kernel page size.
153 #define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE)
155 static typefilter_t
typefilter_create(void)
158 if (KERN_SUCCESS
== kmem_alloc(kernel_map
, (vm_offset_t
*)&tf
, TYPEFILTER_ALLOC_SIZE
, VM_KERN_MEMORY_DIAG
)) {
159 memset(&tf
[KDBG_TYPEFILTER_BITMAP_SIZE
], 0, TYPEFILTER_ALLOC_SIZE
- KDBG_TYPEFILTER_BITMAP_SIZE
);
165 static void typefilter_deallocate(typefilter_t tf
)
168 assert(tf
!= kdbg_typefilter
);
169 kmem_free(kernel_map
, (vm_offset_t
)tf
, TYPEFILTER_ALLOC_SIZE
);
172 static void typefilter_copy(typefilter_t dst
, typefilter_t src
)
176 memcpy(dst
, src
, KDBG_TYPEFILTER_BITMAP_SIZE
);
179 static void typefilter_reject_all(typefilter_t tf
)
182 memset(tf
, 0, KDBG_TYPEFILTER_BITMAP_SIZE
);
185 static void typefilter_allow_class(typefilter_t tf
, uint8_t class)
188 const uint32_t BYTES_PER_CLASS
= 256 / 8; // 256 subclasses, 1 bit each
189 memset(&tf
[class * BYTES_PER_CLASS
], 0xFF, BYTES_PER_CLASS
);
192 static void typefilter_allow_csc(typefilter_t tf
, uint16_t csc
)
198 static bool typefilter_is_debugid_allowed(typefilter_t tf
, uint32_t id
)
201 return isset(tf
, KDBG_EXTRACT_CSC(id
));
204 static mach_port_t
typefilter_create_memory_entry(typefilter_t tf
)
208 mach_port_t memory_entry
= MACH_PORT_NULL
;
209 memory_object_size_t size
= TYPEFILTER_ALLOC_SIZE
;
211 mach_make_memory_entry_64(kernel_map
,
213 (memory_object_offset_t
)tf
,
221 static int kdbg_copyin_typefilter(user_addr_t addr
, size_t size
);
222 static void kdbg_enable_typefilter(void);
223 static void kdbg_disable_typefilter(void);
226 * External prototypes
229 void task_act_iterate_wth_args(task_t
, void(*)(thread_t
, void *), void *);
230 int cpu_number(void); /* XXX <machine/...> include path broken */
231 void commpage_update_kdebug_state(void); /* XXX sign */
233 extern int log_leaks
;
236 * This flag is for testing purposes only -- it's highly experimental and tools
237 * have not been updated to support it.
239 static bool kdbg_continuous_time
= false;
241 static inline uint64_t
244 if (kdbg_continuous_time
) {
245 return mach_continuous_time();
247 return mach_absolute_time();
251 #if KDEBUG_MOJO_TRACE
252 #include <sys/kdebugevents.h>
253 static void kdebug_serial_print( /* forward */
254 uint32_t, uint32_t, uint64_t,
255 uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
258 int kdbg_control(int *, u_int
, user_addr_t
, size_t *);
260 static int kdbg_read(user_addr_t
, size_t *, vnode_t
, vfs_context_t
, uint32_t);
261 static int kdbg_readcpumap(user_addr_t
, size_t *);
262 static int kdbg_readthrmap_v3(user_addr_t
, size_t, int);
263 static int kdbg_readcurthrmap(user_addr_t
, size_t *);
264 static int kdbg_setreg(kd_regtype
*);
265 static int kdbg_setpidex(kd_regtype
*);
266 static int kdbg_setpid(kd_regtype
*);
267 static void kdbg_thrmap_init(void);
268 static int kdbg_reinit(boolean_t
);
269 static int kdbg_bootstrap(boolean_t
);
270 static int kdbg_test(size_t flavor
);
272 static int kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
);
273 static int kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
);
274 static int kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
);
275 static void kdbg_clear_thread_map(void);
277 static boolean_t
kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
);
278 static void kdbg_wakeup(void);
280 int kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
,
281 uint8_t** cpumap
, uint32_t* cpumap_size
);
283 static kd_threadmap
*kdbg_thrmap_init_internal(unsigned int count
,
284 unsigned int *mapsize
,
285 unsigned int *mapcount
);
287 static boolean_t
kdebug_current_proc_enabled(uint32_t debugid
);
288 static errno_t
kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
);
290 int kdbg_write_v3_header(user_addr_t
, size_t *, int);
291 int kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
,
292 uint32_t sub_tag
, uint64_t length
,
293 vnode_t vp
, vfs_context_t ctx
);
295 user_addr_t
kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
,
296 uint64_t length
, vnode_t vp
,
301 static int create_buffers(boolean_t
);
302 static void delete_buffers(void);
304 extern int tasks_count
;
305 extern int threads_count
;
306 extern char *proc_best_name(proc_t p
);
307 extern void IOSleep(int);
309 /* trace enable status */
310 unsigned int kdebug_enable
= 0;
312 /* A static buffer to record events prior to the start of regular logging */
314 #define KD_EARLY_BUFFER_SIZE (16 * 1024)
315 #define KD_EARLY_BUFFER_NBUFS (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf))
318 * On embedded, the space for this is carved out by osfmk/arm/data.s -- clang
319 * has problems aligning to greater than 4K.
321 extern kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
322 #else /* CONFIG_EMBEDDED */
323 __attribute__((aligned(KD_EARLY_BUFFER_SIZE
)))
324 static kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
325 #endif /* !CONFIG_EMBEDDED */
327 static unsigned int kd_early_index
= 0;
328 static bool kd_early_overflow
= false;
329 static bool kd_early_done
= false;
331 #define SLOW_NOLOG 0x01
332 #define SLOW_CHECKS 0x02
334 #define EVENTS_PER_STORAGE_UNIT 2048
335 #define MIN_STORAGE_UNITS_PER_CPU 4
337 #define POINTER_FROM_KDS_PTR(x) (&kd_bufs[x.buffer_index].kdsb_addr[x.offset])
341 uint32_t buffer_index
:21;
348 union kds_ptr kds_next
;
349 uint32_t kds_bufindx
;
351 uint32_t kds_readlast
;
352 boolean_t kds_lostevents
;
353 uint64_t kds_timestamp
;
355 kd_buf kds_records
[EVENTS_PER_STORAGE_UNIT
];
358 #define MAX_BUFFER_SIZE (1024 * 1024 * 128)
359 #define N_STORAGE_UNITS_PER_BUFFER (MAX_BUFFER_SIZE / sizeof(struct kd_storage))
360 static_assert(N_STORAGE_UNITS_PER_BUFFER
<= 0x7ff,
361 "shoudn't overflow kds_ptr.offset");
363 struct kd_storage_buffers
{
364 struct kd_storage
*kdsb_addr
;
368 #define KDS_PTR_NULL 0xffffffff
369 struct kd_storage_buffers
*kd_bufs
= NULL
;
370 int n_storage_units
= 0;
371 unsigned int n_storage_buffers
= 0;
372 int n_storage_threshold
= 0;
377 union kds_ptr kd_list_head
;
378 union kds_ptr kd_list_tail
;
379 boolean_t kd_lostevents
;
381 uint64_t kd_prev_timebase
;
383 } __attribute__(( aligned(MAX_CPU_CACHE_LINE_SIZE
) ));
387 * In principle, this control block can be shared in DRAM with other
388 * coprocessors and runtimes, for configuring what tracing is enabled.
390 struct kd_ctrl_page_t
{
391 union kds_ptr kds_free_list
;
395 uint32_t kdebug_flags
;
396 uint32_t kdebug_slowcheck
;
397 uint64_t oldest_time
;
399 * The number of kd_bufinfo structs allocated may not match the current
400 * number of active cpus. We capture the iops list head at initialization
401 * which we could use to calculate the number of cpus we allocated data for,
402 * unless it happens to be null. To avoid that case, we explicitly also
403 * capture a cpu count.
405 kd_iop_t
* kdebug_iops
;
406 uint32_t kdebug_cpus
;
408 .kds_free_list
= {.raw
= KDS_PTR_NULL
},
409 .kdebug_slowcheck
= SLOW_NOLOG
,
415 struct kd_bufinfo
*kdbip
= NULL
;
417 #define KDCOPYBUF_COUNT 8192
418 #define KDCOPYBUF_SIZE (KDCOPYBUF_COUNT * sizeof(kd_buf))
420 #define PAGE_4KB 4096
421 #define PAGE_16KB 16384
423 kd_buf
*kdcopybuf
= NULL
;
425 unsigned int nkdbufs
= 0;
426 unsigned int kdlog_beg
=0;
427 unsigned int kdlog_end
=0;
428 unsigned int kdlog_value1
=0;
429 unsigned int kdlog_value2
=0;
430 unsigned int kdlog_value3
=0;
431 unsigned int kdlog_value4
=0;
433 static lck_spin_t
* kdw_spin_lock
;
434 static lck_spin_t
* kds_spin_lock
;
436 kd_threadmap
*kd_mapptr
= 0;
437 unsigned int kd_mapsize
= 0;
438 unsigned int kd_mapcount
= 0;
440 off_t RAW_file_offset
= 0;
441 int RAW_file_written
= 0;
443 #define RAW_FLUSH_SIZE (2 * 1024 * 1024)
446 * A globally increasing counter for identifying strings in trace. Starts at
447 * 1 because 0 is a reserved return value.
449 __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE
)))
450 static uint64_t g_curr_str_id
= 1;
452 #define STR_ID_SIG_OFFSET (48)
453 #define STR_ID_MASK ((1ULL << STR_ID_SIG_OFFSET) - 1)
454 #define STR_ID_SIG_MASK (~STR_ID_MASK)
457 * A bit pattern for identifying string IDs generated by
458 * kdebug_trace_string(2).
460 static uint64_t g_str_id_signature
= (0x70acULL
<< STR_ID_SIG_OFFSET
);
462 #define INTERRUPT 0x01050000
463 #define MACH_vmfault 0x01300008
464 #define BSC_SysCall 0x040c0000
465 #define MACH_SysCall 0x010c0000
467 /* task to string structure */
470 task_t task
; /* from procs task */
471 pid_t pid
; /* from procs p_pid */
472 char task_comm
[20]; /* from procs p_comm */
475 typedef struct tts tts_t
;
479 kd_threadmap
*map
; /* pointer to the map buffer */
485 typedef struct krt krt_t
;
488 kdbg_cpu_count(boolean_t early_trace
)
492 return ml_get_cpu_count();
498 host_basic_info_data_t hinfo
;
499 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
500 host_info((host_t
)1 /* BSD_HOST */, HOST_BASIC_INFO
, (host_info_t
)&hinfo
, &count
);
501 assert(hinfo
.logical_cpu_max
> 0);
502 return hinfo
.logical_cpu_max
;
508 kdbg_iop_list_is_valid(kd_iop_t
* iop
)
511 /* Is list sorted by cpu_id? */
512 kd_iop_t
* temp
= iop
;
514 assert(!temp
->next
|| temp
->next
->cpu_id
== temp
->cpu_id
- 1);
515 assert(temp
->next
|| (temp
->cpu_id
== kdbg_cpu_count(FALSE
) || temp
->cpu_id
== kdbg_cpu_count(TRUE
)));
516 } while ((temp
= temp
->next
));
518 /* Does each entry have a function and a name? */
521 assert(temp
->callback
.func
);
522 assert(strlen(temp
->callback
.iop_name
) < sizeof(temp
->callback
.iop_name
));
523 } while ((temp
= temp
->next
));
530 kdbg_iop_list_contains_cpu_id(kd_iop_t
* list
, uint32_t cpu_id
)
533 if (list
->cpu_id
== cpu_id
)
540 #endif /* CONFIG_EMBEDDED */
541 #endif /* MACH_ASSERT */
544 kdbg_iop_list_callback(kd_iop_t
* iop
, kd_callback_type type
, void* arg
)
547 iop
->callback
.func(iop
->callback
.context
, type
, arg
);
553 kdbg_set_tracing_enabled(boolean_t enabled
, uint32_t trace_type
)
555 int s
= ml_set_interrupts_enabled(FALSE
);
556 lck_spin_lock(kds_spin_lock
);
559 * The oldest valid time is now; reject old events from IOPs.
561 kd_ctrl_page
.oldest_time
= kdbg_timestamp();
562 kdebug_enable
|= trace_type
;
563 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
564 kd_ctrl_page
.enabled
= 1;
565 commpage_update_kdebug_state();
567 kdebug_enable
&= ~(KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
);
568 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
569 kd_ctrl_page
.enabled
= 0;
570 commpage_update_kdebug_state();
572 lck_spin_unlock(kds_spin_lock
);
573 ml_set_interrupts_enabled(s
);
576 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_ENABLED
, NULL
);
579 * If you do not flush the IOP trace buffers, they can linger
580 * for a considerable period; consider code which disables and
581 * deallocates without a final sync flush.
583 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_DISABLED
, NULL
);
584 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
589 kdbg_set_flags(int slowflag
, int enableflag
, boolean_t enabled
)
591 int s
= ml_set_interrupts_enabled(FALSE
);
592 lck_spin_lock(kds_spin_lock
);
595 kd_ctrl_page
.kdebug_slowcheck
|= slowflag
;
596 kdebug_enable
|= enableflag
;
598 kd_ctrl_page
.kdebug_slowcheck
&= ~slowflag
;
599 kdebug_enable
&= ~enableflag
;
602 lck_spin_unlock(kds_spin_lock
);
603 ml_set_interrupts_enabled(s
);
607 * Disable wrapping and return true if trace wrapped, false otherwise.
610 disable_wrap(uint32_t *old_slowcheck
, uint32_t *old_flags
)
613 int s
= ml_set_interrupts_enabled(FALSE
);
614 lck_spin_lock(kds_spin_lock
);
616 *old_slowcheck
= kd_ctrl_page
.kdebug_slowcheck
;
617 *old_flags
= kd_ctrl_page
.kdebug_flags
;
619 wrapped
= kd_ctrl_page
.kdebug_flags
& KDBG_WRAPPED
;
620 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
621 kd_ctrl_page
.kdebug_flags
|= KDBG_NOWRAP
;
623 lck_spin_unlock(kds_spin_lock
);
624 ml_set_interrupts_enabled(s
);
630 enable_wrap(uint32_t old_slowcheck
, boolean_t lostevents
)
632 int s
= ml_set_interrupts_enabled(FALSE
);
633 lck_spin_lock(kds_spin_lock
);
635 kd_ctrl_page
.kdebug_flags
&= ~KDBG_NOWRAP
;
637 if ( !(old_slowcheck
& SLOW_NOLOG
))
638 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
640 if (lostevents
== TRUE
)
641 kd_ctrl_page
.kdebug_flags
|= KDBG_WRAPPED
;
643 lck_spin_unlock(kds_spin_lock
);
644 ml_set_interrupts_enabled(s
);
648 create_buffers(boolean_t early_trace
)
651 unsigned int p_buffer_size
;
652 unsigned int f_buffer_size
;
653 unsigned int f_buffers
;
657 * For the duration of this allocation, trace code will only reference
658 * kdebug_iops. Any iops registered after this enabling will not be
659 * messaged until the buffers are reallocated.
661 * TLDR; Must read kd_iops once and only once!
663 kd_ctrl_page
.kdebug_iops
= kd_iops
;
666 assert(kdbg_iop_list_is_valid(kd_ctrl_page
.kdebug_iops
));
670 * If the list is valid, it is sorted, newest -> oldest. Each iop entry
671 * has a cpu_id of "the older entry + 1", so the highest cpu_id will
672 * be the list head + 1.
675 kd_ctrl_page
.kdebug_cpus
= kd_ctrl_page
.kdebug_iops
? kd_ctrl_page
.kdebug_iops
->cpu_id
+ 1 : kdbg_cpu_count(early_trace
);
677 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
682 if (nkdbufs
< (kd_ctrl_page
.kdebug_cpus
* EVENTS_PER_STORAGE_UNIT
* MIN_STORAGE_UNITS_PER_CPU
))
683 n_storage_units
= kd_ctrl_page
.kdebug_cpus
* MIN_STORAGE_UNITS_PER_CPU
;
685 n_storage_units
= nkdbufs
/ EVENTS_PER_STORAGE_UNIT
;
687 nkdbufs
= n_storage_units
* EVENTS_PER_STORAGE_UNIT
;
689 f_buffers
= n_storage_units
/ N_STORAGE_UNITS_PER_BUFFER
;
690 n_storage_buffers
= f_buffers
;
692 f_buffer_size
= N_STORAGE_UNITS_PER_BUFFER
* sizeof(struct kd_storage
);
693 p_buffer_size
= (n_storage_units
% N_STORAGE_UNITS_PER_BUFFER
) * sizeof(struct kd_storage
);
700 if (kdcopybuf
== 0) {
701 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdcopybuf
, (vm_size_t
)KDCOPYBUF_SIZE
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
706 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)), VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
710 bzero(kd_bufs
, n_storage_buffers
* sizeof(struct kd_storage_buffers
));
712 for (i
= 0; i
< f_buffers
; i
++) {
713 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)f_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
717 bzero(kd_bufs
[i
].kdsb_addr
, f_buffer_size
);
719 kd_bufs
[i
].kdsb_size
= f_buffer_size
;
722 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)p_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
726 bzero(kd_bufs
[i
].kdsb_addr
, p_buffer_size
);
728 kd_bufs
[i
].kdsb_size
= p_buffer_size
;
732 for (i
= 0; i
< n_storage_buffers
; i
++) {
733 struct kd_storage
*kds
;
737 n_elements
= kd_bufs
[i
].kdsb_size
/ sizeof(struct kd_storage
);
738 kds
= kd_bufs
[i
].kdsb_addr
;
740 for (n
= 0; n
< n_elements
; n
++) {
741 kds
[n
].kds_next
.buffer_index
= kd_ctrl_page
.kds_free_list
.buffer_index
;
742 kds
[n
].kds_next
.offset
= kd_ctrl_page
.kds_free_list
.offset
;
744 kd_ctrl_page
.kds_free_list
.buffer_index
= i
;
745 kd_ctrl_page
.kds_free_list
.offset
= n
;
747 n_storage_units
+= n_elements
;
750 bzero((char *)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
752 for (i
= 0; i
< kd_ctrl_page
.kdebug_cpus
; i
++) {
753 kdbip
[i
].kd_list_head
.raw
= KDS_PTR_NULL
;
754 kdbip
[i
].kd_list_tail
.raw
= KDS_PTR_NULL
;
755 kdbip
[i
].kd_lostevents
= FALSE
;
756 kdbip
[i
].num_bufs
= 0;
759 kd_ctrl_page
.kdebug_flags
|= KDBG_BUFINIT
;
761 kd_ctrl_page
.kds_inuse_count
= 0;
762 n_storage_threshold
= n_storage_units
/ 2;
776 for (i
= 0; i
< n_storage_buffers
; i
++) {
777 if (kd_bufs
[i
].kdsb_addr
) {
778 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
[i
].kdsb_addr
, (vm_size_t
)kd_bufs
[i
].kdsb_size
);
781 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)));
784 n_storage_buffers
= 0;
787 kmem_free(kernel_map
, (vm_offset_t
)kdcopybuf
, KDCOPYBUF_SIZE
);
791 kd_ctrl_page
.kds_free_list
.raw
= KDS_PTR_NULL
;
794 kmem_free(kernel_map
, (vm_offset_t
)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
798 kd_ctrl_page
.kdebug_iops
= NULL
;
799 kd_ctrl_page
.kdebug_cpus
= 0;
800 kd_ctrl_page
.kdebug_flags
&= ~KDBG_BUFINIT
;
804 release_storage_unit(int cpu
, uint32_t kdsp_raw
)
807 struct kd_storage
*kdsp_actual
;
808 struct kd_bufinfo
*kdbp
;
813 s
= ml_set_interrupts_enabled(FALSE
);
814 lck_spin_lock(kds_spin_lock
);
818 if (kdsp
.raw
== kdbp
->kd_list_head
.raw
) {
820 * it's possible for the storage unit pointed to
821 * by kdsp to have already been stolen... so
822 * check to see if it's still the head of the list
823 * now that we're behind the lock that protects
824 * adding and removing from the queue...
825 * since we only ever release and steal units from
826 * that position, if it's no longer the head
827 * we having nothing to do in this context
829 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
830 kdbp
->kd_list_head
= kdsp_actual
->kds_next
;
832 kdsp_actual
->kds_next
= kd_ctrl_page
.kds_free_list
;
833 kd_ctrl_page
.kds_free_list
= kdsp
;
835 kd_ctrl_page
.kds_inuse_count
--;
837 lck_spin_unlock(kds_spin_lock
);
838 ml_set_interrupts_enabled(s
);
843 allocate_storage_unit(int cpu
)
846 struct kd_storage
*kdsp_actual
, *kdsp_next_actual
;
847 struct kd_bufinfo
*kdbp
, *kdbp_vict
, *kdbp_try
;
848 uint64_t oldest_ts
, ts
;
849 boolean_t retval
= TRUE
;
852 s
= ml_set_interrupts_enabled(FALSE
);
853 lck_spin_lock(kds_spin_lock
);
857 /* If someone beat us to the allocate, return success */
858 if (kdbp
->kd_list_tail
.raw
!= KDS_PTR_NULL
) {
859 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
);
861 if (kdsp_actual
->kds_bufindx
< EVENTS_PER_STORAGE_UNIT
)
865 if ((kdsp
= kd_ctrl_page
.kds_free_list
).raw
!= KDS_PTR_NULL
) {
866 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
867 kd_ctrl_page
.kds_free_list
= kdsp_actual
->kds_next
;
869 kd_ctrl_page
.kds_inuse_count
++;
871 if (kd_ctrl_page
.kdebug_flags
& KDBG_NOWRAP
) {
872 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
873 kdbp
->kd_lostevents
= TRUE
;
878 oldest_ts
= UINT64_MAX
;
880 for (kdbp_try
= &kdbip
[0]; kdbp_try
< &kdbip
[kd_ctrl_page
.kdebug_cpus
]; kdbp_try
++) {
882 if (kdbp_try
->kd_list_head
.raw
== KDS_PTR_NULL
) {
884 * no storage unit to steal
889 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp_try
->kd_list_head
);
891 if (kdsp_actual
->kds_bufcnt
< EVENTS_PER_STORAGE_UNIT
) {
893 * make sure we don't steal the storage unit
894 * being actively recorded to... need to
895 * move on because we don't want an out-of-order
896 * set of events showing up later
902 * When wrapping, steal the storage unit with the
903 * earliest timestamp on its last event, instead of the
904 * earliest timestamp on the first event. This allows a
905 * storage unit with more recent events to be preserved,
906 * even if the storage unit contains events that are
907 * older than those found in other CPUs.
909 ts
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[EVENTS_PER_STORAGE_UNIT
- 1]);
910 if (ts
< oldest_ts
) {
912 kdbp_vict
= kdbp_try
;
915 if (kdbp_vict
== NULL
) {
917 kd_ctrl_page
.enabled
= 0;
918 commpage_update_kdebug_state();
922 kdsp
= kdbp_vict
->kd_list_head
;
923 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
924 kdbp_vict
->kd_list_head
= kdsp_actual
->kds_next
;
926 if (kdbp_vict
->kd_list_head
.raw
!= KDS_PTR_NULL
) {
927 kdsp_next_actual
= POINTER_FROM_KDS_PTR(kdbp_vict
->kd_list_head
);
928 kdsp_next_actual
->kds_lostevents
= TRUE
;
930 kdbp_vict
->kd_lostevents
= TRUE
;
932 kd_ctrl_page
.oldest_time
= oldest_ts
;
933 kd_ctrl_page
.kdebug_flags
|= KDBG_WRAPPED
;
935 kdsp_actual
->kds_timestamp
= kdbg_timestamp();
936 kdsp_actual
->kds_next
.raw
= KDS_PTR_NULL
;
937 kdsp_actual
->kds_bufcnt
= 0;
938 kdsp_actual
->kds_readlast
= 0;
940 kdsp_actual
->kds_lostevents
= kdbp
->kd_lostevents
;
941 kdbp
->kd_lostevents
= FALSE
;
942 kdsp_actual
->kds_bufindx
= 0;
944 if (kdbp
->kd_list_head
.raw
== KDS_PTR_NULL
)
945 kdbp
->kd_list_head
= kdsp
;
947 POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
)->kds_next
= kdsp
;
948 kdbp
->kd_list_tail
= kdsp
;
950 lck_spin_unlock(kds_spin_lock
);
951 ml_set_interrupts_enabled(s
);
957 kernel_debug_register_callback(kd_callback_t callback
)
960 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&iop
, sizeof(kd_iop_t
), VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
) {
961 memcpy(&iop
->callback
, &callback
, sizeof(kd_callback_t
));
964 * <rdar://problem/13351477> Some IOP clients are not providing a name.
969 boolean_t is_valid_name
= FALSE
;
970 for (uint32_t length
=0; length
<sizeof(callback
.iop_name
); ++length
) {
971 /* This is roughly isprintable(c) */
972 if (callback
.iop_name
[length
] > 0x20 && callback
.iop_name
[length
] < 0x7F)
974 if (callback
.iop_name
[length
] == 0) {
976 is_valid_name
= TRUE
;
981 if (!is_valid_name
) {
982 strlcpy(iop
->callback
.iop_name
, "IOP-???", sizeof(iop
->callback
.iop_name
));
986 iop
->last_timestamp
= 0;
990 * We use two pieces of state, the old list head
991 * pointer, and the value of old_list_head->cpu_id.
992 * If we read kd_iops more than once, it can change
995 * TLDR; Must not read kd_iops more than once per loop.
998 iop
->cpu_id
= iop
->next
? (iop
->next
->cpu_id
+1) : kdbg_cpu_count(FALSE
);
1001 * Header says OSCompareAndSwapPtr has a memory barrier
1003 } while (!OSCompareAndSwapPtr(iop
->next
, iop
, (void* volatile*)&kd_iops
));
1025 struct kd_bufinfo
*kdbp
;
1026 struct kd_storage
*kdsp_actual
;
1027 union kds_ptr kds_raw
;
1029 if (kd_ctrl_page
.kdebug_slowcheck
) {
1031 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) || !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
)))
1034 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1035 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1039 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1040 if (debugid
>= kdlog_beg
&& debugid
<= kdlog_end
)
1044 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1045 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1046 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1047 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1048 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1054 if (timestamp
< kd_ctrl_page
.oldest_time
) {
1060 * When start_kern_tracing is called by the kernel to trace very
1061 * early kernel events, it saves data to a secondary buffer until
1062 * it is possible to initialize ktrace, and then dumps the events
1063 * into the ktrace buffer using this method. In this case, iops will
1064 * be NULL, and the coreid will be zero. It is not possible to have
1065 * a valid IOP coreid of zero, so pass if both iops is NULL and coreid
1068 assert(kdbg_iop_list_contains_cpu_id(kd_ctrl_page
.kdebug_iops
, coreid
) || (kd_ctrl_page
.kdebug_iops
== NULL
&& coreid
== 0));
1071 disable_preemption();
1073 if (kd_ctrl_page
.enabled
== 0)
1076 kdbp
= &kdbip
[coreid
];
1077 timestamp
&= KDBG_TIMESTAMP_MASK
;
1079 #if KDEBUG_MOJO_TRACE
1080 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1081 kdebug_serial_print(coreid
, debugid
, timestamp
,
1082 arg1
, arg2
, arg3
, arg4
, threadid
);
1086 kds_raw
= kdbp
->kd_list_tail
;
1088 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1089 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1090 bindx
= kdsp_actual
->kds_bufindx
;
1093 bindx
= EVENTS_PER_STORAGE_UNIT
;
1096 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1097 if (allocate_storage_unit(coreid
) == FALSE
) {
1099 * this can only happen if wrapping
1106 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1109 // IOP entries can be allocated before xnu allocates and inits the buffer
1110 if (timestamp
< kdsp_actual
->kds_timestamp
)
1111 kdsp_actual
->kds_timestamp
= timestamp
;
1113 kd
= &kdsp_actual
->kds_records
[bindx
];
1115 kd
->debugid
= debugid
;
1120 kd
->arg5
= threadid
;
1122 kdbg_set_timestamp_and_cpu(kd
, timestamp
, coreid
);
1124 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1126 enable_preemption();
1128 if ((kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
)) {
1134 kernel_debug_internal(
1135 boolean_t only_filter
,
1143 struct proc
*curproc
;
1148 struct kd_bufinfo
*kdbp
;
1149 struct kd_storage
*kdsp_actual
;
1150 union kds_ptr kds_raw
;
1152 if (kd_ctrl_page
.kdebug_slowcheck
) {
1153 if ((kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) ||
1154 !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
| KDEBUG_ENABLE_PPT
)))
1159 if ( !ml_at_interrupt_context()) {
1160 if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDCHECK
) {
1162 * If kdebug flag is not set for current proc, return
1164 curproc
= current_proc();
1166 if ((curproc
&& !(curproc
->p_kdebug
)) &&
1167 ((debugid
& 0xffff0000) != (MACHDBG_CODE(DBG_MACH_SCHED
, 0) | DBG_FUNC_NONE
)) &&
1168 (debugid
>> 24 != DBG_TRACE
))
1171 else if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDEXCLUDE
) {
1173 * If kdebug flag is set for current proc, return
1175 curproc
= current_proc();
1177 if ((curproc
&& curproc
->p_kdebug
) &&
1178 ((debugid
& 0xffff0000) != (MACHDBG_CODE(DBG_MACH_SCHED
, 0) | DBG_FUNC_NONE
)) &&
1179 (debugid
>> 24 != DBG_TRACE
))
1184 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1185 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1189 } else if (only_filter
== TRUE
) {
1192 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1193 /* Always record trace system info */
1194 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1197 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
)
1200 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1201 /* Always record trace system info */
1202 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1205 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1206 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1207 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1208 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1211 } else if (only_filter
== TRUE
) {
1216 disable_preemption();
1218 if (kd_ctrl_page
.enabled
== 0)
1224 #if KDEBUG_MOJO_TRACE
1225 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1226 kdebug_serial_print(cpu
, debugid
,
1227 kdbg_timestamp() & KDBG_TIMESTAMP_MASK
,
1228 arg1
, arg2
, arg3
, arg4
, arg5
);
1232 kds_raw
= kdbp
->kd_list_tail
;
1234 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1235 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1236 bindx
= kdsp_actual
->kds_bufindx
;
1239 bindx
= EVENTS_PER_STORAGE_UNIT
;
1242 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1243 if (allocate_storage_unit(cpu
) == FALSE
) {
1245 * this can only happen if wrapping
1252 now
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
1254 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1257 kd
= &kdsp_actual
->kds_records
[bindx
];
1259 kd
->debugid
= debugid
;
1266 kdbg_set_timestamp_and_cpu(kd
, now
, cpu
);
1268 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1271 kperf_kdebug_callback(debugid
, __builtin_frame_address(0));
1274 enable_preemption();
1276 if (kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
) {
1280 etype
= debugid
& KDBG_EVENTID_MASK
;
1281 stype
= debugid
& KDBG_CSC_MASK
;
1283 if (etype
== INTERRUPT
|| etype
== MACH_vmfault
||
1284 stype
== BSC_SysCall
|| stype
== MACH_SysCall
) {
1297 __unused
uintptr_t arg5
)
1299 kernel_debug_internal(FALSE
, debugid
, arg1
, arg2
, arg3
, arg4
,
1300 (uintptr_t)thread_tid(current_thread()));
1312 kernel_debug_internal(FALSE
, debugid
, arg1
, arg2
, arg3
, arg4
, arg5
);
1316 kernel_debug_filtered(
1323 kernel_debug_internal(TRUE
, debugid
, arg1
, arg2
, arg3
, arg4
,
1324 (uintptr_t)thread_tid(current_thread()));
1328 kernel_debug_string_early(const char *message
)
1330 uintptr_t arg
[4] = {0, 0, 0, 0};
1332 /* Stuff the message string in the args and log it. */
1333 strncpy((char *)arg
, message
, MIN(sizeof(arg
), strlen(message
)));
1336 arg
[0], arg
[1], arg
[2], arg
[3]);
1339 #define SIMPLE_STR_LEN (64)
1340 static_assert(SIMPLE_STR_LEN
% sizeof(uintptr_t) == 0);
1343 kernel_debug_string_simple(uint32_t eventid
, const char *str
)
1345 if (!kdebug_enable
) {
1349 /* array of uintptr_ts simplifies emitting the string as arguments */
1350 uintptr_t str_buf
[(SIMPLE_STR_LEN
/ sizeof(uintptr_t)) + 1] = { 0 };
1351 size_t len
= strlcpy((char *)str_buf
, str
, SIMPLE_STR_LEN
+ 1);
1353 uintptr_t thread_id
= (uintptr_t)thread_tid(current_thread());
1354 uint32_t debugid
= eventid
| DBG_FUNC_START
;
1356 /* string can fit in a single tracepoint */
1357 if (len
<= (4 * sizeof(uintptr_t))) {
1358 debugid
|= DBG_FUNC_END
;
1361 kernel_debug_internal(FALSE
, debugid
, str_buf
[0],
1364 str_buf
[3], thread_id
);
1366 debugid
&= KDBG_EVENTID_MASK
;
1368 size_t written
= 4 * sizeof(uintptr_t);
1370 for (; written
< len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1371 /* if this is the last tracepoint to be emitted */
1372 if ((written
+ (4 * sizeof(uintptr_t))) >= len
) {
1373 debugid
|= DBG_FUNC_END
;
1375 kernel_debug_internal(FALSE
, debugid
, str_buf
[i
],
1378 str_buf
[i
+ 3], thread_id
);
1382 extern int master_cpu
; /* MACH_KERNEL_PRIVATE */
1384 * Used prior to start_kern_tracing() being called.
1385 * Log temporarily into a static buffer.
1395 /* If early tracing is over, use the normal path. */
1396 if (kd_early_done
) {
1397 KERNEL_DEBUG_CONSTANT(debugid
, arg1
, arg2
, arg3
, arg4
, 0);
1401 /* Do nothing if the buffer is full or we're not on the boot cpu. */
1402 kd_early_overflow
= kd_early_index
>= KD_EARLY_BUFFER_NBUFS
;
1403 if (kd_early_overflow
|| cpu_number() != master_cpu
) {
1407 kd_early_buffer
[kd_early_index
].debugid
= debugid
;
1408 kd_early_buffer
[kd_early_index
].timestamp
= mach_absolute_time();
1409 kd_early_buffer
[kd_early_index
].arg1
= arg1
;
1410 kd_early_buffer
[kd_early_index
].arg2
= arg2
;
1411 kd_early_buffer
[kd_early_index
].arg3
= arg3
;
1412 kd_early_buffer
[kd_early_index
].arg4
= arg4
;
1413 kd_early_buffer
[kd_early_index
].arg5
= 0;
1418 * Transfer the contents of the temporary buffer into the trace buffers.
1419 * Precede that by logging the rebase time (offset) - the TSC-based time (in ns)
1420 * when mach_absolute_time is set to 0.
1423 kernel_debug_early_end(void)
1425 if (cpu_number() != master_cpu
) {
1426 panic("kernel_debug_early_end() not call on boot processor");
1429 /* reset the current oldest time to allow early events */
1430 kd_ctrl_page
.oldest_time
= 0;
1432 #if !CONFIG_EMBEDDED
1433 /* Fake sentinel marking the start of kernel time relative to TSC */
1434 kernel_debug_enter(0,
1437 (uint32_t)(tsc_rebase_abs_time
>> 32),
1438 (uint32_t)tsc_rebase_abs_time
,
1443 for (unsigned int i
= 0; i
< kd_early_index
; i
++) {
1444 kernel_debug_enter(0,
1445 kd_early_buffer
[i
].debugid
,
1446 kd_early_buffer
[i
].timestamp
,
1447 kd_early_buffer
[i
].arg1
,
1448 kd_early_buffer
[i
].arg2
,
1449 kd_early_buffer
[i
].arg3
,
1450 kd_early_buffer
[i
].arg4
,
1454 /* Cut events-lost event on overflow */
1455 if (kd_early_overflow
) {
1456 KDBG_RELEASE(TRACE_LOST_EVENTS
, 1);
1459 kd_early_done
= true;
1461 /* This trace marks the start of kernel tracing */
1462 kernel_debug_string_early("early trace done");
1466 kernel_debug_disable(void)
1468 if (kdebug_enable
) {
1469 kdbg_set_tracing_enabled(FALSE
, 0);
1474 * Returns non-zero if debugid is in a reserved class.
1477 kdebug_validate_debugid(uint32_t debugid
)
1479 uint8_t debugid_class
;
1481 debugid_class
= KDBG_EXTRACT_CLASS(debugid
);
1482 switch (debugid_class
) {
1491 * Support syscall SYS_kdebug_typefilter.
1494 kdebug_typefilter(__unused
struct proc
* p
,
1495 struct kdebug_typefilter_args
* uap
,
1496 __unused
int *retval
)
1498 int ret
= KERN_SUCCESS
;
1500 if (uap
->addr
== USER_ADDR_NULL
||
1501 uap
->size
== USER_ADDR_NULL
) {
1506 * The atomic load is to close a race window with setting the typefilter
1507 * and memory entry values. A description follows:
1511 * Allocate Typefilter
1512 * Allocate MemoryEntry
1513 * Write Global MemoryEntry Ptr
1514 * Atomic Store (Release) Global Typefilter Ptr
1516 * Thread 2 (reader, AKA us)
1518 * if ((Atomic Load (Acquire) Global Typefilter Ptr) == NULL)
1521 * Without the atomic store, it isn't guaranteed that the write of
1522 * Global MemoryEntry Ptr is visible before we can see the write of
1523 * Global Typefilter Ptr.
1525 * Without the atomic load, it isn't guaranteed that the loads of
1526 * Global MemoryEntry Ptr aren't speculated.
1528 * The global pointers transition from NULL -> valid once and only once,
1529 * and never change after becoming valid. This means that having passed
1530 * the first atomic load test of Global Typefilter Ptr, this function
1531 * can then safely use the remaining global state without atomic checks.
1533 if (!__c11_atomic_load((_Atomic typefilter_t
*)&kdbg_typefilter
, memory_order_acquire
)) {
1537 assert(kdbg_typefilter_memory_entry
);
1539 mach_vm_offset_t user_addr
= 0;
1540 vm_map_t user_map
= current_map();
1542 ret
= mach_to_bsd_errno(
1543 mach_vm_map_kernel(user_map
, // target map
1544 &user_addr
, // [in, out] target address
1545 TYPEFILTER_ALLOC_SIZE
, // initial size
1546 0, // mask (alignment?)
1547 VM_FLAGS_ANYWHERE
, // flags
1548 VM_KERN_MEMORY_NONE
,
1549 kdbg_typefilter_memory_entry
, // port (memory entry!)
1550 0, // offset (in memory entry)
1551 FALSE
, // should copy
1552 VM_PROT_READ
, // cur_prot
1553 VM_PROT_READ
, // max_prot
1554 VM_INHERIT_SHARE
)); // inherit behavior on fork
1556 if (ret
== KERN_SUCCESS
) {
1557 vm_size_t user_ptr_size
= vm_map_is_64bit(user_map
) ? 8 : 4;
1558 ret
= copyout(CAST_DOWN(void *, &user_addr
), uap
->addr
, user_ptr_size
);
1560 if (ret
!= KERN_SUCCESS
) {
1561 mach_vm_deallocate(user_map
, user_addr
, TYPEFILTER_ALLOC_SIZE
);
1569 * Support syscall SYS_kdebug_trace. U64->K32 args may get truncated in kdebug_trace64
1572 kdebug_trace(struct proc
*p
, struct kdebug_trace_args
*uap
, int32_t *retval
)
1574 struct kdebug_trace64_args uap64
;
1576 uap64
.code
= uap
->code
;
1577 uap64
.arg1
= uap
->arg1
;
1578 uap64
.arg2
= uap
->arg2
;
1579 uap64
.arg3
= uap
->arg3
;
1580 uap64
.arg4
= uap
->arg4
;
1582 return kdebug_trace64(p
, &uap64
, retval
);
1586 * Support syscall SYS_kdebug_trace64. 64-bit args on K32 will get truncated
1587 * to fit in 32-bit record format.
1589 * It is intentional that error conditions are not checked until kdebug is
1590 * enabled. This is to match the userspace wrapper behavior, which is optimizing
1591 * for non-error case performance.
1593 int kdebug_trace64(__unused
struct proc
*p
, struct kdebug_trace64_args
*uap
, __unused
int32_t *retval
)
1597 if ( __probable(kdebug_enable
== 0) )
1600 if ((err
= kdebug_validate_debugid(uap
->code
)) != 0) {
1604 kernel_debug_internal(FALSE
, uap
->code
,
1605 (uintptr_t)uap
->arg1
,
1606 (uintptr_t)uap
->arg2
,
1607 (uintptr_t)uap
->arg3
,
1608 (uintptr_t)uap
->arg4
,
1609 (uintptr_t)thread_tid(current_thread()));
1615 * Adding enough padding to contain a full tracepoint for the last
1616 * portion of the string greatly simplifies the logic of splitting the
1617 * string between tracepoints. Full tracepoints can be generated using
1618 * the buffer itself, without having to manually add zeros to pad the
1622 /* 2 string args in first tracepoint and 9 string data tracepoints */
1623 #define STR_BUF_ARGS (2 + (9 * 4))
1624 /* times the size of each arg on K64 */
1625 #define MAX_STR_LEN (STR_BUF_ARGS * sizeof(uint64_t))
1626 /* on K32, ending straddles a tracepoint, so reserve blanks */
1627 #define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t)))
1630 * This function does no error checking and assumes that it is called with
1631 * the correct arguments, including that the buffer pointed to by str is at
1632 * least STR_BUF_SIZE bytes. However, str must be aligned to word-size and
1633 * be NUL-terminated. In cases where a string can fit evenly into a final
1634 * tracepoint without its NUL-terminator, this function will not end those
1635 * strings with a NUL in trace. It's up to clients to look at the function
1636 * qualifier for DBG_FUNC_END in this case, to end the string.
1639 kernel_debug_string_internal(uint32_t debugid
, uint64_t str_id
, void *vstr
,
1642 /* str must be word-aligned */
1643 uintptr_t *str
= vstr
;
1645 uintptr_t thread_id
;
1647 uint32_t trace_debugid
= TRACEDBG_CODE(DBG_TRACE_STRING
,
1648 TRACE_STRING_GLOBAL
);
1650 thread_id
= (uintptr_t)thread_tid(current_thread());
1652 /* if the ID is being invalidated, just emit that */
1653 if (str_id
!= 0 && str_len
== 0) {
1654 kernel_debug_internal(FALSE
, trace_debugid
| DBG_FUNC_START
| DBG_FUNC_END
,
1655 (uintptr_t)debugid
, (uintptr_t)str_id
, 0, 0,
1660 /* generate an ID, if necessary */
1662 str_id
= OSIncrementAtomic64((SInt64
*)&g_curr_str_id
);
1663 str_id
= (str_id
& STR_ID_MASK
) | g_str_id_signature
;
1666 trace_debugid
|= DBG_FUNC_START
;
1667 /* string can fit in a single tracepoint */
1668 if (str_len
<= (2 * sizeof(uintptr_t))) {
1669 trace_debugid
|= DBG_FUNC_END
;
1672 kernel_debug_internal(FALSE
, trace_debugid
, (uintptr_t)debugid
,
1673 (uintptr_t)str_id
, str
[0],
1676 trace_debugid
&= KDBG_EVENTID_MASK
;
1678 written
+= 2 * sizeof(uintptr_t);
1680 for (; written
< str_len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1681 if ((written
+ (4 * sizeof(uintptr_t))) >= str_len
) {
1682 trace_debugid
|= DBG_FUNC_END
;
1684 kernel_debug_internal(FALSE
, trace_debugid
, str
[i
],
1687 str
[i
+ 3], thread_id
);
1694 * Returns true if the current process can emit events, and false otherwise.
1695 * Trace system and scheduling events circumvent this check, as do events
1696 * emitted in interrupt context.
1699 kdebug_current_proc_enabled(uint32_t debugid
)
1701 /* can't determine current process in interrupt context */
1702 if (ml_at_interrupt_context()) {
1706 /* always emit trace system and scheduling events */
1707 if ((KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
||
1708 (debugid
& KDBG_CSC_MASK
) == MACHDBG_CODE(DBG_MACH_SCHED
, 0)))
1713 if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDCHECK
) {
1714 proc_t cur_proc
= current_proc();
1716 /* only the process with the kdebug bit set is allowed */
1717 if (cur_proc
&& !(cur_proc
->p_kdebug
)) {
1720 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDEXCLUDE
) {
1721 proc_t cur_proc
= current_proc();
1723 /* every process except the one with the kdebug bit set is allowed */
1724 if (cur_proc
&& cur_proc
->p_kdebug
) {
1733 kdebug_debugid_enabled(uint32_t debugid
)
1735 /* if no filtering is enabled */
1736 if (!kd_ctrl_page
.kdebug_slowcheck
) {
1740 return kdebug_debugid_explicitly_enabled(debugid
);
1744 kdebug_debugid_explicitly_enabled(uint32_t debugid
)
1746 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1747 return typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
);
1748 } else if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
) {
1750 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1751 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
) {
1754 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1755 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1756 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1757 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1758 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1768 * Returns 0 if a string can be traced with these arguments. Returns errno
1769 * value if error occurred.
1772 kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
)
1774 /* if there are function qualifiers on the debugid */
1775 if (debugid
& ~KDBG_EVENTID_MASK
) {
1779 if (kdebug_validate_debugid(debugid
)) {
1783 if (str_id
!= 0 && (str_id
& STR_ID_SIG_MASK
) != g_str_id_signature
) {
1791 * Implementation of KPI kernel_debug_string.
1794 kernel_debug_string(uint32_t debugid
, uint64_t *str_id
, const char *str
)
1796 /* arguments to tracepoints must be word-aligned */
1797 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1798 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1799 vm_size_t len_copied
;
1804 if (__probable(kdebug_enable
== 0)) {
1808 if (!kdebug_current_proc_enabled(debugid
)) {
1812 if (!kdebug_debugid_enabled(debugid
)) {
1816 if ((err
= kdebug_check_trace_string(debugid
, *str_id
)) != 0) {
1825 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, NULL
, 0);
1829 memset(str_buf
, 0, sizeof(str_buf
));
1830 len_copied
= strlcpy(str_buf
, str
, MAX_STR_LEN
+ 1);
1831 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, str_buf
,
1837 * Support syscall kdebug_trace_string.
1840 kdebug_trace_string(__unused
struct proc
*p
,
1841 struct kdebug_trace_string_args
*uap
,
1844 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1845 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1849 if (__probable(kdebug_enable
== 0)) {
1853 if (!kdebug_current_proc_enabled(uap
->debugid
)) {
1857 if (!kdebug_debugid_enabled(uap
->debugid
)) {
1861 if ((err
= kdebug_check_trace_string(uap
->debugid
, uap
->str_id
)) != 0) {
1865 if (uap
->str
== USER_ADDR_NULL
) {
1866 if (uap
->str_id
== 0) {
1870 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
,
1875 memset(str_buf
, 0, sizeof(str_buf
));
1876 err
= copyinstr(uap
->str
, str_buf
, MAX_STR_LEN
+ 1, &len_copied
);
1878 /* it's alright to truncate the string, so allow ENAMETOOLONG */
1879 if (err
== ENAMETOOLONG
) {
1880 str_buf
[MAX_STR_LEN
] = '\0';
1885 if (len_copied
<= 1) {
1889 /* convert back to a length */
1892 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
, str_buf
,
1898 kdbg_lock_init(void)
1900 static lck_grp_attr_t
*kdebug_lck_grp_attr
= NULL
;
1901 static lck_grp_t
*kdebug_lck_grp
= NULL
;
1902 static lck_attr_t
*kdebug_lck_attr
= NULL
;
1904 if (kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
) {
1908 assert(kdebug_lck_grp_attr
== NULL
);
1909 kdebug_lck_grp_attr
= lck_grp_attr_alloc_init();
1910 kdebug_lck_grp
= lck_grp_alloc_init("kdebug", kdebug_lck_grp_attr
);
1911 kdebug_lck_attr
= lck_attr_alloc_init();
1913 kds_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1914 kdw_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1916 kd_ctrl_page
.kdebug_flags
|= KDBG_LOCKINIT
;
1920 kdbg_bootstrap(boolean_t early_trace
)
1922 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
1924 return (create_buffers(early_trace
));
1928 kdbg_reinit(boolean_t early_trace
)
1933 * Disable trace collecting
1934 * First make sure we're not in
1935 * the middle of cutting a trace
1937 kernel_debug_disable();
1940 * make sure the SLOW_NOLOG is seen
1941 * by everyone that might be trying
1948 kdbg_clear_thread_map();
1949 ret
= kdbg_bootstrap(early_trace
);
1951 RAW_file_offset
= 0;
1952 RAW_file_written
= 0;
1958 kdbg_trace_data(struct proc
*proc
, long *arg_pid
, long *arg_uniqueid
)
1964 *arg_pid
= proc
->p_pid
;
1965 *arg_uniqueid
= proc
->p_uniqueid
;
1966 if ((uint64_t) *arg_uniqueid
!= proc
->p_uniqueid
) {
1974 kdbg_trace_string(struct proc
*proc
, long *arg1
, long *arg2
, long *arg3
, long *arg4
)
1988 * Collect the pathname for tracing
1990 dbg_nameptr
= proc
->p_comm
;
1991 dbg_namelen
= (int)strlen(proc
->p_comm
);
1997 if(dbg_namelen
> (int)sizeof(dbg_parms
))
1998 dbg_namelen
= (int)sizeof(dbg_parms
);
2000 strncpy((char *)dbg_parms
, dbg_nameptr
, dbg_namelen
);
2009 kdbg_resolve_map(thread_t th_act
, void *opaque
)
2011 kd_threadmap
*mapptr
;
2012 krt_t
*t
= (krt_t
*)opaque
;
2014 if (t
->count
< t
->maxcount
) {
2015 mapptr
= &t
->map
[t
->count
];
2016 mapptr
->thread
= (uintptr_t)thread_tid(th_act
);
2018 (void) strlcpy (mapptr
->command
, t
->atts
->task_comm
,
2019 sizeof(t
->atts
->task_comm
));
2021 * Some kernel threads have no associated pid.
2022 * We still need to mark the entry as valid.
2025 mapptr
->valid
= t
->atts
->pid
;
2035 * Writes a cpumap for the given iops_list/cpu_count to the provided buffer.
2037 * You may provide a buffer and size, or if you set the buffer to NULL, a
2038 * buffer of sufficient size will be allocated.
2040 * If you provide a buffer and it is too small, sets cpumap_size to the number
2041 * of bytes required and returns EINVAL.
2043 * On success, if you provided a buffer, cpumap_size is set to the number of
2044 * bytes written. If you did not provide a buffer, cpumap is set to the newly
2045 * allocated buffer and cpumap_size is set to the number of bytes allocated.
2047 * NOTE: It may seem redundant to pass both iops and a cpu_count.
2049 * We may be reporting data from "now", or from the "past".
2051 * The "past" data would be for kdbg_readcpumap().
2053 * If we do not pass both iops and cpu_count, and iops is NULL, this function
2054 * will need to read "now" state to get the number of cpus, which would be in
2055 * error if we were reporting "past" state.
2059 kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
, uint8_t** cpumap
, uint32_t* cpumap_size
)
2062 assert(cpumap_size
);
2064 assert(!iops
|| iops
->cpu_id
+ 1 == cpu_count
);
2066 uint32_t bytes_needed
= sizeof(kd_cpumap_header
) + cpu_count
* sizeof(kd_cpumap
);
2067 uint32_t bytes_available
= *cpumap_size
;
2068 *cpumap_size
= bytes_needed
;
2070 if (*cpumap
== NULL
) {
2071 if (kmem_alloc(kernel_map
, (vm_offset_t
*)cpumap
, (vm_size_t
)*cpumap_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
2074 bzero(*cpumap
, *cpumap_size
);
2075 } else if (bytes_available
< bytes_needed
) {
2079 kd_cpumap_header
* header
= (kd_cpumap_header
*)(uintptr_t)*cpumap
;
2081 header
->version_no
= RAW_VERSION1
;
2082 header
->cpu_count
= cpu_count
;
2084 kd_cpumap
* cpus
= (kd_cpumap
*)&header
[1];
2086 int32_t index
= cpu_count
- 1;
2088 cpus
[index
].cpu_id
= iops
->cpu_id
;
2089 cpus
[index
].flags
= KDBG_CPUMAP_IS_IOP
;
2090 strlcpy(cpus
[index
].name
, iops
->callback
.iop_name
, sizeof(cpus
->name
));
2096 while (index
>= 0) {
2097 cpus
[index
].cpu_id
= index
;
2098 cpus
[index
].flags
= 0;
2099 strlcpy(cpus
[index
].name
, "AP", sizeof(cpus
->name
));
2104 return KERN_SUCCESS
;
2108 kdbg_thrmap_init(void)
2110 ktrace_assert_lock_held();
2112 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
2116 kd_mapptr
= kdbg_thrmap_init_internal(0, &kd_mapsize
, &kd_mapcount
);
2119 kd_ctrl_page
.kdebug_flags
|= KDBG_MAPINIT
;
2123 static kd_threadmap
*
2124 kdbg_thrmap_init_internal(unsigned int count
, unsigned int *mapsize
, unsigned int *mapcount
)
2126 kd_threadmap
*mapptr
;
2129 int tts_count
= 0; /* number of task-to-string structures */
2130 struct tts
*tts_mapptr
;
2131 unsigned int tts_mapsize
= 0;
2134 assert(mapsize
!= NULL
);
2135 assert(mapcount
!= NULL
);
2137 *mapcount
= threads_count
;
2138 tts_count
= tasks_count
;
2141 * The proc count could change during buffer allocation,
2142 * so introduce a small fudge factor to bump up the
2143 * buffer sizes. This gives new tasks some chance of
2144 * making into the tables. Bump up by 25%.
2146 *mapcount
+= *mapcount
/ 4;
2147 tts_count
+= tts_count
/ 4;
2149 *mapsize
= *mapcount
* sizeof(kd_threadmap
);
2151 if (count
&& count
< *mapcount
) {
2155 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)*mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2156 bzero((void *)kaddr
, *mapsize
);
2157 mapptr
= (kd_threadmap
*)kaddr
;
2162 tts_mapsize
= tts_count
* sizeof(struct tts
);
2164 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)tts_mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2165 bzero((void *)kaddr
, tts_mapsize
);
2166 tts_mapptr
= (struct tts
*)kaddr
;
2168 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, *mapsize
);
2174 * Save the proc's name and take a reference for each task associated
2175 * with a valid process.
2180 ALLPROC_FOREACH(p
) {
2181 if (i
>= tts_count
) {
2184 if (p
->p_lflag
& P_LEXIT
) {
2188 task_reference(p
->task
);
2189 tts_mapptr
[i
].task
= p
->task
;
2190 tts_mapptr
[i
].pid
= p
->p_pid
;
2191 (void)strlcpy(tts_mapptr
[i
].task_comm
, proc_best_name(p
), sizeof(tts_mapptr
[i
].task_comm
));
2200 * Initialize thread map data
2204 akrt
.maxcount
= *mapcount
;
2206 for (i
= 0; i
< tts_count
; i
++) {
2207 akrt
.atts
= &tts_mapptr
[i
];
2208 task_act_iterate_wth_args(tts_mapptr
[i
].task
, kdbg_resolve_map
, &akrt
);
2209 task_deallocate((task_t
)tts_mapptr
[i
].task
);
2211 kmem_free(kernel_map
, (vm_offset_t
)tts_mapptr
, tts_mapsize
);
2213 *mapcount
= akrt
.count
;
2222 * Clean up the trace buffer
2223 * First make sure we're not in
2224 * the middle of cutting a trace
2226 kernel_debug_disable();
2227 kdbg_disable_typefilter();
2230 * make sure the SLOW_NOLOG is seen
2231 * by everyone that might be trying
2236 /* reset kdebug state for each process */
2237 if (kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
)) {
2240 ALLPROC_FOREACH(p
) {
2246 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2247 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_NOWRAP
| KDBG_RANGECHECK
| KDBG_VALCHECK
);
2248 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
);
2250 kd_ctrl_page
.oldest_time
= 0;
2255 /* Clean up the thread map buffer */
2256 kdbg_clear_thread_map();
2258 RAW_file_offset
= 0;
2259 RAW_file_written
= 0;
2265 ktrace_assert_lock_held();
2270 if (kdbg_typefilter
) {
2271 typefilter_reject_all(kdbg_typefilter
);
2272 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
2277 kdebug_free_early_buf(void)
2279 /* Must be done with the buffer, so release it back to the VM. */
2280 ml_static_mfree((vm_offset_t
)&kd_early_buffer
, sizeof(kd_early_buffer
));
2284 kdbg_setpid(kd_regtype
*kdr
)
2290 pid
= (pid_t
)kdr
->value1
;
2291 flag
= (int)kdr
->value2
;
2294 if ((p
= proc_find(pid
)) == NULL
)
2299 * turn on pid check for this and all pids
2301 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDCHECK
;
2302 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDEXCLUDE
;
2303 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2308 * turn off pid check for this pid value
2309 * Don't turn off all pid checking though
2311 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDCHECK;
2324 /* This is for pid exclusion in the trace buffer */
2326 kdbg_setpidex(kd_regtype
*kdr
)
2332 pid
= (pid_t
)kdr
->value1
;
2333 flag
= (int)kdr
->value2
;
2336 if ((p
= proc_find(pid
)) == NULL
)
2341 * turn on pid exclusion
2343 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDEXCLUDE
;
2344 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDCHECK
;
2345 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2351 * turn off pid exclusion for this pid value
2352 * Don't turn off all pid exclusion though
2354 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDEXCLUDE;
2367 * The following functions all operate on the "global" typefilter singleton.
2371 * The tf param is optional, you may pass either a valid typefilter or NULL.
2372 * If you pass a valid typefilter, you release ownership of that typefilter.
2375 kdbg_initialize_typefilter(typefilter_t tf
)
2377 ktrace_assert_lock_held();
2378 assert(!kdbg_typefilter
);
2379 assert(!kdbg_typefilter_memory_entry
);
2380 typefilter_t deallocate_tf
= NULL
;
2382 if (!tf
&& ((tf
= deallocate_tf
= typefilter_create()) == NULL
)) {
2386 if ((kdbg_typefilter_memory_entry
= typefilter_create_memory_entry(tf
)) == MACH_PORT_NULL
) {
2387 if (deallocate_tf
) {
2388 typefilter_deallocate(deallocate_tf
);
2394 * The atomic store closes a race window with
2395 * the kdebug_typefilter syscall, which assumes
2396 * that any non-null kdbg_typefilter means a
2397 * valid memory_entry is available.
2399 __c11_atomic_store(((_Atomic typefilter_t
*)&kdbg_typefilter
), tf
, memory_order_release
);
2401 return KERN_SUCCESS
;
2405 kdbg_copyin_typefilter(user_addr_t addr
, size_t size
)
2410 ktrace_assert_lock_held();
2412 if (size
!= KDBG_TYPEFILTER_BITMAP_SIZE
) {
2416 if ((tf
= typefilter_create())) {
2417 if ((ret
= copyin(addr
, tf
, KDBG_TYPEFILTER_BITMAP_SIZE
)) == 0) {
2418 /* The kernel typefilter must always allow DBG_TRACE */
2419 typefilter_allow_class(tf
, DBG_TRACE
);
2422 * If this is the first typefilter; claim it.
2423 * Otherwise copy and deallocate.
2425 * Allocating a typefilter for the copyin allows
2426 * the kernel to hold the invariant that DBG_TRACE
2427 * must always be allowed.
2429 if (!kdbg_typefilter
) {
2430 if ((ret
= kdbg_initialize_typefilter(tf
))) {
2435 typefilter_copy(kdbg_typefilter
, tf
);
2438 kdbg_enable_typefilter();
2439 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_TYPEFILTER_CHANGED
, kdbg_typefilter
);
2443 typefilter_deallocate(tf
);
2450 * Enable the flags in the control page for the typefilter. Assumes that
2451 * kdbg_typefilter has already been allocated, so events being written
2452 * don't see a bad typefilter.
2455 kdbg_enable_typefilter(void)
2457 assert(kdbg_typefilter
);
2458 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_RANGECHECK
| KDBG_VALCHECK
);
2459 kd_ctrl_page
.kdebug_flags
|= KDBG_TYPEFILTER_CHECK
;
2460 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2461 commpage_update_kdebug_state();
2465 * Disable the flags in the control page for the typefilter. The typefilter
2466 * may be safely deallocated shortly after this function returns.
2469 kdbg_disable_typefilter(void)
2471 kd_ctrl_page
.kdebug_flags
&= ~KDBG_TYPEFILTER_CHECK
;
2473 if ((kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
))) {
2474 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2476 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2478 commpage_update_kdebug_state();
2482 kdebug_commpage_state(void)
2484 if (kdebug_enable
) {
2485 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
2486 return KDEBUG_COMMPAGE_ENABLE_TYPEFILTER
| KDEBUG_COMMPAGE_ENABLE_TRACE
;
2489 return KDEBUG_COMMPAGE_ENABLE_TRACE
;
2496 kdbg_setreg(kd_regtype
* kdr
)
2499 unsigned int val_1
, val_2
, val
;
2500 switch (kdr
->type
) {
2502 case KDBG_CLASSTYPE
:
2503 val_1
= (kdr
->value1
& 0xff);
2504 val_2
= (kdr
->value2
& 0xff);
2505 kdlog_beg
= (val_1
<<24);
2506 kdlog_end
= (val_2
<<24);
2507 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2508 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2509 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_CLASSTYPE
);
2510 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2512 case KDBG_SUBCLSTYPE
:
2513 val_1
= (kdr
->value1
& 0xff);
2514 val_2
= (kdr
->value2
& 0xff);
2516 kdlog_beg
= ((val_1
<<24) | (val_2
<< 16));
2517 kdlog_end
= ((val_1
<<24) | (val
<< 16));
2518 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2519 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2520 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_SUBCLSTYPE
);
2521 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2523 case KDBG_RANGETYPE
:
2524 kdlog_beg
= (kdr
->value1
);
2525 kdlog_end
= (kdr
->value2
);
2526 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2527 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2528 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_RANGETYPE
);
2529 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2532 kdlog_value1
= (kdr
->value1
);
2533 kdlog_value2
= (kdr
->value2
);
2534 kdlog_value3
= (kdr
->value3
);
2535 kdlog_value4
= (kdr
->value4
);
2536 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2537 kd_ctrl_page
.kdebug_flags
&= ~KDBG_RANGECHECK
; /* Turn off range check */
2538 kd_ctrl_page
.kdebug_flags
|= KDBG_VALCHECK
; /* Turn on specific value check */
2539 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2541 case KDBG_TYPENONE
:
2542 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2544 if ( (kd_ctrl_page
.kdebug_flags
& (KDBG_RANGECHECK
| KDBG_VALCHECK
|
2545 KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
|
2546 KDBG_TYPEFILTER_CHECK
)) )
2547 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2549 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2562 kdbg_write_to_vnode(caddr_t buffer
, size_t size
, vnode_t vp
, vfs_context_t ctx
, off_t file_offset
)
2564 return vn_rdwr(UIO_WRITE
, vp
, buffer
, size
, file_offset
, UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
,
2565 vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2569 kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2571 int ret
= KERN_SUCCESS
;
2572 kd_chunk_header_v3 header
= {
2578 // Check that only one of them is valid
2579 assert(!buffer
^ !vp
);
2580 assert((vp
== NULL
) || (ctx
!= NULL
));
2582 // Write the 8-byte future_chunk_timestamp field in the payload
2585 ret
= kdbg_write_to_vnode((caddr_t
)&header
, sizeof(kd_chunk_header_v3
), vp
, ctx
, RAW_file_offset
);
2589 RAW_file_offset
+= (sizeof(kd_chunk_header_v3
));
2592 ret
= copyout(&header
, buffer
, sizeof(kd_chunk_header_v3
));
2603 kdbg_write_v3_chunk_header_to_buffer(void * buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
)
2605 kd_chunk_header_v3 header
= {
2615 memcpy(buffer
, &header
, sizeof(kd_chunk_header_v3
));
2617 return (sizeof(kd_chunk_header_v3
));
2621 kdbg_write_v3_chunk_to_fd(uint32_t tag
, uint32_t sub_tag
, uint64_t length
, void *payload
, uint64_t payload_size
, int fd
)
2624 struct vfs_context context
;
2625 struct fileproc
*fp
;
2630 if ( (fp_lookup(p
, fd
, &fp
, 1)) ) {
2635 context
.vc_thread
= current_thread();
2636 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
2638 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
2639 fp_drop(p
, fd
, fp
, 1);
2643 vp
= (struct vnode
*) fp
->f_fglob
->fg_data
;
2646 if ( (vnode_getwithref(vp
)) == 0 ) {
2647 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
2649 kd_chunk_header_v3 chunk_header
= {
2655 int ret
= kdbg_write_to_vnode((caddr_t
) &chunk_header
, sizeof(kd_chunk_header_v3
), vp
, &context
, RAW_file_offset
);
2657 RAW_file_offset
+= sizeof(kd_chunk_header_v3
);
2660 ret
= kdbg_write_to_vnode((caddr_t
) payload
, (size_t) payload_size
, vp
, &context
, RAW_file_offset
);
2662 RAW_file_offset
+= payload_size
;
2665 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
2669 fp_drop(p
, fd
, fp
, 0);
2670 return KERN_SUCCESS
;
2674 kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2676 uint64_t future_chunk_timestamp
= 0;
2677 length
+= sizeof(uint64_t);
2679 if (kdbg_write_v3_chunk_header(buffer
, tag
, V3_EVENT_DATA_VERSION
, length
, vp
, ctx
)) {
2683 buffer
+= sizeof(kd_chunk_header_v3
);
2686 // Check that only one of them is valid
2687 assert(!buffer
^ !vp
);
2688 assert((vp
== NULL
) || (ctx
!= NULL
));
2690 // Write the 8-byte future_chunk_timestamp field in the payload
2693 int ret
= kdbg_write_to_vnode((caddr_t
)&future_chunk_timestamp
, sizeof(uint64_t), vp
, ctx
, RAW_file_offset
);
2695 RAW_file_offset
+= (sizeof(uint64_t));
2699 if (copyout(&future_chunk_timestamp
, buffer
, sizeof(uint64_t))) {
2705 return (buffer
+ sizeof(uint64_t));
2709 kdbg_write_v3_header(user_addr_t user_header
, size_t *user_header_size
, int fd
)
2711 int ret
= KERN_SUCCESS
;
2713 uint8_t* cpumap
= 0;
2714 uint32_t cpumap_size
= 0;
2715 uint32_t thrmap_size
= 0;
2717 size_t bytes_needed
= 0;
2719 // Check that only one of them is valid
2720 assert(!user_header
^ !fd
);
2721 assert(user_header_size
);
2723 if ( !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ) {
2728 if ( !(user_header
|| fd
) ) {
2733 // Initialize the cpu map
2734 ret
= kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
);
2735 if (ret
!= KERN_SUCCESS
) {
2739 // Check if a thread map is initialized
2744 thrmap_size
= kd_mapcount
* sizeof(kd_threadmap
);
2746 mach_timebase_info_data_t timebase
= {0, 0};
2747 clock_timebase_info(&timebase
);
2749 // Setup the header.
2750 // See v3 header description in sys/kdebug.h for more inforamtion.
2751 kd_header_v3 header
= {
2752 .tag
= RAW_VERSION3
,
2753 .sub_tag
= V3_HEADER_VERSION
,
2754 .length
= (sizeof(kd_header_v3
) + cpumap_size
- sizeof(kd_cpumap_header
)),
2755 .timebase_numer
= timebase
.numer
,
2756 .timebase_denom
= timebase
.denom
,
2757 .timestamp
= 0, /* FIXME rdar://problem/22053009 */
2759 .walltime_usecs
= 0,
2760 .timezone_minuteswest
= 0,
2762 #if defined(__LP64__)
2769 // If its a buffer, check if we have enough space to copy the header and the maps.
2771 bytes_needed
= header
.length
+ thrmap_size
+ (2 * sizeof(kd_chunk_header_v3
));
2772 if (*user_header_size
< bytes_needed
) {
2778 // Start writing the header
2780 void *hdr_ptr
= (void *)(((uintptr_t) &header
) + sizeof(kd_chunk_header_v3
));
2781 size_t payload_size
= (sizeof(kd_header_v3
) - sizeof(kd_chunk_header_v3
));
2783 ret
= kdbg_write_v3_chunk_to_fd(RAW_VERSION3
, V3_HEADER_VERSION
, header
.length
, hdr_ptr
, payload_size
, fd
);
2789 if (copyout(&header
, user_header
, sizeof(kd_header_v3
))) {
2793 // Update the user pointer
2794 user_header
+= sizeof(kd_header_v3
);
2797 // Write a cpu map. This is a sub chunk of the header
2798 cpumap
= (uint8_t*)((uintptr_t) cpumap
+ sizeof(kd_cpumap_header
));
2799 size_t payload_size
= (size_t)(cpumap_size
- sizeof(kd_cpumap_header
));
2801 ret
= kdbg_write_v3_chunk_to_fd(V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, (void *)cpumap
, payload_size
, fd
);
2807 ret
= kdbg_write_v3_chunk_header(user_header
, V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, NULL
, NULL
);
2811 user_header
+= sizeof(kd_chunk_header_v3
);
2812 if (copyout(cpumap
, user_header
, payload_size
)) {
2816 // Update the user pointer
2817 user_header
+= payload_size
;
2820 // Write a thread map
2822 ret
= kdbg_write_v3_chunk_to_fd(V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, (void *)kd_mapptr
, thrmap_size
, fd
);
2828 ret
= kdbg_write_v3_chunk_header(user_header
, V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, NULL
, NULL
);
2832 user_header
+= sizeof(kd_chunk_header_v3
);
2833 if (copyout(kd_mapptr
, user_header
, thrmap_size
)) {
2837 user_header
+= thrmap_size
;
2841 RAW_file_written
+= bytes_needed
;
2844 *user_header_size
= bytes_needed
;
2847 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2853 kdbg_readcpumap(user_addr_t user_cpumap
, size_t *user_cpumap_size
)
2855 uint8_t* cpumap
= NULL
;
2856 uint32_t cpumap_size
= 0;
2857 int ret
= KERN_SUCCESS
;
2859 if (kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) {
2860 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
) == KERN_SUCCESS
) {
2862 size_t bytes_to_copy
= (*user_cpumap_size
>= cpumap_size
) ? cpumap_size
: *user_cpumap_size
;
2863 if (copyout(cpumap
, user_cpumap
, (size_t)bytes_to_copy
)) {
2867 *user_cpumap_size
= cpumap_size
;
2868 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2878 kdbg_readcurthrmap(user_addr_t buffer
, size_t *bufsize
)
2880 kd_threadmap
*mapptr
;
2881 unsigned int mapsize
;
2882 unsigned int mapcount
;
2883 unsigned int count
= 0;
2886 count
= *bufsize
/sizeof(kd_threadmap
);
2889 if ( (mapptr
= kdbg_thrmap_init_internal(count
, &mapsize
, &mapcount
)) ) {
2890 if (copyout(mapptr
, buffer
, mapcount
* sizeof(kd_threadmap
)))
2893 *bufsize
= (mapcount
* sizeof(kd_threadmap
));
2895 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, mapsize
);
2903 kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
)
2911 uint32_t extra_thread_count
= 0;
2912 uint32_t cpumap_size
;
2913 size_t map_size
= 0;
2914 size_t map_count
= 0;
2916 if (write_thread_map
) {
2917 assert(kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
2918 map_count
= kd_mapcount
;
2919 map_size
= map_count
* sizeof(kd_threadmap
);
2923 * Without the buffers initialized, we cannot construct a CPU map or a
2924 * thread map, and cannot write a header.
2926 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
)) {
2931 * To write a RAW_VERSION1+ file, we must embed a cpumap in the
2932 * "padding" used to page align the events following the threadmap. If
2933 * the threadmap happens to not require enough padding, we artificially
2934 * increase its footprint until it needs enough padding.
2940 pad_size
= PAGE_16KB
- ((sizeof(RAW_header
) + map_size
) & PAGE_MASK_64
);
2941 cpumap_size
= sizeof(kd_cpumap_header
) + kd_ctrl_page
.kdebug_cpus
* sizeof(kd_cpumap
);
2943 if (cpumap_size
> pad_size
) {
2944 /* If the cpu map doesn't fit in the current available pad_size,
2945 * we increase the pad_size by 16K. We do this so that the event
2946 * data is always available on a page aligned boundary for both
2947 * 4k and 16k systems. We enforce this alignment for the event
2948 * data so that we can take advantage of optimized file/disk writes.
2950 pad_size
+= PAGE_16KB
;
2953 /* The way we are silently embedding a cpumap in the "padding" is by artificially
2954 * increasing the number of thread entries. However, we'll also need to ensure that
2955 * the cpumap is embedded in the last 4K page before when the event data is expected.
2956 * This way the tools can read the data starting the next page boundary on both
2957 * 4K and 16K systems preserving compatibility with older versions of the tools
2959 if (pad_size
> PAGE_4KB
) {
2960 pad_size
-= PAGE_4KB
;
2961 extra_thread_count
= (pad_size
/ sizeof(kd_threadmap
)) + 1;
2964 memset(&header
, 0, sizeof(header
));
2965 header
.version_no
= RAW_VERSION1
;
2966 header
.thread_count
= map_count
+ extra_thread_count
;
2968 clock_get_calendar_microtime(&secs
, &usecs
);
2969 header
.TOD_secs
= secs
;
2970 header
.TOD_usecs
= usecs
;
2972 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)&header
, sizeof(RAW_header
), RAW_file_offset
,
2973 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2977 RAW_file_offset
+= sizeof(RAW_header
);
2978 RAW_file_written
+= sizeof(RAW_header
);
2980 if (write_thread_map
) {
2981 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)kd_mapptr
, map_size
, RAW_file_offset
,
2982 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2987 RAW_file_offset
+= map_size
;
2988 RAW_file_written
+= map_size
;
2991 if (extra_thread_count
) {
2992 pad_size
= extra_thread_count
* sizeof(kd_threadmap
);
2993 pad_buf
= kalloc(pad_size
);
2998 memset(pad_buf
, 0, pad_size
);
3000 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
3001 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3002 kfree(pad_buf
, pad_size
);
3007 RAW_file_offset
+= pad_size
;
3008 RAW_file_written
+= pad_size
;
3011 pad_size
= PAGE_SIZE
- (RAW_file_offset
& PAGE_MASK_64
);
3013 pad_buf
= (char *)kalloc(pad_size
);
3018 memset(pad_buf
, 0, pad_size
);
3021 * embed a cpumap in the padding bytes.
3022 * older code will skip this.
3023 * newer code will know how to read it.
3025 uint32_t temp
= pad_size
;
3026 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, (uint8_t**)&pad_buf
, &temp
) != KERN_SUCCESS
) {
3027 memset(pad_buf
, 0, pad_size
);
3030 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
3031 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3032 kfree(pad_buf
, pad_size
);
3037 RAW_file_offset
+= pad_size
;
3038 RAW_file_written
+= pad_size
;
3046 kdbg_clear_thread_map(void)
3048 ktrace_assert_lock_held();
3050 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
3051 assert(kd_mapptr
!= NULL
);
3052 kmem_free(kernel_map
, (vm_offset_t
)kd_mapptr
, kd_mapsize
);
3056 kd_ctrl_page
.kdebug_flags
&= ~KDBG_MAPINIT
;
3061 * Write out a version 1 header and the thread map, if it is initialized, to a
3062 * vnode. Used by KDWRITEMAP and kdbg_dump_trace_to_file.
3064 * Returns write errors from vn_rdwr if a write fails. Returns ENODATA if the
3065 * thread map has not been initialized, but the header will still be written.
3066 * Returns ENOMEM if padding could not be allocated. Returns 0 otherwise.
3069 kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
)
3072 boolean_t map_initialized
;
3074 ktrace_assert_lock_held();
3075 assert(ctx
!= NULL
);
3077 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3079 ret
= kdbg_write_v1_header(map_initialized
, vp
, ctx
);
3081 if (map_initialized
) {
3082 kdbg_clear_thread_map();
3092 * Copy out the thread map to a user space buffer. Used by KDTHRMAP.
3094 * Returns copyout errors if the copyout fails. Returns ENODATA if the thread
3095 * map has not been initialized. Returns EINVAL if the buffer provided is not
3096 * large enough for the entire thread map. Returns 0 otherwise.
3099 kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
)
3101 boolean_t map_initialized
;
3105 ktrace_assert_lock_held();
3106 assert(buffer_size
!= NULL
);
3108 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3109 if (!map_initialized
) {
3113 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3114 if (*buffer_size
< map_size
) {
3118 ret
= copyout(kd_mapptr
, buffer
, map_size
);
3120 kdbg_clear_thread_map();
3127 kdbg_readthrmap_v3(user_addr_t buffer
, size_t buffer_size
, int fd
)
3130 boolean_t map_initialized
;
3133 ktrace_assert_lock_held();
3135 if ((!fd
&& !buffer
) || (fd
&& buffer
)) {
3139 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3140 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3142 if (map_initialized
&& (buffer_size
>= map_size
))
3144 ret
= kdbg_write_v3_header(buffer
, &buffer_size
, fd
);
3147 kdbg_clear_thread_map();
3157 kdbg_set_nkdbufs(unsigned int value
)
3160 * We allow a maximum buffer size of 50% of either ram or max mapped
3161 * address, whichever is smaller 'value' is the desired number of trace
3164 unsigned int max_entries
= (sane_size
/ 2) / sizeof(kd_buf
);
3166 if (value
<= max_entries
) {
3169 nkdbufs
= max_entries
;
3174 * Block until there are `n_storage_threshold` storage units filled with
3175 * events or `timeout_ms` milliseconds have passed. If `locked_wait` is true,
3176 * `ktrace_lock` is held while waiting. This is necessary while waiting to
3177 * write events out of the buffers.
3179 * Returns true if the threshold was reached and false otherwise.
3181 * Called with `ktrace_lock` locked and interrupts enabled.
3184 kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
)
3186 int wait_result
= THREAD_AWAKENED
;
3187 uint64_t abstime
= 0;
3189 ktrace_assert_lock_held();
3191 if (timeout_ms
!= 0) {
3192 uint64_t ns
= timeout_ms
* NSEC_PER_MSEC
;
3193 nanoseconds_to_absolutetime(ns
, &abstime
);
3194 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
3197 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3199 panic("kdbg_wait() called with interrupts disabled");
3201 lck_spin_lock(kdw_spin_lock
);
3204 /* drop the mutex to allow others to access trace */
3208 while (wait_result
== THREAD_AWAKENED
&&
3209 kd_ctrl_page
.kds_inuse_count
< n_storage_threshold
)
3214 wait_result
= lck_spin_sleep_deadline(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
, abstime
);
3216 wait_result
= lck_spin_sleep(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
);
3222 /* check the count under the spinlock */
3223 boolean_t threshold_exceeded
= (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
);
3225 lck_spin_unlock(kdw_spin_lock
);
3226 ml_set_interrupts_enabled(s
);
3229 /* pick the mutex back up again */
3233 /* write out whether we've exceeded the threshold */
3234 return threshold_exceeded
;
3238 * Wakeup a thread waiting using `kdbg_wait` if there are at least
3239 * `n_storage_threshold` storage units in use.
3244 boolean_t need_kds_wakeup
= FALSE
;
3247 * Try to take the lock here to synchronize with the waiter entering
3248 * the blocked state. Use the try mode to prevent deadlocks caused by
3249 * re-entering this routine due to various trace points triggered in the
3250 * lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait
3251 * conditions. No problem if we fail, there will be lots of additional
3252 * events coming in that will eventually succeed in grabbing this lock.
3254 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3256 if (lck_spin_try_lock(kdw_spin_lock
)) {
3258 (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
))
3261 need_kds_wakeup
= TRUE
;
3263 lck_spin_unlock(kdw_spin_lock
);
3266 ml_set_interrupts_enabled(s
);
3268 if (need_kds_wakeup
== TRUE
) {
3269 wakeup(&kds_waiter
);
3274 kdbg_control(int *name
, u_int namelen
, user_addr_t where
, size_t *sizep
)
3277 size_t size
= *sizep
;
3278 unsigned int value
= 0;
3280 kbufinfo_t kd_bufinfo
;
3283 if (name
[0] == KERN_KDWRITETR
||
3284 name
[0] == KERN_KDWRITETR_V3
||
3285 name
[0] == KERN_KDWRITEMAP
||
3286 name
[0] == KERN_KDWRITEMAP_V3
||
3287 name
[0] == KERN_KDEFLAGS
||
3288 name
[0] == KERN_KDDFLAGS
||
3289 name
[0] == KERN_KDENABLE
||
3290 name
[0] == KERN_KDSETBUF
)
3299 assert(kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
);
3304 * Some requests only require "read" access to kdebug trace. Regardless,
3305 * tell ktrace that a configuration or read is occurring (and see if it's
3308 if (name
[0] != KERN_KDGETBUF
&&
3309 name
[0] != KERN_KDGETREG
&&
3310 name
[0] != KERN_KDREADCURTHRMAP
)
3312 if ((ret
= ktrace_configure(KTRACE_KDEBUG
))) {
3316 if ((ret
= ktrace_read_check())) {
3323 if (size
< sizeof(kd_bufinfo
.nkdbufs
)) {
3325 * There is not enough room to return even
3326 * the first element of the info structure.
3332 memset(&kd_bufinfo
, 0, sizeof(kd_bufinfo
));
3334 kd_bufinfo
.nkdbufs
= nkdbufs
;
3335 kd_bufinfo
.nkdthreads
= kd_mapcount
;
3337 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) )
3338 kd_bufinfo
.nolog
= 1;
3340 kd_bufinfo
.nolog
= 0;
3342 kd_bufinfo
.flags
= kd_ctrl_page
.kdebug_flags
;
3343 #if defined(__LP64__)
3344 kd_bufinfo
.flags
|= KDBG_LP64
;
3347 int pid
= ktrace_get_owning_pid();
3348 kd_bufinfo
.bufid
= (pid
== 0 ? -1 : pid
);
3351 if (size
>= sizeof(kd_bufinfo
)) {
3353 * Provide all the info we have
3355 if (copyout(&kd_bufinfo
, where
, sizeof(kd_bufinfo
)))
3359 * For backwards compatibility, only provide
3360 * as much info as there is room for.
3362 if (copyout(&kd_bufinfo
, where
, size
))
3367 case KERN_KDREADCURTHRMAP
:
3368 ret
= kdbg_readcurthrmap(where
, sizep
);
3372 value
&= KDBG_USERFLAGS
;
3373 kd_ctrl_page
.kdebug_flags
|= value
;
3377 value
&= KDBG_USERFLAGS
;
3378 kd_ctrl_page
.kdebug_flags
&= ~value
;
3383 * Enable tracing mechanism. Two types:
3384 * KDEBUG_TRACE is the standard one,
3385 * and KDEBUG_PPT which is a carefully
3386 * chosen subset to avoid performance impact.
3390 * enable only if buffer is initialized
3392 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ||
3393 !(value
== KDEBUG_ENABLE_TRACE
|| value
== KDEBUG_ENABLE_PPT
)) {
3399 kdbg_set_tracing_enabled(TRUE
, value
);
3403 if (!kdebug_enable
) {
3407 kernel_debug_disable();
3412 kdbg_set_nkdbufs(value
);
3416 ret
= kdbg_reinit(FALSE
);
3420 ktrace_reset(KTRACE_KDEBUG
);
3424 if(size
< sizeof(kd_regtype
)) {
3428 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3433 ret
= kdbg_setreg(&kd_Reg
);
3441 ret
= kdbg_read(where
, sizep
, NULL
, NULL
, RAW_VERSION1
);
3444 case KERN_KDWRITETR
:
3445 case KERN_KDWRITETR_V3
:
3446 case KERN_KDWRITEMAP
:
3447 case KERN_KDWRITEMAP_V3
:
3449 struct vfs_context context
;
3450 struct fileproc
*fp
;
3455 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3456 (void)kdbg_wait(size
, TRUE
);
3462 if ( (ret
= fp_lookup(p
, fd
, &fp
, 1)) ) {
3466 context
.vc_thread
= current_thread();
3467 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
3469 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
3470 fp_drop(p
, fd
, fp
, 1);
3476 vp
= (struct vnode
*)fp
->f_fglob
->fg_data
;
3479 if ((ret
= vnode_getwithref(vp
)) == 0) {
3480 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
3481 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3482 number
= nkdbufs
* sizeof(kd_buf
);
3484 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
3485 if (name
[0] == KERN_KDWRITETR_V3
)
3486 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION3
);
3488 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION1
);
3489 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_END
, number
);
3493 number
= kd_mapcount
* sizeof(kd_threadmap
);
3494 if (name
[0] == KERN_KDWRITEMAP_V3
) {
3495 ret
= kdbg_readthrmap_v3(0, number
, fd
);
3497 ret
= kdbg_write_thread_map(vp
, &context
);
3500 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
3503 fp_drop(p
, fd
, fp
, 0);
3507 case KERN_KDBUFWAIT
:
3508 *sizep
= kdbg_wait(size
, FALSE
);
3512 if (size
< sizeof(kd_regtype
)) {
3516 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3521 ret
= kdbg_setpid(&kd_Reg
);
3525 if (size
< sizeof(kd_regtype
)) {
3529 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3534 ret
= kdbg_setpidex(&kd_Reg
);
3538 ret
= kdbg_readcpumap(where
, sizep
);
3542 ret
= kdbg_copyout_thread_map(where
, sizep
);
3545 case KERN_KDSET_TYPEFILTER
: {
3546 ret
= kdbg_copyin_typefilter(where
, size
);
3551 ret
= kdbg_test(size
);
3566 * This code can run for the most part concurrently with kernel_debug_internal()...
3567 * 'release_storage_unit' will take the kds_spin_lock which may cause us to briefly
3568 * synchronize with the recording side of this puzzle... otherwise, we are able to
3569 * move through the lists w/o use of any locks
3572 kdbg_read(user_addr_t buffer
, size_t *number
, vnode_t vp
, vfs_context_t ctx
, uint32_t file_version
)
3575 unsigned int cpu
, min_cpu
;
3576 uint64_t barrier_min
= 0, barrier_max
= 0, t
, earliest_time
;
3582 bool traced_retrograde
= false;
3583 struct kd_storage
*kdsp_actual
;
3584 struct kd_bufinfo
*kdbp
;
3585 struct kd_bufinfo
*min_kdbp
;
3586 uint32_t tempbuf_count
;
3587 uint32_t tempbuf_number
;
3588 uint32_t old_kdebug_flags
;
3589 uint32_t old_kdebug_slowcheck
;
3590 boolean_t lostevents
= FALSE
;
3591 boolean_t out_of_events
= FALSE
;
3592 boolean_t wrapped
= FALSE
;
3595 count
= *number
/sizeof(kd_buf
);
3598 ktrace_assert_lock_held();
3600 if (count
== 0 || !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) || kdcopybuf
== 0)
3603 thread_set_eager_preempt(current_thread());
3605 memset(&lostevent
, 0, sizeof(lostevent
));
3606 lostevent
.debugid
= TRACE_LOST_EVENTS
;
3609 * Capture the current time. Only sort events that have occured
3610 * before now. Since the IOPs are being flushed here, it is possible
3611 * that events occur on the AP while running live tracing. If we are
3612 * disabled, no new events should occur on the AP.
3614 if (kd_ctrl_page
.enabled
) {
3615 barrier_max
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
3619 * Request each IOP to provide us with up to date entries before merging
3622 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
3625 * Disable wrap so storage units cannot be stolen out from underneath us
3626 * while merging events.
3628 * Because we hold ktrace_lock, no other control threads can be playing
3629 * with kdebug_flags. The code that emits new events could be running,
3630 * but it grabs kds_spin_lock if it needs to acquire a new storage
3631 * chunk, which is where it examines kdebug_flags. If it is adding to
3632 * the same chunk we're reading from, check for that below.
3634 wrapped
= disable_wrap(&old_kdebug_slowcheck
, &old_kdebug_flags
);
3636 if (count
> nkdbufs
)
3639 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
) {
3640 tempbuf_count
= KDCOPYBUF_COUNT
;
3644 * If the buffers have wrapped, capture the earliest time where there
3645 * are events for all CPUs and do not emit additional lost events for
3646 * oldest storage units.
3649 barrier_min
= kd_ctrl_page
.oldest_time
;
3650 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
3651 kd_ctrl_page
.oldest_time
= 0;
3653 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3654 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3657 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3658 kdsp_actual
->kds_lostevents
= FALSE
;
3663 tempbuf
= kdcopybuf
;
3667 /* Trace a single lost events event for wrapping. */
3668 kdbg_set_timestamp_and_cpu(&lostevent
, barrier_min
, 0);
3669 *tempbuf
= lostevent
;
3674 /* While space left in merged events scratch buffer. */
3675 while (tempbuf_count
) {
3676 earliest_time
= UINT64_MAX
;
3680 /* Check each CPU's buffers. */
3681 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3682 /* Skip CPUs without data. */
3683 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3687 /* Debugging aid: maintain a copy of the "kdsp"
3690 volatile union kds_ptr kdsp_shadow
;
3694 /* From CPU data to buffer header to buffer. */
3695 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3697 volatile struct kd_storage
*kdsp_actual_shadow
;
3699 kdsp_actual_shadow
= kdsp_actual
;
3701 /* Skip buffer if there are no events left. */
3702 rcursor
= kdsp_actual
->kds_readlast
;
3704 if (rcursor
== kdsp_actual
->kds_bufindx
) {
3708 t
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[rcursor
]);
3710 /* Ignore events that have aged out due to wrapping. */
3711 while (t
< barrier_min
) {
3712 rcursor
= ++kdsp_actual
->kds_readlast
;
3714 if (rcursor
>= EVENTS_PER_STORAGE_UNIT
) {
3715 release_storage_unit(cpu
, kdsp
.raw
);
3717 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3721 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3722 kdsp_actual_shadow
= kdsp_actual
;
3723 rcursor
= kdsp_actual
->kds_readlast
;
3726 t
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[rcursor
]);
3729 if ((t
> barrier_max
) && (barrier_max
> 0)) {
3731 * Need to flush IOPs again before we
3732 * can sort any more data from the
3735 out_of_events
= TRUE
;
3738 if (t
< kdsp_actual
->kds_timestamp
) {
3740 * indicates we've not yet completed filling
3742 * this should only occur when we're looking
3743 * at the buf that the record head is utilizing
3744 * we'll pick these events up on the next
3746 * we bail at this point so that we don't
3747 * get an out-of-order timestream by continuing
3748 * to read events from the other CPUs' timestream(s)
3750 out_of_events
= TRUE
;
3753 if (t
< earliest_time
) {
3759 if (min_kdbp
== NULL
|| out_of_events
== TRUE
) {
3761 * all buffers ran empty
3763 out_of_events
= TRUE
;
3767 kdsp
= min_kdbp
->kd_list_head
;
3768 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3770 /* Copy earliest event into merged events scratch buffer. */
3771 *tempbuf
= kdsp_actual
->kds_records
[kdsp_actual
->kds_readlast
++];
3773 if (kdsp_actual
->kds_readlast
== EVENTS_PER_STORAGE_UNIT
)
3774 release_storage_unit(min_cpu
, kdsp
.raw
);
3777 * Watch for out of order timestamps
3779 if (earliest_time
< min_kdbp
->kd_prev_timebase
) {
3781 * If we haven't already, emit a retrograde events event.
3783 if (traced_retrograde
) {
3787 kdbg_set_timestamp_and_cpu(tempbuf
, min_kdbp
->kd_prev_timebase
, kdbg_get_cpu(tempbuf
));
3788 tempbuf
->arg1
= tempbuf
->debugid
;
3789 tempbuf
->arg2
= earliest_time
;
3792 tempbuf
->debugid
= TRACE_RETROGRADE_EVENTS
;
3793 traced_retrograde
= true;
3795 min_kdbp
->kd_prev_timebase
= earliest_time
;
3802 if ((RAW_file_written
+= sizeof(kd_buf
)) >= RAW_FLUSH_SIZE
)
3805 if (tempbuf_number
) {
3806 if (file_version
== RAW_VERSION3
) {
3807 if ( !(kdbg_write_v3_event_chunk_header(buffer
, V3_RAW_EVENTS
, (tempbuf_number
* sizeof(kd_buf
)), vp
, ctx
))) {
3812 buffer
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3814 assert(count
>= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t)));
3815 count
-= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3816 *number
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3819 size_t write_size
= tempbuf_number
* sizeof(kd_buf
);
3820 error
= kdbg_write_to_vnode((caddr_t
)kdcopybuf
, write_size
, vp
, ctx
, RAW_file_offset
);
3822 RAW_file_offset
+= write_size
;
3824 if (RAW_file_written
>= RAW_FLUSH_SIZE
) {
3825 error
= VNOP_FSYNC(vp
, MNT_NOWAIT
, ctx
);
3827 RAW_file_written
= 0;
3830 error
= copyout(kdcopybuf
, buffer
, tempbuf_number
* sizeof(kd_buf
));
3831 buffer
+= (tempbuf_number
* sizeof(kd_buf
));
3839 count
-= tempbuf_number
;
3840 *number
+= tempbuf_number
;
3842 if (out_of_events
== TRUE
)
3844 * all trace buffers are empty
3848 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
)
3849 tempbuf_count
= KDCOPYBUF_COUNT
;
3851 if ( !(old_kdebug_flags
& KDBG_NOWRAP
)) {
3852 enable_wrap(old_kdebug_slowcheck
, lostevents
);
3854 thread_clear_eager_preempt(current_thread());
3859 kdbg_test(size_t flavor
)
3864 #define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code))
3867 /* try each macro */
3868 KDBG(KDEBUG_TEST_CODE(code
)); code
++;
3869 KDBG(KDEBUG_TEST_CODE(code
), 1); code
++;
3870 KDBG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3871 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3872 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3874 KDBG_RELEASE(KDEBUG_TEST_CODE(code
)); code
++;
3875 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1); code
++;
3876 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3877 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3878 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3880 KDBG_FILTERED(KDEBUG_TEST_CODE(code
)); code
++;
3881 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1); code
++;
3882 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3883 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3884 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3886 KDBG_DEBUG(KDEBUG_TEST_CODE(code
)); code
++;
3887 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1); code
++;
3888 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3889 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3890 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3894 if (kd_ctrl_page
.kdebug_iops
) {
3895 /* avoid the assertion in kernel_debug_enter for a valid IOP */
3896 dummy_iop
= kd_ctrl_page
.kdebug_iops
[0].cpu_id
;
3899 /* ensure old timestamps are not emitted from kernel_debug_enter */
3900 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
3901 100 /* very old timestamp */, 0, 0, 0,
3902 0, (uintptr_t)thread_tid(current_thread()));
3904 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
3905 kdbg_timestamp(), 0, 0, 0, 0,
3906 (uintptr_t)thread_tid(current_thread()));
3912 #undef KDEBUG_TEST_CODE
3918 kdebug_init(unsigned int n_events
, char *filter_desc
, boolean_t wrapping
)
3920 assert(filter_desc
!= NULL
);
3922 #if defined(__x86_64__)
3923 /* only trace MACH events when outputting kdebug to serial */
3924 if (kdebug_serial
) {
3926 if (filter_desc
[0] == '\0') {
3927 filter_desc
[0] = 'C';
3928 filter_desc
[1] = '1';
3929 filter_desc
[2] = '\0';
3932 #endif /* defined(__x86_64__) */
3934 if (log_leaks
&& n_events
== 0) {
3938 kdebug_trace_start(n_events
, filter_desc
, wrapping
, FALSE
);
3942 kdbg_set_typefilter_string(const char *filter_desc
)
3946 ktrace_assert_lock_held();
3948 assert(filter_desc
!= NULL
);
3950 typefilter_reject_all(kdbg_typefilter
);
3951 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
3953 /* if the filter description starts with a number, assume it's a csc */
3954 if (filter_desc
[0] >= '0' && filter_desc
[0] <= '9'){
3955 unsigned long csc
= strtoul(filter_desc
, NULL
, 0);
3956 if (filter_desc
!= end
&& csc
<= KDBG_CSC_MAX
) {
3957 typefilter_allow_csc(kdbg_typefilter
, csc
);
3962 while (filter_desc
[0] != '\0') {
3963 unsigned long allow_value
;
3965 char filter_type
= filter_desc
[0];
3966 if (filter_type
!= 'C' && filter_type
!= 'S') {
3971 allow_value
= strtoul(filter_desc
, &end
, 0);
3972 if (filter_desc
== end
) {
3973 /* cannot parse as integer */
3977 switch (filter_type
) {
3979 if (allow_value
<= KDBG_CLASS_MAX
) {
3980 typefilter_allow_class(kdbg_typefilter
, allow_value
);
3987 if (allow_value
<= KDBG_CSC_MAX
) {
3988 typefilter_allow_csc(kdbg_typefilter
, allow_value
);
3990 /* illegal class subclass */
3998 /* advance to next filter entry */
4000 if (filter_desc
[0] == ',') {
4007 * This function is meant to be called from the bootstrap thread or coming out
4008 * of acpi_idle_kernel.
4011 kdebug_trace_start(unsigned int n_events
, const char *filter_desc
,
4012 boolean_t wrapping
, boolean_t at_wake
)
4015 kd_early_done
= true;
4019 ktrace_start_single_threaded();
4023 ktrace_kernel_configure(KTRACE_KDEBUG
);
4025 kdbg_set_nkdbufs(n_events
);
4027 kernel_debug_string_early("start_kern_tracing");
4029 if (kdbg_reinit(TRUE
)) {
4030 printf("error from kdbg_reinit, kernel tracing not started\n");
4035 * Wrapping is disabled because boot and wake tracing is interested in
4036 * the earliest events, at the expense of later ones.
4039 uint32_t old1
, old2
;
4040 (void)disable_wrap(&old1
, &old2
);
4043 if (filter_desc
&& filter_desc
[0] != '\0') {
4044 if (kdbg_initialize_typefilter(NULL
) == KERN_SUCCESS
) {
4045 kdbg_set_typefilter_string(filter_desc
);
4046 kdbg_enable_typefilter();
4051 * Hold off interrupts between getting a thread map and enabling trace
4052 * and until the early traces are recorded.
4054 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
4060 kdbg_set_tracing_enabled(TRUE
, KDEBUG_ENABLE_TRACE
| (kdebug_serial
?
4061 KDEBUG_ENABLE_SERIAL
: 0));
4065 * Transfer all very early events from the static buffer into the real
4068 kernel_debug_early_end();
4071 ml_set_interrupts_enabled(s
);
4073 printf("kernel tracing started with %u events\n", n_events
);
4075 #if KDEBUG_MOJO_TRACE
4076 if (kdebug_serial
) {
4077 printf("serial output enabled with %lu named events\n",
4078 sizeof(kd_events
)/sizeof(kd_event_t
));
4080 #endif /* KDEBUG_MOJO_TRACE */
4083 ktrace_end_single_threaded();
4087 kdbg_dump_trace_to_file(const char *filename
)
4096 if (!(kdebug_enable
& KDEBUG_ENABLE_TRACE
)) {
4100 if (ktrace_get_owning_pid() != 0) {
4102 * Another process owns ktrace and is still active, disable tracing to
4106 kd_ctrl_page
.enabled
= 0;
4107 commpage_update_kdebug_state();
4111 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
4114 kd_ctrl_page
.enabled
= 0;
4115 commpage_update_kdebug_state();
4117 ctx
= vfs_context_kernel();
4119 if (vnode_open(filename
, (O_CREAT
| FWRITE
| O_NOFOLLOW
), 0600, 0, &vp
, ctx
)) {
4123 kdbg_write_thread_map(vp
, ctx
);
4125 write_size
= nkdbufs
* sizeof(kd_buf
);
4126 ret
= kdbg_read(0, &write_size
, vp
, ctx
, RAW_VERSION1
);
4132 * Wait to synchronize the file to capture the I/O in the
4133 * TRACE_WRITING_EVENTS interval.
4135 ret
= VNOP_FSYNC(vp
, MNT_WAIT
, ctx
);
4138 * Balance the starting TRACE_WRITING_EVENTS tracepoint manually.
4140 kd_buf end_event
= {
4141 .debugid
= TRACE_WRITING_EVENTS
| DBG_FUNC_END
,
4144 .arg5
= thread_tid(current_thread()),
4146 kdbg_set_timestamp_and_cpu(&end_event
, kdbg_timestamp(),
4149 /* this is best effort -- ignore any errors */
4150 (void)kdbg_write_to_vnode((caddr_t
)&end_event
, sizeof(kd_buf
), vp
, ctx
,
4154 vnode_close(vp
, FWRITE
, ctx
);
4155 sync(current_proc(), (void *)NULL
, (int *)NULL
);
4162 kdbg_sysctl_continuous SYSCTL_HANDLER_ARGS
4164 #pragma unused(oidp, arg1, arg2)
4165 int value
= kdbg_continuous_time
;
4166 int ret
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
4168 if (ret
|| !req
->newptr
) {
4172 kdbg_continuous_time
= value
;
4176 SYSCTL_NODE(_kern
, OID_AUTO
, kdbg
, CTLFLAG_RD
| CTLFLAG_LOCKED
, 0,
4179 SYSCTL_PROC(_kern_kdbg
, OID_AUTO
, experimental_continuous
,
4180 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, 0,
4181 sizeof(int), kdbg_sysctl_continuous
, "I",
4182 "Set kdebug to use mach_continuous_time");
4184 SYSCTL_QUAD(_kern_kdbg
, OID_AUTO
, oldest_time
,
4185 CTLTYPE_QUAD
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
4186 &kd_ctrl_page
.oldest_time
,
4187 "Find the oldest timestamp still in trace");
4189 #if KDEBUG_MOJO_TRACE
4191 binary_search(uint32_t id
)
4196 high
= sizeof(kd_events
)/sizeof(kd_event_t
) - 1;
4200 mid
= (low
+ high
) / 2;
4203 return NULL
; /* failed */
4204 else if ( low
+ 1 >= high
) {
4205 /* We have a match */
4206 if (kd_events
[high
].id
== id
)
4207 return &kd_events
[high
];
4208 else if (kd_events
[low
].id
== id
)
4209 return &kd_events
[low
];
4211 return NULL
; /* search failed */
4213 else if (id
< kd_events
[mid
].id
)
4221 * Look up event id to get name string.
4222 * Using a per-cpu cache of a single entry
4223 * before resorting to a binary search of the full table.
4226 static kd_event_t
*last_hit
[MAX_CPUS
];
4228 event_lookup_cache(uint32_t cpu
, uint32_t id
)
4230 if (last_hit
[cpu
] == NULL
|| last_hit
[cpu
]->id
!= id
)
4231 last_hit
[cpu
] = binary_search(id
);
4232 return last_hit
[cpu
];
4235 static uint64_t kd_last_timstamp
;
4238 kdebug_serial_print(
4249 char kprintf_line
[192];
4251 uint64_t us
= timestamp
/ NSEC_PER_USEC
;
4252 uint64_t us_tenth
= (timestamp
% NSEC_PER_USEC
) / 100;
4253 uint64_t delta
= timestamp
- kd_last_timstamp
;
4254 uint64_t delta_us
= delta
/ NSEC_PER_USEC
;
4255 uint64_t delta_us_tenth
= (delta
% NSEC_PER_USEC
) / 100;
4256 uint32_t event_id
= debugid
& KDBG_EVENTID_MASK
;
4257 const char *command
;
4262 /* event time and delta from last */
4263 snprintf(kprintf_line
, sizeof(kprintf_line
),
4264 "%11llu.%1llu %8llu.%1llu ",
4265 us
, us_tenth
, delta_us
, delta_us_tenth
);
4268 /* event (id or name) - start prefixed by "[", end postfixed by "]" */
4269 bra
= (debugid
& DBG_FUNC_START
) ? "[" : " ";
4270 ket
= (debugid
& DBG_FUNC_END
) ? "]" : " ";
4271 ep
= event_lookup_cache(cpunum
, event_id
);
4273 if (strlen(ep
->name
) < sizeof(event
) - 3)
4274 snprintf(event
, sizeof(event
), "%s%s%s",
4275 bra
, ep
->name
, ket
);
4277 snprintf(event
, sizeof(event
), "%s%x(name too long)%s",
4278 bra
, event_id
, ket
);
4280 snprintf(event
, sizeof(event
), "%s%x%s",
4281 bra
, event_id
, ket
);
4283 snprintf(kprintf_line
+ strlen(kprintf_line
),
4284 sizeof(kprintf_line
) - strlen(kprintf_line
),
4287 /* arg1 .. arg4 with special cases for strings */
4290 case VFS_LOOKUP_DONE
:
4291 if (debugid
& DBG_FUNC_START
) {
4292 /* arg1 hex then arg2..arg4 chars */
4293 snprintf(kprintf_line
+ strlen(kprintf_line
),
4294 sizeof(kprintf_line
) - strlen(kprintf_line
),
4295 "%-16lx %-8s%-8s%-8s ",
4296 arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4299 /* else fall through for arg1..arg4 chars */
4300 case TRACE_STRING_EXEC
:
4301 case TRACE_STRING_NEWTHREAD
:
4302 case TRACE_INFO_STRING
:
4303 snprintf(kprintf_line
+ strlen(kprintf_line
),
4304 sizeof(kprintf_line
) - strlen(kprintf_line
),
4305 "%-8s%-8s%-8s%-8s ",
4306 (char*)&arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4309 snprintf(kprintf_line
+ strlen(kprintf_line
),
4310 sizeof(kprintf_line
) - strlen(kprintf_line
),
4311 "%-16lx %-16lx %-16lx %-16lx",
4312 arg1
, arg2
, arg3
, arg4
);
4315 /* threadid, cpu and command name */
4316 if (threadid
== (uintptr_t)thread_tid(current_thread()) &&
4318 current_proc()->p_comm
[0])
4319 command
= current_proc()->p_comm
;
4322 snprintf(kprintf_line
+ strlen(kprintf_line
),
4323 sizeof(kprintf_line
) - strlen(kprintf_line
),
4324 " %-16lx %-2d %s\n",
4325 threadid
, cpunum
, command
);
4327 kprintf("%s", kprintf_line
);
4328 kd_last_timstamp
= timestamp
;