]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/dtrace/dtrace_glue.c
xnu-4570.71.2.tar.gz
[apple/xnu.git] / bsd / dev / dtrace / dtrace_glue.c
1 /*
2 * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29
30 /*
31 * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol
32 * from this file (_dtrace_register_anon_DOF) always needs to be exported for
33 * an external kext to link against.
34 */
35
36 #if CONFIG_DTRACE
37
38 #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
39 #include <kern/thread.h>
40 #include <mach/thread_status.h>
41
42 #include <stdarg.h>
43 #include <string.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <sys/proc_internal.h>
48 #include <sys/kauth.h>
49 #include <sys/user.h>
50 #include <sys/systm.h>
51 #include <sys/dtrace.h>
52 #include <sys/dtrace_impl.h>
53 #include <libkern/OSAtomic.h>
54 #include <kern/kern_types.h>
55 #include <kern/timer_call.h>
56 #include <kern/thread_call.h>
57 #include <kern/task.h>
58 #include <kern/sched_prim.h>
59 #include <kern/queue.h>
60 #include <miscfs/devfs/devfs.h>
61 #include <kern/kalloc.h>
62
63 #include <mach/vm_param.h>
64 #include <mach/mach_vm.h>
65 #include <mach/task.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
68
69 /*
70 * pid/proc
71 */
72 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
73 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
74
75 /* Not called from probe context */
76 proc_t *
77 sprlock(pid_t pid)
78 {
79 proc_t* p;
80
81 if ((p = proc_find(pid)) == PROC_NULL) {
82 return PROC_NULL;
83 }
84
85 task_suspend_internal(p->task);
86
87 proc_lock(p);
88
89 lck_mtx_lock(&p->p_dtrace_sprlock);
90
91 return p;
92 }
93
94 /* Not called from probe context */
95 void
96 sprunlock(proc_t *p)
97 {
98 if (p != PROC_NULL) {
99 lck_mtx_unlock(&p->p_dtrace_sprlock);
100
101 proc_unlock(p);
102
103 task_resume_internal(p->task);
104
105 proc_rele(p);
106 }
107 }
108
109 /*
110 * uread/uwrite
111 */
112
113 // These are not exported from vm_map.h.
114 extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size);
115 extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size);
116
117 /* Not called from probe context */
118 int
119 uread(proc_t *p, void *buf, user_size_t len, user_addr_t a)
120 {
121 kern_return_t ret;
122
123 ASSERT(p != PROC_NULL);
124 ASSERT(p->task != NULL);
125
126 task_t task = p->task;
127
128 /*
129 * Grab a reference to the task vm_map_t to make sure
130 * the map isn't pulled out from under us.
131 *
132 * Because the proc_lock is not held at all times on all code
133 * paths leading here, it is possible for the proc to have
134 * exited. If the map is null, fail.
135 */
136 vm_map_t map = get_task_map_reference(task);
137 if (map) {
138 ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len);
139 vm_map_deallocate(map);
140 } else
141 ret = KERN_TERMINATED;
142
143 return (int)ret;
144 }
145
146
147 /* Not called from probe context */
148 int
149 uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a)
150 {
151 kern_return_t ret;
152
153 ASSERT(p != NULL);
154 ASSERT(p->task != NULL);
155
156 task_t task = p->task;
157
158 /*
159 * Grab a reference to the task vm_map_t to make sure
160 * the map isn't pulled out from under us.
161 *
162 * Because the proc_lock is not held at all times on all code
163 * paths leading here, it is possible for the proc to have
164 * exited. If the map is null, fail.
165 */
166 vm_map_t map = get_task_map_reference(task);
167 if (map) {
168 /* Find the memory permissions. */
169 uint32_t nestingDepth=999999;
170 vm_region_submap_short_info_data_64_t info;
171 mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
172 mach_vm_address_t address = (mach_vm_address_t)a;
173 mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len;
174
175 ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count);
176 if (ret != KERN_SUCCESS)
177 goto done;
178
179 vm_prot_t reprotect;
180
181 if (!(info.protection & VM_PROT_WRITE)) {
182 /* Save the original protection values for restoration later */
183 reprotect = info.protection;
184
185 if (info.max_protection & VM_PROT_WRITE) {
186 /* The memory is not currently writable, but can be made writable. */
187 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE);
188 } else {
189 /*
190 * The memory is not currently writable, and cannot be made writable. We need to COW this memory.
191 *
192 * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails.
193 */
194 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE);
195 }
196
197 if (ret != KERN_SUCCESS)
198 goto done;
199
200 } else {
201 /* The memory was already writable. */
202 reprotect = VM_PROT_NONE;
203 }
204
205 ret = vm_map_write_user( map,
206 buf,
207 (vm_map_address_t)a,
208 (vm_size_t)len);
209
210 if (ret != KERN_SUCCESS)
211 goto done;
212
213 if (reprotect != VM_PROT_NONE) {
214 ASSERT(reprotect & VM_PROT_EXECUTE);
215 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect);
216 }
217
218 done:
219 vm_map_deallocate(map);
220 } else
221 ret = KERN_TERMINATED;
222
223 return (int)ret;
224 }
225
226 /*
227 * cpuvar
228 */
229 lck_mtx_t cpu_lock;
230 lck_mtx_t cyc_lock;
231 lck_mtx_t mod_lock;
232
233 dtrace_cpu_t *cpu_list;
234 cpu_core_t *cpu_core; /* XXX TLB lockdown? */
235
236 /*
237 * cred_t
238 */
239
240 /*
241 * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since
242 * that function may try to resolve a lazy credential binding, which entails taking the proc_lock.
243 */
244 cred_t *
245 dtrace_CRED(void)
246 {
247 struct uthread *uthread = get_bsdthread_info(current_thread());
248
249 if (uthread == NULL)
250 return NULL;
251 else
252 return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */
253 }
254
255 #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr))
256 #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \
257 HAS_ALLPRIVS(cr) : \
258 PRIV_ISASSERT(&CR_OEPRIV(cr), pr))
259
260 int PRIV_POLICY_CHOICE(void* cred, int priv, int all)
261 {
262 #pragma unused(priv, all)
263 return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */
264 }
265
266 int
267 PRIV_POLICY_ONLY(void *cr, int priv, int boolean)
268 {
269 #pragma unused(priv, boolean)
270 return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */
271 }
272
273 /* XXX Get around const poisoning using structure assigns */
274 gid_t
275 crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(&copy_cr); }
276
277 uid_t
278 crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(&copy_cr); }
279
280 /*
281 * "cyclic"
282 */
283
284 typedef struct wrap_timer_call {
285 /* node attributes */
286 cyc_handler_t hdlr;
287 cyc_time_t when;
288 uint64_t deadline;
289 int cpuid;
290 boolean_t suspended;
291 struct timer_call call;
292
293 /* next item in the linked list */
294 LIST_ENTRY(wrap_timer_call) entries;
295 } wrap_timer_call_t;
296
297 #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL
298 #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL
299
300
301 typedef struct cyc_list {
302 cyc_omni_handler_t cyl_omni;
303 wrap_timer_call_t cyl_wrap_by_cpus[];
304 #if __arm__ && (__BIGGEST_ALIGNMENT__ > 4)
305 } __attribute__ ((aligned (8))) cyc_list_t;
306 #else
307 } cyc_list_t;
308 #endif
309
310 /* CPU going online/offline notifications */
311 void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL;
312 void dtrace_cpu_state_changed(int, boolean_t);
313
314 void
315 dtrace_install_cpu_hooks(void) {
316 dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed;
317 }
318
319 void
320 dtrace_cpu_state_changed(int cpuid, boolean_t is_running) {
321 #pragma unused(cpuid)
322 wrap_timer_call_t *wrapTC = NULL;
323 boolean_t suspend = (is_running ? FALSE : TRUE);
324 dtrace_icookie_t s;
325
326 /* Ensure that we're not going to leave the CPU */
327 s = dtrace_interrupt_disable();
328 assert(cpuid == cpu_number());
329
330 LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) {
331 assert(wrapTC->cpuid == cpu_number());
332 if (suspend) {
333 assert(!wrapTC->suspended);
334 /* If this fails, we'll panic anyway, so let's do this now. */
335 if (!timer_call_cancel(&wrapTC->call))
336 panic("timer_call_set_suspend() failed to cancel a timer call");
337 wrapTC->suspended = TRUE;
338 } else {
339 /* Rearm the timer, but ensure it was suspended first. */
340 assert(wrapTC->suspended);
341 clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(),
342 &wrapTC->deadline);
343 timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
344 TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
345 wrapTC->suspended = FALSE;
346 }
347
348 }
349
350 /* Restore the previous interrupt state. */
351 dtrace_interrupt_enable(s);
352 }
353
354 static void
355 _timer_call_apply_cyclic( void *ignore, void *vTChdl )
356 {
357 #pragma unused(ignore)
358 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl;
359
360 (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
361
362 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
363 timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL );
364 }
365
366 static cyclic_id_t
367 timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when)
368 {
369 uint64_t now;
370 dtrace_icookie_t s;
371
372 timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL );
373 wrapTC->hdlr = *handler;
374 wrapTC->when = *when;
375
376 nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval );
377
378 now = mach_absolute_time();
379 wrapTC->deadline = now;
380
381 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
382
383 /* Insert the timer to the list of the running timers on this CPU, and start it. */
384 s = dtrace_interrupt_disable();
385 wrapTC->cpuid = cpu_number();
386 LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries);
387 timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
388 TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
389 wrapTC->suspended = FALSE;
390 dtrace_interrupt_enable(s);
391
392 return (cyclic_id_t)wrapTC;
393 }
394
395 /*
396 * Executed on the CPU the timer is running on.
397 */
398 static void
399 timer_call_remove_cyclic(wrap_timer_call_t *wrapTC)
400 {
401 assert(wrapTC);
402 assert(cpu_number() == wrapTC->cpuid);
403
404 if (!timer_call_cancel(&wrapTC->call))
405 panic("timer_call_remove_cyclic() failed to cancel a timer call");
406
407 LIST_REMOVE(wrapTC, entries);
408 }
409
410 static void *
411 timer_call_get_cyclic_arg(wrap_timer_call_t *wrapTC)
412 {
413 return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL);
414 }
415
416 cyclic_id_t
417 cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when)
418 {
419 wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
420 if (NULL == wrapTC)
421 return CYCLIC_NONE;
422 else
423 return timer_call_add_cyclic( wrapTC, handler, when );
424 }
425
426 void
427 cyclic_timer_remove(cyclic_id_t cyclic)
428 {
429 ASSERT( cyclic != CYCLIC_NONE );
430
431 /* Removing a timer call must be done on the CPU the timer is running on. */
432 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic;
433 dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic);
434
435 _FREE((void *)cyclic, M_TEMP);
436 }
437
438 static void
439 _cyclic_add_omni(cyc_list_t *cyc_list)
440 {
441 cyc_time_t cT;
442 cyc_handler_t cH;
443 cyc_omni_handler_t *omni = &cyc_list->cyl_omni;
444
445 (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT);
446
447 wrap_timer_call_t *wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()];
448 timer_call_add_cyclic(wrapTC, &cH, &cT);
449 }
450
451 cyclic_id_list_t
452 cyclic_add_omni(cyc_omni_handler_t *omni)
453 {
454 cyc_list_t *cyc_list =
455 _MALLOC(sizeof(cyc_list_t) + NCPU * sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
456
457 if (NULL == cyc_list)
458 return NULL;
459
460 cyc_list->cyl_omni = *omni;
461
462 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list);
463
464 return (cyclic_id_list_t)cyc_list;
465 }
466
467 static void
468 _cyclic_remove_omni(cyc_list_t *cyc_list)
469 {
470 cyc_omni_handler_t *omni = &cyc_list->cyl_omni;
471 void *oarg;
472 wrap_timer_call_t *wrapTC;
473
474 /*
475 * If the processor was offline when dtrace started, we did not allocate
476 * a cyclic timer for this CPU.
477 */
478 if ((wrapTC = &cyc_list->cyl_wrap_by_cpus[cpu_number()]) != NULL) {
479 oarg = timer_call_get_cyclic_arg(wrapTC);
480 timer_call_remove_cyclic(wrapTC);
481 (omni->cyo_offline)(omni->cyo_arg, CPU, oarg);
482 }
483 }
484
485 void
486 cyclic_remove_omni(cyclic_id_list_t cyc_list)
487 {
488 ASSERT(cyc_list != NULL);
489
490 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list);
491 _FREE(cyc_list, M_TEMP);
492 }
493
494 typedef struct wrap_thread_call {
495 thread_call_t TChdl;
496 cyc_handler_t hdlr;
497 cyc_time_t when;
498 uint64_t deadline;
499 } wrap_thread_call_t;
500
501 /*
502 * _cyclic_apply will run on some thread under kernel_task. That's OK for the
503 * cleaner and the deadman, but too distant in time and place for the profile provider.
504 */
505 static void
506 _cyclic_apply( void *ignore, void *vTChdl )
507 {
508 #pragma unused(ignore)
509 wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl;
510
511 (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
512
513 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
514 (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
515
516 /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */
517 if (wrapTC->when.cyt_interval == WAKEUP_REAPER)
518 thread_wakeup((event_t)wrapTC);
519 }
520
521 cyclic_id_t
522 cyclic_add(cyc_handler_t *handler, cyc_time_t *when)
523 {
524 uint64_t now;
525
526 wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK);
527 if (NULL == wrapTC)
528 return CYCLIC_NONE;
529
530 wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL );
531 wrapTC->hdlr = *handler;
532 wrapTC->when = *when;
533
534 ASSERT(when->cyt_when == 0);
535 ASSERT(when->cyt_interval < WAKEUP_REAPER);
536
537 nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval);
538
539 now = mach_absolute_time();
540 wrapTC->deadline = now;
541
542 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
543 (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
544
545 return (cyclic_id_t)wrapTC;
546 }
547
548 static void
549 noop_cyh_func(void * ignore)
550 {
551 #pragma unused(ignore)
552 }
553
554 void
555 cyclic_remove(cyclic_id_t cyclic)
556 {
557 wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic;
558
559 ASSERT(cyclic != CYCLIC_NONE);
560
561 while (!thread_call_cancel(wrapTC->TChdl)) {
562 int ret = assert_wait(wrapTC, THREAD_UNINT);
563 ASSERT(ret == THREAD_WAITING);
564
565 wrapTC->when.cyt_interval = WAKEUP_REAPER;
566
567 ret = thread_block(THREAD_CONTINUE_NULL);
568 ASSERT(ret == THREAD_AWAKENED);
569 }
570
571 if (thread_call_free(wrapTC->TChdl))
572 _FREE(wrapTC, M_TEMP);
573 else {
574 /* Gut this cyclic and move on ... */
575 wrapTC->hdlr.cyh_func = noop_cyh_func;
576 wrapTC->when.cyt_interval = NEARLY_FOREVER;
577 }
578 }
579
580 /*
581 * ddi
582 */
583 void
584 ddi_report_dev(dev_info_t *devi)
585 {
586 #pragma unused(devi)
587 }
588
589 kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t);
590
591 kern_return_t
592 _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements)
593 {
594 #pragma unused(name, data, nelements)
595 return KERN_FAILURE;
596 }
597
598 int
599 ddi_driver_major(dev_info_t *devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); }
600
601 int
602 ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type,
603 minor_t minor_num, const char *node_type, int flag)
604 {
605 #pragma unused(spec_type,node_type,flag)
606 dev_t dev = makedev( ddi_driver_major(dip), minor_num );
607
608 if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 ))
609 return DDI_FAILURE;
610 else
611 return DDI_SUCCESS;
612 }
613
614 void
615 ddi_remove_minor_node(dev_info_t *dip, char *name)
616 {
617 #pragma unused(dip,name)
618 /* XXX called from dtrace_detach, so NOTREACHED for now. */
619 }
620
621 major_t
622 getemajor( dev_t d )
623 {
624 return (major_t) major(d);
625 }
626
627 minor_t
628 getminor ( dev_t d )
629 {
630 return (minor_t) minor(d);
631 }
632
633 dev_t
634 makedevice(major_t major, minor_t minor)
635 {
636 return makedev( major, minor );
637 }
638
639 int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue)
640 {
641 #pragma unused(dev, dip, flags, name)
642
643 return defvalue;
644 }
645
646 /*
647 * Kernel Debug Interface
648 */
649 int
650 kdi_dtrace_set(kdi_dtrace_set_t ignore)
651 {
652 #pragma unused(ignore)
653 return 0; /* Success */
654 }
655
656 extern void Debugger(const char*);
657
658 void
659 debug_enter(char *c) { Debugger(c); }
660
661 /*
662 * kmem
663 */
664
665 void *
666 dt_kmem_alloc(size_t size, int kmflag)
667 {
668 #pragma unused(kmflag)
669
670 /*
671 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
672 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
673 */
674 #if defined(DTRACE_MEMORY_ZONES)
675 return dtrace_alloc(size);
676 #else
677 return kalloc(size);
678 #endif
679 }
680
681 void *
682 dt_kmem_zalloc(size_t size, int kmflag)
683 {
684 #pragma unused(kmflag)
685
686 /*
687 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
688 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
689 */
690 #if defined(DTRACE_MEMORY_ZONES)
691 void* buf = dtrace_alloc(size);
692 #else
693 void* buf = kalloc(size);
694 #endif
695
696 if(!buf)
697 return NULL;
698
699 bzero(buf, size);
700
701 return buf;
702 }
703
704 void
705 dt_kmem_free(void *buf, size_t size)
706 {
707 #pragma unused(size)
708 /*
709 * DTrace relies on this, its doing a lot of NULL frees.
710 * A null free causes the debug builds to panic.
711 */
712 if (buf == NULL) return;
713
714 ASSERT(size > 0);
715
716 #if defined(DTRACE_MEMORY_ZONES)
717 dtrace_free(buf, size);
718 #else
719 kfree(buf, size);
720 #endif
721 }
722
723
724
725 /*
726 * aligned kmem allocator
727 * align should be a power of two
728 */
729
730 void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag)
731 {
732 void *mem, **addr_to_free;
733 intptr_t mem_aligned;
734 size_t *size_to_free, hdr_size;
735
736 /* Must be a power of two. */
737 assert(align != 0);
738 assert((align & (align - 1)) == 0);
739
740 /*
741 * We are going to add a header to the allocation. It contains
742 * the address to free and the total size of the buffer.
743 */
744 hdr_size = sizeof(size_t) + sizeof(void*);
745 mem = dt_kmem_alloc(size + align + hdr_size, kmflag);
746 if (mem == NULL)
747 return NULL;
748
749 mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1));
750
751 /* Write the address to free in the header. */
752 addr_to_free = (void**) (mem_aligned - sizeof(void*));
753 *addr_to_free = mem;
754
755 /* Write the size to free in the header. */
756 size_to_free = (size_t*) (mem_aligned - hdr_size);
757 *size_to_free = size + align + hdr_size;
758
759 return (void*) mem_aligned;
760 }
761
762 void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag)
763 {
764 void* buf;
765
766 buf = dt_kmem_alloc_aligned(size, align, kmflag);
767
768 if(!buf)
769 return NULL;
770
771 bzero(buf, size);
772
773 return buf;
774 }
775
776 void dt_kmem_free_aligned(void* buf, size_t size)
777 {
778 #pragma unused(size)
779 intptr_t ptr = (intptr_t) buf;
780 void **addr_to_free = (void**) (ptr - sizeof(void*));
781 size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*)));
782
783 if (buf == NULL)
784 return;
785
786 dt_kmem_free(*addr_to_free, *size_to_free);
787 }
788
789 /*
790 * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and
791 * doesn't specify constructor, destructor, or reclaim methods.
792 * At present, it always zeroes the block it obtains from kmem_cache_alloc().
793 * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE.
794 */
795 kmem_cache_t *
796 kmem_cache_create(
797 const char *name, /* descriptive name for this cache */
798 size_t bufsize, /* size of the objects it manages */
799 size_t align, /* required object alignment */
800 int (*constructor)(void *, void *, int), /* object constructor */
801 void (*destructor)(void *, void *), /* object destructor */
802 void (*reclaim)(void *), /* memory reclaim callback */
803 void *private, /* pass-thru arg for constr/destr/reclaim */
804 vmem_t *vmp, /* vmem source for slab allocation */
805 int cflags) /* cache creation flags */
806 {
807 #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags)
808 return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */
809 }
810
811 void *
812 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
813 {
814 #pragma unused(kmflag)
815 size_t bufsize = (size_t)cp;
816 return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK);
817 }
818
819 void
820 kmem_cache_free(kmem_cache_t *cp, void *buf)
821 {
822 #pragma unused(cp)
823 _FREE(buf, M_TEMP);
824 }
825
826 void
827 kmem_cache_destroy(kmem_cache_t *cp)
828 {
829 #pragma unused(cp)
830 }
831
832 /*
833 * taskq
834 */
835 extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */
836
837 static void
838 _taskq_apply( task_func_t func, thread_call_param_t arg )
839 {
840 func( (void *)arg );
841 }
842
843 taskq_t *
844 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
845 int maxalloc, uint_t flags)
846 {
847 #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags)
848
849 return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL );
850 }
851
852 taskqid_t
853 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
854 {
855 #pragma unused(flags)
856 thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func );
857 thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg );
858 return (taskqid_t) tq /* for lack of anything better */;
859 }
860
861 void
862 taskq_destroy(taskq_t *tq)
863 {
864 thread_call_cancel( (thread_call_t) tq );
865 thread_call_free( (thread_call_t) tq );
866 }
867
868 pri_t maxclsyspri;
869
870 /*
871 * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids
872 */
873 typedef unsigned int u_daddr_t;
874 #include "blist.h"
875
876 /* By passing around blist *handles*, the underlying blist can be resized as needed. */
877 struct blist_hdl {
878 blist_t blist;
879 };
880
881 vmem_t *
882 vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5,
883 void *ignore6, vmem_t *source, size_t qcache_max, int vmflag)
884 {
885 #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag)
886 blist_t bl;
887 struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK);
888
889 ASSERT(quantum == 1);
890 ASSERT(NULL == ignore5);
891 ASSERT(NULL == ignore6);
892 ASSERT(NULL == source);
893 ASSERT(0 == qcache_max);
894 ASSERT(vmflag & VMC_IDENTIFIER);
895
896 size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */
897
898 p->blist = bl = blist_create( size );
899 blist_free(bl, 0, size);
900 if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */
901
902 return (vmem_t *)p;
903 }
904
905 void *
906 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
907 {
908 #pragma unused(vmflag)
909 struct blist_hdl *q = (struct blist_hdl *)vmp;
910 blist_t bl = q->blist;
911 daddr_t p;
912
913 p = blist_alloc(bl, (daddr_t)size);
914
915 if ((daddr_t)-1 == p) {
916 blist_resize(&bl, (bl->bl_blocks) << 1, 1);
917 q->blist = bl;
918 p = blist_alloc(bl, (daddr_t)size);
919 if ((daddr_t)-1 == p)
920 panic("vmem_alloc: failure after blist_resize!");
921 }
922
923 return (void *)(uintptr_t)p;
924 }
925
926 void
927 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
928 {
929 struct blist_hdl *p = (struct blist_hdl *)vmp;
930
931 blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size );
932 }
933
934 void
935 vmem_destroy(vmem_t *vmp)
936 {
937 struct blist_hdl *p = (struct blist_hdl *)vmp;
938
939 blist_destroy( p->blist );
940 _FREE( p, sizeof(struct blist_hdl) );
941 }
942
943 /*
944 * Timing
945 */
946
947 /*
948 * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at
949 * January 1, 1970. Because it can be called from probe context, it must take no locks.
950 */
951
952 hrtime_t
953 dtrace_gethrestime(void)
954 {
955 clock_sec_t secs;
956 clock_nsec_t nanosecs;
957 uint64_t secs64, ns64;
958
959 clock_get_calendar_nanotime_nowait(&secs, &nanosecs);
960 secs64 = (uint64_t)secs;
961 ns64 = (uint64_t)nanosecs;
962
963 ns64 = ns64 + (secs64 * 1000000000LL);
964 return ns64;
965 }
966
967 /*
968 * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin.
969 * Hence its primary use is to specify intervals.
970 */
971
972 hrtime_t
973 dtrace_abs_to_nano(uint64_t elapsed)
974 {
975 static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
976
977 /*
978 * If this is the first time we've run, get the timebase.
979 * We can use denom == 0 to indicate that sTimebaseInfo is
980 * uninitialised because it makes no sense to have a zero
981 * denominator in a fraction.
982 */
983
984 if ( sTimebaseInfo.denom == 0 ) {
985 (void) clock_timebase_info(&sTimebaseInfo);
986 }
987
988 /*
989 * Convert to nanoseconds.
990 * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom;
991 *
992 * Provided the final result is representable in 64 bits the following maneuver will
993 * deliver that result without intermediate overflow.
994 */
995 if (sTimebaseInfo.denom == sTimebaseInfo.numer)
996 return elapsed;
997 else if (sTimebaseInfo.denom == 1)
998 return elapsed * (uint64_t)sTimebaseInfo.numer;
999 else {
1000 /* Decompose elapsed = eta32 * 2^32 + eps32: */
1001 uint64_t eta32 = elapsed >> 32;
1002 uint64_t eps32 = elapsed & 0x00000000ffffffffLL;
1003
1004 uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom;
1005
1006 /* Form product of elapsed64 (decomposed) and numer: */
1007 uint64_t mu64 = numer * eta32;
1008 uint64_t lambda64 = numer * eps32;
1009
1010 /* Divide the constituents by denom: */
1011 uint64_t q32 = mu64/denom;
1012 uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */
1013
1014 return (q32 << 32) + ((r32 << 32) + lambda64)/denom;
1015 }
1016 }
1017
1018 hrtime_t
1019 dtrace_gethrtime(void)
1020 {
1021 static uint64_t start = 0;
1022
1023 if (start == 0)
1024 start = mach_absolute_time();
1025
1026 return dtrace_abs_to_nano(mach_absolute_time() - start);
1027 }
1028
1029 /*
1030 * Atomicity and synchronization
1031 */
1032 uint32_t
1033 dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new)
1034 {
1035 if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target ))
1036 return cmp;
1037 else
1038 return ~cmp; /* Must return something *other* than cmp */
1039 }
1040
1041 void *
1042 dtrace_casptr(void *target, void *cmp, void *new)
1043 {
1044 if (OSCompareAndSwapPtr( cmp, new, (void**)target ))
1045 return cmp;
1046 else
1047 return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */
1048 }
1049
1050 /*
1051 * Interrupt manipulation
1052 */
1053 dtrace_icookie_t
1054 dtrace_interrupt_disable(void)
1055 {
1056 return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE);
1057 }
1058
1059 void
1060 dtrace_interrupt_enable(dtrace_icookie_t reenable)
1061 {
1062 (void)ml_set_interrupts_enabled((boolean_t)reenable);
1063 }
1064
1065 /*
1066 * MP coordination
1067 */
1068 static void
1069 dtrace_sync_func(void) {}
1070
1071 /*
1072 * dtrace_sync() is not called from probe context.
1073 */
1074 void
1075 dtrace_sync(void)
1076 {
1077 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
1078 }
1079
1080 /*
1081 * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context.
1082 */
1083
1084 extern kern_return_t dtrace_copyio_preflight(addr64_t);
1085 extern kern_return_t dtrace_copyio_postflight(addr64_t);
1086
1087 static int
1088 dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size)
1089 {
1090 #pragma unused(kaddr)
1091
1092 vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */
1093 dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */
1094
1095 ASSERT(kaddr + size >= kaddr);
1096
1097 if ( uaddr + size < uaddr || /* Avoid address wrap. */
1098 KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */
1099 {
1100 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1101 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1102 return (0);
1103 }
1104 return (1);
1105 }
1106
1107 void
1108 dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1109 {
1110 #pragma unused(flags)
1111
1112 if (dtrace_copycheck( src, dst, len )) {
1113 if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) {
1114 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1115 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1116 }
1117 dtrace_copyio_postflight(src);
1118 }
1119 }
1120
1121 void
1122 dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1123 {
1124 #pragma unused(flags)
1125
1126 size_t actual;
1127
1128 if (dtrace_copycheck( src, dst, len )) {
1129 /* copyin as many as 'len' bytes. */
1130 int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual);
1131
1132 /*
1133 * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was
1134 * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on.
1135 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1136 * to the caller.
1137 */
1138 if (error && error != ENAMETOOLONG) {
1139 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1140 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1141 }
1142 dtrace_copyio_postflight(src);
1143 }
1144 }
1145
1146 void
1147 dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1148 {
1149 #pragma unused(flags)
1150
1151 if (dtrace_copycheck( dst, src, len )) {
1152 if (copyout((const void *)src, dst, (vm_size_t)len)) {
1153 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1154 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1155 }
1156 dtrace_copyio_postflight(dst);
1157 }
1158 }
1159
1160 void
1161 dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1162 {
1163 #pragma unused(flags)
1164
1165 size_t actual;
1166
1167 if (dtrace_copycheck( dst, src, len )) {
1168
1169 /*
1170 * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was
1171 * not encountered. We raise CPU_DTRACE_BADADDR in that case.
1172 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1173 * to the caller.
1174 */
1175 if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) {
1176 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1177 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1178 }
1179 dtrace_copyio_postflight(dst);
1180 }
1181 }
1182
1183 extern const int copysize_limit_panic;
1184
1185 int
1186 dtrace_buffer_copyout(const void *kaddr, user_addr_t uaddr, vm_size_t nbytes)
1187 {
1188 /*
1189 * Partition the copyout in copysize_limit_panic-sized chunks
1190 */
1191 while (nbytes >= (vm_size_t)copysize_limit_panic) {
1192 if (copyout(kaddr, uaddr, copysize_limit_panic) != 0)
1193 return (EFAULT);
1194
1195 nbytes -= copysize_limit_panic;
1196 uaddr += copysize_limit_panic;
1197 kaddr += copysize_limit_panic;
1198 }
1199 if (nbytes > 0) {
1200 if (copyout(kaddr, uaddr, nbytes) != 0)
1201 return (EFAULT);
1202 }
1203
1204 return (0);
1205 }
1206
1207 uint8_t
1208 dtrace_fuword8(user_addr_t uaddr)
1209 {
1210 uint8_t ret = 0;
1211
1212 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1213 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1214 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1215 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1216 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1217 }
1218 dtrace_copyio_postflight(uaddr);
1219 }
1220 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1221
1222 return(ret);
1223 }
1224
1225 uint16_t
1226 dtrace_fuword16(user_addr_t uaddr)
1227 {
1228 uint16_t ret = 0;
1229
1230 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1231 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1232 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1233 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1234 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1235 }
1236 dtrace_copyio_postflight(uaddr);
1237 }
1238 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1239
1240 return(ret);
1241 }
1242
1243 uint32_t
1244 dtrace_fuword32(user_addr_t uaddr)
1245 {
1246 uint32_t ret = 0;
1247
1248 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1249 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1250 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1251 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1252 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1253 }
1254 dtrace_copyio_postflight(uaddr);
1255 }
1256 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1257
1258 return(ret);
1259 }
1260
1261 uint64_t
1262 dtrace_fuword64(user_addr_t uaddr)
1263 {
1264 uint64_t ret = 0;
1265
1266 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1267 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1268 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1269 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1270 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1271 }
1272 dtrace_copyio_postflight(uaddr);
1273 }
1274 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1275
1276 return(ret);
1277 }
1278
1279 /*
1280 * Emulation of Solaris fuword / suword
1281 * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds.
1282 */
1283
1284 int
1285 fuword8(user_addr_t uaddr, uint8_t *value)
1286 {
1287 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) {
1288 return -1;
1289 }
1290
1291 return 0;
1292 }
1293
1294 int
1295 fuword16(user_addr_t uaddr, uint16_t *value)
1296 {
1297 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) {
1298 return -1;
1299 }
1300
1301 return 0;
1302 }
1303
1304 int
1305 fuword32(user_addr_t uaddr, uint32_t *value)
1306 {
1307 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) {
1308 return -1;
1309 }
1310
1311 return 0;
1312 }
1313
1314 int
1315 fuword64(user_addr_t uaddr, uint64_t *value)
1316 {
1317 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) {
1318 return -1;
1319 }
1320
1321 return 0;
1322 }
1323
1324 void
1325 fuword8_noerr(user_addr_t uaddr, uint8_t *value)
1326 {
1327 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) {
1328 *value = 0;
1329 }
1330 }
1331
1332 void
1333 fuword16_noerr(user_addr_t uaddr, uint16_t *value)
1334 {
1335 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) {
1336 *value = 0;
1337 }
1338 }
1339
1340 void
1341 fuword32_noerr(user_addr_t uaddr, uint32_t *value)
1342 {
1343 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) {
1344 *value = 0;
1345 }
1346 }
1347
1348 void
1349 fuword64_noerr(user_addr_t uaddr, uint64_t *value)
1350 {
1351 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) {
1352 *value = 0;
1353 }
1354 }
1355
1356 int
1357 suword64(user_addr_t addr, uint64_t value)
1358 {
1359 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1360 return -1;
1361 }
1362
1363 return 0;
1364 }
1365
1366 int
1367 suword32(user_addr_t addr, uint32_t value)
1368 {
1369 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1370 return -1;
1371 }
1372
1373 return 0;
1374 }
1375
1376 int
1377 suword16(user_addr_t addr, uint16_t value)
1378 {
1379 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1380 return -1;
1381 }
1382
1383 return 0;
1384 }
1385
1386 int
1387 suword8(user_addr_t addr, uint8_t value)
1388 {
1389 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1390 return -1;
1391 }
1392
1393 return 0;
1394 }
1395
1396
1397 /*
1398 * Miscellaneous
1399 */
1400 extern boolean_t dtrace_tally_fault(user_addr_t);
1401
1402 boolean_t
1403 dtrace_tally_fault(user_addr_t uaddr)
1404 {
1405 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1406 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1407 return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE );
1408 }
1409
1410 #define TOTTY 0x02
1411 extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */
1412
1413 int
1414 vuprintf(const char *format, va_list ap)
1415 {
1416 return prf(format, ap, TOTTY, NULL);
1417 }
1418
1419 /* Not called from probe context */
1420 void cmn_err( int level, const char *format, ... )
1421 {
1422 #pragma unused(level)
1423 va_list alist;
1424
1425 va_start(alist, format);
1426 vuprintf(format, alist);
1427 va_end(alist);
1428 uprintf("\n");
1429 }
1430
1431 /*
1432 * History:
1433 * 2002-01-24 gvdl Initial implementation of strstr
1434 */
1435
1436 __private_extern__ const char *
1437 strstr(const char *in, const char *str)
1438 {
1439 char c;
1440 size_t len;
1441 if (!in || !str)
1442 return in;
1443
1444 c = *str++;
1445 if (!c)
1446 return (const char *) in; // Trivial empty string case
1447
1448 len = strlen(str);
1449 do {
1450 char sc;
1451
1452 do {
1453 sc = *in++;
1454 if (!sc)
1455 return (char *) 0;
1456 } while (sc != c);
1457 } while (strncmp(in, str, len) != 0);
1458
1459 return (const char *) (in - 1);
1460 }
1461
1462 const void*
1463 bsearch(const void *key, const void *base0, size_t nmemb, size_t size, int (*compar)(const void *, const void *))
1464 {
1465 const char *base = base0;
1466 size_t lim;
1467 int cmp;
1468 const void *p;
1469 for (lim = nmemb; lim != 0; lim >>= 1) {
1470 p = base + (lim >> 1) * size;
1471 cmp = (*compar)(key, p);
1472 if (cmp == 0)
1473 return p;
1474 if (cmp > 0) { /* key > p: move right */
1475 base = (const char *)p + size;
1476 lim--;
1477 } /* else move left */
1478 }
1479 return (NULL);
1480 }
1481
1482 /*
1483 * Runtime and ABI
1484 */
1485 uintptr_t
1486 dtrace_caller(int ignore)
1487 {
1488 #pragma unused(ignore)
1489 return -1; /* Just as in Solaris dtrace_asm.s */
1490 }
1491
1492 int
1493 dtrace_getstackdepth(int aframes)
1494 {
1495 struct frame *fp = (struct frame *)__builtin_frame_address(0);
1496 struct frame *nextfp, *minfp, *stacktop;
1497 int depth = 0;
1498 int on_intr;
1499
1500 if ((on_intr = CPU_ON_INTR(CPU)) != 0)
1501 stacktop = (struct frame *)dtrace_get_cpu_int_stack_top();
1502 else
1503 stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
1504
1505 minfp = fp;
1506
1507 aframes++;
1508
1509 for (;;) {
1510 depth++;
1511
1512 nextfp = *(struct frame **)fp;
1513
1514 if (nextfp <= minfp || nextfp >= stacktop) {
1515 if (on_intr) {
1516 /*
1517 * Hop from interrupt stack to thread stack.
1518 */
1519 vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
1520
1521 minfp = (struct frame *)kstack_base;
1522 stacktop = (struct frame *)(kstack_base + kernel_stack_size);
1523
1524 on_intr = 0;
1525 continue;
1526 }
1527 break;
1528 }
1529
1530 fp = nextfp;
1531 minfp = fp;
1532 }
1533
1534 if (depth <= aframes)
1535 return (0);
1536
1537 return (depth - aframes);
1538 }
1539
1540 /*
1541 * Unconsidered
1542 */
1543 void
1544 dtrace_vtime_enable(void) {}
1545
1546 void
1547 dtrace_vtime_disable(void) {}
1548
1549 #else /* else ! CONFIG_DTRACE */
1550
1551 #include <sys/types.h>
1552 #include <mach/vm_types.h>
1553 #include <mach/kmod.h>
1554
1555 /*
1556 * This exists to prevent build errors when dtrace is unconfigured.
1557 */
1558
1559 kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t);
1560
1561 kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) {
1562 #pragma unused(arg1, arg2, arg3)
1563
1564 return KERN_FAILURE;
1565 }
1566
1567 #endif /* CONFIG_DTRACE */