4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Portions Copyright (c) 2013, 2016, Joyent, Inc. All rights reserved.
24 * Portions Copyright (c) 2013 by Delphix. All rights reserved.
28 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
29 * Use is subject to license terms.
32 /* #pragma ident "@(#)dtrace.c 1.65 08/07/02 SMI" */
35 * DTrace - Dynamic Tracing for Solaris
37 * This is the implementation of the Solaris Dynamic Tracing framework
38 * (DTrace). The user-visible interface to DTrace is described at length in
39 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
40 * library, the in-kernel DTrace framework, and the DTrace providers are
41 * described in the block comments in the <sys/dtrace.h> header file. The
42 * internal architecture of DTrace is described in the block comments in the
43 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
44 * implementation very much assume mastery of all of these sources; if one has
45 * an unanswered question about the implementation, one should consult them
48 * The functions here are ordered roughly as follows:
50 * - Probe context functions
51 * - Probe hashing functions
52 * - Non-probe context utility functions
53 * - Matching functions
54 * - Provider-to-Framework API functions
55 * - Probe management functions
56 * - DIF object functions
58 * - Predicate functions
61 * - Enabling functions
63 * - Anonymous enabling functions
65 * - Consumer state functions
68 * - Driver cookbook functions
70 * Each group of functions begins with a block comment labelled the "DTrace
71 * [Group] Functions", allowing one to find each block by searching forward
72 * on capital-f functions.
74 #include <sys/errno.h>
75 #include <sys/types.h>
78 #include <sys/systm.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/param.h>
81 #include <sys/proc_internal.h>
82 #include <sys/ioctl.h>
83 #include <sys/fcntl.h>
84 #include <miscfs/devfs/devfs.h>
85 #include <sys/malloc.h>
86 #include <sys/kernel_types.h>
87 #include <sys/proc_internal.h>
88 #include <sys/uio_internal.h>
89 #include <sys/kauth.h>
92 #include <mach/exception_types.h>
93 #include <sys/signalvar.h>
94 #include <mach/task.h>
95 #include <kern/zalloc.h>
97 #include <kern/sched_prim.h>
98 #include <kern/task.h>
99 #include <netinet/in.h>
100 #include <libkern/sysctl.h>
101 #include <sys/kdebug.h>
104 #include <kern/monotonic.h>
105 #include <machine/monotonic.h>
106 #endif /* MONOTONIC */
108 #include <IOKit/IOPlatformExpert.h>
110 #include <kern/cpu_data.h>
111 extern uint32_t pmap_find_phys(void *, uint64_t);
112 extern boolean_t
pmap_valid_page(uint32_t);
113 extern void OSKextRegisterKextsWithDTrace(void);
114 extern kmod_info_t g_kernel_kmod_info
;
116 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
117 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
119 #define t_predcache t_dtrace_predcache /* Cosmetic. Helps readability of thread.h */
121 extern void dtrace_suspend(void);
122 extern void dtrace_resume(void);
123 extern void dtrace_init(void);
124 extern void helper_init(void);
125 extern void fasttrap_init(void);
127 static int dtrace_lazy_dofs_duplicate(proc_t
*, proc_t
*);
128 extern void dtrace_lazy_dofs_destroy(proc_t
*);
129 extern void dtrace_postinit(void);
131 extern void dtrace_proc_fork(proc_t
*, proc_t
*, int);
132 extern void dtrace_proc_exec(proc_t
*);
133 extern void dtrace_proc_exit(proc_t
*);
135 * DTrace Tunable Variables
137 * The following variables may be dynamically tuned by using sysctl(8), the
138 * variables being stored in the kern.dtrace namespace. For example:
139 * sysctl kern.dtrace.dof_maxsize = 1048575 # 1M
141 * In general, the only variables that one should be tuning this way are those
142 * that affect system-wide DTrace behavior, and for which the default behavior
143 * is undesirable. Most of these variables are tunable on a per-consumer
144 * basis using DTrace options, and need not be tuned on a system-wide basis.
145 * When tuning these variables, avoid pathological values; while some attempt
146 * is made to verify the integrity of these variables, they are not considered
147 * part of the supported interface to DTrace, and they are therefore not
148 * checked comprehensively.
150 uint64_t dtrace_buffer_memory_maxsize
= 0; /* initialized in dtrace_init */
151 uint64_t dtrace_buffer_memory_inuse
= 0;
152 int dtrace_destructive_disallow
= 0;
153 dtrace_optval_t dtrace_nonroot_maxsize
= (16 * 1024 * 1024);
154 size_t dtrace_difo_maxsize
= (256 * 1024);
155 dtrace_optval_t dtrace_dof_maxsize
= (512 * 1024);
156 dtrace_optval_t dtrace_statvar_maxsize
= (16 * 1024);
157 dtrace_optval_t dtrace_statvar_maxsize_max
= (16 * 10 * 1024);
158 size_t dtrace_actions_max
= (16 * 1024);
159 size_t dtrace_retain_max
= 1024;
160 dtrace_optval_t dtrace_helper_actions_max
= 32;
161 dtrace_optval_t dtrace_helper_providers_max
= 64;
162 dtrace_optval_t dtrace_dstate_defsize
= (1 * 1024 * 1024);
163 size_t dtrace_strsize_default
= 256;
164 dtrace_optval_t dtrace_strsize_min
= 8;
165 dtrace_optval_t dtrace_strsize_max
= 65536;
166 dtrace_optval_t dtrace_cleanrate_default
= 990099000; /* 1.1 hz */
167 dtrace_optval_t dtrace_cleanrate_min
= 20000000; /* 50 hz */
168 dtrace_optval_t dtrace_cleanrate_max
= (uint64_t)60 * NANOSEC
; /* 1/minute */
169 dtrace_optval_t dtrace_aggrate_default
= NANOSEC
; /* 1 hz */
170 dtrace_optval_t dtrace_statusrate_default
= NANOSEC
; /* 1 hz */
171 dtrace_optval_t dtrace_statusrate_max
= (hrtime_t
)10 * NANOSEC
; /* 6/minute */
172 dtrace_optval_t dtrace_switchrate_default
= NANOSEC
; /* 1 hz */
173 dtrace_optval_t dtrace_nspec_default
= 1;
174 dtrace_optval_t dtrace_specsize_default
= 32 * 1024;
175 dtrace_optval_t dtrace_stackframes_default
= 20;
176 dtrace_optval_t dtrace_ustackframes_default
= 20;
177 dtrace_optval_t dtrace_jstackframes_default
= 50;
178 dtrace_optval_t dtrace_jstackstrsize_default
= 512;
179 dtrace_optval_t dtrace_buflimit_default
= 75;
180 dtrace_optval_t dtrace_buflimit_min
= 1;
181 dtrace_optval_t dtrace_buflimit_max
= 99;
182 int dtrace_msgdsize_max
= 128;
183 hrtime_t dtrace_chill_max
= 500 * (NANOSEC
/ MILLISEC
); /* 500 ms */
184 hrtime_t dtrace_chill_interval
= NANOSEC
; /* 1000 ms */
185 int dtrace_devdepth_max
= 32;
186 int dtrace_err_verbose
;
187 int dtrace_provide_private_probes
= 0;
188 hrtime_t dtrace_deadman_interval
= NANOSEC
;
189 hrtime_t dtrace_deadman_timeout
= (hrtime_t
)10 * NANOSEC
;
190 hrtime_t dtrace_deadman_user
= (hrtime_t
)30 * NANOSEC
;
193 * DTrace External Variables
195 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
196 * available to DTrace consumers via the backtick (`) syntax. One of these,
197 * dtrace_zero, is made deliberately so: it is provided as a source of
198 * well-known, zero-filled memory. While this variable is not documented,
199 * it is used by some translators as an implementation detail.
201 const char dtrace_zero
[256] = { 0 }; /* zero-filled memory */
202 unsigned int dtrace_max_cpus
= 0; /* number of enabled cpus */
204 * DTrace Internal Variables
206 static dev_info_t
*dtrace_devi
; /* device info */
207 static vmem_t
*dtrace_arena
; /* probe ID arena */
208 static taskq_t
*dtrace_taskq
; /* task queue */
209 static dtrace_probe_t
**dtrace_probes
; /* array of all probes */
210 static int dtrace_nprobes
; /* number of probes */
211 static dtrace_provider_t
*dtrace_provider
; /* provider list */
212 static dtrace_meta_t
*dtrace_meta_pid
; /* user-land meta provider */
213 static int dtrace_opens
; /* number of opens */
214 static int dtrace_helpers
; /* number of helpers */
215 static dtrace_hash_t
*dtrace_bymod
; /* probes hashed by module */
216 static dtrace_hash_t
*dtrace_byfunc
; /* probes hashed by function */
217 static dtrace_hash_t
*dtrace_byname
; /* probes hashed by name */
218 static dtrace_toxrange_t
*dtrace_toxrange
; /* toxic range array */
219 static int dtrace_toxranges
; /* number of toxic ranges */
220 static int dtrace_toxranges_max
; /* size of toxic range array */
221 static dtrace_anon_t dtrace_anon
; /* anonymous enabling */
222 static kmem_cache_t
*dtrace_state_cache
; /* cache for dynamic state */
223 static uint64_t dtrace_vtime_references
; /* number of vtimestamp refs */
224 static kthread_t
*dtrace_panicked
; /* panicking thread */
225 static dtrace_ecb_t
*dtrace_ecb_create_cache
; /* cached created ECB */
226 static dtrace_genid_t dtrace_probegen
; /* current probe generation */
227 static dtrace_helpers_t
*dtrace_deferred_pid
; /* deferred helper list */
228 static dtrace_enabling_t
*dtrace_retained
; /* list of retained enablings */
229 static dtrace_genid_t dtrace_retained_gen
; /* current retained enab gen */
230 static dtrace_dynvar_t dtrace_dynhash_sink
; /* end of dynamic hash chains */
232 static int dtrace_dof_mode
; /* See dtrace_impl.h for a description of Darwin's dof modes. */
235 * This does't quite fit as an internal variable, as it must be accessed in
236 * fbt_provide and sdt_provide. Its clearly not a dtrace tunable variable either...
238 int dtrace_kernel_symbol_mode
; /* See dtrace_impl.h for a description of Darwin's kernel symbol modes. */
239 static uint32_t dtrace_wake_clients
;
243 * To save memory, some common memory allocations are given a
244 * unique zone. For example, dtrace_probe_t is 72 bytes in size,
245 * which means it would fall into the kalloc.128 bucket. With
246 * 20k elements allocated, the space saved is substantial.
249 struct zone
*dtrace_probe_t_zone
;
251 static int dtrace_module_unloaded(struct kmod_info
*kmod
);
255 * DTrace is protected by three (relatively coarse-grained) locks:
257 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
258 * including enabling state, probes, ECBs, consumer state, helper state,
259 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
260 * probe context is lock-free -- synchronization is handled via the
261 * dtrace_sync() cross call mechanism.
263 * (2) dtrace_provider_lock is required when manipulating provider state, or
264 * when provider state must be held constant.
266 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
267 * when meta provider state must be held constant.
269 * The lock ordering between these three locks is dtrace_meta_lock before
270 * dtrace_provider_lock before dtrace_lock. (In particular, there are
271 * several places where dtrace_provider_lock is held by the framework as it
272 * calls into the providers -- which then call back into the framework,
273 * grabbing dtrace_lock.)
275 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
276 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
277 * role as a coarse-grained lock; it is acquired before both of these locks.
278 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
279 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
280 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
281 * acquired _between_ dtrace_provider_lock and dtrace_lock.
288 * For porting purposes, all kmutex_t vars have been changed
289 * to lck_mtx_t, which require explicit initialization.
291 * kmutex_t becomes lck_mtx_t
292 * mutex_enter() becomes lck_mtx_lock()
293 * mutex_exit() becomes lck_mtx_unlock()
295 * Lock asserts are changed like this:
297 * ASSERT(MUTEX_HELD(&cpu_lock));
299 * LCK_MTX_ASSERT(&cpu_lock, LCK_MTX_ASSERT_OWNED);
302 static lck_mtx_t dtrace_lock
; /* probe state lock */
303 static lck_mtx_t dtrace_provider_lock
; /* provider state lock */
304 static lck_mtx_t dtrace_meta_lock
; /* meta-provider state lock */
305 static lck_rw_t dtrace_dof_mode_lock
; /* dof mode lock */
308 * DTrace Provider Variables
310 * These are the variables relating to DTrace as a provider (that is, the
311 * provider of the BEGIN, END, and ERROR probes).
313 static dtrace_pattr_t dtrace_provider_attr
= {
314 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
315 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
316 { DTRACE_STABILITY_PRIVATE
, DTRACE_STABILITY_PRIVATE
, DTRACE_CLASS_UNKNOWN
},
317 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
318 { DTRACE_STABILITY_STABLE
, DTRACE_STABILITY_STABLE
, DTRACE_CLASS_COMMON
},
326 dtrace_enable_nullop(void)
331 static dtrace_pops_t dtrace_provider_ops
= {
332 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
,
333 (void (*)(void *, struct modctl
*))dtrace_nullop
,
334 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
,
335 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
336 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
337 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
,
341 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
344 static dtrace_id_t dtrace_probeid_begin
; /* special BEGIN probe */
345 static dtrace_id_t dtrace_probeid_end
; /* special END probe */
346 dtrace_id_t dtrace_probeid_error
; /* special ERROR probe */
349 * DTrace Helper Tracing Variables
351 uint32_t dtrace_helptrace_next
= 0;
352 uint32_t dtrace_helptrace_nlocals
;
353 char *dtrace_helptrace_buffer
;
354 size_t dtrace_helptrace_bufsize
= 512 * 1024;
357 int dtrace_helptrace_enabled
= 1;
359 int dtrace_helptrace_enabled
= 0;
362 #if defined (__arm64__)
364 * The ioctl for adding helper DOF is based on the
365 * size of a user_addr_t. We need to recognize both
366 * U32 and U64 as the same action.
368 #define DTRACEHIOC_ADDDOF_U32 _IOW('h', 4, user32_addr_t)
369 #define DTRACEHIOC_ADDDOF_U64 _IOW('h', 4, user64_addr_t)
370 #endif /* __arm64__ */
373 * DTrace Error Hashing
375 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
376 * table. This is very useful for checking coverage of tests that are
377 * expected to induce DIF or DOF processing errors, and may be useful for
378 * debugging problems in the DIF code generator or in DOF generation . The
379 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
382 static dtrace_errhash_t dtrace_errhash
[DTRACE_ERRHASHSZ
];
383 static const char *dtrace_errlast
;
384 static kthread_t
*dtrace_errthread
;
385 static lck_mtx_t dtrace_errlock
;
389 * DTrace Macros and Constants
391 * These are various macros that are useful in various spots in the
392 * implementation, along with a few random constants that have no meaning
393 * outside of the implementation. There is no real structure to this cpp
394 * mishmash -- but is there ever?
396 #define DTRACE_HASHSTR(hash, probe) \
397 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
399 #define DTRACE_HASHNEXT(hash, probe) \
400 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
402 #define DTRACE_HASHPREV(hash, probe) \
403 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
405 #define DTRACE_HASHEQ(hash, lhs, rhs) \
406 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
407 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
409 #define DTRACE_AGGHASHSIZE_SLEW 17
411 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
414 * The key for a thread-local variable consists of the lower 61 bits of the
415 * current_thread(), plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
416 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
417 * equal to a variable identifier. This is necessary (but not sufficient) to
418 * assure that global associative arrays never collide with thread-local
419 * variables. To guarantee that they cannot collide, we must also define the
420 * order for keying dynamic variables. That order is:
422 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
424 * Because the variable-key and the tls-key are in orthogonal spaces, there is
425 * no way for a global variable key signature to match a thread-local key
428 #if defined (__x86_64__)
429 /* FIXME: two function calls!! */
430 #define DTRACE_TLS_THRKEY(where) { \
431 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
432 uint64_t thr = (uintptr_t)current_thread(); \
433 ASSERT(intr < (1 << 3)); \
434 (where) = ((thr + DIF_VARIABLE_MAX) & \
435 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
437 #elif defined(__arm__)
438 /* FIXME: three function calls!!! */
439 #define DTRACE_TLS_THRKEY(where) { \
440 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
441 uint64_t thr = (uintptr_t)current_thread(); \
442 uint_t pid = (uint_t)dtrace_proc_selfpid(); \
443 ASSERT(intr < (1 << 3)); \
444 (where) = (((thr << 32 | pid) + DIF_VARIABLE_MAX) & \
445 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
447 #elif defined (__arm64__)
448 /* FIXME: two function calls!! */
449 #define DTRACE_TLS_THRKEY(where) { \
450 uint_t intr = ml_at_interrupt_context(); /* Note: just one measly bit */ \
451 uint64_t thr = (uintptr_t)current_thread(); \
452 ASSERT(intr < (1 << 3)); \
453 (where) = ((thr + DIF_VARIABLE_MAX) & \
454 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
457 #error Unknown architecture
460 #define DT_BSWAP_8(x) ((x) & 0xff)
461 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
462 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
463 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
465 #define DT_MASK_LO 0x00000000FFFFFFFFULL
467 #define DTRACE_STORE(type, tomax, offset, what) \
468 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
471 #define DTRACE_ALIGNCHECK(addr, size, flags) \
472 if (addr & (MIN(size,4) - 1)) { \
473 *flags |= CPU_DTRACE_BADALIGN; \
474 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
478 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
480 if ((remp) != NULL) { \
481 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
487 * Test whether a range of memory starting at testaddr of size testsz falls
488 * within the range of memory described by addr, sz. We take care to avoid
489 * problems with overflow and underflow of the unsigned quantities, and
490 * disallow all negative sizes. Ranges of size 0 are allowed.
492 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
493 ((testaddr) - (baseaddr) < (basesz) && \
494 (testaddr) + (testsz) - (baseaddr) <= (basesz) && \
495 (testaddr) + (testsz) >= (testaddr))
498 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
499 * alloc_sz on the righthand side of the comparison in order to avoid overflow
500 * or underflow in the comparison with it. This is simpler than the INRANGE
501 * check above, because we know that the dtms_scratch_ptr is valid in the
502 * range. Allocations of size zero are allowed.
504 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
505 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
506 (mstate)->dtms_scratch_ptr >= (alloc_sz))
508 #define RECOVER_LABEL(bits) dtraceLoadRecover##bits:
510 #if defined (__x86_64__) || (defined (__arm__) || defined (__arm64__))
511 #define DTRACE_LOADFUNC(bits) \
513 uint##bits##_t dtrace_load##bits(uintptr_t addr); \
516 dtrace_load##bits(uintptr_t addr) \
518 size_t size = bits / NBBY; \
520 uint##bits##_t rval = 0; \
522 volatile uint16_t *flags = (volatile uint16_t *) \
523 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
525 DTRACE_ALIGNCHECK(addr, size, flags); \
527 for (i = 0; i < dtrace_toxranges; i++) { \
528 if (addr >= dtrace_toxrange[i].dtt_limit) \
531 if (addr + size <= dtrace_toxrange[i].dtt_base) \
535 * This address falls within a toxic region; return 0. \
537 *flags |= CPU_DTRACE_BADADDR; \
538 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
543 volatile vm_offset_t recover = (vm_offset_t)&&dtraceLoadRecover##bits; \
544 *flags |= CPU_DTRACE_NOFAULT; \
545 recover = dtrace_set_thread_recover(current_thread(), recover); \
548 * PR6394061 - avoid device memory that is unpredictably \
549 * mapped and unmapped \
551 if (pmap_valid_page(pmap_find_phys(kernel_pmap, addr))) \
552 rval = *((volatile uint##bits##_t *)addr); \
554 *flags |= CPU_DTRACE_BADADDR; \
555 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
559 RECOVER_LABEL(bits); \
560 (void)dtrace_set_thread_recover(current_thread(), recover); \
561 *flags &= ~CPU_DTRACE_NOFAULT; \
566 #else /* all other architectures */
567 #error Unknown Architecture
571 #define dtrace_loadptr dtrace_load64
573 #define dtrace_loadptr dtrace_load32
576 #define DTRACE_DYNHASH_FREE 0
577 #define DTRACE_DYNHASH_SINK 1
578 #define DTRACE_DYNHASH_VALID 2
580 #define DTRACE_MATCH_FAIL -1
581 #define DTRACE_MATCH_NEXT 0
582 #define DTRACE_MATCH_DONE 1
583 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
584 #define DTRACE_STATE_ALIGN 64
586 #define DTRACE_FLAGS2FLT(flags) \
587 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
588 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
589 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
590 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
591 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
592 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
593 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
594 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
595 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
598 #define DTRACEACT_ISSTRING(act) \
599 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
600 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
603 static size_t dtrace_strlen(const char *, size_t);
604 static dtrace_probe_t
*dtrace_probe_lookup_id(dtrace_id_t id
);
605 static void dtrace_enabling_provide(dtrace_provider_t
*);
606 static int dtrace_enabling_match(dtrace_enabling_t
*, int *, dtrace_match_cond_t
*cond
);
607 static void dtrace_enabling_matchall_with_cond(dtrace_match_cond_t
*cond
);
608 static void dtrace_enabling_matchall(void);
609 static dtrace_state_t
*dtrace_anon_grab(void);
610 static uint64_t dtrace_helper(int, dtrace_mstate_t
*,
611 dtrace_state_t
*, uint64_t, uint64_t);
612 static dtrace_helpers_t
*dtrace_helpers_create(proc_t
*);
613 static void dtrace_buffer_drop(dtrace_buffer_t
*);
614 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t
*, size_t, size_t,
615 dtrace_state_t
*, dtrace_mstate_t
*);
616 static int dtrace_state_option(dtrace_state_t
*, dtrace_optid_t
,
618 static int dtrace_ecb_create_enable(dtrace_probe_t
*, void *, void *);
619 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t
*);
620 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
621 dtrace_mstate_t
*, dtrace_vstate_t
*);
622 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
623 dtrace_mstate_t
*, dtrace_vstate_t
*);
627 * DTrace sysctl handlers
629 * These declarations and functions are used for a deeper DTrace configuration.
630 * Most of them are not per-consumer basis and may impact the other DTrace
631 * consumers. Correctness may not be supported for all the variables, so you
632 * should be careful about what values you are using.
635 SYSCTL_DECL(_kern_dtrace
);
636 SYSCTL_NODE(_kern
, OID_AUTO
, dtrace
, CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "dtrace");
639 sysctl_dtrace_err_verbose SYSCTL_HANDLER_ARGS
641 #pragma unused(oidp, arg2)
643 int value
= *(int *) arg1
;
645 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
646 if (error
|| !changed
)
649 if (value
!= 0 && value
!= 1)
652 lck_mtx_lock(&dtrace_lock
);
653 dtrace_err_verbose
= value
;
654 lck_mtx_unlock(&dtrace_lock
);
660 * kern.dtrace.err_verbose
662 * Set DTrace verbosity when an error occured (0 = disabled, 1 = enabld).
663 * Errors are reported when a DIFO or a DOF has been rejected by the kernel.
665 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, err_verbose
,
666 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
667 &dtrace_err_verbose
, 0,
668 sysctl_dtrace_err_verbose
, "I", "dtrace error verbose");
671 sysctl_dtrace_buffer_memory_maxsize SYSCTL_HANDLER_ARGS
673 #pragma unused(oidp, arg2, req)
675 uint64_t value
= *(uint64_t *) arg1
;
677 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
678 if (error
|| !changed
)
681 if (value
<= dtrace_buffer_memory_inuse
)
684 lck_mtx_lock(&dtrace_lock
);
685 dtrace_buffer_memory_maxsize
= value
;
686 lck_mtx_unlock(&dtrace_lock
);
692 * kern.dtrace.buffer_memory_maxsize
694 * Set DTrace maximal size in bytes used by all the consumers' state buffers. By default
695 * the limit is PHYS_MEM / 3 for *all* consumers. Attempting to set a null, a negative value
696 * or a value <= to dtrace_buffer_memory_inuse will result in a failure.
698 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, buffer_memory_maxsize
,
699 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
700 &dtrace_buffer_memory_maxsize
, 0,
701 sysctl_dtrace_buffer_memory_maxsize
, "Q", "dtrace state buffer memory maxsize");
704 * kern.dtrace.buffer_memory_inuse
706 * Current state buffer memory used, in bytes, by all the DTrace consumers.
707 * This value is read-only.
709 SYSCTL_QUAD(_kern_dtrace
, OID_AUTO
, buffer_memory_inuse
, CTLFLAG_RD
| CTLFLAG_LOCKED
,
710 &dtrace_buffer_memory_inuse
, "dtrace state buffer memory in-use");
713 sysctl_dtrace_difo_maxsize SYSCTL_HANDLER_ARGS
715 #pragma unused(oidp, arg2, req)
717 size_t value
= *(size_t*) arg1
;
719 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
720 if (error
|| !changed
)
726 lck_mtx_lock(&dtrace_lock
);
727 dtrace_difo_maxsize
= value
;
728 lck_mtx_unlock(&dtrace_lock
);
734 * kern.dtrace.difo_maxsize
736 * Set the DIFO max size in bytes, check the definition of dtrace_difo_maxsize
737 * to get the default value. Attempting to set a null or negative size will
738 * result in a failure.
740 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, difo_maxsize
,
741 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
742 &dtrace_difo_maxsize
, 0,
743 sysctl_dtrace_difo_maxsize
, "Q", "dtrace difo maxsize");
746 sysctl_dtrace_dof_maxsize SYSCTL_HANDLER_ARGS
748 #pragma unused(oidp, arg2, req)
750 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
752 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
753 if (error
|| !changed
)
759 lck_mtx_lock(&dtrace_lock
);
760 dtrace_dof_maxsize
= value
;
761 lck_mtx_unlock(&dtrace_lock
);
767 * kern.dtrace.dof_maxsize
769 * Set the DOF max size in bytes, check the definition of dtrace_dof_maxsize to
770 * get the default value. Attempting to set a null or negative size will result
773 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, dof_maxsize
,
774 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
775 &dtrace_dof_maxsize
, 0,
776 sysctl_dtrace_dof_maxsize
, "Q", "dtrace dof maxsize");
779 sysctl_dtrace_statvar_maxsize SYSCTL_HANDLER_ARGS
781 #pragma unused(oidp, arg2, req)
783 dtrace_optval_t value
= *(dtrace_optval_t
*) arg1
;
785 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, &changed
);
786 if (error
|| !changed
)
791 if (value
> dtrace_statvar_maxsize_max
)
794 lck_mtx_lock(&dtrace_lock
);
795 dtrace_statvar_maxsize
= value
;
796 lck_mtx_unlock(&dtrace_lock
);
802 * kern.dtrace.global_maxsize
804 * Set the variable max size in bytes, check the definition of
805 * dtrace_statvar_maxsize to get the default value. Attempting to set a null,
806 * too high or negative size will result in a failure.
808 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, global_maxsize
,
809 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
810 &dtrace_statvar_maxsize
, 0,
811 sysctl_dtrace_statvar_maxsize
, "Q", "dtrace statvar maxsize");
814 sysctl_dtrace_provide_private_probes SYSCTL_HANDLER_ARGS
816 #pragma unused(oidp, arg2)
818 int value
= *(int *) arg1
;
820 error
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
825 if (value
!= 0 && value
!= 1)
829 * We do not allow changing this back to zero, as private probes
830 * would still be left registered
835 lck_mtx_lock(&dtrace_lock
);
836 dtrace_provide_private_probes
= value
;
837 lck_mtx_unlock(&dtrace_lock
);
843 * kern.dtrace.provide_private_probes
845 * Set whether the providers must provide the private probes. This is
846 * mainly used by the FBT provider to request probes for the private/static
849 SYSCTL_PROC(_kern_dtrace
, OID_AUTO
, provide_private_probes
,
850 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
851 &dtrace_provide_private_probes
, 0,
852 sysctl_dtrace_provide_private_probes
, "I", "provider must provide the private probes");
855 * DTrace Probe Context Functions
857 * These functions are called from probe context. Because probe context is
858 * any context in which C may be called, arbitrarily locks may be held,
859 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
860 * As a result, functions called from probe context may only call other DTrace
861 * support functions -- they may not interact at all with the system at large.
862 * (Note that the ASSERT macro is made probe-context safe by redefining it in
863 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
864 * loads are to be performed from probe context, they _must_ be in terms of
865 * the safe dtrace_load*() variants.
867 * Some functions in this block are not actually called from probe context;
868 * for these functions, there will be a comment above the function reading
869 * "Note: not called from probe context."
873 dtrace_assfail(const char *a
, const char *f
, int l
)
875 panic("dtrace: assertion failed: %s, file: %s, line: %d", a
, f
, l
);
878 * We just need something here that even the most clever compiler
879 * cannot optimize away.
881 return (a
[(uintptr_t)f
]);
885 * Atomically increment a specified error counter from probe context.
888 dtrace_error(uint32_t *counter
)
891 * Most counters stored to in probe context are per-CPU counters.
892 * However, there are some error conditions that are sufficiently
893 * arcane that they don't merit per-CPU storage. If these counters
894 * are incremented concurrently on different CPUs, scalability will be
895 * adversely affected -- but we don't expect them to be white-hot in a
896 * correctly constructed enabling...
903 if ((nval
= oval
+ 1) == 0) {
905 * If the counter would wrap, set it to 1 -- assuring
906 * that the counter is never zero when we have seen
907 * errors. (The counter must be 32-bits because we
908 * aren't guaranteed a 64-bit compare&swap operation.)
909 * To save this code both the infamy of being fingered
910 * by a priggish news story and the indignity of being
911 * the target of a neo-puritan witch trial, we're
912 * carefully avoiding any colorful description of the
913 * likelihood of this condition -- but suffice it to
914 * say that it is only slightly more likely than the
915 * overflow of predicate cache IDs, as discussed in
916 * dtrace_predicate_create().
920 } while (dtrace_cas32(counter
, oval
, nval
) != oval
);
924 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
925 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
933 dtrace_inscratch(uintptr_t dest
, size_t size
, dtrace_mstate_t
*mstate
)
935 if (dest
< mstate
->dtms_scratch_base
)
938 if (dest
+ size
< dest
)
941 if (dest
+ size
> mstate
->dtms_scratch_ptr
)
948 dtrace_canstore_statvar(uint64_t addr
, size_t sz
, size_t *remain
,
949 dtrace_statvar_t
**svars
, int nsvars
)
953 size_t maxglobalsize
, maxlocalsize
;
955 maxglobalsize
= dtrace_statvar_maxsize
+ sizeof (uint64_t);
956 maxlocalsize
= (maxglobalsize
) * NCPU
;
961 for (i
= 0; i
< nsvars
; i
++) {
962 dtrace_statvar_t
*svar
= svars
[i
];
966 if (svar
== NULL
|| (size
= svar
->dtsv_size
) == 0)
969 scope
= svar
->dtsv_var
.dtdv_scope
;
972 * We verify that our size is valid in the spirit of providing
973 * defense in depth: we want to prevent attackers from using
974 * DTrace to escalate an orthogonal kernel heap corruption bug
975 * into the ability to store to arbitrary locations in memory.
977 VERIFY((scope
== DIFV_SCOPE_GLOBAL
&& size
<= maxglobalsize
) ||
978 (scope
== DIFV_SCOPE_LOCAL
&& size
<= maxlocalsize
));
980 if (DTRACE_INRANGE(addr
, sz
, svar
->dtsv_data
, svar
->dtsv_size
)) {
981 DTRACE_RANGE_REMAIN(remain
, addr
, svar
->dtsv_data
,
991 * Check to see if the address is within a memory region to which a store may
992 * be issued. This includes the DTrace scratch areas, and any DTrace variable
993 * region. The caller of dtrace_canstore() is responsible for performing any
994 * alignment checks that are needed before stores are actually executed.
997 dtrace_canstore(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
998 dtrace_vstate_t
*vstate
)
1000 return (dtrace_canstore_remains(addr
, sz
, NULL
, mstate
, vstate
));
1003 * Implementation of dtrace_canstore which communicates the upper bound of the
1004 * allowed memory region.
1007 dtrace_canstore_remains(uint64_t addr
, size_t sz
, size_t *remain
,
1008 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1011 * First, check to see if the address is in scratch space...
1013 if (DTRACE_INRANGE(addr
, sz
, mstate
->dtms_scratch_base
,
1014 mstate
->dtms_scratch_size
)) {
1015 DTRACE_RANGE_REMAIN(remain
, addr
, mstate
->dtms_scratch_base
,
1016 mstate
->dtms_scratch_size
);
1020 * Now check to see if it's a dynamic variable. This check will pick
1021 * up both thread-local variables and any global dynamically-allocated
1024 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)vstate
->dtvs_dynvars
.dtds_base
,
1025 vstate
->dtvs_dynvars
.dtds_size
)) {
1026 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
1027 uintptr_t base
= (uintptr_t)dstate
->dtds_base
+
1028 (dstate
->dtds_hashsize
* sizeof (dtrace_dynhash_t
));
1029 uintptr_t chunkoffs
;
1030 dtrace_dynvar_t
*dvar
;
1033 * Before we assume that we can store here, we need to make
1034 * sure that it isn't in our metadata -- storing to our
1035 * dynamic variable metadata would corrupt our state. For
1036 * the range to not include any dynamic variable metadata,
1039 * (1) Start above the hash table that is at the base of
1040 * the dynamic variable space
1042 * (2) Have a starting chunk offset that is beyond the
1043 * dtrace_dynvar_t that is at the base of every chunk
1045 * (3) Not span a chunk boundary
1047 * (4) Not be in the tuple space of a dynamic variable
1053 chunkoffs
= (addr
- base
) % dstate
->dtds_chunksize
;
1055 if (chunkoffs
< sizeof (dtrace_dynvar_t
))
1058 if (chunkoffs
+ sz
> dstate
->dtds_chunksize
)
1061 dvar
= (dtrace_dynvar_t
*)((uintptr_t)addr
- chunkoffs
);
1063 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
)
1066 if (chunkoffs
< sizeof (dtrace_dynvar_t
) +
1067 ((dvar
->dtdv_tuple
.dtt_nkeys
- 1) * sizeof (dtrace_key_t
)))
1074 * Finally, check the static local and global variables. These checks
1075 * take the longest, so we perform them last.
1077 if (dtrace_canstore_statvar(addr
, sz
, remain
,
1078 vstate
->dtvs_locals
, vstate
->dtvs_nlocals
))
1081 if (dtrace_canstore_statvar(addr
, sz
, remain
,
1082 vstate
->dtvs_globals
, vstate
->dtvs_nglobals
))
1090 * Convenience routine to check to see if the address is within a memory
1091 * region in which a load may be issued given the user's privilege level;
1092 * if not, it sets the appropriate error flags and loads 'addr' into the
1093 * illegal value slot.
1095 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
1096 * appropriate memory access protection.
1099 dtrace_canload(uint64_t addr
, size_t sz
, dtrace_mstate_t
*mstate
,
1100 dtrace_vstate_t
*vstate
)
1102 return (dtrace_canload_remains(addr
, sz
, NULL
, mstate
, vstate
));
1106 * Implementation of dtrace_canload which communicates the upper bound of the
1107 * allowed memory region.
1110 dtrace_canload_remains(uint64_t addr
, size_t sz
, size_t *remain
,
1111 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1113 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
1116 * If we hold the privilege to read from kernel memory, then
1117 * everything is readable.
1119 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1120 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
1125 * You can obviously read that which you can store.
1127 if (dtrace_canstore_remains(addr
, sz
, remain
, mstate
, vstate
))
1131 * We're allowed to read from our own string table.
1133 if (DTRACE_INRANGE(addr
, sz
, (uintptr_t)mstate
->dtms_difo
->dtdo_strtab
,
1134 mstate
->dtms_difo
->dtdo_strlen
)) {
1135 DTRACE_RANGE_REMAIN(remain
, addr
,
1136 mstate
->dtms_difo
->dtdo_strtab
,
1137 mstate
->dtms_difo
->dtdo_strlen
);
1141 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
1147 * Convenience routine to check to see if a given string is within a memory
1148 * region in which a load may be issued given the user's privilege level;
1149 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1150 * calls in the event that the user has all privileges.
1153 dtrace_strcanload(uint64_t addr
, size_t sz
, size_t *remain
,
1154 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1159 * If we hold the privilege to read from kernel memory, then
1160 * everything is readable.
1162 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1163 DTRACE_RANGE_REMAIN(remain
, addr
, addr
, sz
);
1168 * Even if the caller is uninterested in querying the remaining valid
1169 * range, it is required to ensure that the access is allowed.
1171 if (remain
== NULL
) {
1174 if (dtrace_canload_remains(addr
, 0, remain
, mstate
, vstate
)) {
1177 * Perform the strlen after determining the length of the
1178 * memory region which is accessible. This prevents timing
1179 * information from being used to find NULs in memory which is
1180 * not accessible to the caller.
1182 strsz
= 1 + dtrace_strlen((char *)(uintptr_t)addr
,
1184 if (strsz
<= *remain
) {
1193 * Convenience routine to check to see if a given variable is within a memory
1194 * region in which a load may be issued given the user's privilege level.
1197 dtrace_vcanload(void *src
, dtrace_diftype_t
*type
, size_t *remain
,
1198 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1201 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1204 * Calculate the max size before performing any checks since even
1205 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1206 * return the max length via 'remain'.
1208 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1209 dtrace_state_t
*state
= vstate
->dtvs_state
;
1211 if (state
!= NULL
) {
1212 sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
1215 * In helper context, we have a NULL state; fall back
1216 * to using the system-wide default for the string size
1219 sz
= dtrace_strsize_default
;
1222 sz
= type
->dtdt_size
;
1226 * If we hold the privilege to read from kernel memory, then
1227 * everything is readable.
1229 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0) {
1230 DTRACE_RANGE_REMAIN(remain
, (uintptr_t)src
, src
, sz
);
1234 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1235 return (dtrace_strcanload((uintptr_t)src
, sz
, remain
, mstate
,
1238 return (dtrace_canload_remains((uintptr_t)src
, sz
, remain
, mstate
,
1243 * Compare two strings using safe loads.
1246 dtrace_strncmp(char *s1
, char *s2
, size_t limit
)
1249 volatile uint16_t *flags
;
1251 if (s1
== s2
|| limit
== 0)
1254 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1260 c1
= dtrace_load8((uintptr_t)s1
++);
1266 c2
= dtrace_load8((uintptr_t)s2
++);
1271 } while (--limit
&& c1
!= '\0' && !(*flags
& CPU_DTRACE_FAULT
));
1277 * Compute strlen(s) for a string using safe memory accesses. The additional
1278 * len parameter is used to specify a maximum length to ensure completion.
1281 dtrace_strlen(const char *s
, size_t lim
)
1285 for (len
= 0; len
!= lim
; len
++) {
1286 if (dtrace_load8((uintptr_t)s
++) == '\0')
1294 * Check if an address falls within a toxic region.
1297 dtrace_istoxic(uintptr_t kaddr
, size_t size
)
1299 uintptr_t taddr
, tsize
;
1302 for (i
= 0; i
< dtrace_toxranges
; i
++) {
1303 taddr
= dtrace_toxrange
[i
].dtt_base
;
1304 tsize
= dtrace_toxrange
[i
].dtt_limit
- taddr
;
1306 if (kaddr
- taddr
< tsize
) {
1307 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1308 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= kaddr
;
1312 if (taddr
- kaddr
< size
) {
1313 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
1314 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= taddr
;
1323 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1324 * memory specified by the DIF program. The dst is assumed to be safe memory
1325 * that we can store to directly because it is managed by DTrace. As with
1326 * standard bcopy, overlapping copies are handled properly.
1329 dtrace_bcopy(const void *src
, void *dst
, size_t len
)
1333 const uint8_t *s2
= src
;
1337 *s1
++ = dtrace_load8((uintptr_t)s2
++);
1338 } while (--len
!= 0);
1344 *--s1
= dtrace_load8((uintptr_t)--s2
);
1345 } while (--len
!= 0);
1351 * Copy src to dst using safe memory accesses, up to either the specified
1352 * length, or the point that a nul byte is encountered. The src is assumed to
1353 * be unsafe memory specified by the DIF program. The dst is assumed to be
1354 * safe memory that we can store to directly because it is managed by DTrace.
1355 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1358 dtrace_strcpy(const void *src
, void *dst
, size_t len
)
1361 uint8_t *s1
= dst
, c
;
1362 const uint8_t *s2
= src
;
1365 *s1
++ = c
= dtrace_load8((uintptr_t)s2
++);
1366 } while (--len
!= 0 && c
!= '\0');
1371 * Copy src to dst, deriving the size and type from the specified (BYREF)
1372 * variable type. The src is assumed to be unsafe memory specified by the DIF
1373 * program. The dst is assumed to be DTrace variable memory that is of the
1374 * specified type; we assume that we can store to directly.
1377 dtrace_vcopy(void *src
, void *dst
, dtrace_diftype_t
*type
, size_t limit
)
1379 ASSERT(type
->dtdt_flags
& DIF_TF_BYREF
);
1381 if (type
->dtdt_kind
== DIF_TYPE_STRING
) {
1382 dtrace_strcpy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1384 dtrace_bcopy(src
, dst
, MIN(type
->dtdt_size
, limit
));
1389 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1390 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1391 * safe memory that we can access directly because it is managed by DTrace.
1394 dtrace_bcmp(const void *s1
, const void *s2
, size_t len
)
1396 volatile uint16_t *flags
;
1398 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
1403 if (s1
== NULL
|| s2
== NULL
)
1406 if (s1
!= s2
&& len
!= 0) {
1407 const uint8_t *ps1
= s1
;
1408 const uint8_t *ps2
= s2
;
1411 if (dtrace_load8((uintptr_t)ps1
++) != *ps2
++)
1413 } while (--len
!= 0 && !(*flags
& CPU_DTRACE_FAULT
));
1419 * Zero the specified region using a simple byte-by-byte loop. Note that this
1420 * is for safe DTrace-managed memory only.
1423 dtrace_bzero(void *dst
, size_t len
)
1427 for (cp
= dst
; len
!= 0; len
--)
1432 dtrace_add_128(uint64_t *addend1
, uint64_t *addend2
, uint64_t *sum
)
1436 result
[0] = addend1
[0] + addend2
[0];
1437 result
[1] = addend1
[1] + addend2
[1] +
1438 (result
[0] < addend1
[0] || result
[0] < addend2
[0] ? 1 : 0);
1445 * Shift the 128-bit value in a by b. If b is positive, shift left.
1446 * If b is negative, shift right.
1449 dtrace_shift_128(uint64_t *a
, int b
)
1459 a
[0] = a
[1] >> (b
- 64);
1463 mask
= 1LL << (64 - b
);
1465 a
[0] |= ((a
[1] & mask
) << (64 - b
));
1470 a
[1] = a
[0] << (b
- 64);
1474 mask
= a
[0] >> (64 - b
);
1482 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1483 * use native multiplication on those, and then re-combine into the
1484 * resulting 128-bit value.
1486 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1493 dtrace_multiply_128(uint64_t factor1
, uint64_t factor2
, uint64_t *product
)
1495 uint64_t hi1
, hi2
, lo1
, lo2
;
1498 hi1
= factor1
>> 32;
1499 hi2
= factor2
>> 32;
1501 lo1
= factor1
& DT_MASK_LO
;
1502 lo2
= factor2
& DT_MASK_LO
;
1504 product
[0] = lo1
* lo2
;
1505 product
[1] = hi1
* hi2
;
1509 dtrace_shift_128(tmp
, 32);
1510 dtrace_add_128(product
, tmp
, product
);
1514 dtrace_shift_128(tmp
, 32);
1515 dtrace_add_128(product
, tmp
, product
);
1519 * This privilege check should be used by actions and subroutines to
1520 * verify that the user credentials of the process that enabled the
1521 * invoking ECB match the target credentials
1524 dtrace_priv_proc_common_user(dtrace_state_t
*state
)
1526 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1529 * We should always have a non-NULL state cred here, since if cred
1530 * is null (anonymous tracing), we fast-path bypass this routine.
1532 ASSERT(s_cr
!= NULL
);
1534 if ((cr
= dtrace_CRED()) != NULL
&&
1535 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_uid
&&
1536 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_ruid
&&
1537 posix_cred_get(s_cr
)->cr_uid
== posix_cred_get(cr
)->cr_suid
&&
1538 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_gid
&&
1539 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_rgid
&&
1540 posix_cred_get(s_cr
)->cr_gid
== posix_cred_get(cr
)->cr_sgid
)
1547 * This privilege check should be used by actions and subroutines to
1548 * verify that the zone of the process that enabled the invoking ECB
1549 * matches the target credentials
1552 dtrace_priv_proc_common_zone(dtrace_state_t
*state
)
1554 cred_t
*cr
, *s_cr
= state
->dts_cred
.dcr_cred
;
1555 #pragma unused(cr, s_cr, state) /* __APPLE__ */
1558 * We should always have a non-NULL state cred here, since if cred
1559 * is null (anonymous tracing), we fast-path bypass this routine.
1561 ASSERT(s_cr
!= NULL
);
1563 return 1; /* APPLE NOTE: Darwin doesn't do zones. */
1567 * This privilege check should be used by actions and subroutines to
1568 * verify that the process has not setuid or changed credentials.
1571 dtrace_priv_proc_common_nocd(void)
1573 return 1; /* Darwin omits "No Core Dump" flag. */
1577 dtrace_priv_proc_destructive(dtrace_state_t
*state
)
1579 int action
= state
->dts_cred
.dcr_action
;
1581 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1584 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1587 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
) == 0) &&
1588 dtrace_priv_proc_common_zone(state
) == 0)
1591 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
) == 0) &&
1592 dtrace_priv_proc_common_user(state
) == 0)
1595 if (((action
& DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
) == 0) &&
1596 dtrace_priv_proc_common_nocd() == 0)
1602 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1608 dtrace_priv_proc_control(dtrace_state_t
*state
)
1610 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1613 if (dtrace_is_restricted() && !dtrace_can_attach_to_proc(current_proc()))
1616 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC_CONTROL
)
1619 if (dtrace_priv_proc_common_zone(state
) &&
1620 dtrace_priv_proc_common_user(state
) &&
1621 dtrace_priv_proc_common_nocd())
1625 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1631 dtrace_priv_proc(dtrace_state_t
*state
)
1633 if (ISSET(current_proc()->p_lflag
, P_LNOATTACH
))
1636 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed() && !dtrace_can_attach_to_proc(current_proc()))
1639 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1643 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1649 * The P_LNOATTACH check is an Apple specific check.
1650 * We need a version of dtrace_priv_proc() that omits
1651 * that check for PID and EXECNAME accesses
1654 dtrace_priv_proc_relaxed(dtrace_state_t
*state
)
1657 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_PROC
)
1660 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_UPRIV
;
1666 dtrace_priv_kernel(dtrace_state_t
*state
)
1668 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed())
1671 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL
)
1675 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1681 dtrace_priv_kernel_destructive(dtrace_state_t
*state
)
1683 if (dtrace_is_restricted())
1686 if (state
->dts_cred
.dcr_action
& DTRACE_CRA_KERNEL_DESTRUCTIVE
)
1690 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
|= CPU_DTRACE_KPRIV
;
1696 * Note: not called from probe context. This function is called
1697 * asynchronously (and at a regular interval) from outside of probe context to
1698 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1699 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1702 dtrace_dynvar_clean(dtrace_dstate_t
*dstate
)
1704 dtrace_dynvar_t
*dirty
;
1705 dtrace_dstate_percpu_t
*dcpu
;
1708 for (i
= 0; i
< (int)NCPU
; i
++) {
1709 dcpu
= &dstate
->dtds_percpu
[i
];
1711 ASSERT(dcpu
->dtdsc_rinsing
== NULL
);
1714 * If the dirty list is NULL, there is no dirty work to do.
1716 if (dcpu
->dtdsc_dirty
== NULL
)
1720 * If the clean list is non-NULL, then we're not going to do
1721 * any work for this CPU -- it means that there has not been
1722 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1723 * since the last time we cleaned house.
1725 if (dcpu
->dtdsc_clean
!= NULL
)
1731 * Atomically move the dirty list aside.
1734 dirty
= dcpu
->dtdsc_dirty
;
1737 * Before we zap the dirty list, set the rinsing list.
1738 * (This allows for a potential assertion in
1739 * dtrace_dynvar(): if a free dynamic variable appears
1740 * on a hash chain, either the dirty list or the
1741 * rinsing list for some CPU must be non-NULL.)
1743 dcpu
->dtdsc_rinsing
= dirty
;
1744 dtrace_membar_producer();
1745 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
,
1746 dirty
, NULL
) != dirty
);
1751 * We have no work to do; we can simply return.
1758 for (i
= 0; i
< (int)NCPU
; i
++) {
1759 dcpu
= &dstate
->dtds_percpu
[i
];
1761 if (dcpu
->dtdsc_rinsing
== NULL
)
1765 * We are now guaranteed that no hash chain contains a pointer
1766 * into this dirty list; we can make it clean.
1768 ASSERT(dcpu
->dtdsc_clean
== NULL
);
1769 dcpu
->dtdsc_clean
= dcpu
->dtdsc_rinsing
;
1770 dcpu
->dtdsc_rinsing
= NULL
;
1774 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1775 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1776 * This prevents a race whereby a CPU incorrectly decides that
1777 * the state should be something other than DTRACE_DSTATE_CLEAN
1778 * after dtrace_dynvar_clean() has completed.
1782 dstate
->dtds_state
= DTRACE_DSTATE_CLEAN
;
1786 * Depending on the value of the op parameter, this function looks-up,
1787 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1788 * allocation is requested, this function will return a pointer to a
1789 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1790 * variable can be allocated. If NULL is returned, the appropriate counter
1791 * will be incremented.
1793 static dtrace_dynvar_t
*
1794 dtrace_dynvar(dtrace_dstate_t
*dstate
, uint_t nkeys
,
1795 dtrace_key_t
*key
, size_t dsize
, dtrace_dynvar_op_t op
,
1796 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
)
1798 uint64_t hashval
= DTRACE_DYNHASH_VALID
;
1799 dtrace_dynhash_t
*hash
= dstate
->dtds_hash
;
1800 dtrace_dynvar_t
*free
, *new_free
, *next
, *dvar
, *start
, *prev
= NULL
;
1801 processorid_t me
= CPU
->cpu_id
, cpu
= me
;
1802 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[me
];
1803 size_t bucket
, ksize
;
1804 size_t chunksize
= dstate
->dtds_chunksize
;
1805 uintptr_t kdata
, lock
, nstate
;
1811 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1812 * algorithm. For the by-value portions, we perform the algorithm in
1813 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1814 * bit, and seems to have only a minute effect on distribution. For
1815 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1816 * over each referenced byte. It's painful to do this, but it's much
1817 * better than pathological hash distribution. The efficacy of the
1818 * hashing algorithm (and a comparison with other algorithms) may be
1819 * found by running the ::dtrace_dynstat MDB dcmd.
1821 for (i
= 0; i
< nkeys
; i
++) {
1822 if (key
[i
].dttk_size
== 0) {
1823 uint64_t val
= key
[i
].dttk_value
;
1825 hashval
+= (val
>> 48) & 0xffff;
1826 hashval
+= (hashval
<< 10);
1827 hashval
^= (hashval
>> 6);
1829 hashval
+= (val
>> 32) & 0xffff;
1830 hashval
+= (hashval
<< 10);
1831 hashval
^= (hashval
>> 6);
1833 hashval
+= (val
>> 16) & 0xffff;
1834 hashval
+= (hashval
<< 10);
1835 hashval
^= (hashval
>> 6);
1837 hashval
+= val
& 0xffff;
1838 hashval
+= (hashval
<< 10);
1839 hashval
^= (hashval
>> 6);
1842 * This is incredibly painful, but it beats the hell
1843 * out of the alternative.
1845 uint64_t j
, size
= key
[i
].dttk_size
;
1846 uintptr_t base
= (uintptr_t)key
[i
].dttk_value
;
1848 if (!dtrace_canload(base
, size
, mstate
, vstate
))
1851 for (j
= 0; j
< size
; j
++) {
1852 hashval
+= dtrace_load8(base
+ j
);
1853 hashval
+= (hashval
<< 10);
1854 hashval
^= (hashval
>> 6);
1859 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT
))
1862 hashval
+= (hashval
<< 3);
1863 hashval
^= (hashval
>> 11);
1864 hashval
+= (hashval
<< 15);
1867 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1868 * comes out to be one of our two sentinel hash values. If this
1869 * actually happens, we set the hashval to be a value known to be a
1870 * non-sentinel value.
1872 if (hashval
== DTRACE_DYNHASH_FREE
|| hashval
== DTRACE_DYNHASH_SINK
)
1873 hashval
= DTRACE_DYNHASH_VALID
;
1876 * Yes, it's painful to do a divide here. If the cycle count becomes
1877 * important here, tricks can be pulled to reduce it. (However, it's
1878 * critical that hash collisions be kept to an absolute minimum;
1879 * they're much more painful than a divide.) It's better to have a
1880 * solution that generates few collisions and still keeps things
1881 * relatively simple.
1883 bucket
= hashval
% dstate
->dtds_hashsize
;
1885 if (op
== DTRACE_DYNVAR_DEALLOC
) {
1886 volatile uintptr_t *lockp
= &hash
[bucket
].dtdh_lock
;
1889 while ((lock
= *lockp
) & 1)
1892 if (dtrace_casptr((void *)(uintptr_t)lockp
,
1893 (void *)lock
, (void *)(lock
+ 1)) == (void *)lock
)
1897 dtrace_membar_producer();
1902 lock
= hash
[bucket
].dtdh_lock
;
1904 dtrace_membar_consumer();
1906 start
= hash
[bucket
].dtdh_chain
;
1907 ASSERT(start
!= NULL
&& (start
->dtdv_hashval
== DTRACE_DYNHASH_SINK
||
1908 start
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
||
1909 op
!= DTRACE_DYNVAR_DEALLOC
));
1911 for (dvar
= start
; dvar
!= NULL
; dvar
= dvar
->dtdv_next
) {
1912 dtrace_tuple_t
*dtuple
= &dvar
->dtdv_tuple
;
1913 dtrace_key_t
*dkey
= &dtuple
->dtt_key
[0];
1915 if (dvar
->dtdv_hashval
!= hashval
) {
1916 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_SINK
) {
1918 * We've reached the sink, and therefore the
1919 * end of the hash chain; we can kick out of
1920 * the loop knowing that we have seen a valid
1921 * snapshot of state.
1923 ASSERT(dvar
->dtdv_next
== NULL
);
1924 ASSERT(dvar
== &dtrace_dynhash_sink
);
1928 if (dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
) {
1930 * We've gone off the rails: somewhere along
1931 * the line, one of the members of this hash
1932 * chain was deleted. Note that we could also
1933 * detect this by simply letting this loop run
1934 * to completion, as we would eventually hit
1935 * the end of the dirty list. However, we
1936 * want to avoid running the length of the
1937 * dirty list unnecessarily (it might be quite
1938 * long), so we catch this as early as
1939 * possible by detecting the hash marker. In
1940 * this case, we simply set dvar to NULL and
1941 * break; the conditional after the loop will
1942 * send us back to top.
1951 if (dtuple
->dtt_nkeys
!= nkeys
)
1954 for (i
= 0; i
< nkeys
; i
++, dkey
++) {
1955 if (dkey
->dttk_size
!= key
[i
].dttk_size
)
1956 goto next
; /* size or type mismatch */
1958 if (dkey
->dttk_size
!= 0) {
1960 (void *)(uintptr_t)key
[i
].dttk_value
,
1961 (void *)(uintptr_t)dkey
->dttk_value
,
1965 if (dkey
->dttk_value
!= key
[i
].dttk_value
)
1970 if (op
!= DTRACE_DYNVAR_DEALLOC
)
1973 ASSERT(dvar
->dtdv_next
== NULL
||
1974 dvar
->dtdv_next
->dtdv_hashval
!= DTRACE_DYNHASH_FREE
);
1977 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
1978 ASSERT(start
!= dvar
);
1979 ASSERT(prev
->dtdv_next
== dvar
);
1980 prev
->dtdv_next
= dvar
->dtdv_next
;
1982 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
,
1983 start
, dvar
->dtdv_next
) != start
) {
1985 * We have failed to atomically swing the
1986 * hash table head pointer, presumably because
1987 * of a conflicting allocation on another CPU.
1988 * We need to reread the hash chain and try
1995 dtrace_membar_producer();
1998 * Now set the hash value to indicate that it's free.
2000 ASSERT(hash
[bucket
].dtdh_chain
!= dvar
);
2001 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2003 dtrace_membar_producer();
2006 * Set the next pointer to point at the dirty list, and
2007 * atomically swing the dirty pointer to the newly freed dvar.
2010 next
= dcpu
->dtdsc_dirty
;
2011 dvar
->dtdv_next
= next
;
2012 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, next
, dvar
) != next
);
2015 * Finally, unlock this hash bucket.
2017 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2019 hash
[bucket
].dtdh_lock
++;
2029 * If dvar is NULL, it is because we went off the rails:
2030 * one of the elements that we traversed in the hash chain
2031 * was deleted while we were traversing it. In this case,
2032 * we assert that we aren't doing a dealloc (deallocs lock
2033 * the hash bucket to prevent themselves from racing with
2034 * one another), and retry the hash chain traversal.
2036 ASSERT(op
!= DTRACE_DYNVAR_DEALLOC
);
2040 if (op
!= DTRACE_DYNVAR_ALLOC
) {
2042 * If we are not to allocate a new variable, we want to
2043 * return NULL now. Before we return, check that the value
2044 * of the lock word hasn't changed. If it has, we may have
2045 * seen an inconsistent snapshot.
2047 if (op
== DTRACE_DYNVAR_NOALLOC
) {
2048 if (hash
[bucket
].dtdh_lock
!= lock
)
2051 ASSERT(op
== DTRACE_DYNVAR_DEALLOC
);
2052 ASSERT(hash
[bucket
].dtdh_lock
== lock
);
2054 hash
[bucket
].dtdh_lock
++;
2061 * We need to allocate a new dynamic variable. The size we need is the
2062 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2063 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2064 * the size of any referred-to data (dsize). We then round the final
2065 * size up to the chunksize for allocation.
2067 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
2068 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
2071 * This should be pretty much impossible, but could happen if, say,
2072 * strange DIF specified the tuple. Ideally, this should be an
2073 * assertion and not an error condition -- but that requires that the
2074 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2075 * bullet-proof. (That is, it must not be able to be fooled by
2076 * malicious DIF.) Given the lack of backwards branches in DIF,
2077 * solving this would presumably not amount to solving the Halting
2078 * Problem -- but it still seems awfully hard.
2080 if (sizeof (dtrace_dynvar_t
) + sizeof (dtrace_key_t
) * (nkeys
- 1) +
2081 ksize
+ dsize
> chunksize
) {
2082 dcpu
->dtdsc_drops
++;
2086 nstate
= DTRACE_DSTATE_EMPTY
;
2090 free
= dcpu
->dtdsc_free
;
2093 dtrace_dynvar_t
*clean
= dcpu
->dtdsc_clean
;
2096 if (clean
== NULL
) {
2098 * We're out of dynamic variable space on
2099 * this CPU. Unless we have tried all CPUs,
2100 * we'll try to allocate from a different
2103 switch (dstate
->dtds_state
) {
2104 case DTRACE_DSTATE_CLEAN
: {
2105 void *sp
= &dstate
->dtds_state
;
2107 if (++cpu
>= (int)NCPU
)
2110 if (dcpu
->dtdsc_dirty
!= NULL
&&
2111 nstate
== DTRACE_DSTATE_EMPTY
)
2112 nstate
= DTRACE_DSTATE_DIRTY
;
2114 if (dcpu
->dtdsc_rinsing
!= NULL
)
2115 nstate
= DTRACE_DSTATE_RINSING
;
2117 dcpu
= &dstate
->dtds_percpu
[cpu
];
2122 (void) dtrace_cas32(sp
,
2123 DTRACE_DSTATE_CLEAN
, nstate
);
2126 * To increment the correct bean
2127 * counter, take another lap.
2132 case DTRACE_DSTATE_DIRTY
:
2133 dcpu
->dtdsc_dirty_drops
++;
2136 case DTRACE_DSTATE_RINSING
:
2137 dcpu
->dtdsc_rinsing_drops
++;
2140 case DTRACE_DSTATE_EMPTY
:
2141 dcpu
->dtdsc_drops
++;
2145 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP
);
2150 * The clean list appears to be non-empty. We want to
2151 * move the clean list to the free list; we start by
2152 * moving the clean pointer aside.
2154 if (dtrace_casptr(&dcpu
->dtdsc_clean
,
2155 clean
, NULL
) != clean
) {
2157 * We are in one of two situations:
2159 * (a) The clean list was switched to the
2160 * free list by another CPU.
2162 * (b) The clean list was added to by the
2165 * In either of these situations, we can
2166 * just reattempt the free list allocation.
2171 ASSERT(clean
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2174 * Now we'll move the clean list to the free list.
2175 * It's impossible for this to fail: the only way
2176 * the free list can be updated is through this
2177 * code path, and only one CPU can own the clean list.
2178 * Thus, it would only be possible for this to fail if
2179 * this code were racing with dtrace_dynvar_clean().
2180 * (That is, if dtrace_dynvar_clean() updated the clean
2181 * list, and we ended up racing to update the free
2182 * list.) This race is prevented by the dtrace_sync()
2183 * in dtrace_dynvar_clean() -- which flushes the
2184 * owners of the clean lists out before resetting
2187 rval
= dtrace_casptr(&dcpu
->dtdsc_free
, NULL
, clean
);
2188 ASSERT(rval
== NULL
);
2193 new_free
= dvar
->dtdv_next
;
2194 } while (dtrace_casptr(&dcpu
->dtdsc_free
, free
, new_free
) != free
);
2197 * We have now allocated a new chunk. We copy the tuple keys into the
2198 * tuple array and copy any referenced key data into the data space
2199 * following the tuple array. As we do this, we relocate dttk_value
2200 * in the final tuple to point to the key data address in the chunk.
2202 kdata
= (uintptr_t)&dvar
->dtdv_tuple
.dtt_key
[nkeys
];
2203 dvar
->dtdv_data
= (void *)(kdata
+ ksize
);
2204 dvar
->dtdv_tuple
.dtt_nkeys
= nkeys
;
2206 for (i
= 0; i
< nkeys
; i
++) {
2207 dtrace_key_t
*dkey
= &dvar
->dtdv_tuple
.dtt_key
[i
];
2208 size_t kesize
= key
[i
].dttk_size
;
2212 (const void *)(uintptr_t)key
[i
].dttk_value
,
2213 (void *)kdata
, kesize
);
2214 dkey
->dttk_value
= kdata
;
2215 kdata
+= P2ROUNDUP(kesize
, sizeof (uint64_t));
2217 dkey
->dttk_value
= key
[i
].dttk_value
;
2220 dkey
->dttk_size
= kesize
;
2223 ASSERT(dvar
->dtdv_hashval
== DTRACE_DYNHASH_FREE
);
2224 dvar
->dtdv_hashval
= hashval
;
2225 dvar
->dtdv_next
= start
;
2227 if (dtrace_casptr(&hash
[bucket
].dtdh_chain
, start
, dvar
) == start
)
2231 * The cas has failed. Either another CPU is adding an element to
2232 * this hash chain, or another CPU is deleting an element from this
2233 * hash chain. The simplest way to deal with both of these cases
2234 * (though not necessarily the most efficient) is to free our
2235 * allocated block and tail-call ourselves. Note that the free is
2236 * to the dirty list and _not_ to the free list. This is to prevent
2237 * races with allocators, above.
2239 dvar
->dtdv_hashval
= DTRACE_DYNHASH_FREE
;
2241 dtrace_membar_producer();
2244 free
= dcpu
->dtdsc_dirty
;
2245 dvar
->dtdv_next
= free
;
2246 } while (dtrace_casptr(&dcpu
->dtdsc_dirty
, free
, dvar
) != free
);
2248 return (dtrace_dynvar(dstate
, nkeys
, key
, dsize
, op
, mstate
, vstate
));
2253 dtrace_aggregate_min(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2255 #pragma unused(arg) /* __APPLE__ */
2256 if ((int64_t)nval
< (int64_t)*oval
)
2262 dtrace_aggregate_max(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2264 #pragma unused(arg) /* __APPLE__ */
2265 if ((int64_t)nval
> (int64_t)*oval
)
2270 dtrace_aggregate_quantize(uint64_t *quanta
, uint64_t nval
, uint64_t incr
)
2272 int i
, zero
= DTRACE_QUANTIZE_ZEROBUCKET
;
2273 int64_t val
= (int64_t)nval
;
2276 for (i
= 0; i
< zero
; i
++) {
2277 if (val
<= DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2283 for (i
= zero
+ 1; i
< DTRACE_QUANTIZE_NBUCKETS
; i
++) {
2284 if (val
< DTRACE_QUANTIZE_BUCKETVAL(i
)) {
2285 quanta
[i
- 1] += incr
;
2290 quanta
[DTRACE_QUANTIZE_NBUCKETS
- 1] += incr
;
2298 dtrace_aggregate_lquantize(uint64_t *lquanta
, uint64_t nval
, uint64_t incr
)
2300 uint64_t arg
= *lquanta
++;
2301 int32_t base
= DTRACE_LQUANTIZE_BASE(arg
);
2302 uint16_t step
= DTRACE_LQUANTIZE_STEP(arg
);
2303 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(arg
);
2304 int32_t val
= (int32_t)nval
, level
;
2307 ASSERT(levels
!= 0);
2311 * This is an underflow.
2317 level
= (val
- base
) / step
;
2319 if (level
< levels
) {
2320 lquanta
[level
+ 1] += incr
;
2325 * This is an overflow.
2327 lquanta
[levels
+ 1] += incr
;
2331 dtrace_aggregate_llquantize_bucket(int16_t factor
, int16_t low
, int16_t high
,
2332 int16_t nsteps
, int64_t value
)
2334 int64_t this = 1, last
, next
;
2335 int base
= 1, order
;
2337 for (order
= 0; order
< low
; ++order
)
2341 * If our value is less than our factor taken to the power of the
2342 * low order of magnitude, it goes into the zeroth bucket.
2349 for (this *= factor
; order
<= high
; ++order
) {
2350 int nbuckets
= this > nsteps
? nsteps
: this;
2353 * We should not generally get log/linear quantizations
2354 * with a high magnitude that allows 64-bits to
2355 * overflow, but we nonetheless protect against this
2356 * by explicitly checking for overflow, and clamping
2357 * our value accordingly.
2359 next
= this * factor
;
2365 * If our value lies within this order of magnitude,
2366 * determine its position by taking the offset within
2367 * the order of magnitude, dividing by the bucket
2368 * width, and adding to our (accumulated) base.
2371 return (base
+ (value
- last
) / (this / nbuckets
));
2374 base
+= nbuckets
- (nbuckets
/ factor
);
2380 * Our value is greater than or equal to our factor taken to the
2381 * power of one plus the high magnitude -- return the top bucket.
2387 dtrace_aggregate_llquantize(uint64_t *llquanta
, uint64_t nval
, uint64_t incr
)
2389 uint64_t arg
= *llquanta
++;
2390 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(arg
);
2391 uint16_t low
= DTRACE_LLQUANTIZE_LOW(arg
);
2392 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(arg
);
2393 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(arg
);
2395 llquanta
[dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, nval
)] += incr
;
2400 dtrace_aggregate_avg(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2402 #pragma unused(arg) /* __APPLE__ */
2409 dtrace_aggregate_stddev(uint64_t *data
, uint64_t nval
, uint64_t arg
)
2411 #pragma unused(arg) /* __APPLE__ */
2412 int64_t snval
= (int64_t)nval
;
2419 * What we want to say here is:
2421 * data[2] += nval * nval;
2423 * But given that nval is 64-bit, we could easily overflow, so
2424 * we do this as 128-bit arithmetic.
2429 dtrace_multiply_128((uint64_t)snval
, (uint64_t)snval
, tmp
);
2430 dtrace_add_128(data
+ 2, tmp
, data
+ 2);
2435 dtrace_aggregate_count(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2437 #pragma unused(nval, arg) /* __APPLE__ */
2443 dtrace_aggregate_sum(uint64_t *oval
, uint64_t nval
, uint64_t arg
)
2445 #pragma unused(arg) /* __APPLE__ */
2450 * Aggregate given the tuple in the principal data buffer, and the aggregating
2451 * action denoted by the specified dtrace_aggregation_t. The aggregation
2452 * buffer is specified as the buf parameter. This routine does not return
2453 * failure; if there is no space in the aggregation buffer, the data will be
2454 * dropped, and a corresponding counter incremented.
2457 dtrace_aggregate(dtrace_aggregation_t
*agg
, dtrace_buffer_t
*dbuf
,
2458 intptr_t offset
, dtrace_buffer_t
*buf
, uint64_t expr
, uint64_t arg
)
2461 dtrace_recdesc_t
*rec
= &agg
->dtag_action
.dta_rec
;
2462 uint32_t i
, ndx
, size
, fsize
;
2463 uint32_t align
= sizeof (uint64_t) - 1;
2464 dtrace_aggbuffer_t
*agb
;
2465 dtrace_aggkey_t
*key
;
2466 uint32_t hashval
= 0, limit
, isstr
;
2467 caddr_t tomax
, data
, kdata
;
2468 dtrace_actkind_t action
;
2469 dtrace_action_t
*act
;
2475 if (!agg
->dtag_hasarg
) {
2477 * Currently, only quantize() and lquantize() take additional
2478 * arguments, and they have the same semantics: an increment
2479 * value that defaults to 1 when not present. If additional
2480 * aggregating actions take arguments, the setting of the
2481 * default argument value will presumably have to become more
2487 action
= agg
->dtag_action
.dta_kind
- DTRACEACT_AGGREGATION
;
2488 size
= rec
->dtrd_offset
- agg
->dtag_base
;
2489 fsize
= size
+ rec
->dtrd_size
;
2491 ASSERT(dbuf
->dtb_tomax
!= NULL
);
2492 data
= dbuf
->dtb_tomax
+ offset
+ agg
->dtag_base
;
2494 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
2495 dtrace_buffer_drop(buf
);
2500 * The metastructure is always at the bottom of the buffer.
2502 agb
= (dtrace_aggbuffer_t
*)(tomax
+ buf
->dtb_size
-
2503 sizeof (dtrace_aggbuffer_t
));
2505 if (buf
->dtb_offset
== 0) {
2507 * We just kludge up approximately 1/8th of the size to be
2508 * buckets. If this guess ends up being routinely
2509 * off-the-mark, we may need to dynamically readjust this
2510 * based on past performance.
2512 uintptr_t hashsize
= (buf
->dtb_size
>> 3) / sizeof (uintptr_t);
2514 if ((uintptr_t)agb
- hashsize
* sizeof (dtrace_aggkey_t
*) <
2515 (uintptr_t)tomax
|| hashsize
== 0) {
2517 * We've been given a ludicrously small buffer;
2518 * increment our drop count and leave.
2520 dtrace_buffer_drop(buf
);
2525 * And now, a pathetic attempt to try to get a an odd (or
2526 * perchance, a prime) hash size for better hash distribution.
2528 if (hashsize
> (DTRACE_AGGHASHSIZE_SLEW
<< 3))
2529 hashsize
-= DTRACE_AGGHASHSIZE_SLEW
;
2531 agb
->dtagb_hashsize
= hashsize
;
2532 agb
->dtagb_hash
= (dtrace_aggkey_t
**)((uintptr_t)agb
-
2533 agb
->dtagb_hashsize
* sizeof (dtrace_aggkey_t
*));
2534 agb
->dtagb_free
= (uintptr_t)agb
->dtagb_hash
;
2536 for (i
= 0; i
< agb
->dtagb_hashsize
; i
++)
2537 agb
->dtagb_hash
[i
] = NULL
;
2540 ASSERT(agg
->dtag_first
!= NULL
);
2541 ASSERT(agg
->dtag_first
->dta_intuple
);
2544 * Calculate the hash value based on the key. Note that we _don't_
2545 * include the aggid in the hashing (but we will store it as part of
2546 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2547 * algorithm: a simple, quick algorithm that has no known funnels, and
2548 * gets good distribution in practice. The efficacy of the hashing
2549 * algorithm (and a comparison with other algorithms) may be found by
2550 * running the ::dtrace_aggstat MDB dcmd.
2552 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2553 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2554 limit
= i
+ act
->dta_rec
.dtrd_size
;
2555 ASSERT(limit
<= size
);
2556 isstr
= DTRACEACT_ISSTRING(act
);
2558 for (; i
< limit
; i
++) {
2560 hashval
+= (hashval
<< 10);
2561 hashval
^= (hashval
>> 6);
2563 if (isstr
&& data
[i
] == '\0')
2568 hashval
+= (hashval
<< 3);
2569 hashval
^= (hashval
>> 11);
2570 hashval
+= (hashval
<< 15);
2573 * Yes, the divide here is expensive -- but it's generally the least
2574 * of the performance issues given the amount of data that we iterate
2575 * over to compute hash values, compare data, etc.
2577 ndx
= hashval
% agb
->dtagb_hashsize
;
2579 for (key
= agb
->dtagb_hash
[ndx
]; key
!= NULL
; key
= key
->dtak_next
) {
2580 ASSERT((caddr_t
)key
>= tomax
);
2581 ASSERT((caddr_t
)key
< tomax
+ buf
->dtb_size
);
2583 if (hashval
!= key
->dtak_hashval
|| key
->dtak_size
!= size
)
2586 kdata
= key
->dtak_data
;
2587 ASSERT(kdata
>= tomax
&& kdata
< tomax
+ buf
->dtb_size
);
2589 for (act
= agg
->dtag_first
; act
->dta_intuple
;
2590 act
= act
->dta_next
) {
2591 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2592 limit
= i
+ act
->dta_rec
.dtrd_size
;
2593 ASSERT(limit
<= size
);
2594 isstr
= DTRACEACT_ISSTRING(act
);
2596 for (; i
< limit
; i
++) {
2597 if (kdata
[i
] != data
[i
])
2600 if (isstr
&& data
[i
] == '\0')
2605 if (action
!= key
->dtak_action
) {
2607 * We are aggregating on the same value in the same
2608 * aggregation with two different aggregating actions.
2609 * (This should have been picked up in the compiler,
2610 * so we may be dealing with errant or devious DIF.)
2611 * This is an error condition; we indicate as much,
2614 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
2619 * This is a hit: we need to apply the aggregator to
2620 * the value at this key.
2622 agg
->dtag_aggregate((uint64_t *)(kdata
+ size
), expr
, arg
);
2629 * We didn't find it. We need to allocate some zero-filled space,
2630 * link it into the hash table appropriately, and apply the aggregator
2631 * to the (zero-filled) value.
2633 offs
= buf
->dtb_offset
;
2634 while (offs
& (align
- 1))
2635 offs
+= sizeof (uint32_t);
2638 * If we don't have enough room to both allocate a new key _and_
2639 * its associated data, increment the drop count and return.
2641 if ((uintptr_t)tomax
+ offs
+ fsize
>
2642 agb
->dtagb_free
- sizeof (dtrace_aggkey_t
)) {
2643 dtrace_buffer_drop(buf
);
2648 ASSERT(!(sizeof (dtrace_aggkey_t
) & (sizeof (uintptr_t) - 1)));
2649 key
= (dtrace_aggkey_t
*)(agb
->dtagb_free
- sizeof (dtrace_aggkey_t
));
2650 agb
->dtagb_free
-= sizeof (dtrace_aggkey_t
);
2652 key
->dtak_data
= kdata
= tomax
+ offs
;
2653 buf
->dtb_offset
= offs
+ fsize
;
2656 * Now copy the data across.
2658 *((dtrace_aggid_t
*)kdata
) = agg
->dtag_id
;
2660 for (i
= sizeof (dtrace_aggid_t
); i
< size
; i
++)
2664 * Because strings are not zeroed out by default, we need to iterate
2665 * looking for actions that store strings, and we need to explicitly
2666 * pad these strings out with zeroes.
2668 for (act
= agg
->dtag_first
; act
->dta_intuple
; act
= act
->dta_next
) {
2671 if (!DTRACEACT_ISSTRING(act
))
2674 i
= act
->dta_rec
.dtrd_offset
- agg
->dtag_base
;
2675 limit
= i
+ act
->dta_rec
.dtrd_size
;
2676 ASSERT(limit
<= size
);
2678 for (nul
= 0; i
< limit
; i
++) {
2684 if (data
[i
] != '\0')
2691 for (i
= size
; i
< fsize
; i
++)
2694 key
->dtak_hashval
= hashval
;
2695 key
->dtak_size
= size
;
2696 key
->dtak_action
= action
;
2697 key
->dtak_next
= agb
->dtagb_hash
[ndx
];
2698 agb
->dtagb_hash
[ndx
] = key
;
2701 * Finally, apply the aggregator.
2703 *((uint64_t *)(key
->dtak_data
+ size
)) = agg
->dtag_initial
;
2704 agg
->dtag_aggregate((uint64_t *)(key
->dtak_data
+ size
), expr
, arg
);
2708 * Given consumer state, this routine finds a speculation in the INACTIVE
2709 * state and transitions it into the ACTIVE state. If there is no speculation
2710 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2711 * incremented -- it is up to the caller to take appropriate action.
2714 dtrace_speculation(dtrace_state_t
*state
)
2717 dtrace_speculation_state_t current
;
2718 uint32_t *stat
= &state
->dts_speculations_unavail
, count
;
2720 while (i
< state
->dts_nspeculations
) {
2721 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
2723 current
= spec
->dtsp_state
;
2725 if (current
!= DTRACESPEC_INACTIVE
) {
2726 if (current
== DTRACESPEC_COMMITTINGMANY
||
2727 current
== DTRACESPEC_COMMITTING
||
2728 current
== DTRACESPEC_DISCARDING
)
2729 stat
= &state
->dts_speculations_busy
;
2734 if (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2735 current
, DTRACESPEC_ACTIVE
) == current
)
2740 * We couldn't find a speculation. If we found as much as a single
2741 * busy speculation buffer, we'll attribute this failure as "busy"
2742 * instead of "unavail".
2746 } while (dtrace_cas32(stat
, count
, count
+ 1) != count
);
2752 * This routine commits an active speculation. If the specified speculation
2753 * is not in a valid state to perform a commit(), this routine will silently do
2754 * nothing. The state of the specified speculation is transitioned according
2755 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2758 dtrace_speculation_commit(dtrace_state_t
*state
, processorid_t cpu
,
2759 dtrace_specid_t which
)
2761 dtrace_speculation_t
*spec
;
2762 dtrace_buffer_t
*src
, *dest
;
2763 uintptr_t daddr
, saddr
, dlimit
, slimit
;
2764 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2771 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2772 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2776 spec
= &state
->dts_speculations
[which
- 1];
2777 src
= &spec
->dtsp_buffer
[cpu
];
2778 dest
= &state
->dts_buffer
[cpu
];
2781 current
= spec
->dtsp_state
;
2783 if (current
== DTRACESPEC_COMMITTINGMANY
)
2787 case DTRACESPEC_INACTIVE
:
2788 case DTRACESPEC_DISCARDING
:
2791 case DTRACESPEC_COMMITTING
:
2793 * This is only possible if we are (a) commit()'ing
2794 * without having done a prior speculate() on this CPU
2795 * and (b) racing with another commit() on a different
2796 * CPU. There's nothing to do -- we just assert that
2799 ASSERT(src
->dtb_offset
== 0);
2802 case DTRACESPEC_ACTIVE
:
2803 new = DTRACESPEC_COMMITTING
;
2806 case DTRACESPEC_ACTIVEONE
:
2808 * This speculation is active on one CPU. If our
2809 * buffer offset is non-zero, we know that the one CPU
2810 * must be us. Otherwise, we are committing on a
2811 * different CPU from the speculate(), and we must
2812 * rely on being asynchronously cleaned.
2814 if (src
->dtb_offset
!= 0) {
2815 new = DTRACESPEC_COMMITTING
;
2820 case DTRACESPEC_ACTIVEMANY
:
2821 new = DTRACESPEC_COMMITTINGMANY
;
2827 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2828 current
, new) != current
);
2831 * We have set the state to indicate that we are committing this
2832 * speculation. Now reserve the necessary space in the destination
2835 if ((offs
= dtrace_buffer_reserve(dest
, src
->dtb_offset
,
2836 sizeof (uint64_t), state
, NULL
)) < 0) {
2837 dtrace_buffer_drop(dest
);
2842 * We have sufficient space to copy the speculative buffer into the
2843 * primary buffer. First, modify the speculative buffer, filling
2844 * in the timestamp of all entries with the current time. The data
2845 * must have the commit() time rather than the time it was traced,
2846 * so that all entries in the primary buffer are in timestamp order.
2848 timestamp
= dtrace_gethrtime();
2849 saddr
= (uintptr_t)src
->dtb_tomax
;
2850 slimit
= saddr
+ src
->dtb_offset
;
2851 while (saddr
< slimit
) {
2853 dtrace_rechdr_t
*dtrh
= (dtrace_rechdr_t
*)saddr
;
2855 if (dtrh
->dtrh_epid
== DTRACE_EPIDNONE
) {
2856 saddr
+= sizeof (dtrace_epid_t
);
2860 ASSERT(dtrh
->dtrh_epid
<= ((dtrace_epid_t
) state
->dts_necbs
));
2861 size
= state
->dts_ecbs
[dtrh
->dtrh_epid
- 1]->dte_size
;
2863 ASSERT(saddr
+ size
<= slimit
);
2864 ASSERT(size
>= sizeof(dtrace_rechdr_t
));
2865 ASSERT(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh
) == UINT64_MAX
);
2867 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, timestamp
);
2873 * Copy the buffer across. (Note that this is a
2874 * highly subobtimal bcopy(); in the unlikely event that this becomes
2875 * a serious performance issue, a high-performance DTrace-specific
2876 * bcopy() should obviously be invented.)
2878 daddr
= (uintptr_t)dest
->dtb_tomax
+ offs
;
2879 dlimit
= daddr
+ src
->dtb_offset
;
2880 saddr
= (uintptr_t)src
->dtb_tomax
;
2883 * First, the aligned portion.
2885 while (dlimit
- daddr
>= sizeof (uint64_t)) {
2886 *((uint64_t *)daddr
) = *((uint64_t *)saddr
);
2888 daddr
+= sizeof (uint64_t);
2889 saddr
+= sizeof (uint64_t);
2893 * Now any left-over bit...
2895 while (dlimit
- daddr
)
2896 *((uint8_t *)daddr
++) = *((uint8_t *)saddr
++);
2899 * Finally, commit the reserved space in the destination buffer.
2901 dest
->dtb_offset
= offs
+ src
->dtb_offset
;
2905 * If we're lucky enough to be the only active CPU on this speculation
2906 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2908 if (current
== DTRACESPEC_ACTIVE
||
2909 (current
== DTRACESPEC_ACTIVEONE
&& new == DTRACESPEC_COMMITTING
)) {
2910 uint32_t rval
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2911 DTRACESPEC_COMMITTING
, DTRACESPEC_INACTIVE
);
2912 #pragma unused(rval) /* __APPLE__ */
2914 ASSERT(rval
== DTRACESPEC_COMMITTING
);
2917 src
->dtb_offset
= 0;
2918 src
->dtb_xamot_drops
+= src
->dtb_drops
;
2923 * This routine discards an active speculation. If the specified speculation
2924 * is not in a valid state to perform a discard(), this routine will silently
2925 * do nothing. The state of the specified speculation is transitioned
2926 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2929 dtrace_speculation_discard(dtrace_state_t
*state
, processorid_t cpu
,
2930 dtrace_specid_t which
)
2932 dtrace_speculation_t
*spec
;
2933 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
2934 dtrace_buffer_t
*buf
;
2939 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
2940 cpu_core
[cpu
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
2944 spec
= &state
->dts_speculations
[which
- 1];
2945 buf
= &spec
->dtsp_buffer
[cpu
];
2948 current
= spec
->dtsp_state
;
2951 case DTRACESPEC_INACTIVE
:
2952 case DTRACESPEC_COMMITTINGMANY
:
2953 case DTRACESPEC_COMMITTING
:
2954 case DTRACESPEC_DISCARDING
:
2957 case DTRACESPEC_ACTIVE
:
2958 case DTRACESPEC_ACTIVEMANY
:
2959 new = DTRACESPEC_DISCARDING
;
2962 case DTRACESPEC_ACTIVEONE
:
2963 if (buf
->dtb_offset
!= 0) {
2964 new = DTRACESPEC_INACTIVE
;
2966 new = DTRACESPEC_DISCARDING
;
2973 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
2974 current
, new) != current
);
2976 buf
->dtb_offset
= 0;
2981 * Note: not called from probe context. This function is called
2982 * asynchronously from cross call context to clean any speculations that are
2983 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2984 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2988 dtrace_speculation_clean_here(dtrace_state_t
*state
)
2990 dtrace_icookie_t cookie
;
2991 processorid_t cpu
= CPU
->cpu_id
;
2992 dtrace_buffer_t
*dest
= &state
->dts_buffer
[cpu
];
2995 cookie
= dtrace_interrupt_disable();
2997 if (dest
->dtb_tomax
== NULL
) {
2998 dtrace_interrupt_enable(cookie
);
3002 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3003 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3004 dtrace_buffer_t
*src
= &spec
->dtsp_buffer
[cpu
];
3006 if (src
->dtb_tomax
== NULL
)
3009 if (spec
->dtsp_state
== DTRACESPEC_DISCARDING
) {
3010 src
->dtb_offset
= 0;
3014 if (spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
3017 if (src
->dtb_offset
== 0)
3020 dtrace_speculation_commit(state
, cpu
, i
+ 1);
3023 dtrace_interrupt_enable(cookie
);
3027 * Note: not called from probe context. This function is called
3028 * asynchronously (and at a regular interval) to clean any speculations that
3029 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3030 * is work to be done, it cross calls all CPUs to perform that work;
3031 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3032 * INACTIVE state until they have been cleaned by all CPUs.
3035 dtrace_speculation_clean(dtrace_state_t
*state
)
3041 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3042 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3044 ASSERT(!spec
->dtsp_cleaning
);
3046 if (spec
->dtsp_state
!= DTRACESPEC_DISCARDING
&&
3047 spec
->dtsp_state
!= DTRACESPEC_COMMITTINGMANY
)
3051 spec
->dtsp_cleaning
= 1;
3057 dtrace_xcall(DTRACE_CPUALL
,
3058 (dtrace_xcall_t
)dtrace_speculation_clean_here
, state
);
3061 * We now know that all CPUs have committed or discarded their
3062 * speculation buffers, as appropriate. We can now set the state
3065 for (i
= 0; i
< (dtrace_specid_t
)state
->dts_nspeculations
; i
++) {
3066 dtrace_speculation_t
*spec
= &state
->dts_speculations
[i
];
3067 dtrace_speculation_state_t current
, new;
3069 if (!spec
->dtsp_cleaning
)
3072 current
= spec
->dtsp_state
;
3073 ASSERT(current
== DTRACESPEC_DISCARDING
||
3074 current
== DTRACESPEC_COMMITTINGMANY
);
3076 new = DTRACESPEC_INACTIVE
;
3078 rv
= dtrace_cas32((uint32_t *)&spec
->dtsp_state
, current
, new);
3079 ASSERT(rv
== current
);
3080 spec
->dtsp_cleaning
= 0;
3085 * Called as part of a speculate() to get the speculative buffer associated
3086 * with a given speculation. Returns NULL if the specified speculation is not
3087 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3088 * the active CPU is not the specified CPU -- the speculation will be
3089 * atomically transitioned into the ACTIVEMANY state.
3091 static dtrace_buffer_t
*
3092 dtrace_speculation_buffer(dtrace_state_t
*state
, processorid_t cpuid
,
3093 dtrace_specid_t which
)
3095 dtrace_speculation_t
*spec
;
3096 dtrace_speculation_state_t current
, new = DTRACESPEC_INACTIVE
;
3097 dtrace_buffer_t
*buf
;
3102 if (which
> (dtrace_specid_t
)state
->dts_nspeculations
) {
3103 cpu_core
[cpuid
].cpuc_dtrace_flags
|= CPU_DTRACE_ILLOP
;
3107 spec
= &state
->dts_speculations
[which
- 1];
3108 buf
= &spec
->dtsp_buffer
[cpuid
];
3111 current
= spec
->dtsp_state
;
3114 case DTRACESPEC_INACTIVE
:
3115 case DTRACESPEC_COMMITTINGMANY
:
3116 case DTRACESPEC_DISCARDING
:
3119 case DTRACESPEC_COMMITTING
:
3120 ASSERT(buf
->dtb_offset
== 0);
3123 case DTRACESPEC_ACTIVEONE
:
3125 * This speculation is currently active on one CPU.
3126 * Check the offset in the buffer; if it's non-zero,
3127 * that CPU must be us (and we leave the state alone).
3128 * If it's zero, assume that we're starting on a new
3129 * CPU -- and change the state to indicate that the
3130 * speculation is active on more than one CPU.
3132 if (buf
->dtb_offset
!= 0)
3135 new = DTRACESPEC_ACTIVEMANY
;
3138 case DTRACESPEC_ACTIVEMANY
:
3141 case DTRACESPEC_ACTIVE
:
3142 new = DTRACESPEC_ACTIVEONE
;
3148 } while (dtrace_cas32((uint32_t *)&spec
->dtsp_state
,
3149 current
, new) != current
);
3151 ASSERT(new == DTRACESPEC_ACTIVEONE
|| new == DTRACESPEC_ACTIVEMANY
);
3156 * Return a string. In the event that the user lacks the privilege to access
3157 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3158 * don't fail access checking.
3160 * dtrace_dif_variable() uses this routine as a helper for various
3161 * builtin values such as 'execname' and 'probefunc.'
3165 dtrace_dif_varstr(uintptr_t addr
, dtrace_state_t
*state
,
3166 dtrace_mstate_t
*mstate
)
3168 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3173 * The easy case: this probe is allowed to read all of memory, so
3174 * we can just return this as a vanilla pointer.
3176 if ((mstate
->dtms_access
& DTRACE_ACCESS_KERNEL
) != 0)
3180 * This is the tougher case: we copy the string in question from
3181 * kernel memory into scratch memory and return it that way: this
3182 * ensures that we won't trip up when access checking tests the
3183 * BYREF return value.
3185 strsz
= dtrace_strlen((char *)addr
, size
) + 1;
3187 if (mstate
->dtms_scratch_ptr
+ strsz
>
3188 mstate
->dtms_scratch_base
+ mstate
->dtms_scratch_size
) {
3189 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3193 dtrace_strcpy((const void *)addr
, (void *)mstate
->dtms_scratch_ptr
,
3195 ret
= mstate
->dtms_scratch_ptr
;
3196 mstate
->dtms_scratch_ptr
+= strsz
;
3201 * This function implements the DIF emulator's variable lookups. The emulator
3202 * passes a reserved variable identifier and optional built-in array index.
3205 dtrace_dif_variable(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
, uint64_t v
,
3209 * If we're accessing one of the uncached arguments, we'll turn this
3210 * into a reference in the args array.
3212 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
) {
3213 ndx
= v
- DIF_VAR_ARG0
;
3219 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_ARGS
);
3220 if (ndx
>= sizeof (mstate
->dtms_arg
) /
3221 sizeof (mstate
->dtms_arg
[0])) {
3223 * APPLE NOTE: Account for introduction of __dtrace_probe()
3225 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3226 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
3227 dtrace_provider_t
*pv
;
3230 pv
= mstate
->dtms_probe
->dtpr_provider
;
3231 if (pv
->dtpv_pops
.dtps_getargval
!= NULL
)
3232 val
= pv
->dtpv_pops
.dtps_getargval(pv
->dtpv_arg
,
3233 mstate
->dtms_probe
->dtpr_id
,
3234 mstate
->dtms_probe
->dtpr_arg
, ndx
, aframes
);
3235 /* Special case access of arg5 as passed to dtrace_probe_error() (which see.) */
3236 else if (mstate
->dtms_probe
->dtpr_id
== dtrace_probeid_error
&& ndx
== 5) {
3237 return ((dtrace_state_t
*)(uintptr_t)(mstate
->dtms_arg
[0]))->dts_arg_error_illval
;
3241 val
= dtrace_getarg(ndx
, aframes
, mstate
, vstate
);
3244 * This is regrettably required to keep the compiler
3245 * from tail-optimizing the call to dtrace_getarg().
3246 * The condition always evaluates to true, but the
3247 * compiler has no way of figuring that out a priori.
3248 * (None of this would be necessary if the compiler
3249 * could be relied upon to _always_ tail-optimize
3250 * the call to dtrace_getarg() -- but it can't.)
3252 if (mstate
->dtms_probe
!= NULL
)
3258 return (mstate
->dtms_arg
[ndx
]);
3260 case DIF_VAR_UREGS
: {
3263 if (!dtrace_priv_proc(state
))
3266 if ((thread
= current_thread()) == NULL
) {
3267 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR
);
3268 cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
= 0;
3272 return (dtrace_getreg(find_user_regs(thread
), ndx
));
3276 case DIF_VAR_CURTHREAD
:
3277 if (!dtrace_priv_kernel(state
))
3280 return ((uint64_t)(uintptr_t)current_thread());
3282 case DIF_VAR_TIMESTAMP
:
3283 if (!(mstate
->dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
3284 mstate
->dtms_timestamp
= dtrace_gethrtime();
3285 mstate
->dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
3287 return (mstate
->dtms_timestamp
);
3289 case DIF_VAR_VTIMESTAMP
:
3290 ASSERT(dtrace_vtime_references
!= 0);
3291 return (dtrace_get_thread_vtime(current_thread()));
3293 case DIF_VAR_WALLTIMESTAMP
:
3294 if (!(mstate
->dtms_present
& DTRACE_MSTATE_WALLTIMESTAMP
)) {
3295 mstate
->dtms_walltimestamp
= dtrace_gethrestime();
3296 mstate
->dtms_present
|= DTRACE_MSTATE_WALLTIMESTAMP
;
3298 return (mstate
->dtms_walltimestamp
);
3300 case DIF_VAR_MACHTIMESTAMP
:
3301 if (!(mstate
->dtms_present
& DTRACE_MSTATE_MACHTIMESTAMP
)) {
3302 mstate
->dtms_machtimestamp
= mach_absolute_time();
3303 mstate
->dtms_present
|= DTRACE_MSTATE_MACHTIMESTAMP
;
3305 return (mstate
->dtms_machtimestamp
);
3308 return ((uint64_t) dtrace_get_thread_last_cpu_id(current_thread()));
3311 if (!dtrace_priv_kernel(state
))
3313 if (!(mstate
->dtms_present
& DTRACE_MSTATE_IPL
)) {
3314 mstate
->dtms_ipl
= dtrace_getipl();
3315 mstate
->dtms_present
|= DTRACE_MSTATE_IPL
;
3317 return (mstate
->dtms_ipl
);
3320 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_EPID
);
3321 return (mstate
->dtms_epid
);
3324 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3325 return (mstate
->dtms_probe
->dtpr_id
);
3327 case DIF_VAR_STACKDEPTH
:
3328 if (!dtrace_priv_kernel(state
))
3330 if (!(mstate
->dtms_present
& DTRACE_MSTATE_STACKDEPTH
)) {
3332 * APPLE NOTE: Account for introduction of __dtrace_probe()
3334 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3336 mstate
->dtms_stackdepth
= dtrace_getstackdepth(aframes
);
3337 mstate
->dtms_present
|= DTRACE_MSTATE_STACKDEPTH
;
3339 return (mstate
->dtms_stackdepth
);
3341 case DIF_VAR_USTACKDEPTH
:
3342 if (!dtrace_priv_proc(state
))
3344 if (!(mstate
->dtms_present
& DTRACE_MSTATE_USTACKDEPTH
)) {
3346 * See comment in DIF_VAR_PID.
3348 if (DTRACE_ANCHORED(mstate
->dtms_probe
) &&
3350 mstate
->dtms_ustackdepth
= 0;
3352 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3353 mstate
->dtms_ustackdepth
=
3354 dtrace_getustackdepth();
3355 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3357 mstate
->dtms_present
|= DTRACE_MSTATE_USTACKDEPTH
;
3359 return (mstate
->dtms_ustackdepth
);
3361 case DIF_VAR_CALLER
:
3362 if (!dtrace_priv_kernel(state
))
3364 if (!(mstate
->dtms_present
& DTRACE_MSTATE_CALLER
)) {
3366 * APPLE NOTE: Account for introduction of __dtrace_probe()
3368 int aframes
= mstate
->dtms_probe
->dtpr_aframes
+ 3;
3370 if (!DTRACE_ANCHORED(mstate
->dtms_probe
)) {
3372 * If this is an unanchored probe, we are
3373 * required to go through the slow path:
3374 * dtrace_caller() only guarantees correct
3375 * results for anchored probes.
3379 dtrace_getpcstack(caller
, 2, aframes
,
3380 (uint32_t *)(uintptr_t)mstate
->dtms_arg
[0]);
3381 mstate
->dtms_caller
= caller
[1];
3382 } else if ((mstate
->dtms_caller
=
3383 dtrace_caller(aframes
)) == (uintptr_t)-1) {
3385 * We have failed to do this the quick way;
3386 * we must resort to the slower approach of
3387 * calling dtrace_getpcstack().
3391 dtrace_getpcstack(&caller
, 1, aframes
, NULL
);
3392 mstate
->dtms_caller
= caller
;
3395 mstate
->dtms_present
|= DTRACE_MSTATE_CALLER
;
3397 return (mstate
->dtms_caller
);
3399 case DIF_VAR_UCALLER
:
3400 if (!dtrace_priv_proc(state
))
3403 if (!(mstate
->dtms_present
& DTRACE_MSTATE_UCALLER
)) {
3407 * dtrace_getupcstack() fills in the first uint64_t
3408 * with the current PID. The second uint64_t will
3409 * be the program counter at user-level. The third
3410 * uint64_t will contain the caller, which is what
3414 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3415 dtrace_getupcstack(ustack
, 3);
3416 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3417 mstate
->dtms_ucaller
= ustack
[2];
3418 mstate
->dtms_present
|= DTRACE_MSTATE_UCALLER
;
3421 return (mstate
->dtms_ucaller
);
3423 case DIF_VAR_PROBEPROV
:
3424 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3425 return (dtrace_dif_varstr(
3426 (uintptr_t)mstate
->dtms_probe
->dtpr_provider
->dtpv_name
,
3429 case DIF_VAR_PROBEMOD
:
3430 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3431 return (dtrace_dif_varstr(
3432 (uintptr_t)mstate
->dtms_probe
->dtpr_mod
,
3435 case DIF_VAR_PROBEFUNC
:
3436 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3437 return (dtrace_dif_varstr(
3438 (uintptr_t)mstate
->dtms_probe
->dtpr_func
,
3441 case DIF_VAR_PROBENAME
:
3442 ASSERT(mstate
->dtms_present
& DTRACE_MSTATE_PROBE
);
3443 return (dtrace_dif_varstr(
3444 (uintptr_t)mstate
->dtms_probe
->dtpr_name
,
3448 if (!dtrace_priv_proc_relaxed(state
))
3452 * Note that we are assuming that an unanchored probe is
3453 * always due to a high-level interrupt. (And we're assuming
3454 * that there is only a single high level interrupt.)
3456 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3457 /* Anchored probe that fires while on an interrupt accrues to process 0 */
3460 return ((uint64_t)dtrace_proc_selfpid());
3463 if (!dtrace_priv_proc_relaxed(state
))
3467 * See comment in DIF_VAR_PID.
3469 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3472 return ((uint64_t)dtrace_proc_selfppid());
3475 /* We do not need to check for null current_thread() */
3476 return thread_tid(current_thread()); /* globally unique */
3478 case DIF_VAR_PTHREAD_SELF
:
3479 if (!dtrace_priv_proc(state
))
3482 /* Not currently supported, but we should be able to delta the dispatchqaddr and dispatchqoffset to get pthread_self */
3485 case DIF_VAR_DISPATCHQADDR
:
3486 if (!dtrace_priv_proc(state
))
3489 /* We do not need to check for null current_thread() */
3490 return thread_dispatchqaddr(current_thread());
3492 case DIF_VAR_EXECNAME
:
3494 char *xname
= (char *)mstate
->dtms_scratch_ptr
;
3495 size_t scratch_size
= MAXCOMLEN
+1;
3497 /* The scratch allocation's lifetime is that of the clause. */
3498 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3499 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3503 if (!dtrace_priv_proc_relaxed(state
))
3506 mstate
->dtms_scratch_ptr
+= scratch_size
;
3507 proc_selfname( xname
, scratch_size
);
3509 return ((uint64_t)(uintptr_t)xname
);
3513 case DIF_VAR_ZONENAME
:
3515 /* scratch_size is equal to length('global') + 1 for the null-terminator. */
3516 char *zname
= (char *)mstate
->dtms_scratch_ptr
;
3517 size_t scratch_size
= 6 + 1;
3519 if (!dtrace_priv_proc(state
))
3522 /* The scratch allocation's lifetime is that of the clause. */
3523 if (!DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3524 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3528 mstate
->dtms_scratch_ptr
+= scratch_size
;
3530 /* The kernel does not provide zonename, it will always return 'global'. */
3531 strlcpy(zname
, "global", scratch_size
);
3533 return ((uint64_t)(uintptr_t)zname
);
3537 case DIF_VAR_CPUINSTRS
:
3538 return mt_cur_cpu_instrs();
3540 case DIF_VAR_CPUCYCLES
:
3541 return mt_cur_cpu_cycles();
3543 case DIF_VAR_VINSTRS
:
3544 return mt_cur_thread_instrs();
3546 case DIF_VAR_VCYCLES
:
3547 return mt_cur_thread_cycles();
3548 #else /* MONOTONIC */
3549 case DIF_VAR_CPUINSTRS
: /* FALLTHROUGH */
3550 case DIF_VAR_CPUCYCLES
: /* FALLTHROUGH */
3551 case DIF_VAR_VINSTRS
: /* FALLTHROUGH */
3552 case DIF_VAR_VCYCLES
: /* FALLTHROUGH */
3554 #endif /* !MONOTONIC */
3557 if (!dtrace_priv_proc_relaxed(state
))
3561 * See comment in DIF_VAR_PID.
3563 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3566 return ((uint64_t) dtrace_proc_selfruid());
3569 if (!dtrace_priv_proc(state
))
3573 * See comment in DIF_VAR_PID.
3575 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3578 if (dtrace_CRED() != NULL
)
3579 /* Credential does not require lazy initialization. */
3580 return ((uint64_t)kauth_getgid());
3582 /* proc_lock would be taken under kauth_cred_proc_ref() in kauth_cred_get(). */
3583 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3587 case DIF_VAR_ERRNO
: {
3588 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
3589 if (!dtrace_priv_proc(state
))
3593 * See comment in DIF_VAR_PID.
3595 if (DTRACE_ANCHORED(mstate
->dtms_probe
) && CPU_ON_INTR(CPU
))
3599 return (uint64_t)uthread
->t_dtrace_errno
;
3601 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3607 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3613 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3614 * Notice that we don't bother validating the proper number of arguments or
3615 * their types in the tuple stack. This isn't needed because all argument
3616 * interpretation is safe because of our load safety -- the worst that can
3617 * happen is that a bogus program can obtain bogus results.
3620 dtrace_dif_subr(uint_t subr
, uint_t rd
, uint64_t *regs
,
3621 dtrace_key_t
*tupregs
, int nargs
,
3622 dtrace_mstate_t
*mstate
, dtrace_state_t
*state
)
3624 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
3625 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
3626 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
3628 #if !defined(__APPLE__)
3639 /* FIXME: awaits lock/mutex work */
3640 #endif /* __APPLE__ */
3644 regs
[rd
] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3647 #if !defined(__APPLE__)
3648 case DIF_SUBR_MUTEX_OWNED
:
3649 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3655 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3656 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
))
3657 regs
[rd
] = MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
;
3659 regs
[rd
] = LOCK_HELD(&m
.mi
.m_spin
.m_spinlock
);
3662 case DIF_SUBR_MUTEX_OWNER
:
3663 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3669 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3670 if (MUTEX_TYPE_ADAPTIVE(&m
.mi
) &&
3671 MUTEX_OWNER(&m
.mi
) != MUTEX_NO_OWNER
)
3672 regs
[rd
] = (uintptr_t)MUTEX_OWNER(&m
.mi
);
3677 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE
:
3678 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3684 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3685 regs
[rd
] = MUTEX_TYPE_ADAPTIVE(&m
.mi
);
3688 case DIF_SUBR_MUTEX_TYPE_SPIN
:
3689 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (kmutex_t
),
3695 m
.mx
= dtrace_load64(tupregs
[0].dttk_value
);
3696 regs
[rd
] = MUTEX_TYPE_SPIN(&m
.mi
);
3699 case DIF_SUBR_RW_READ_HELD
: {
3702 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (uintptr_t),
3708 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3709 regs
[rd
] = _RW_READ_HELD(&r
.ri
, tmp
);
3713 case DIF_SUBR_RW_WRITE_HELD
:
3714 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3720 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3721 regs
[rd
] = _RW_WRITE_HELD(&r
.ri
);
3724 case DIF_SUBR_RW_ISWRITER
:
3725 if (!dtrace_canload(tupregs
[0].dttk_value
, sizeof (krwlock_t
),
3731 r
.rw
= dtrace_loadptr(tupregs
[0].dttk_value
);
3732 regs
[rd
] = _RW_ISWRITER(&r
.ri
);
3735 /* FIXME: awaits lock/mutex work */
3736 #endif /* __APPLE__ */
3738 case DIF_SUBR_BCOPY
: {
3740 * We need to be sure that the destination is in the scratch
3741 * region -- no other region is allowed.
3743 uintptr_t src
= tupregs
[0].dttk_value
;
3744 uintptr_t dest
= tupregs
[1].dttk_value
;
3745 size_t size
= tupregs
[2].dttk_value
;
3747 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3748 *flags
|= CPU_DTRACE_BADADDR
;
3753 if (!dtrace_canload(src
, size
, mstate
, vstate
)) {
3758 dtrace_bcopy((void *)src
, (void *)dest
, size
);
3762 case DIF_SUBR_ALLOCA
:
3763 case DIF_SUBR_COPYIN
: {
3764 uintptr_t dest
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
3766 tupregs
[subr
== DIF_SUBR_ALLOCA
? 0 : 1].dttk_value
;
3767 size_t scratch_size
= (dest
- mstate
->dtms_scratch_ptr
) + size
;
3770 * Check whether the user can access kernel memory
3772 if (dtrace_priv_kernel(state
) == 0) {
3773 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV
);
3778 * This action doesn't require any credential checks since
3779 * probes will not activate in user contexts to which the
3780 * enabling user does not have permissions.
3784 * Rounding up the user allocation size could have overflowed
3785 * a large, bogus allocation (like -1ULL) to 0.
3787 if (scratch_size
< size
||
3788 !DTRACE_INSCRATCH(mstate
, scratch_size
)) {
3789 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3794 if (subr
== DIF_SUBR_COPYIN
) {
3795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3796 if (dtrace_priv_proc(state
))
3797 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3798 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3801 mstate
->dtms_scratch_ptr
+= scratch_size
;
3806 case DIF_SUBR_COPYINTO
: {
3807 uint64_t size
= tupregs
[1].dttk_value
;
3808 uintptr_t dest
= tupregs
[2].dttk_value
;
3811 * This action doesn't require any credential checks since
3812 * probes will not activate in user contexts to which the
3813 * enabling user does not have permissions.
3815 if (!dtrace_inscratch(dest
, size
, mstate
)) {
3816 *flags
|= CPU_DTRACE_BADADDR
;
3821 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3822 if (dtrace_priv_proc(state
))
3823 dtrace_copyin(tupregs
[0].dttk_value
, dest
, size
, flags
);
3824 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3828 case DIF_SUBR_COPYINSTR
: {
3829 uintptr_t dest
= mstate
->dtms_scratch_ptr
;
3830 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3832 if (nargs
> 1 && tupregs
[1].dttk_value
< size
)
3833 size
= tupregs
[1].dttk_value
+ 1;
3836 * This action doesn't require any credential checks since
3837 * probes will not activate in user contexts to which the
3838 * enabling user does not have permissions.
3840 if (!DTRACE_INSCRATCH(mstate
, size
)) {
3841 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
3846 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3847 if (dtrace_priv_proc(state
))
3848 dtrace_copyinstr(tupregs
[0].dttk_value
, dest
, size
, flags
);
3849 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3851 ((char *)dest
)[size
- 1] = '\0';
3852 mstate
->dtms_scratch_ptr
+= size
;
3857 case DIF_SUBR_MSGSIZE
:
3858 case DIF_SUBR_MSGDSIZE
: {
3859 /* Darwin does not implement SysV streams messages */
3860 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
3865 case DIF_SUBR_PROGENYOF
: {
3866 pid_t pid
= tupregs
[0].dttk_value
;
3867 struct proc
*p
= current_proc();
3868 int rval
= 0, lim
= nprocs
;
3870 while(p
&& (lim
-- > 0)) {
3873 ppid
= (pid_t
)dtrace_load32((uintptr_t)&(p
->p_pid
));
3874 if (*flags
& CPU_DTRACE_FAULT
)
3883 break; /* Can't climb process tree any further. */
3885 p
= (struct proc
*)dtrace_loadptr((uintptr_t)&(p
->p_pptr
));
3886 if (*flags
& CPU_DTRACE_FAULT
)
3894 case DIF_SUBR_SPECULATION
:
3895 regs
[rd
] = dtrace_speculation(state
);
3899 case DIF_SUBR_COPYOUT
: {
3900 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3901 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3902 uint64_t size
= tupregs
[2].dttk_value
;
3904 if (!dtrace_destructive_disallow
&&
3905 dtrace_priv_proc_control(state
) &&
3906 !dtrace_istoxic(kaddr
, size
) &&
3907 dtrace_canload(kaddr
, size
, mstate
, vstate
)) {
3908 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3909 dtrace_copyout(kaddr
, uaddr
, size
, flags
);
3910 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3915 case DIF_SUBR_COPYOUTSTR
: {
3916 uintptr_t kaddr
= tupregs
[0].dttk_value
;
3917 user_addr_t uaddr
= tupregs
[1].dttk_value
;
3918 uint64_t size
= tupregs
[2].dttk_value
;
3921 if (!dtrace_destructive_disallow
&&
3922 dtrace_priv_proc_control(state
) &&
3923 !dtrace_istoxic(kaddr
, size
) &&
3924 dtrace_strcanload(kaddr
, size
, &lim
, mstate
, vstate
)) {
3925 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
3926 dtrace_copyoutstr(kaddr
, uaddr
, lim
, flags
);
3927 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
3932 case DIF_SUBR_STRLEN
: {
3933 size_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3934 uintptr_t addr
= (uintptr_t)tupregs
[0].dttk_value
;
3937 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
3942 regs
[rd
] = dtrace_strlen((char *)addr
, lim
);
3947 case DIF_SUBR_STRCHR
:
3948 case DIF_SUBR_STRRCHR
: {
3950 * We're going to iterate over the string looking for the
3951 * specified character. We will iterate until we have reached
3952 * the string length or we have found the character. If this
3953 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3954 * of the specified character instead of the first.
3956 uintptr_t addr
= tupregs
[0].dttk_value
;
3957 uintptr_t addr_limit
;
3958 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3960 char c
, target
= (char)tupregs
[1].dttk_value
;
3962 if (!dtrace_strcanload(addr
, size
, &lim
, mstate
, vstate
)) {
3966 addr_limit
= addr
+ lim
;
3968 for (regs
[rd
] = 0; addr
< addr_limit
; addr
++) {
3969 if ((c
= dtrace_load8(addr
)) == target
) {
3972 if (subr
== DIF_SUBR_STRCHR
)
3983 case DIF_SUBR_STRSTR
:
3984 case DIF_SUBR_INDEX
:
3985 case DIF_SUBR_RINDEX
: {
3987 * We're going to iterate over the string looking for the
3988 * specified string. We will iterate until we have reached
3989 * the string length or we have found the string. (Yes, this
3990 * is done in the most naive way possible -- but considering
3991 * that the string we're searching for is likely to be
3992 * relatively short, the complexity of Rabin-Karp or similar
3993 * hardly seems merited.)
3995 char *addr
= (char *)(uintptr_t)tupregs
[0].dttk_value
;
3996 char *substr
= (char *)(uintptr_t)tupregs
[1].dttk_value
;
3997 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
3998 size_t len
= dtrace_strlen(addr
, size
);
3999 size_t sublen
= dtrace_strlen(substr
, size
);
4000 char *limit
= addr
+ len
, *orig
= addr
;
4001 int notfound
= subr
== DIF_SUBR_STRSTR
? 0 : -1;
4004 regs
[rd
] = notfound
;
4006 if (!dtrace_canload((uintptr_t)addr
, len
+ 1, mstate
, vstate
)) {
4011 if (!dtrace_canload((uintptr_t)substr
, sublen
+ 1, mstate
,
4018 * strstr() and index()/rindex() have similar semantics if
4019 * both strings are the empty string: strstr() returns a
4020 * pointer to the (empty) string, and index() and rindex()
4021 * both return index 0 (regardless of any position argument).
4023 if (sublen
== 0 && len
== 0) {
4024 if (subr
== DIF_SUBR_STRSTR
)
4025 regs
[rd
] = (uintptr_t)addr
;
4031 if (subr
!= DIF_SUBR_STRSTR
) {
4032 if (subr
== DIF_SUBR_RINDEX
) {
4039 * Both index() and rindex() take an optional position
4040 * argument that denotes the starting position.
4043 int64_t pos
= (int64_t)tupregs
[2].dttk_value
;
4046 * If the position argument to index() is
4047 * negative, Perl implicitly clamps it at
4048 * zero. This semantic is a little surprising
4049 * given the special meaning of negative
4050 * positions to similar Perl functions like
4051 * substr(), but it appears to reflect a
4052 * notion that index() can start from a
4053 * negative index and increment its way up to
4054 * the string. Given this notion, Perl's
4055 * rindex() is at least self-consistent in
4056 * that it implicitly clamps positions greater
4057 * than the string length to be the string
4058 * length. Where Perl completely loses
4059 * coherence, however, is when the specified
4060 * substring is the empty string (""). In
4061 * this case, even if the position is
4062 * negative, rindex() returns 0 -- and even if
4063 * the position is greater than the length,
4064 * index() returns the string length. These
4065 * semantics violate the notion that index()
4066 * should never return a value less than the
4067 * specified position and that rindex() should
4068 * never return a value greater than the
4069 * specified position. (One assumes that
4070 * these semantics are artifacts of Perl's
4071 * implementation and not the results of
4072 * deliberate design -- it beggars belief that
4073 * even Larry Wall could desire such oddness.)
4074 * While in the abstract one would wish for
4075 * consistent position semantics across
4076 * substr(), index() and rindex() -- or at the
4077 * very least self-consistent position
4078 * semantics for index() and rindex() -- we
4079 * instead opt to keep with the extant Perl
4080 * semantics, in all their broken glory. (Do
4081 * we have more desire to maintain Perl's
4082 * semantics than Perl does? Probably.)
4084 if (subr
== DIF_SUBR_RINDEX
) {
4091 if ((size_t)pos
> len
)
4097 if ((size_t)pos
>= len
) {
4108 for (regs
[rd
] = notfound
; addr
!= limit
; addr
+= inc
) {
4109 if (dtrace_strncmp(addr
, substr
, sublen
) == 0) {
4110 if (subr
!= DIF_SUBR_STRSTR
) {
4112 * As D index() and rindex() are
4113 * modeled on Perl (and not on awk),
4114 * we return a zero-based (and not a
4115 * one-based) index. (For you Perl
4116 * weenies: no, we're not going to add
4117 * $[ -- and shouldn't you be at a con
4120 regs
[rd
] = (uintptr_t)(addr
- orig
);
4124 ASSERT(subr
== DIF_SUBR_STRSTR
);
4125 regs
[rd
] = (uintptr_t)addr
;
4133 case DIF_SUBR_STRTOK
: {
4134 uintptr_t addr
= tupregs
[0].dttk_value
;
4135 uintptr_t tokaddr
= tupregs
[1].dttk_value
;
4136 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4137 uintptr_t limit
, toklimit
;
4139 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4140 uint8_t c
='\0', tokmap
[32]; /* 256 / 8 */
4144 * Check both the token buffer and (later) the input buffer,
4145 * since both could be non-scratch addresses.
4147 if (!dtrace_strcanload(tokaddr
, size
, &clim
, mstate
, vstate
)) {
4151 toklimit
= tokaddr
+ clim
;
4153 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4154 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4161 * If the address specified is NULL, we use our saved
4162 * strtok pointer from the mstate. Note that this
4163 * means that the saved strtok pointer is _only_
4164 * valid within multiple enablings of the same probe --
4165 * it behaves like an implicit clause-local variable.
4167 addr
= mstate
->dtms_strtok
;
4168 limit
= mstate
->dtms_strtok_limit
;
4171 * If the user-specified address is non-NULL we must
4172 * access check it. This is the only time we have
4173 * a chance to do so, since this address may reside
4174 * in the string table of this clause-- future calls
4175 * (when we fetch addr from mstate->dtms_strtok)
4176 * would fail this access check.
4178 if (!dtrace_strcanload(addr
, size
, &clim
, mstate
,
4183 limit
= addr
+ clim
;
4187 * First, zero the token map, and then process the token
4188 * string -- setting a bit in the map for every character
4189 * found in the token string.
4191 for (i
= 0; i
< (int)sizeof (tokmap
); i
++)
4194 for (; tokaddr
< toklimit
; tokaddr
++) {
4195 if ((c
= dtrace_load8(tokaddr
)) == '\0')
4198 ASSERT((c
>> 3) < sizeof (tokmap
));
4199 tokmap
[c
>> 3] |= (1 << (c
& 0x7));
4202 for (; addr
< limit
; addr
++) {
4204 * We're looking for a character that is _not_
4205 * contained in the token string.
4207 if ((c
= dtrace_load8(addr
)) == '\0')
4210 if (!(tokmap
[c
>> 3] & (1 << (c
& 0x7))))
4216 * We reached the end of the string without finding
4217 * any character that was not in the token string.
4218 * We return NULL in this case, and we set the saved
4219 * address to NULL as well.
4222 mstate
->dtms_strtok
= 0;
4223 mstate
->dtms_strtok_limit
= 0;
4228 * From here on, we're copying into the destination string.
4230 for (i
= 0; addr
< limit
&& i
< size
- 1; addr
++) {
4231 if ((c
= dtrace_load8(addr
)) == '\0')
4234 if (tokmap
[c
>> 3] & (1 << (c
& 0x7)))
4243 regs
[rd
] = (uintptr_t)dest
;
4244 mstate
->dtms_scratch_ptr
+= size
;
4245 mstate
->dtms_strtok
= addr
;
4246 mstate
->dtms_strtok_limit
= limit
;
4250 case DIF_SUBR_SUBSTR
: {
4251 uintptr_t s
= tupregs
[0].dttk_value
;
4252 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4253 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4254 int64_t index
= (int64_t)tupregs
[1].dttk_value
;
4255 int64_t remaining
= (int64_t)tupregs
[2].dttk_value
;
4256 size_t len
= dtrace_strlen((char *)s
, size
);
4259 if (!dtrace_canload(s
, len
+ 1, mstate
, vstate
)) {
4264 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4265 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4271 remaining
= (int64_t)size
;
4276 if (index
< 0 && index
+ remaining
> 0) {
4282 if ((size_t)index
>= len
|| index
< 0) {
4284 } else if (remaining
< 0) {
4285 remaining
+= len
- index
;
4286 } else if ((uint64_t)index
+ (uint64_t)remaining
> size
) {
4287 remaining
= size
- index
;
4290 for (i
= 0; i
< remaining
; i
++) {
4291 if ((d
[i
] = dtrace_load8(s
+ index
+ i
)) == '\0')
4297 mstate
->dtms_scratch_ptr
+= size
;
4298 regs
[rd
] = (uintptr_t)d
;
4302 case DIF_SUBR_GETMAJOR
:
4303 regs
[rd
] = (uintptr_t)major( (dev_t
)tupregs
[0].dttk_value
);
4306 case DIF_SUBR_GETMINOR
:
4307 regs
[rd
] = (uintptr_t)minor( (dev_t
)tupregs
[0].dttk_value
);
4310 case DIF_SUBR_DDI_PATHNAME
: {
4311 /* APPLE NOTE: currently unsupported on Darwin */
4312 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4317 case DIF_SUBR_STRJOIN
: {
4318 char *d
= (char *)mstate
->dtms_scratch_ptr
;
4319 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4320 uintptr_t s1
= tupregs
[0].dttk_value
;
4321 uintptr_t s2
= tupregs
[1].dttk_value
;
4322 uint64_t i
= 0, j
= 0;
4326 if (!dtrace_strcanload(s1
, size
, &lim1
, mstate
, vstate
) ||
4327 !dtrace_strcanload(s2
, size
, &lim2
, mstate
, vstate
)) {
4332 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4333 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4340 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4344 c
= (i
>= lim1
) ? '\0' : dtrace_load8(s1
++);
4345 if ((d
[i
++] = c
) == '\0') {
4353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4357 c
= (j
++ >= lim2
) ? '\0' : dtrace_load8(s2
++);
4358 if ((d
[i
++] = c
) == '\0')
4363 mstate
->dtms_scratch_ptr
+= i
;
4364 regs
[rd
] = (uintptr_t)d
;
4370 case DIF_SUBR_LLTOSTR
: {
4371 int64_t i
= (int64_t)tupregs
[0].dttk_value
;
4372 uint64_t val
, digit
;
4373 uint64_t size
= 65; /* enough room for 2^64 in binary */
4374 char *end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4378 if ((base
= tupregs
[1].dttk_value
) <= 1 ||
4379 base
> ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4380 *flags
|= CPU_DTRACE_ILLOP
;
4385 val
= (base
== 10 && i
< 0) ? i
* -1 : i
;
4387 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4388 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4393 for (*end
-- = '\0'; val
; val
/= base
) {
4394 if ((digit
= val
% base
) <= '9' - '0') {
4395 *end
-- = '0' + digit
;
4397 *end
-- = 'a' + (digit
- ('9' - '0') - 1);
4401 if (i
== 0 && base
== 16)
4407 if (i
== 0 || base
== 8 || base
== 16)
4410 if (i
< 0 && base
== 10)
4413 regs
[rd
] = (uintptr_t)end
+ 1;
4414 mstate
->dtms_scratch_ptr
+= size
;
4418 case DIF_SUBR_HTONS
:
4419 case DIF_SUBR_NTOHS
:
4421 regs
[rd
] = (uint16_t)tupregs
[0].dttk_value
;
4423 regs
[rd
] = DT_BSWAP_16((uint16_t)tupregs
[0].dttk_value
);
4428 case DIF_SUBR_HTONL
:
4429 case DIF_SUBR_NTOHL
:
4431 regs
[rd
] = (uint32_t)tupregs
[0].dttk_value
;
4433 regs
[rd
] = DT_BSWAP_32((uint32_t)tupregs
[0].dttk_value
);
4438 case DIF_SUBR_HTONLL
:
4439 case DIF_SUBR_NTOHLL
:
4441 regs
[rd
] = (uint64_t)tupregs
[0].dttk_value
;
4443 regs
[rd
] = DT_BSWAP_64((uint64_t)tupregs
[0].dttk_value
);
4448 case DIF_SUBR_DIRNAME
:
4449 case DIF_SUBR_BASENAME
: {
4450 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4451 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4452 uintptr_t src
= tupregs
[0].dttk_value
;
4453 int i
, j
, len
= dtrace_strlen((char *)src
, size
);
4454 int lastbase
= -1, firstbase
= -1, lastdir
= -1;
4457 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4462 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4463 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4469 * The basename and dirname for a zero-length string is
4474 src
= (uintptr_t)".";
4478 * Start from the back of the string, moving back toward the
4479 * front until we see a character that isn't a slash. That
4480 * character is the last character in the basename.
4482 for (i
= len
- 1; i
>= 0; i
--) {
4483 if (dtrace_load8(src
+ i
) != '/')
4491 * Starting from the last character in the basename, move
4492 * towards the front until we find a slash. The character
4493 * that we processed immediately before that is the first
4494 * character in the basename.
4496 for (; i
>= 0; i
--) {
4497 if (dtrace_load8(src
+ i
) == '/')
4505 * Now keep going until we find a non-slash character. That
4506 * character is the last character in the dirname.
4508 for (; i
>= 0; i
--) {
4509 if (dtrace_load8(src
+ i
) != '/')
4516 ASSERT(!(lastbase
== -1 && firstbase
!= -1));
4517 ASSERT(!(firstbase
== -1 && lastdir
!= -1));
4519 if (lastbase
== -1) {
4521 * We didn't find a non-slash character. We know that
4522 * the length is non-zero, so the whole string must be
4523 * slashes. In either the dirname or the basename
4524 * case, we return '/'.
4526 ASSERT(firstbase
== -1);
4527 firstbase
= lastbase
= lastdir
= 0;
4530 if (firstbase
== -1) {
4532 * The entire string consists only of a basename
4533 * component. If we're looking for dirname, we need
4534 * to change our string to be just "."; if we're
4535 * looking for a basename, we'll just set the first
4536 * character of the basename to be 0.
4538 if (subr
== DIF_SUBR_DIRNAME
) {
4539 ASSERT(lastdir
== -1);
4540 src
= (uintptr_t)".";
4547 if (subr
== DIF_SUBR_DIRNAME
) {
4548 if (lastdir
== -1) {
4550 * We know that we have a slash in the name --
4551 * or lastdir would be set to 0, above. And
4552 * because lastdir is -1, we know that this
4553 * slash must be the first character. (That
4554 * is, the full string must be of the form
4555 * "/basename".) In this case, the last
4556 * character of the directory name is 0.
4564 ASSERT(subr
== DIF_SUBR_BASENAME
);
4565 ASSERT(firstbase
!= -1 && lastbase
!= -1);
4570 for (i
= start
, j
= 0; i
<= end
&& (uint64_t)j
< size
- 1; i
++, j
++)
4571 dest
[j
] = dtrace_load8(src
+ i
);
4574 regs
[rd
] = (uintptr_t)dest
;
4575 mstate
->dtms_scratch_ptr
+= size
;
4579 case DIF_SUBR_CLEANPATH
: {
4580 char *dest
= (char *)mstate
->dtms_scratch_ptr
, c
;
4581 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4582 uintptr_t src
= tupregs
[0].dttk_value
;
4584 size_t i
= 0, j
= 0;
4586 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
4591 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4592 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4598 * Move forward, loading each character.
4601 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4603 if ((uint64_t)(j
+ 5) >= size
) /* 5 = strlen("/..c\0") */
4611 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4615 * We have two slashes -- we can just advance
4616 * to the next character.
4623 * This is not "." and it's not ".." -- we can
4624 * just store the "/" and this character and
4632 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4636 * This is a "/./" component. We're not going
4637 * to store anything in the destination buffer;
4638 * we're just going to go to the next component.
4645 * This is not ".." -- we can just store the
4646 * "/." and this character and continue
4655 c
= (i
>= lim
) ? '\0' : dtrace_load8(src
+ i
++);
4657 if (c
!= '/' && c
!= '\0') {
4659 * This is not ".." -- it's "..[mumble]".
4660 * We'll store the "/.." and this character
4661 * and continue processing.
4671 * This is "/../" or "/..\0". We need to back up
4672 * our destination pointer until we find a "/".
4675 while (j
!= 0 && dest
[--j
] != '/')
4680 } while (c
!= '\0');
4683 regs
[rd
] = (uintptr_t)dest
;
4684 mstate
->dtms_scratch_ptr
+= size
;
4688 case DIF_SUBR_INET_NTOA
:
4689 case DIF_SUBR_INET_NTOA6
:
4690 case DIF_SUBR_INET_NTOP
: {
4695 if (subr
== DIF_SUBR_INET_NTOP
) {
4696 af
= (int)tupregs
[0].dttk_value
;
4699 af
= subr
== DIF_SUBR_INET_NTOA
? AF_INET
: AF_INET6
;
4703 if (af
== AF_INET
) {
4704 #if !defined(__APPLE__)
4708 #endif /* __APPLE__ */
4712 * Safely load the IPv4 address.
4714 #if !defined(__APPLE__)
4715 ip4
= dtrace_load32(tupregs
[argi
].dttk_value
);
4717 if (!dtrace_canload(tupregs
[argi
].dttk_value
, sizeof(ip4
),
4724 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4725 (void *)(uintptr_t)&ip4
, sizeof (ip4
));
4726 #endif /* __APPLE__ */
4728 * Check an IPv4 string will fit in scratch.
4730 #if !defined(__APPLE__)
4731 size
= INET_ADDRSTRLEN
;
4733 size
= MAX_IPv4_STR_LEN
;
4734 #endif /* __APPLE__ */
4735 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4736 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4740 base
= (char *)mstate
->dtms_scratch_ptr
;
4741 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4744 * Stringify as a dotted decimal quad.
4747 ptr8
= (uint8_t *)&ip4
;
4748 for (i
= 3; i
>= 0; i
--) {
4754 for (; val
; val
/= 10) {
4755 *end
-- = '0' + (val
% 10);
4762 ASSERT(end
+ 1 >= base
);
4764 } else if (af
== AF_INET6
) {
4765 #if defined(__APPLE__)
4766 #define _S6_un __u6_addr
4767 #define _S6_u8 __u6_addr8
4768 #endif /* __APPLE__ */
4769 struct in6_addr ip6
;
4770 int firstzero
, tryzero
, numzero
, v6end
;
4772 const char digits
[] = "0123456789abcdef";
4775 * Stringify using RFC 1884 convention 2 - 16 bit
4776 * hexadecimal values with a zero-run compression.
4777 * Lower case hexadecimal digits are used.
4778 * eg, fe80::214:4fff:fe0b:76c8.
4779 * The IPv4 embedded form is returned for inet_ntop,
4780 * just the IPv4 string is returned for inet_ntoa6.
4783 if (!dtrace_canload(tupregs
[argi
].dttk_value
,
4784 sizeof(struct in6_addr
), mstate
, vstate
)) {
4790 * Safely load the IPv6 address.
4793 (void *)(uintptr_t)tupregs
[argi
].dttk_value
,
4794 (void *)(uintptr_t)&ip6
, sizeof (struct in6_addr
));
4797 * Check an IPv6 string will fit in scratch.
4799 size
= INET6_ADDRSTRLEN
;
4800 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4801 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4805 base
= (char *)mstate
->dtms_scratch_ptr
;
4806 end
= (char *)mstate
->dtms_scratch_ptr
+ size
- 1;
4810 * Find the longest run of 16 bit zero values
4811 * for the single allowed zero compression - "::".
4816 for (i
= 0; i
< (int)sizeof (struct in6_addr
); i
++) {
4817 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4818 tryzero
== -1 && i
% 2 == 0) {
4823 if (tryzero
!= -1 &&
4824 (ip6
._S6_un
._S6_u8
[i
] != 0 ||
4825 i
== sizeof (struct in6_addr
) - 1)) {
4827 if (i
- tryzero
<= numzero
) {
4832 firstzero
= tryzero
;
4833 numzero
= i
- i
% 2 - tryzero
;
4836 if (ip6
._S6_un
._S6_u8
[i
] == 0 &&
4837 i
== sizeof (struct in6_addr
) - 1)
4841 ASSERT(firstzero
+ numzero
<= (int)sizeof (struct in6_addr
));
4844 * Check for an IPv4 embedded address.
4846 v6end
= sizeof (struct in6_addr
) - 2;
4847 if (IN6_IS_ADDR_V4MAPPED(&ip6
) ||
4848 IN6_IS_ADDR_V4COMPAT(&ip6
)) {
4849 for (i
= sizeof (struct in6_addr
) - 1;
4850 i
>= (int)DTRACE_V4MAPPED_OFFSET
; i
--) {
4851 ASSERT(end
>= base
);
4853 val
= ip6
._S6_un
._S6_u8
[i
];
4858 for (; val
; val
/= 10) {
4859 *end
-- = '0' + val
% 10;
4863 if (i
> (int)DTRACE_V4MAPPED_OFFSET
)
4867 if (subr
== DIF_SUBR_INET_NTOA6
)
4871 * Set v6end to skip the IPv4 address that
4872 * we have already stringified.
4878 * Build the IPv6 string by working through the
4879 * address in reverse.
4881 for (i
= v6end
; i
>= 0; i
-= 2) {
4882 ASSERT(end
>= base
);
4884 if (i
== firstzero
+ numzero
- 2) {
4891 if (i
< 14 && i
!= firstzero
- 2)
4894 val
= (ip6
._S6_un
._S6_u8
[i
] << 8) +
4895 ip6
._S6_un
._S6_u8
[i
+ 1];
4900 for (; val
; val
/= 16) {
4901 *end
-- = digits
[val
% 16];
4905 ASSERT(end
+ 1 >= base
);
4907 #if defined(__APPLE__)
4910 #endif /* __APPLE__ */
4913 * The user didn't use AH_INET or AH_INET6.
4915 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4920 inetout
: regs
[rd
] = (uintptr_t)end
+ 1;
4921 mstate
->dtms_scratch_ptr
+= size
;
4925 case DIF_SUBR_TOUPPER
:
4926 case DIF_SUBR_TOLOWER
: {
4927 uintptr_t src
= tupregs
[0].dttk_value
;
4928 char *dest
= (char *)mstate
->dtms_scratch_ptr
;
4929 char lower
, upper
, base
, c
;
4930 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
4931 size_t len
= dtrace_strlen((char*) src
, size
);
4934 lower
= (subr
== DIF_SUBR_TOUPPER
) ? 'a' : 'A';
4935 upper
= (subr
== DIF_SUBR_TOUPPER
) ? 'z' : 'Z';
4936 base
= (subr
== DIF_SUBR_TOUPPER
) ? 'A' : 'a';
4938 if (!dtrace_canload(src
, len
+ 1, mstate
, vstate
)) {
4943 if (!DTRACE_INSCRATCH(mstate
, size
)) {
4944 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
4949 for (i
= 0; i
< size
- 1; ++i
) {
4950 if ((c
= dtrace_load8(src
+ i
)) == '\0')
4952 if (c
>= lower
&& c
<= upper
)
4953 c
= base
+ (c
- lower
);
4960 regs
[rd
] = (uintptr_t) dest
;
4961 mstate
->dtms_scratch_ptr
+= size
;
4966 #if defined(__APPLE__)
4967 case DIF_SUBR_VM_KERNEL_ADDRPERM
: {
4968 if (!dtrace_priv_kernel(state
)) {
4971 regs
[rd
] = VM_KERNEL_ADDRPERM((vm_offset_t
) tupregs
[0].dttk_value
);
4977 case DIF_SUBR_KDEBUG_TRACE
: {
4979 uintptr_t args
[4] = {0};
4982 if (nargs
< 2 || nargs
> 5) {
4983 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
4987 if (dtrace_destructive_disallow
)
4990 debugid
= tupregs
[0].dttk_value
;
4991 for (i
= 0; i
< nargs
- 1; i
++)
4992 args
[i
] = tupregs
[i
+ 1].dttk_value
;
4994 kernel_debug(debugid
, args
[0], args
[1], args
[2], args
[3], 0);
4999 case DIF_SUBR_KDEBUG_TRACE_STRING
: {
5004 if (dtrace_destructive_disallow
)
5007 uint64_t size
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5008 uint32_t debugid
= tupregs
[0].dttk_value
;
5009 uint64_t str_id
= tupregs
[1].dttk_value
;
5010 uintptr_t src
= tupregs
[2].dttk_value
;
5015 if (src
!= (uintptr_t)0) {
5017 if (!dtrace_strcanload(src
, size
, &lim
, mstate
, vstate
)) {
5020 dtrace_strcpy((void*)src
, buf
, size
);
5023 (void)kernel_debug_string(debugid
, &str_id
, str
);
5034 * Emulate the execution of DTrace IR instructions specified by the given
5035 * DIF object. This function is deliberately void of assertions as all of
5036 * the necessary checks are handled by a call to dtrace_difo_validate().
5039 dtrace_dif_emulate(dtrace_difo_t
*difo
, dtrace_mstate_t
*mstate
,
5040 dtrace_vstate_t
*vstate
, dtrace_state_t
*state
)
5042 const dif_instr_t
*text
= difo
->dtdo_buf
;
5043 const uint_t textlen
= difo
->dtdo_len
;
5044 const char *strtab
= difo
->dtdo_strtab
;
5045 const uint64_t *inttab
= difo
->dtdo_inttab
;
5048 dtrace_statvar_t
*svar
;
5049 dtrace_dstate_t
*dstate
= &vstate
->dtvs_dynvars
;
5051 volatile uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
5052 volatile uint64_t *illval
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
5054 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
5055 uint64_t regs
[DIF_DIR_NREGS
];
5058 uint8_t cc_n
= 0, cc_z
= 0, cc_v
= 0, cc_c
= 0;
5060 uint_t pc
= 0, id
, opc
= 0;
5066 * We stash the current DIF object into the machine state: we need it
5067 * for subsequent access checking.
5069 mstate
->dtms_difo
= difo
;
5071 regs
[DIF_REG_R0
] = 0; /* %r0 is fixed at zero */
5073 while (pc
< textlen
&& !(*flags
& CPU_DTRACE_FAULT
)) {
5077 r1
= DIF_INSTR_R1(instr
);
5078 r2
= DIF_INSTR_R2(instr
);
5079 rd
= DIF_INSTR_RD(instr
);
5081 switch (DIF_INSTR_OP(instr
)) {
5083 regs
[rd
] = regs
[r1
] | regs
[r2
];
5086 regs
[rd
] = regs
[r1
] ^ regs
[r2
];
5089 regs
[rd
] = regs
[r1
] & regs
[r2
];
5092 regs
[rd
] = regs
[r1
] << regs
[r2
];
5095 regs
[rd
] = regs
[r1
] >> regs
[r2
];
5098 regs
[rd
] = regs
[r1
] - regs
[r2
];
5101 regs
[rd
] = regs
[r1
] + regs
[r2
];
5104 regs
[rd
] = regs
[r1
] * regs
[r2
];
5107 if (regs
[r2
] == 0) {
5109 *flags
|= CPU_DTRACE_DIVZERO
;
5111 regs
[rd
] = (int64_t)regs
[r1
] /
5117 if (regs
[r2
] == 0) {
5119 *flags
|= CPU_DTRACE_DIVZERO
;
5121 regs
[rd
] = regs
[r1
] / regs
[r2
];
5126 if (regs
[r2
] == 0) {
5128 *flags
|= CPU_DTRACE_DIVZERO
;
5130 regs
[rd
] = (int64_t)regs
[r1
] %
5136 if (regs
[r2
] == 0) {
5138 *flags
|= CPU_DTRACE_DIVZERO
;
5140 regs
[rd
] = regs
[r1
] % regs
[r2
];
5145 regs
[rd
] = ~regs
[r1
];
5148 regs
[rd
] = regs
[r1
];
5151 cc_r
= regs
[r1
] - regs
[r2
];
5155 cc_c
= regs
[r1
] < regs
[r2
];
5158 cc_n
= cc_v
= cc_c
= 0;
5159 cc_z
= regs
[r1
] == 0;
5162 pc
= DIF_INSTR_LABEL(instr
);
5166 pc
= DIF_INSTR_LABEL(instr
);
5170 pc
= DIF_INSTR_LABEL(instr
);
5173 if ((cc_z
| (cc_n
^ cc_v
)) == 0)
5174 pc
= DIF_INSTR_LABEL(instr
);
5177 if ((cc_c
| cc_z
) == 0)
5178 pc
= DIF_INSTR_LABEL(instr
);
5181 if ((cc_n
^ cc_v
) == 0)
5182 pc
= DIF_INSTR_LABEL(instr
);
5186 pc
= DIF_INSTR_LABEL(instr
);
5190 pc
= DIF_INSTR_LABEL(instr
);
5194 pc
= DIF_INSTR_LABEL(instr
);
5197 if (cc_z
| (cc_n
^ cc_v
))
5198 pc
= DIF_INSTR_LABEL(instr
);
5202 pc
= DIF_INSTR_LABEL(instr
);
5205 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
5206 *flags
|= CPU_DTRACE_KPRIV
;
5212 regs
[rd
] = (int8_t)dtrace_load8(regs
[r1
]);
5215 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
5216 *flags
|= CPU_DTRACE_KPRIV
;
5222 regs
[rd
] = (int16_t)dtrace_load16(regs
[r1
]);
5225 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
5226 *flags
|= CPU_DTRACE_KPRIV
;
5232 regs
[rd
] = (int32_t)dtrace_load32(regs
[r1
]);
5235 if (!dtrace_canstore(regs
[r1
], 1, mstate
, vstate
)) {
5236 *flags
|= CPU_DTRACE_KPRIV
;
5242 regs
[rd
] = dtrace_load8(regs
[r1
]);
5245 if (!dtrace_canstore(regs
[r1
], 2, mstate
, vstate
)) {
5246 *flags
|= CPU_DTRACE_KPRIV
;
5252 regs
[rd
] = dtrace_load16(regs
[r1
]);
5255 if (!dtrace_canstore(regs
[r1
], 4, mstate
, vstate
)) {
5256 *flags
|= CPU_DTRACE_KPRIV
;
5262 regs
[rd
] = dtrace_load32(regs
[r1
]);
5265 if (!dtrace_canstore(regs
[r1
], 8, mstate
, vstate
)) {
5266 *flags
|= CPU_DTRACE_KPRIV
;
5272 regs
[rd
] = dtrace_load64(regs
[r1
]);
5275 * Darwin 32-bit kernel may fetch from 64-bit user.
5276 * Do not cast regs to uintptr_t
5277 * DIF_OP_ULDSB,DIF_OP_ULDSH, DIF_OP_ULDSW, DIF_OP_ULDUB
5278 * DIF_OP_ULDUH, DIF_OP_ULDUW, DIF_OP_ULDX
5282 dtrace_fuword8(regs
[r1
]);
5285 regs
[rd
] = (int16_t)
5286 dtrace_fuword16(regs
[r1
]);
5289 regs
[rd
] = (int32_t)
5290 dtrace_fuword32(regs
[r1
]);
5294 dtrace_fuword8(regs
[r1
]);
5298 dtrace_fuword16(regs
[r1
]);
5302 dtrace_fuword32(regs
[r1
]);
5306 dtrace_fuword64(regs
[r1
]);
5315 regs
[rd
] = inttab
[DIF_INSTR_INTEGER(instr
)];
5318 regs
[rd
] = (uint64_t)(uintptr_t)
5319 (strtab
+ DIF_INSTR_STRING(instr
));
5322 size_t sz
= state
->dts_options
[DTRACEOPT_STRSIZE
];
5323 uintptr_t s1
= regs
[r1
];
5324 uintptr_t s2
= regs
[r2
];
5325 size_t lim1
= sz
, lim2
= sz
;
5328 !dtrace_strcanload(s1
, sz
, &lim1
, mstate
, vstate
))
5331 !dtrace_strcanload(s2
, sz
, &lim2
, mstate
, vstate
))
5334 cc_r
= dtrace_strncmp((char *)s1
, (char *)s2
,
5343 regs
[rd
] = dtrace_dif_variable(mstate
, state
,
5347 id
= DIF_INSTR_VAR(instr
);
5349 if (id
>= DIF_VAR_OTHER_UBASE
) {
5352 id
-= DIF_VAR_OTHER_UBASE
;
5353 svar
= vstate
->dtvs_globals
[id
];
5354 ASSERT(svar
!= NULL
);
5355 v
= &svar
->dtsv_var
;
5357 if (!(v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)) {
5358 regs
[rd
] = svar
->dtsv_data
;
5362 a
= (uintptr_t)svar
->dtsv_data
;
5364 if (*(uint8_t *)a
== UINT8_MAX
) {
5366 * If the 0th byte is set to UINT8_MAX
5367 * then this is to be treated as a
5368 * reference to a NULL variable.
5372 regs
[rd
] = a
+ sizeof (uint64_t);
5378 regs
[rd
] = dtrace_dif_variable(mstate
, state
, id
, 0);
5382 id
= DIF_INSTR_VAR(instr
);
5384 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5385 id
-= DIF_VAR_OTHER_UBASE
;
5387 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5388 svar
= vstate
->dtvs_globals
[id
];
5389 ASSERT(svar
!= NULL
);
5390 v
= &svar
->dtsv_var
;
5392 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5393 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5397 ASSERT(svar
->dtsv_size
!= 0);
5399 if (regs
[rd
] == 0) {
5400 *(uint8_t *)a
= UINT8_MAX
;
5404 a
+= sizeof (uint64_t);
5406 if (!dtrace_vcanload(
5407 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5408 &lim
, mstate
, vstate
))
5411 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5412 (void *)a
, &v
->dtdv_type
, lim
);
5416 svar
->dtsv_data
= regs
[rd
];
5421 * There are no DTrace built-in thread-local arrays at
5422 * present. This opcode is saved for future work.
5424 *flags
|= CPU_DTRACE_ILLOP
;
5429 id
= DIF_INSTR_VAR(instr
);
5431 if (id
< DIF_VAR_OTHER_UBASE
) {
5433 * For now, this has no meaning.
5439 id
-= DIF_VAR_OTHER_UBASE
;
5441 ASSERT(id
< (uint_t
)vstate
->dtvs_nlocals
);
5442 ASSERT(vstate
->dtvs_locals
!= NULL
);
5443 svar
= vstate
->dtvs_locals
[id
];
5444 ASSERT(svar
!= NULL
);
5445 v
= &svar
->dtsv_var
;
5447 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5448 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5449 size_t sz
= v
->dtdv_type
.dtdt_size
;
5451 sz
+= sizeof (uint64_t);
5452 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5453 a
+= CPU
->cpu_id
* sz
;
5455 if (*(uint8_t *)a
== UINT8_MAX
) {
5457 * If the 0th byte is set to UINT8_MAX
5458 * then this is to be treated as a
5459 * reference to a NULL variable.
5463 regs
[rd
] = a
+ sizeof (uint64_t);
5469 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5470 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5471 regs
[rd
] = tmp
[CPU
->cpu_id
];
5475 id
= DIF_INSTR_VAR(instr
);
5477 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5478 id
-= DIF_VAR_OTHER_UBASE
;
5479 VERIFY(id
< (uint_t
)vstate
->dtvs_nlocals
);
5480 ASSERT(vstate
->dtvs_locals
!= NULL
);
5481 svar
= vstate
->dtvs_locals
[id
];
5482 ASSERT(svar
!= NULL
);
5483 v
= &svar
->dtsv_var
;
5485 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5486 uintptr_t a
= (uintptr_t)svar
->dtsv_data
;
5487 size_t sz
= v
->dtdv_type
.dtdt_size
;
5490 sz
+= sizeof (uint64_t);
5491 ASSERT(svar
->dtsv_size
== (int)NCPU
* sz
);
5492 a
+= CPU
->cpu_id
* sz
;
5494 if (regs
[rd
] == 0) {
5495 *(uint8_t *)a
= UINT8_MAX
;
5499 a
+= sizeof (uint64_t);
5502 if (!dtrace_vcanload(
5503 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5504 &lim
, mstate
, vstate
))
5507 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5508 (void *)a
, &v
->dtdv_type
, lim
);
5512 ASSERT(svar
->dtsv_size
== (int)NCPU
* sizeof (uint64_t));
5513 tmp
= (uint64_t *)(uintptr_t)svar
->dtsv_data
;
5514 tmp
[CPU
->cpu_id
] = regs
[rd
];
5518 dtrace_dynvar_t
*dvar
;
5521 id
= DIF_INSTR_VAR(instr
);
5522 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5523 id
-= DIF_VAR_OTHER_UBASE
;
5524 v
= &vstate
->dtvs_tlocals
[id
];
5526 key
= &tupregs
[DIF_DTR_NREGS
];
5527 key
[0].dttk_value
= (uint64_t)id
;
5528 key
[0].dttk_size
= 0;
5529 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5530 key
[1].dttk_size
= 0;
5532 dvar
= dtrace_dynvar(dstate
, 2, key
,
5533 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC
,
5541 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5542 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5544 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5551 dtrace_dynvar_t
*dvar
;
5554 id
= DIF_INSTR_VAR(instr
);
5555 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5556 id
-= DIF_VAR_OTHER_UBASE
;
5557 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5559 key
= &tupregs
[DIF_DTR_NREGS
];
5560 key
[0].dttk_value
= (uint64_t)id
;
5561 key
[0].dttk_size
= 0;
5562 DTRACE_TLS_THRKEY(key
[1].dttk_value
);
5563 key
[1].dttk_size
= 0;
5564 v
= &vstate
->dtvs_tlocals
[id
];
5566 dvar
= dtrace_dynvar(dstate
, 2, key
,
5567 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5568 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5569 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5570 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5573 * Given that we're storing to thread-local data,
5574 * we need to flush our predicate cache.
5576 dtrace_set_thread_predcache(current_thread(), 0);
5581 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5584 if (!dtrace_vcanload(
5585 (void *)(uintptr_t)regs
[rd
],
5586 &v
->dtdv_type
, &lim
, mstate
, vstate
))
5589 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5590 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
5592 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5599 regs
[rd
] = (int64_t)regs
[r1
] >> regs
[r2
];
5603 dtrace_dif_subr(DIF_INSTR_SUBR(instr
), rd
,
5604 regs
, tupregs
, ttop
, mstate
, state
);
5608 if (ttop
== DIF_DTR_NREGS
) {
5609 *flags
|= CPU_DTRACE_TUPOFLOW
;
5613 if (r1
== DIF_TYPE_STRING
) {
5615 * If this is a string type and the size is 0,
5616 * we'll use the system-wide default string
5617 * size. Note that we are _not_ looking at
5618 * the value of the DTRACEOPT_STRSIZE option;
5619 * had this been set, we would expect to have
5620 * a non-zero size value in the "pushtr".
5622 tupregs
[ttop
].dttk_size
=
5623 dtrace_strlen((char *)(uintptr_t)regs
[rd
],
5624 regs
[r2
] ? regs
[r2
] :
5625 dtrace_strsize_default
) + 1;
5627 if (regs
[r2
] > LONG_MAX
) {
5628 *flags
|= CPU_DTRACE_ILLOP
;
5631 tupregs
[ttop
].dttk_size
= regs
[r2
];
5634 tupregs
[ttop
++].dttk_value
= regs
[rd
];
5638 if (ttop
== DIF_DTR_NREGS
) {
5639 *flags
|= CPU_DTRACE_TUPOFLOW
;
5643 tupregs
[ttop
].dttk_value
= regs
[rd
];
5644 tupregs
[ttop
++].dttk_size
= 0;
5652 case DIF_OP_FLUSHTS
:
5657 case DIF_OP_LDTAA
: {
5658 dtrace_dynvar_t
*dvar
;
5659 dtrace_key_t
*key
= tupregs
;
5660 uint_t nkeys
= ttop
;
5662 id
= DIF_INSTR_VAR(instr
);
5663 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5664 id
-= DIF_VAR_OTHER_UBASE
;
5666 key
[nkeys
].dttk_value
= (uint64_t)id
;
5667 key
[nkeys
++].dttk_size
= 0;
5669 if (DIF_INSTR_OP(instr
) == DIF_OP_LDTAA
) {
5670 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5671 key
[nkeys
++].dttk_size
= 0;
5672 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5673 v
= &vstate
->dtvs_tlocals
[id
];
5675 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5676 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5679 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5680 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5681 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5682 DTRACE_DYNVAR_NOALLOC
, mstate
, vstate
);
5689 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5690 regs
[rd
] = (uint64_t)(uintptr_t)dvar
->dtdv_data
;
5692 regs
[rd
] = *((uint64_t *)dvar
->dtdv_data
);
5699 case DIF_OP_STTAA
: {
5700 dtrace_dynvar_t
*dvar
;
5701 dtrace_key_t
*key
= tupregs
;
5702 uint_t nkeys
= ttop
;
5704 id
= DIF_INSTR_VAR(instr
);
5705 ASSERT(id
>= DIF_VAR_OTHER_UBASE
);
5706 id
-= DIF_VAR_OTHER_UBASE
;
5708 key
[nkeys
].dttk_value
= (uint64_t)id
;
5709 key
[nkeys
++].dttk_size
= 0;
5711 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
) {
5712 DTRACE_TLS_THRKEY(key
[nkeys
].dttk_value
);
5713 key
[nkeys
++].dttk_size
= 0;
5714 VERIFY(id
< (uint_t
)vstate
->dtvs_ntlocals
);
5715 v
= &vstate
->dtvs_tlocals
[id
];
5717 VERIFY(id
< (uint_t
)vstate
->dtvs_nglobals
);
5718 v
= &vstate
->dtvs_globals
[id
]->dtsv_var
;
5721 dvar
= dtrace_dynvar(dstate
, nkeys
, key
,
5722 v
->dtdv_type
.dtdt_size
> sizeof (uint64_t) ?
5723 v
->dtdv_type
.dtdt_size
: sizeof (uint64_t),
5724 regs
[rd
] ? DTRACE_DYNVAR_ALLOC
:
5725 DTRACE_DYNVAR_DEALLOC
, mstate
, vstate
);
5730 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
) {
5733 if (!dtrace_vcanload(
5734 (void *)(uintptr_t)regs
[rd
], &v
->dtdv_type
,
5735 &lim
, mstate
, vstate
))
5738 dtrace_vcopy((void *)(uintptr_t)regs
[rd
],
5739 dvar
->dtdv_data
, &v
->dtdv_type
, lim
);
5741 *((uint64_t *)dvar
->dtdv_data
) = regs
[rd
];
5747 case DIF_OP_ALLOCS
: {
5748 uintptr_t ptr
= P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
5749 size_t size
= ptr
- mstate
->dtms_scratch_ptr
+ regs
[r1
];
5752 * Rounding up the user allocation size could have
5753 * overflowed large, bogus allocations (like -1ULL) to
5756 if (size
< regs
[r1
] ||
5757 !DTRACE_INSCRATCH(mstate
, size
)) {
5758 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
5763 dtrace_bzero((void *) mstate
->dtms_scratch_ptr
, size
);
5764 mstate
->dtms_scratch_ptr
+= size
;
5770 if (!dtrace_canstore(regs
[rd
], regs
[r2
],
5772 *flags
|= CPU_DTRACE_BADADDR
;
5777 if (!dtrace_canload(regs
[r1
], regs
[r2
], mstate
, vstate
))
5780 dtrace_bcopy((void *)(uintptr_t)regs
[r1
],
5781 (void *)(uintptr_t)regs
[rd
], (size_t)regs
[r2
]);
5785 if (!dtrace_canstore(regs
[rd
], 1, mstate
, vstate
)) {
5786 *flags
|= CPU_DTRACE_BADADDR
;
5790 *((uint8_t *)(uintptr_t)regs
[rd
]) = (uint8_t)regs
[r1
];
5794 if (!dtrace_canstore(regs
[rd
], 2, mstate
, vstate
)) {
5795 *flags
|= CPU_DTRACE_BADADDR
;
5800 *flags
|= CPU_DTRACE_BADALIGN
;
5804 *((uint16_t *)(uintptr_t)regs
[rd
]) = (uint16_t)regs
[r1
];
5808 if (!dtrace_canstore(regs
[rd
], 4, mstate
, vstate
)) {
5809 *flags
|= CPU_DTRACE_BADADDR
;
5814 *flags
|= CPU_DTRACE_BADALIGN
;
5818 *((uint32_t *)(uintptr_t)regs
[rd
]) = (uint32_t)regs
[r1
];
5822 if (!dtrace_canstore(regs
[rd
], 8, mstate
, vstate
)) {
5823 *flags
|= CPU_DTRACE_BADADDR
;
5829 * Darwin kmem_zalloc() called from
5830 * dtrace_difo_init() is 4-byte aligned.
5833 *flags
|= CPU_DTRACE_BADALIGN
;
5837 *((uint64_t *)(uintptr_t)regs
[rd
]) = regs
[r1
];
5842 if (!(*flags
& CPU_DTRACE_FAULT
))
5845 mstate
->dtms_fltoffs
= opc
* sizeof (dif_instr_t
);
5846 mstate
->dtms_present
|= DTRACE_MSTATE_FLTOFFS
;
5852 dtrace_action_breakpoint(dtrace_ecb_t
*ecb
)
5854 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5855 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
5856 char c
[DTRACE_FULLNAMELEN
+ 80], *str
;
5857 const char *msg
= "dtrace: breakpoint action at probe ";
5858 const char *ecbmsg
= " (ecb ";
5859 uintptr_t mask
= (0xf << (sizeof (uintptr_t) * NBBY
/ 4));
5860 uintptr_t val
= (uintptr_t)ecb
;
5861 int shift
= (sizeof (uintptr_t) * NBBY
) - 4, i
= 0;
5863 if (dtrace_destructive_disallow
)
5867 * It's impossible to be taking action on the NULL probe.
5869 ASSERT(probe
!= NULL
);
5872 * This is a poor man's (destitute man's?) sprintf(): we want to
5873 * print the provider name, module name, function name and name of
5874 * the probe, along with the hex address of the ECB with the breakpoint
5875 * action -- all of which we must place in the character buffer by
5878 while (*msg
!= '\0')
5881 for (str
= prov
->dtpv_name
; *str
!= '\0'; str
++)
5885 for (str
= probe
->dtpr_mod
; *str
!= '\0'; str
++)
5889 for (str
= probe
->dtpr_func
; *str
!= '\0'; str
++)
5893 for (str
= probe
->dtpr_name
; *str
!= '\0'; str
++)
5896 while (*ecbmsg
!= '\0')
5899 while (shift
>= 0) {
5900 mask
= (uintptr_t)0xf << shift
;
5902 if (val
>= ((uintptr_t)1 << shift
))
5903 c
[i
++] = "0123456789abcdef"[(val
& mask
) >> shift
];
5914 dtrace_action_panic(dtrace_ecb_t
*ecb
)
5916 dtrace_probe_t
*probe
= ecb
->dte_probe
;
5919 * It's impossible to be taking action on the NULL probe.
5921 ASSERT(probe
!= NULL
);
5923 if (dtrace_destructive_disallow
)
5926 if (dtrace_panicked
!= NULL
)
5929 if (dtrace_casptr(&dtrace_panicked
, NULL
, current_thread()) != NULL
)
5933 * We won the right to panic. (We want to be sure that only one
5934 * thread calls panic() from dtrace_probe(), and that panic() is
5935 * called exactly once.)
5937 panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5938 probe
->dtpr_provider
->dtpv_name
, probe
->dtpr_mod
,
5939 probe
->dtpr_func
, probe
->dtpr_name
, (void *)ecb
);
5942 * APPLE NOTE: this was for an old Mac OS X debug feature
5943 * allowing a return from panic(). Revisit someday.
5945 dtrace_panicked
= NULL
;
5949 dtrace_action_raise(uint64_t sig
)
5951 if (dtrace_destructive_disallow
)
5955 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
5960 * raise() has a queue depth of 1 -- we ignore all subsequent
5961 * invocations of the raise() action.
5964 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5966 if (uthread
&& uthread
->t_dtrace_sig
== 0) {
5967 uthread
->t_dtrace_sig
= sig
;
5968 act_set_astbsd(current_thread());
5973 dtrace_action_stop(void)
5975 if (dtrace_destructive_disallow
)
5978 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
5981 * The currently running process will be set to task_suspend
5982 * when it next leaves the kernel.
5984 uthread
->t_dtrace_stop
= 1;
5985 act_set_astbsd(current_thread());
5991 * APPLE NOTE: pidresume works in conjunction with the dtrace stop action.
5992 * Both activate only when the currently running process next leaves the
5996 dtrace_action_pidresume(uint64_t pid
)
5998 if (dtrace_destructive_disallow
)
6001 if (kauth_cred_issuser(kauth_cred_get()) == 0) {
6002 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP
);
6005 uthread_t uthread
= (uthread_t
)get_bsdthread_info(current_thread());
6008 * When the currently running process leaves the kernel, it attempts to
6009 * task_resume the process (denoted by pid), if that pid appears to have
6010 * been stopped by dtrace_action_stop().
6011 * The currently running process has a pidresume() queue depth of 1 --
6012 * subsequent invocations of the pidresume() action are ignored.
6015 if (pid
!= 0 && uthread
&& uthread
->t_dtrace_resumepid
== 0) {
6016 uthread
->t_dtrace_resumepid
= pid
;
6017 act_set_astbsd(current_thread());
6022 dtrace_action_chill(dtrace_mstate_t
*mstate
, hrtime_t val
)
6025 volatile uint16_t *flags
;
6026 dtrace_cpu_t
*cpu
= CPU
;
6028 if (dtrace_destructive_disallow
)
6031 flags
= (volatile uint16_t *)&cpu_core
[cpu
->cpu_id
].cpuc_dtrace_flags
;
6033 now
= dtrace_gethrtime();
6035 if (now
- cpu
->cpu_dtrace_chillmark
> dtrace_chill_interval
) {
6037 * We need to advance the mark to the current time.
6039 cpu
->cpu_dtrace_chillmark
= now
;
6040 cpu
->cpu_dtrace_chilled
= 0;
6044 * Now check to see if the requested chill time would take us over
6045 * the maximum amount of time allowed in the chill interval. (Or
6046 * worse, if the calculation itself induces overflow.)
6048 if (cpu
->cpu_dtrace_chilled
+ val
> dtrace_chill_max
||
6049 cpu
->cpu_dtrace_chilled
+ val
< cpu
->cpu_dtrace_chilled
) {
6050 *flags
|= CPU_DTRACE_ILLOP
;
6054 while (dtrace_gethrtime() - now
< val
)
6058 * Normally, we assure that the value of the variable "timestamp" does
6059 * not change within an ECB. The presence of chill() represents an
6060 * exception to this rule, however.
6062 mstate
->dtms_present
&= ~DTRACE_MSTATE_TIMESTAMP
;
6063 cpu
->cpu_dtrace_chilled
+= val
;
6067 dtrace_action_ustack(dtrace_mstate_t
*mstate
, dtrace_state_t
*state
,
6068 uint64_t *buf
, uint64_t arg
)
6070 int nframes
= DTRACE_USTACK_NFRAMES(arg
);
6071 int strsize
= DTRACE_USTACK_STRSIZE(arg
);
6072 uint64_t *pcs
= &buf
[1], *fps
;
6073 char *str
= (char *)&pcs
[nframes
];
6074 int size
, offs
= 0, i
, j
;
6075 uintptr_t old
= mstate
->dtms_scratch_ptr
, saved
;
6076 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6080 * Should be taking a faster path if string space has not been
6083 ASSERT(strsize
!= 0);
6086 * We will first allocate some temporary space for the frame pointers.
6088 fps
= (uint64_t *)P2ROUNDUP(mstate
->dtms_scratch_ptr
, 8);
6089 size
= (uintptr_t)fps
- mstate
->dtms_scratch_ptr
+
6090 (nframes
* sizeof (uint64_t));
6092 if (!DTRACE_INSCRATCH(mstate
, (uintptr_t)size
)) {
6094 * Not enough room for our frame pointers -- need to indicate
6095 * that we ran out of scratch space.
6097 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH
);
6101 mstate
->dtms_scratch_ptr
+= size
;
6102 saved
= mstate
->dtms_scratch_ptr
;
6105 * Now get a stack with both program counters and frame pointers.
6107 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6108 dtrace_getufpstack(buf
, fps
, nframes
+ 1);
6109 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6112 * If that faulted, we're cooked.
6114 if (*flags
& CPU_DTRACE_FAULT
)
6118 * Now we want to walk up the stack, calling the USTACK helper. For
6119 * each iteration, we restore the scratch pointer.
6121 for (i
= 0; i
< nframes
; i
++) {
6122 mstate
->dtms_scratch_ptr
= saved
;
6124 if (offs
>= strsize
)
6127 sym
= (char *)(uintptr_t)dtrace_helper(
6128 DTRACE_HELPER_ACTION_USTACK
,
6129 mstate
, state
, pcs
[i
], fps
[i
]);
6132 * If we faulted while running the helper, we're going to
6133 * clear the fault and null out the corresponding string.
6135 if (*flags
& CPU_DTRACE_FAULT
) {
6136 *flags
&= ~CPU_DTRACE_FAULT
;
6146 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6149 * Now copy in the string that the helper returned to us.
6151 for (j
= 0; offs
+ j
< strsize
; j
++) {
6152 if ((str
[offs
+ j
] = sym
[j
]) == '\0')
6156 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6161 if (offs
>= strsize
) {
6163 * If we didn't have room for all of the strings, we don't
6164 * abort processing -- this needn't be a fatal error -- but we
6165 * still want to increment a counter (dts_stkstroverflows) to
6166 * allow this condition to be warned about. (If this is from
6167 * a jstack() action, it is easily tuned via jstackstrsize.)
6169 dtrace_error(&state
->dts_stkstroverflows
);
6172 while (offs
< strsize
)
6176 mstate
->dtms_scratch_ptr
= old
;
6180 dtrace_store_by_ref(dtrace_difo_t
*dp
, caddr_t tomax
, size_t size
,
6181 size_t *valoffsp
, uint64_t *valp
, uint64_t end
, int intuple
, int dtkind
)
6183 volatile uint16_t *flags
;
6184 uint64_t val
= *valp
;
6185 size_t valoffs
= *valoffsp
;
6187 flags
= (volatile uint16_t *)&cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
6188 ASSERT(dtkind
== DIF_TF_BYREF
|| dtkind
== DIF_TF_BYUREF
);
6191 * If this is a string, we're going to only load until we find the zero
6192 * byte -- after which we'll store zero bytes.
6194 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
6198 for (s
= 0; s
< size
; s
++) {
6199 if (c
!= '\0' && dtkind
== DIF_TF_BYREF
) {
6200 c
= dtrace_load8(val
++);
6201 } else if (c
!= '\0' && dtkind
== DIF_TF_BYUREF
) {
6202 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6203 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
6204 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6205 if (*flags
& CPU_DTRACE_FAULT
)
6209 DTRACE_STORE(uint8_t, tomax
, valoffs
++, c
);
6211 if (c
== '\0' && intuple
)
6216 while (valoffs
< end
) {
6217 if (dtkind
== DIF_TF_BYREF
) {
6218 c
= dtrace_load8(val
++);
6219 } else if (dtkind
== DIF_TF_BYUREF
) {
6220 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6221 c
= dtrace_fuword8((user_addr_t
)(uintptr_t)val
++);
6222 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6223 if (*flags
& CPU_DTRACE_FAULT
)
6227 DTRACE_STORE(uint8_t, tomax
,
6233 *valoffsp
= valoffs
;
6237 * If you're looking for the epicenter of DTrace, you just found it. This
6238 * is the function called by the provider to fire a probe -- from which all
6239 * subsequent probe-context DTrace activity emanates.
6242 __dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
6243 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
6245 processorid_t cpuid
;
6246 dtrace_icookie_t cookie
;
6247 dtrace_probe_t
*probe
;
6248 dtrace_mstate_t mstate
;
6250 dtrace_action_t
*act
;
6254 volatile uint16_t *flags
;
6257 cookie
= dtrace_interrupt_disable();
6258 probe
= dtrace_probes
[id
- 1];
6259 cpuid
= CPU
->cpu_id
;
6260 onintr
= CPU_ON_INTR(CPU
);
6262 if (!onintr
&& probe
->dtpr_predcache
!= DTRACE_CACHEIDNONE
&&
6263 probe
->dtpr_predcache
== dtrace_get_thread_predcache(current_thread())) {
6265 * We have hit in the predicate cache; we know that
6266 * this predicate would evaluate to be false.
6268 dtrace_interrupt_enable(cookie
);
6272 if (panic_quiesce
) {
6274 * We don't trace anything if we're panicking.
6276 dtrace_interrupt_enable(cookie
);
6280 #if !defined(__APPLE__)
6281 now
= dtrace_gethrtime();
6282 vtime
= dtrace_vtime_references
!= 0;
6284 if (vtime
&& curthread
->t_dtrace_start
)
6285 curthread
->t_dtrace_vtime
+= now
- curthread
->t_dtrace_start
;
6288 * APPLE NOTE: The time spent entering DTrace and arriving
6289 * to this point, is attributed to the current thread.
6290 * Instead it should accrue to DTrace. FIXME
6292 vtime
= dtrace_vtime_references
!= 0;
6296 int64_t dtrace_accum_time
, recent_vtime
;
6297 thread_t thread
= current_thread();
6299 dtrace_accum_time
= dtrace_get_thread_tracing(thread
); /* Time spent inside DTrace so far (nanoseconds) */
6301 if (dtrace_accum_time
>= 0) {
6302 recent_vtime
= dtrace_abs_to_nano(dtrace_calc_thread_recent_vtime(thread
)); /* up to the moment thread vtime */
6304 recent_vtime
= recent_vtime
- dtrace_accum_time
; /* Time without DTrace contribution */
6306 dtrace_set_thread_vtime(thread
, recent_vtime
);
6310 now
= dtrace_gethrtime(); /* must not precede dtrace_calc_thread_recent_vtime() call! */
6311 #endif /* __APPLE__ */
6314 * APPLE NOTE: A provider may call dtrace_probe_error() in lieu of
6315 * dtrace_probe() in some circumstances. See, e.g. fasttrap_isa.c.
6316 * However the provider has no access to ECB context, so passes
6317 * 0 through "arg0" and the probe_id of the overridden probe as arg1.
6318 * Detect that here and cons up a viable state (from the probe_id).
6320 if (dtrace_probeid_error
== id
&& 0 == arg0
) {
6321 dtrace_id_t ftp_id
= (dtrace_id_t
)arg1
;
6322 dtrace_probe_t
*ftp_probe
= dtrace_probes
[ftp_id
- 1];
6323 dtrace_ecb_t
*ftp_ecb
= ftp_probe
->dtpr_ecb
;
6325 if (NULL
!= ftp_ecb
) {
6326 dtrace_state_t
*ftp_state
= ftp_ecb
->dte_state
;
6328 arg0
= (uint64_t)(uintptr_t)ftp_state
;
6329 arg1
= ftp_ecb
->dte_epid
;
6331 * args[2-4] established by caller.
6333 ftp_state
->dts_arg_error_illval
= -1; /* arg5 */
6337 mstate
.dtms_difo
= NULL
;
6338 mstate
.dtms_probe
= probe
;
6339 mstate
.dtms_strtok
= 0;
6340 mstate
.dtms_arg
[0] = arg0
;
6341 mstate
.dtms_arg
[1] = arg1
;
6342 mstate
.dtms_arg
[2] = arg2
;
6343 mstate
.dtms_arg
[3] = arg3
;
6344 mstate
.dtms_arg
[4] = arg4
;
6346 flags
= (volatile uint16_t *)&cpu_core
[cpuid
].cpuc_dtrace_flags
;
6348 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
6349 dtrace_predicate_t
*pred
= ecb
->dte_predicate
;
6350 dtrace_state_t
*state
= ecb
->dte_state
;
6351 dtrace_buffer_t
*buf
= &state
->dts_buffer
[cpuid
];
6352 dtrace_buffer_t
*aggbuf
= &state
->dts_aggbuffer
[cpuid
];
6353 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
6354 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
6355 uint64_t tracememsize
= 0;
6360 * A little subtlety with the following (seemingly innocuous)
6361 * declaration of the automatic 'val': by looking at the
6362 * code, you might think that it could be declared in the
6363 * action processing loop, below. (That is, it's only used in
6364 * the action processing loop.) However, it must be declared
6365 * out of that scope because in the case of DIF expression
6366 * arguments to aggregating actions, one iteration of the
6367 * action loop will use the last iteration's value.
6375 mstate
.dtms_present
= DTRACE_MSTATE_ARGS
| DTRACE_MSTATE_PROBE
;
6376 *flags
&= ~CPU_DTRACE_ERROR
;
6378 if (prov
== dtrace_provider
) {
6380 * If dtrace itself is the provider of this probe,
6381 * we're only going to continue processing the ECB if
6382 * arg0 (the dtrace_state_t) is equal to the ECB's
6383 * creating state. (This prevents disjoint consumers
6384 * from seeing one another's metaprobes.)
6386 if (arg0
!= (uint64_t)(uintptr_t)state
)
6390 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
) {
6392 * We're not currently active. If our provider isn't
6393 * the dtrace pseudo provider, we're not interested.
6395 if (prov
!= dtrace_provider
)
6399 * Now we must further check if we are in the BEGIN
6400 * probe. If we are, we will only continue processing
6401 * if we're still in WARMUP -- if one BEGIN enabling
6402 * has invoked the exit() action, we don't want to
6403 * evaluate subsequent BEGIN enablings.
6405 if (probe
->dtpr_id
== dtrace_probeid_begin
&&
6406 state
->dts_activity
!= DTRACE_ACTIVITY_WARMUP
) {
6407 ASSERT(state
->dts_activity
==
6408 DTRACE_ACTIVITY_DRAINING
);
6413 if (ecb
->dte_cond
) {
6415 * If the dte_cond bits indicate that this
6416 * consumer is only allowed to see user-mode firings
6417 * of this probe, call the provider's dtps_usermode()
6418 * entry point to check that the probe was fired
6419 * while in a user context. Skip this ECB if that's
6422 if ((ecb
->dte_cond
& DTRACE_COND_USERMODE
) &&
6423 prov
->dtpv_pops
.dtps_usermode
&&
6424 prov
->dtpv_pops
.dtps_usermode(prov
->dtpv_arg
,
6425 probe
->dtpr_id
, probe
->dtpr_arg
) == 0)
6429 * This is more subtle than it looks. We have to be
6430 * absolutely certain that CRED() isn't going to
6431 * change out from under us so it's only legit to
6432 * examine that structure if we're in constrained
6433 * situations. Currently, the only times we'll this
6434 * check is if a non-super-user has enabled the
6435 * profile or syscall providers -- providers that
6436 * allow visibility of all processes. For the
6437 * profile case, the check above will ensure that
6438 * we're examining a user context.
6440 if (ecb
->dte_cond
& DTRACE_COND_OWNER
) {
6443 ecb
->dte_state
->dts_cred
.dcr_cred
;
6445 #pragma unused(proc) /* __APPLE__ */
6447 ASSERT(s_cr
!= NULL
);
6450 * XXX this is hackish, but so is setting a variable
6451 * XXX in a McCarthy OR...
6453 if ((cr
= dtrace_CRED()) == NULL
||
6454 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_uid
||
6455 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_ruid
||
6456 posix_cred_get(s_cr
)->cr_uid
!= posix_cred_get(cr
)->cr_suid
||
6457 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_gid
||
6458 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_rgid
||
6459 posix_cred_get(s_cr
)->cr_gid
!= posix_cred_get(cr
)->cr_sgid
||
6460 #if !defined(__APPLE__)
6461 (proc
= ttoproc(curthread
)) == NULL
||
6462 (proc
->p_flag
& SNOCD
))
6464 1) /* APPLE NOTE: Darwin omits "No Core Dump" flag */
6465 #endif /* __APPLE__ */
6469 if (ecb
->dte_cond
& DTRACE_COND_ZONEOWNER
) {
6472 ecb
->dte_state
->dts_cred
.dcr_cred
;
6473 #pragma unused(cr, s_cr) /* __APPLE__ */
6475 ASSERT(s_cr
!= NULL
);
6477 #if !defined(__APPLE__)
6478 if ((cr
= CRED()) == NULL
||
6479 s_cr
->cr_zone
->zone_id
!=
6480 cr
->cr_zone
->zone_id
)
6483 /* APPLE NOTE: Darwin doesn't do zones. */
6484 #endif /* __APPLE__ */
6488 if (now
- state
->dts_alive
> dtrace_deadman_timeout
) {
6490 * We seem to be dead. Unless we (a) have kernel
6491 * destructive permissions (b) have expicitly enabled
6492 * destructive actions and (c) destructive actions have
6493 * not been disabled, we're going to transition into
6494 * the KILLED state, from which no further processing
6495 * on this state will be performed.
6497 if (!dtrace_priv_kernel_destructive(state
) ||
6498 !state
->dts_cred
.dcr_destructive
||
6499 dtrace_destructive_disallow
) {
6500 void *activity
= &state
->dts_activity
;
6501 dtrace_activity_t current
;
6504 current
= state
->dts_activity
;
6505 } while (dtrace_cas32(activity
, current
,
6506 DTRACE_ACTIVITY_KILLED
) != current
);
6512 if ((offs
= dtrace_buffer_reserve(buf
, ecb
->dte_needed
,
6513 ecb
->dte_alignment
, state
, &mstate
)) < 0)
6516 tomax
= buf
->dtb_tomax
;
6517 ASSERT(tomax
!= NULL
);
6520 * Build and store the record header corresponding to the ECB.
6522 if (ecb
->dte_size
!= 0) {
6523 dtrace_rechdr_t dtrh
;
6525 if (!(mstate
.dtms_present
& DTRACE_MSTATE_TIMESTAMP
)) {
6526 mstate
.dtms_timestamp
= dtrace_gethrtime();
6527 mstate
.dtms_present
|= DTRACE_MSTATE_TIMESTAMP
;
6530 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6532 dtrh
.dtrh_epid
= ecb
->dte_epid
;
6533 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh
, mstate
.dtms_timestamp
);
6534 DTRACE_STORE(dtrace_rechdr_t
, tomax
, offs
, dtrh
);
6537 mstate
.dtms_epid
= ecb
->dte_epid
;
6538 mstate
.dtms_present
|= DTRACE_MSTATE_EPID
;
6540 if (state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
)
6541 mstate
.dtms_access
= DTRACE_ACCESS_KERNEL
;
6543 mstate
.dtms_access
= 0;
6546 dtrace_difo_t
*dp
= pred
->dtp_difo
;
6549 rval
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6551 if (!(*flags
& CPU_DTRACE_ERROR
) && !rval
) {
6552 dtrace_cacheid_t cid
= probe
->dtpr_predcache
;
6554 if (cid
!= DTRACE_CACHEIDNONE
&& !onintr
) {
6556 * Update the predicate cache...
6558 ASSERT(cid
== pred
->dtp_cacheid
);
6560 dtrace_set_thread_predcache(current_thread(), cid
);
6567 for (act
= ecb
->dte_action
; !(*flags
& CPU_DTRACE_ERROR
) &&
6568 act
!= NULL
; act
= act
->dta_next
) {
6571 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
6573 size
= rec
->dtrd_size
;
6574 valoffs
= offs
+ rec
->dtrd_offset
;
6576 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
6578 dtrace_aggregation_t
*agg
;
6580 agg
= (dtrace_aggregation_t
*)act
;
6582 if ((dp
= act
->dta_difo
) != NULL
)
6583 v
= dtrace_dif_emulate(dp
,
6584 &mstate
, vstate
, state
);
6586 if (*flags
& CPU_DTRACE_ERROR
)
6590 * Note that we always pass the expression
6591 * value from the previous iteration of the
6592 * action loop. This value will only be used
6593 * if there is an expression argument to the
6594 * aggregating action, denoted by the
6595 * dtag_hasarg field.
6597 dtrace_aggregate(agg
, buf
,
6598 offs
, aggbuf
, v
, val
);
6602 switch (act
->dta_kind
) {
6603 case DTRACEACT_STOP
:
6604 if (dtrace_priv_proc_destructive(state
))
6605 dtrace_action_stop();
6608 case DTRACEACT_BREAKPOINT
:
6609 if (dtrace_priv_kernel_destructive(state
))
6610 dtrace_action_breakpoint(ecb
);
6613 case DTRACEACT_PANIC
:
6614 if (dtrace_priv_kernel_destructive(state
))
6615 dtrace_action_panic(ecb
);
6618 case DTRACEACT_STACK
:
6619 if (!dtrace_priv_kernel(state
))
6622 dtrace_getpcstack((pc_t
*)(tomax
+ valoffs
),
6623 size
/ sizeof (pc_t
), probe
->dtpr_aframes
,
6624 DTRACE_ANCHORED(probe
) ? NULL
:
6625 (uint32_t *)(uintptr_t)arg0
);
6628 case DTRACEACT_JSTACK
:
6629 case DTRACEACT_USTACK
:
6630 if (!dtrace_priv_proc(state
))
6634 * See comment in DIF_VAR_PID.
6636 if (DTRACE_ANCHORED(mstate
.dtms_probe
) &&
6638 int depth
= DTRACE_USTACK_NFRAMES(
6641 dtrace_bzero((void *)(tomax
+ valoffs
),
6642 DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
)
6643 + depth
* sizeof (uint64_t));
6648 if (DTRACE_USTACK_STRSIZE(rec
->dtrd_arg
) != 0 &&
6649 curproc
->p_dtrace_helpers
!= NULL
) {
6651 * This is the slow path -- we have
6652 * allocated string space, and we're
6653 * getting the stack of a process that
6654 * has helpers. Call into a separate
6655 * routine to perform this processing.
6657 dtrace_action_ustack(&mstate
, state
,
6658 (uint64_t *)(tomax
+ valoffs
),
6663 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT
);
6664 dtrace_getupcstack((uint64_t *)
6666 DTRACE_USTACK_NFRAMES(rec
->dtrd_arg
) + 1);
6667 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT
);
6677 val
= dtrace_dif_emulate(dp
, &mstate
, vstate
, state
);
6679 if (*flags
& CPU_DTRACE_ERROR
)
6682 switch (act
->dta_kind
) {
6683 case DTRACEACT_SPECULATE
: {
6684 dtrace_rechdr_t
*dtrh
= NULL
;
6686 ASSERT(buf
== &state
->dts_buffer
[cpuid
]);
6687 buf
= dtrace_speculation_buffer(state
,
6691 *flags
|= CPU_DTRACE_DROP
;
6695 offs
= dtrace_buffer_reserve(buf
,
6696 ecb
->dte_needed
, ecb
->dte_alignment
,
6700 *flags
|= CPU_DTRACE_DROP
;
6704 tomax
= buf
->dtb_tomax
;
6705 ASSERT(tomax
!= NULL
);
6707 if (ecb
->dte_size
== 0)
6710 ASSERT(ecb
->dte_size
>= sizeof(dtrace_rechdr_t
));
6711 dtrh
= ((void *)(tomax
+ offs
));
6712 dtrh
->dtrh_epid
= ecb
->dte_epid
;
6715 * When the speculation is committed, all of
6716 * the records in the speculative buffer will
6717 * have their timestamps set to the commit
6718 * time. Until then, it is set to a sentinel
6719 * value, for debugability.
6721 DTRACE_RECORD_STORE_TIMESTAMP(dtrh
, UINT64_MAX
);
6726 case DTRACEACT_CHILL
:
6727 if (dtrace_priv_kernel_destructive(state
))
6728 dtrace_action_chill(&mstate
, val
);
6731 case DTRACEACT_RAISE
:
6732 if (dtrace_priv_proc_destructive(state
))
6733 dtrace_action_raise(val
);
6736 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
6737 if (dtrace_priv_proc_destructive(state
))
6738 dtrace_action_pidresume(val
);
6741 case DTRACEACT_COMMIT
:
6745 * We need to commit our buffer state.
6748 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6749 buf
= &state
->dts_buffer
[cpuid
];
6750 dtrace_speculation_commit(state
, cpuid
, val
);
6754 case DTRACEACT_DISCARD
:
6755 dtrace_speculation_discard(state
, cpuid
, val
);
6758 case DTRACEACT_DIFEXPR
:
6759 case DTRACEACT_LIBACT
:
6760 case DTRACEACT_PRINTF
:
6761 case DTRACEACT_PRINTA
:
6762 case DTRACEACT_SYSTEM
:
6763 case DTRACEACT_FREOPEN
:
6764 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
6765 case DTRACEACT_TRACEMEM
:
6768 case DTRACEACT_TRACEMEM_DYNSIZE
:
6774 if (!dtrace_priv_kernel(state
))
6778 case DTRACEACT_USYM
:
6779 case DTRACEACT_UMOD
:
6780 case DTRACEACT_UADDR
: {
6781 if (!dtrace_priv_proc(state
))
6784 DTRACE_STORE(uint64_t, tomax
,
6785 valoffs
, (uint64_t)dtrace_proc_selfpid());
6786 DTRACE_STORE(uint64_t, tomax
,
6787 valoffs
+ sizeof (uint64_t), val
);
6792 case DTRACEACT_EXIT
: {
6794 * For the exit action, we are going to attempt
6795 * to atomically set our activity to be
6796 * draining. If this fails (either because
6797 * another CPU has beat us to the exit action,
6798 * or because our current activity is something
6799 * other than ACTIVE or WARMUP), we will
6800 * continue. This assures that the exit action
6801 * can be successfully recorded at most once
6802 * when we're in the ACTIVE state. If we're
6803 * encountering the exit() action while in
6804 * COOLDOWN, however, we want to honor the new
6805 * status code. (We know that we're the only
6806 * thread in COOLDOWN, so there is no race.)
6808 void *activity
= &state
->dts_activity
;
6809 dtrace_activity_t current
= state
->dts_activity
;
6811 if (current
== DTRACE_ACTIVITY_COOLDOWN
)
6814 if (current
!= DTRACE_ACTIVITY_WARMUP
)
6815 current
= DTRACE_ACTIVITY_ACTIVE
;
6817 if (dtrace_cas32(activity
, current
,
6818 DTRACE_ACTIVITY_DRAINING
) != current
) {
6819 *flags
|= CPU_DTRACE_DROP
;
6830 if (dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
)) {
6831 uintptr_t end
= valoffs
+ size
;
6833 if (tracememsize
!= 0 &&
6834 valoffs
+ tracememsize
< end
)
6836 end
= valoffs
+ tracememsize
;
6840 if (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
&&
6841 !dtrace_vcanload((void *)(uintptr_t)val
,
6842 &dp
->dtdo_rtype
, NULL
, &mstate
, vstate
))
6847 dtrace_store_by_ref(dp
, tomax
, size
, &valoffs
,
6848 &val
, end
, act
->dta_intuple
,
6849 dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
?
6850 DIF_TF_BYREF
: DIF_TF_BYUREF
);
6859 case sizeof (uint8_t):
6860 DTRACE_STORE(uint8_t, tomax
, valoffs
, val
);
6862 case sizeof (uint16_t):
6863 DTRACE_STORE(uint16_t, tomax
, valoffs
, val
);
6865 case sizeof (uint32_t):
6866 DTRACE_STORE(uint32_t, tomax
, valoffs
, val
);
6868 case sizeof (uint64_t):
6869 DTRACE_STORE(uint64_t, tomax
, valoffs
, val
);
6873 * Any other size should have been returned by
6874 * reference, not by value.
6881 if (*flags
& CPU_DTRACE_DROP
)
6884 if (*flags
& CPU_DTRACE_FAULT
) {
6886 dtrace_action_t
*err
;
6890 if (probe
->dtpr_id
== dtrace_probeid_error
) {
6892 * There's nothing we can do -- we had an
6893 * error on the error probe. We bump an
6894 * error counter to at least indicate that
6895 * this condition happened.
6897 dtrace_error(&state
->dts_dblerrors
);
6903 * Before recursing on dtrace_probe(), we
6904 * need to explicitly clear out our start
6905 * time to prevent it from being accumulated
6906 * into t_dtrace_vtime.
6910 * Darwin sets the sign bit on t_dtrace_tracing
6911 * to suspend accumulation to it.
6913 dtrace_set_thread_tracing(current_thread(),
6914 (1ULL<<63) | dtrace_get_thread_tracing(current_thread()));
6919 * Iterate over the actions to figure out which action
6920 * we were processing when we experienced the error.
6921 * Note that act points _past_ the faulting action; if
6922 * act is ecb->dte_action, the fault was in the
6923 * predicate, if it's ecb->dte_action->dta_next it's
6924 * in action #1, and so on.
6926 for (err
= ecb
->dte_action
, ndx
= 0;
6927 err
!= act
; err
= err
->dta_next
, ndx
++)
6930 dtrace_probe_error(state
, ecb
->dte_epid
, ndx
,
6931 (mstate
.dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
6932 mstate
.dtms_fltoffs
: -1, DTRACE_FLAGS2FLT(*flags
),
6933 cpu_core
[cpuid
].cpuc_dtrace_illval
);
6939 buf
->dtb_offset
= offs
+ ecb
->dte_size
;
6942 /* FIXME: On Darwin the time spent leaving DTrace from this point to the rti is attributed
6943 to the current thread. Instead it should accrue to DTrace. */
6945 thread_t thread
= current_thread();
6946 int64_t t
= dtrace_get_thread_tracing(thread
);
6949 /* Usual case, accumulate time spent here into t_dtrace_tracing */
6950 dtrace_set_thread_tracing(thread
, t
+ (dtrace_gethrtime() - now
));
6952 /* Return from error recursion. No accumulation, just clear the sign bit on t_dtrace_tracing. */
6953 dtrace_set_thread_tracing(thread
, (~(1ULL<<63)) & t
);
6957 dtrace_interrupt_enable(cookie
);
6961 * APPLE NOTE: Don't allow a thread to re-enter dtrace_probe().
6962 * This could occur if a probe is encountered on some function in the
6963 * transitive closure of the call to dtrace_probe().
6964 * Solaris has some strong guarantees that this won't happen.
6965 * The Darwin implementation is not so mature as to make those guarantees.
6966 * Hence, the introduction of __dtrace_probe() on xnu.
6970 dtrace_probe(dtrace_id_t id
, uint64_t arg0
, uint64_t arg1
,
6971 uint64_t arg2
, uint64_t arg3
, uint64_t arg4
)
6973 thread_t thread
= current_thread();
6974 disable_preemption();
6975 if (id
== dtrace_probeid_error
) {
6976 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6977 dtrace_getipl(); /* Defeat tail-call optimization of __dtrace_probe() */
6978 } else if (!dtrace_get_thread_reentering(thread
)) {
6979 dtrace_set_thread_reentering(thread
, TRUE
);
6980 __dtrace_probe(id
, arg0
, arg1
, arg2
, arg3
, arg4
);
6981 dtrace_set_thread_reentering(thread
, FALSE
);
6984 else __dtrace_probe(dtrace_probeid_error
, 0, id
, 1, -1, DTRACEFLT_UNKNOWN
);
6986 enable_preemption();
6990 * DTrace Probe Hashing Functions
6992 * The functions in this section (and indeed, the functions in remaining
6993 * sections) are not _called_ from probe context. (Any exceptions to this are
6994 * marked with a "Note:".) Rather, they are called from elsewhere in the
6995 * DTrace framework to look-up probes in, add probes to and remove probes from
6996 * the DTrace probe hashes. (Each probe is hashed by each element of the
6997 * probe tuple -- allowing for fast lookups, regardless of what was
7001 dtrace_hash_str(const char *p
)
7007 hval
= (hval
<< 4) + *p
++;
7008 if ((g
= (hval
& 0xf0000000)) != 0)
7015 static dtrace_hash_t
*
7016 dtrace_hash_create(uintptr_t stroffs
, uintptr_t nextoffs
, uintptr_t prevoffs
)
7018 dtrace_hash_t
*hash
= kmem_zalloc(sizeof (dtrace_hash_t
), KM_SLEEP
);
7020 hash
->dth_stroffs
= stroffs
;
7021 hash
->dth_nextoffs
= nextoffs
;
7022 hash
->dth_prevoffs
= prevoffs
;
7025 hash
->dth_mask
= hash
->dth_size
- 1;
7027 hash
->dth_tab
= kmem_zalloc(hash
->dth_size
*
7028 sizeof (dtrace_hashbucket_t
*), KM_SLEEP
);
7034 * APPLE NOTE: dtrace_hash_destroy is not used.
7035 * It is called by dtrace_detach which is not
7036 * currently implemented. Revisit someday.
7038 #if !defined(__APPLE__)
7040 dtrace_hash_destroy(dtrace_hash_t
*hash
)
7045 for (i
= 0; i
< hash
->dth_size
; i
++)
7046 ASSERT(hash
->dth_tab
[i
] == NULL
);
7049 kmem_free(hash
->dth_tab
,
7050 hash
->dth_size
* sizeof (dtrace_hashbucket_t
*));
7051 kmem_free(hash
, sizeof (dtrace_hash_t
));
7053 #endif /* __APPLE__ */
7056 dtrace_hash_resize(dtrace_hash_t
*hash
)
7058 int size
= hash
->dth_size
, i
, ndx
;
7059 int new_size
= hash
->dth_size
<< 1;
7060 int new_mask
= new_size
- 1;
7061 dtrace_hashbucket_t
**new_tab
, *bucket
, *next
;
7063 ASSERT((new_size
& new_mask
) == 0);
7065 new_tab
= kmem_zalloc(new_size
* sizeof (void *), KM_SLEEP
);
7067 for (i
= 0; i
< size
; i
++) {
7068 for (bucket
= hash
->dth_tab
[i
]; bucket
!= NULL
; bucket
= next
) {
7069 dtrace_probe_t
*probe
= bucket
->dthb_chain
;
7071 ASSERT(probe
!= NULL
);
7072 ndx
= DTRACE_HASHSTR(hash
, probe
) & new_mask
;
7074 next
= bucket
->dthb_next
;
7075 bucket
->dthb_next
= new_tab
[ndx
];
7076 new_tab
[ndx
] = bucket
;
7080 kmem_free(hash
->dth_tab
, hash
->dth_size
* sizeof (void *));
7081 hash
->dth_tab
= new_tab
;
7082 hash
->dth_size
= new_size
;
7083 hash
->dth_mask
= new_mask
;
7087 dtrace_hash_add(dtrace_hash_t
*hash
, dtrace_probe_t
*new)
7089 int hashval
= DTRACE_HASHSTR(hash
, new);
7090 int ndx
= hashval
& hash
->dth_mask
;
7091 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7092 dtrace_probe_t
**nextp
, **prevp
;
7094 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7095 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, new))
7099 if ((hash
->dth_nbuckets
>> 1) > hash
->dth_size
) {
7100 dtrace_hash_resize(hash
);
7101 dtrace_hash_add(hash
, new);
7105 bucket
= kmem_zalloc(sizeof (dtrace_hashbucket_t
), KM_SLEEP
);
7106 bucket
->dthb_next
= hash
->dth_tab
[ndx
];
7107 hash
->dth_tab
[ndx
] = bucket
;
7108 hash
->dth_nbuckets
++;
7111 nextp
= DTRACE_HASHNEXT(hash
, new);
7112 ASSERT(*nextp
== NULL
&& *(DTRACE_HASHPREV(hash
, new)) == NULL
);
7113 *nextp
= bucket
->dthb_chain
;
7115 if (bucket
->dthb_chain
!= NULL
) {
7116 prevp
= DTRACE_HASHPREV(hash
, bucket
->dthb_chain
);
7117 ASSERT(*prevp
== NULL
);
7121 bucket
->dthb_chain
= new;
7125 static dtrace_probe_t
*
7126 dtrace_hash_lookup(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7128 int hashval
= DTRACE_HASHSTR(hash
, template);
7129 int ndx
= hashval
& hash
->dth_mask
;
7130 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7132 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7133 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7134 return (bucket
->dthb_chain
);
7141 dtrace_hash_collisions(dtrace_hash_t
*hash
, dtrace_probe_t
*template)
7143 int hashval
= DTRACE_HASHSTR(hash
, template);
7144 int ndx
= hashval
& hash
->dth_mask
;
7145 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7147 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7148 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, template))
7149 return (bucket
->dthb_len
);
7156 dtrace_hash_remove(dtrace_hash_t
*hash
, dtrace_probe_t
*probe
)
7158 int ndx
= DTRACE_HASHSTR(hash
, probe
) & hash
->dth_mask
;
7159 dtrace_hashbucket_t
*bucket
= hash
->dth_tab
[ndx
];
7161 dtrace_probe_t
**prevp
= DTRACE_HASHPREV(hash
, probe
);
7162 dtrace_probe_t
**nextp
= DTRACE_HASHNEXT(hash
, probe
);
7165 * Find the bucket that we're removing this probe from.
7167 for (; bucket
!= NULL
; bucket
= bucket
->dthb_next
) {
7168 if (DTRACE_HASHEQ(hash
, bucket
->dthb_chain
, probe
))
7172 ASSERT(bucket
!= NULL
);
7174 if (*prevp
== NULL
) {
7175 if (*nextp
== NULL
) {
7177 * The removed probe was the only probe on this
7178 * bucket; we need to remove the bucket.
7180 dtrace_hashbucket_t
*b
= hash
->dth_tab
[ndx
];
7182 ASSERT(bucket
->dthb_chain
== probe
);
7186 hash
->dth_tab
[ndx
] = bucket
->dthb_next
;
7188 while (b
->dthb_next
!= bucket
)
7190 b
->dthb_next
= bucket
->dthb_next
;
7193 ASSERT(hash
->dth_nbuckets
> 0);
7194 hash
->dth_nbuckets
--;
7195 kmem_free(bucket
, sizeof (dtrace_hashbucket_t
));
7199 bucket
->dthb_chain
= *nextp
;
7201 *(DTRACE_HASHNEXT(hash
, *prevp
)) = *nextp
;
7205 *(DTRACE_HASHPREV(hash
, *nextp
)) = *prevp
;
7209 * DTrace Utility Functions
7211 * These are random utility functions that are _not_ called from probe context.
7214 dtrace_badattr(const dtrace_attribute_t
*a
)
7216 return (a
->dtat_name
> DTRACE_STABILITY_MAX
||
7217 a
->dtat_data
> DTRACE_STABILITY_MAX
||
7218 a
->dtat_class
> DTRACE_CLASS_MAX
);
7222 * Return a duplicate copy of a string. If the specified string is NULL,
7223 * this function returns a zero-length string.
7224 * APPLE NOTE: Darwin employs size bounded string operation.
7227 dtrace_strdup(const char *str
)
7229 size_t bufsize
= (str
!= NULL
? strlen(str
) : 0) + 1;
7230 char *new = kmem_zalloc(bufsize
, KM_SLEEP
);
7233 (void) strlcpy(new, str
, bufsize
);
7238 #define DTRACE_ISALPHA(c) \
7239 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7242 dtrace_badname(const char *s
)
7246 if (s
== NULL
|| (c
= *s
++) == '\0')
7249 if (!DTRACE_ISALPHA(c
) && c
!= '-' && c
!= '_' && c
!= '.')
7252 while ((c
= *s
++) != '\0') {
7253 if (!DTRACE_ISALPHA(c
) && (c
< '0' || c
> '9') &&
7254 c
!= '-' && c
!= '_' && c
!= '.' && c
!= '`')
7262 dtrace_cred2priv(cred_t
*cr
, uint32_t *privp
, uid_t
*uidp
, zoneid_t
*zoneidp
)
7266 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
7267 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) {
7268 priv
= DTRACE_PRIV_USER
| DTRACE_PRIV_PROC
| DTRACE_PRIV_OWNER
;
7271 priv
= DTRACE_PRIV_ALL
;
7276 *uidp
= crgetuid(cr
);
7277 *zoneidp
= crgetzoneid(cr
);
7280 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
))
7281 priv
|= DTRACE_PRIV_KERNEL
| DTRACE_PRIV_USER
;
7282 else if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
))
7283 priv
|= DTRACE_PRIV_USER
;
7284 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
))
7285 priv
|= DTRACE_PRIV_PROC
;
7286 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
7287 priv
|= DTRACE_PRIV_OWNER
;
7288 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
7289 priv
|= DTRACE_PRIV_ZONEOWNER
;
7295 #ifdef DTRACE_ERRDEBUG
7297 dtrace_errdebug(const char *str
)
7299 int hval
= dtrace_hash_str(str
) % DTRACE_ERRHASHSZ
;
7302 lck_mtx_lock(&dtrace_errlock
);
7303 dtrace_errlast
= str
;
7304 dtrace_errthread
= (kthread_t
*)current_thread();
7306 while (occupied
++ < DTRACE_ERRHASHSZ
) {
7307 if (dtrace_errhash
[hval
].dter_msg
== str
) {
7308 dtrace_errhash
[hval
].dter_count
++;
7312 if (dtrace_errhash
[hval
].dter_msg
!= NULL
) {
7313 hval
= (hval
+ 1) % DTRACE_ERRHASHSZ
;
7317 dtrace_errhash
[hval
].dter_msg
= str
;
7318 dtrace_errhash
[hval
].dter_count
= 1;
7322 panic("dtrace: undersized error hash");
7324 lck_mtx_unlock(&dtrace_errlock
);
7329 * DTrace Matching Functions
7331 * These functions are used to match groups of probes, given some elements of
7332 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7335 dtrace_match_priv(const dtrace_probe_t
*prp
, uint32_t priv
, uid_t uid
,
7338 if (priv
!= DTRACE_PRIV_ALL
) {
7339 uint32_t ppriv
= prp
->dtpr_provider
->dtpv_priv
.dtpp_flags
;
7340 uint32_t match
= priv
& ppriv
;
7343 * No PRIV_DTRACE_* privileges...
7345 if ((priv
& (DTRACE_PRIV_PROC
| DTRACE_PRIV_USER
|
7346 DTRACE_PRIV_KERNEL
)) == 0)
7350 * No matching bits, but there were bits to match...
7352 if (match
== 0 && ppriv
!= 0)
7356 * Need to have permissions to the process, but don't...
7358 if (((ppriv
& ~match
) & DTRACE_PRIV_OWNER
) != 0 &&
7359 uid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_uid
) {
7364 * Need to be in the same zone unless we possess the
7365 * privilege to examine all zones.
7367 if (((ppriv
& ~match
) & DTRACE_PRIV_ZONEOWNER
) != 0 &&
7368 zoneid
!= prp
->dtpr_provider
->dtpv_priv
.dtpp_zoneid
) {
7377 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7378 * consists of input pattern strings and an ops-vector to evaluate them.
7379 * This function returns >0 for match, 0 for no match, and <0 for error.
7382 dtrace_match_probe(const dtrace_probe_t
*prp
, const dtrace_probekey_t
*pkp
,
7383 uint32_t priv
, uid_t uid
, zoneid_t zoneid
)
7385 dtrace_provider_t
*pvp
= prp
->dtpr_provider
;
7388 if (pvp
->dtpv_defunct
)
7391 if ((rv
= pkp
->dtpk_pmatch(pvp
->dtpv_name
, pkp
->dtpk_prov
, 0)) <= 0)
7394 if ((rv
= pkp
->dtpk_mmatch(prp
->dtpr_mod
, pkp
->dtpk_mod
, 0)) <= 0)
7397 if ((rv
= pkp
->dtpk_fmatch(prp
->dtpr_func
, pkp
->dtpk_func
, 0)) <= 0)
7400 if ((rv
= pkp
->dtpk_nmatch(prp
->dtpr_name
, pkp
->dtpk_name
, 0)) <= 0)
7403 if (dtrace_match_priv(prp
, priv
, uid
, zoneid
) == 0)
7410 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7411 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7412 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7413 * In addition, all of the recursion cases except for '*' matching have been
7414 * unwound. For '*', we still implement recursive evaluation, but a depth
7415 * counter is maintained and matching is aborted if we recurse too deep.
7416 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7419 dtrace_match_glob(const char *s
, const char *p
, int depth
)
7425 if (depth
> DTRACE_PROBEKEY_MAXDEPTH
)
7429 s
= ""; /* treat NULL as empty string */
7438 if ((c
= *p
++) == '\0')
7439 return (s1
== '\0');
7443 int ok
= 0, notflag
= 0;
7454 if ((c
= *p
++) == '\0')
7458 if (c
== '-' && lc
!= '\0' && *p
!= ']') {
7459 if ((c
= *p
++) == '\0')
7461 if (c
== '\\' && (c
= *p
++) == '\0')
7465 if (s1
< lc
|| s1
> c
)
7469 } else if (lc
<= s1
&& s1
<= c
)
7472 } else if (c
== '\\' && (c
= *p
++) == '\0')
7475 lc
= c
; /* save left-hand 'c' for next iteration */
7485 if ((c
= *p
++) == '\0')
7497 if ((c
= *p
++) == '\0')
7513 p
++; /* consecutive *'s are identical to a single one */
7518 for (s
= olds
; *s
!= '\0'; s
++) {
7519 if ((gs
= dtrace_match_glob(s
, p
, depth
+ 1)) != 0)
7529 dtrace_match_string(const char *s
, const char *p
, int depth
)
7531 #pragma unused(depth) /* __APPLE__ */
7533 /* APPLE NOTE: Darwin employs size bounded string operation. */
7534 return (s
!= NULL
&& strncmp(s
, p
, strlen(s
) + 1) == 0);
7539 dtrace_match_nul(const char *s
, const char *p
, int depth
)
7541 #pragma unused(s, p, depth) /* __APPLE__ */
7542 return (1); /* always match the empty pattern */
7547 dtrace_match_nonzero(const char *s
, const char *p
, int depth
)
7549 #pragma unused(p, depth) /* __APPLE__ */
7550 return (s
!= NULL
&& s
[0] != '\0');
7554 dtrace_match(const dtrace_probekey_t
*pkp
, uint32_t priv
, uid_t uid
,
7555 zoneid_t zoneid
, int (*matched
)(dtrace_probe_t
*, void *, void *), void *arg1
, void *arg2
)
7557 dtrace_probe_t
template, *probe
;
7558 dtrace_hash_t
*hash
= NULL
;
7559 int len
, rc
, best
= INT_MAX
, nmatched
= 0;
7562 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7565 * If the probe ID is specified in the key, just lookup by ID and
7566 * invoke the match callback once if a matching probe is found.
7568 if (pkp
->dtpk_id
!= DTRACE_IDNONE
) {
7569 if ((probe
= dtrace_probe_lookup_id(pkp
->dtpk_id
)) != NULL
&&
7570 dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) > 0) {
7571 if ((*matched
)(probe
, arg1
, arg2
) == DTRACE_MATCH_FAIL
)
7572 return (DTRACE_MATCH_FAIL
);
7578 template.dtpr_mod
= (char *)(uintptr_t)pkp
->dtpk_mod
;
7579 template.dtpr_func
= (char *)(uintptr_t)pkp
->dtpk_func
;
7580 template.dtpr_name
= (char *)(uintptr_t)pkp
->dtpk_name
;
7583 * We want to find the most distinct of the module name, function
7584 * name, and name. So for each one that is not a glob pattern or
7585 * empty string, we perform a lookup in the corresponding hash and
7586 * use the hash table with the fewest collisions to do our search.
7588 if (pkp
->dtpk_mmatch
== &dtrace_match_string
&&
7589 (len
= dtrace_hash_collisions(dtrace_bymod
, &template)) < best
) {
7591 hash
= dtrace_bymod
;
7594 if (pkp
->dtpk_fmatch
== &dtrace_match_string
&&
7595 (len
= dtrace_hash_collisions(dtrace_byfunc
, &template)) < best
) {
7597 hash
= dtrace_byfunc
;
7600 if (pkp
->dtpk_nmatch
== &dtrace_match_string
&&
7601 (len
= dtrace_hash_collisions(dtrace_byname
, &template)) < best
) {
7603 hash
= dtrace_byname
;
7607 * If we did not select a hash table, iterate over every probe and
7608 * invoke our callback for each one that matches our input probe key.
7611 for (i
= 0; i
< (dtrace_id_t
)dtrace_nprobes
; i
++) {
7612 if ((probe
= dtrace_probes
[i
]) == NULL
||
7613 dtrace_match_probe(probe
, pkp
, priv
, uid
,
7619 if ((rc
= (*matched
)(probe
, arg1
, arg2
)) != DTRACE_MATCH_NEXT
) {
7620 if (rc
== DTRACE_MATCH_FAIL
)
7621 return (DTRACE_MATCH_FAIL
);
7630 * If we selected a hash table, iterate over each probe of the same key
7631 * name and invoke the callback for every probe that matches the other
7632 * attributes of our input probe key.
7634 for (probe
= dtrace_hash_lookup(hash
, &template); probe
!= NULL
;
7635 probe
= *(DTRACE_HASHNEXT(hash
, probe
))) {
7637 if (dtrace_match_probe(probe
, pkp
, priv
, uid
, zoneid
) <= 0)
7642 if ((rc
= (*matched
)(probe
, arg1
, arg2
)) != DTRACE_MATCH_NEXT
) {
7643 if (rc
== DTRACE_MATCH_FAIL
)
7644 return (DTRACE_MATCH_FAIL
);
7653 * Return the function pointer dtrace_probecmp() should use to compare the
7654 * specified pattern with a string. For NULL or empty patterns, we select
7655 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7656 * For non-empty non-glob strings, we use dtrace_match_string().
7658 static dtrace_probekey_f
*
7659 dtrace_probekey_func(const char *p
)
7663 if (p
== NULL
|| *p
== '\0')
7664 return (&dtrace_match_nul
);
7666 while ((c
= *p
++) != '\0') {
7667 if (c
== '[' || c
== '?' || c
== '*' || c
== '\\')
7668 return (&dtrace_match_glob
);
7671 return (&dtrace_match_string
);
7675 * Build a probe comparison key for use with dtrace_match_probe() from the
7676 * given probe description. By convention, a null key only matches anchored
7677 * probes: if each field is the empty string, reset dtpk_fmatch to
7678 * dtrace_match_nonzero().
7681 dtrace_probekey(const dtrace_probedesc_t
*pdp
, dtrace_probekey_t
*pkp
)
7683 pkp
->dtpk_prov
= pdp
->dtpd_provider
;
7684 pkp
->dtpk_pmatch
= dtrace_probekey_func(pdp
->dtpd_provider
);
7686 pkp
->dtpk_mod
= pdp
->dtpd_mod
;
7687 pkp
->dtpk_mmatch
= dtrace_probekey_func(pdp
->dtpd_mod
);
7689 pkp
->dtpk_func
= pdp
->dtpd_func
;
7690 pkp
->dtpk_fmatch
= dtrace_probekey_func(pdp
->dtpd_func
);
7692 pkp
->dtpk_name
= pdp
->dtpd_name
;
7693 pkp
->dtpk_nmatch
= dtrace_probekey_func(pdp
->dtpd_name
);
7695 pkp
->dtpk_id
= pdp
->dtpd_id
;
7697 if (pkp
->dtpk_id
== DTRACE_IDNONE
&&
7698 pkp
->dtpk_pmatch
== &dtrace_match_nul
&&
7699 pkp
->dtpk_mmatch
== &dtrace_match_nul
&&
7700 pkp
->dtpk_fmatch
== &dtrace_match_nul
&&
7701 pkp
->dtpk_nmatch
== &dtrace_match_nul
)
7702 pkp
->dtpk_fmatch
= &dtrace_match_nonzero
;
7706 dtrace_cond_provider_match(dtrace_probedesc_t
*desc
, void *data
)
7711 dtrace_probekey_f
*func
= dtrace_probekey_func(desc
->dtpd_provider
);
7713 return func((char*)data
, desc
->dtpd_provider
, 0);
7717 * DTrace Provider-to-Framework API Functions
7719 * These functions implement much of the Provider-to-Framework API, as
7720 * described in <sys/dtrace.h>. The parts of the API not in this section are
7721 * the functions in the API for probe management (found below), and
7722 * dtrace_probe() itself (found above).
7726 * Register the calling provider with the DTrace framework. This should
7727 * generally be called by DTrace providers in their attach(9E) entry point.
7730 dtrace_register(const char *name
, const dtrace_pattr_t
*pap
, uint32_t priv
,
7731 cred_t
*cr
, const dtrace_pops_t
*pops
, void *arg
, dtrace_provider_id_t
*idp
)
7733 dtrace_provider_t
*provider
;
7735 if (name
== NULL
|| pap
== NULL
|| pops
== NULL
|| idp
== NULL
) {
7736 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7737 "arguments", name
? name
: "<NULL>");
7741 if (name
[0] == '\0' || dtrace_badname(name
)) {
7742 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7743 "provider name", name
);
7747 if ((pops
->dtps_provide
== NULL
&& pops
->dtps_provide_module
== NULL
) ||
7748 pops
->dtps_enable
== NULL
|| pops
->dtps_disable
== NULL
||
7749 pops
->dtps_destroy
== NULL
||
7750 ((pops
->dtps_resume
== NULL
) != (pops
->dtps_suspend
== NULL
))) {
7751 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7752 "provider ops", name
);
7756 if (dtrace_badattr(&pap
->dtpa_provider
) ||
7757 dtrace_badattr(&pap
->dtpa_mod
) ||
7758 dtrace_badattr(&pap
->dtpa_func
) ||
7759 dtrace_badattr(&pap
->dtpa_name
) ||
7760 dtrace_badattr(&pap
->dtpa_args
)) {
7761 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7762 "provider attributes", name
);
7766 if (priv
& ~DTRACE_PRIV_ALL
) {
7767 cmn_err(CE_WARN
, "failed to register provider '%s': invalid "
7768 "privilege attributes", name
);
7772 if ((priv
& DTRACE_PRIV_KERNEL
) &&
7773 (priv
& (DTRACE_PRIV_USER
| DTRACE_PRIV_OWNER
)) &&
7774 pops
->dtps_usermode
== NULL
) {
7775 cmn_err(CE_WARN
, "failed to register provider '%s': need "
7776 "dtps_usermode() op for given privilege attributes", name
);
7780 provider
= kmem_zalloc(sizeof (dtrace_provider_t
), KM_SLEEP
);
7782 /* APPLE NOTE: Darwin employs size bounded string operation. */
7784 size_t bufsize
= strlen(name
) + 1;
7785 provider
->dtpv_name
= kmem_alloc(bufsize
, KM_SLEEP
);
7786 (void) strlcpy(provider
->dtpv_name
, name
, bufsize
);
7789 provider
->dtpv_attr
= *pap
;
7790 provider
->dtpv_priv
.dtpp_flags
= priv
;
7792 provider
->dtpv_priv
.dtpp_uid
= crgetuid(cr
);
7793 provider
->dtpv_priv
.dtpp_zoneid
= crgetzoneid(cr
);
7795 provider
->dtpv_pops
= *pops
;
7797 if (pops
->dtps_provide
== NULL
) {
7798 ASSERT(pops
->dtps_provide_module
!= NULL
);
7799 provider
->dtpv_pops
.dtps_provide
=
7800 (void (*)(void *, const dtrace_probedesc_t
*))dtrace_nullop
;
7803 if (pops
->dtps_provide_module
== NULL
) {
7804 ASSERT(pops
->dtps_provide
!= NULL
);
7805 provider
->dtpv_pops
.dtps_provide_module
=
7806 (void (*)(void *, struct modctl
*))dtrace_nullop
;
7809 if (pops
->dtps_suspend
== NULL
) {
7810 ASSERT(pops
->dtps_resume
== NULL
);
7811 provider
->dtpv_pops
.dtps_suspend
=
7812 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7813 provider
->dtpv_pops
.dtps_resume
=
7814 (void (*)(void *, dtrace_id_t
, void *))dtrace_nullop
;
7817 provider
->dtpv_arg
= arg
;
7818 *idp
= (dtrace_provider_id_t
)provider
;
7820 if (pops
== &dtrace_provider_ops
) {
7821 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7822 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7823 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
7826 * We make sure that the DTrace provider is at the head of
7827 * the provider chain.
7829 provider
->dtpv_next
= dtrace_provider
;
7830 dtrace_provider
= provider
;
7834 lck_mtx_lock(&dtrace_provider_lock
);
7835 lck_mtx_lock(&dtrace_lock
);
7838 * If there is at least one provider registered, we'll add this
7839 * provider after the first provider.
7841 if (dtrace_provider
!= NULL
) {
7842 provider
->dtpv_next
= dtrace_provider
->dtpv_next
;
7843 dtrace_provider
->dtpv_next
= provider
;
7845 dtrace_provider
= provider
;
7848 if (dtrace_retained
!= NULL
) {
7849 dtrace_enabling_provide(provider
);
7852 * Now we need to call dtrace_enabling_matchall_with_cond() --
7853 * with a condition matching the provider name we just added,
7854 * which will acquire cpu_lock and dtrace_lock. We therefore need
7855 * to drop all of our locks before calling into it...
7857 lck_mtx_unlock(&dtrace_lock
);
7858 lck_mtx_unlock(&dtrace_provider_lock
);
7860 dtrace_match_cond_t cond
= {dtrace_cond_provider_match
, provider
->dtpv_name
};
7861 dtrace_enabling_matchall_with_cond(&cond
);
7866 lck_mtx_unlock(&dtrace_lock
);
7867 lck_mtx_unlock(&dtrace_provider_lock
);
7873 * Unregister the specified provider from the DTrace framework. This should
7874 * generally be called by DTrace providers in their detach(9E) entry point.
7877 dtrace_unregister(dtrace_provider_id_t id
)
7879 dtrace_provider_t
*old
= (dtrace_provider_t
*)id
;
7880 dtrace_provider_t
*prev
= NULL
;
7882 dtrace_probe_t
*probe
, *first
= NULL
;
7884 if (old
->dtpv_pops
.dtps_enable
==
7885 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
) {
7887 * If DTrace itself is the provider, we're called with locks
7890 ASSERT(old
== dtrace_provider
);
7891 ASSERT(dtrace_devi
!= NULL
);
7892 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
7893 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
7896 if (dtrace_provider
->dtpv_next
!= NULL
) {
7898 * There's another provider here; return failure.
7903 lck_mtx_lock(&dtrace_provider_lock
);
7904 lck_mtx_lock(&mod_lock
);
7905 lck_mtx_lock(&dtrace_lock
);
7909 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7910 * probes, we refuse to let providers slither away, unless this
7911 * provider has already been explicitly invalidated.
7913 if (!old
->dtpv_defunct
&&
7914 (dtrace_opens
|| (dtrace_anon
.dta_state
!= NULL
&&
7915 dtrace_anon
.dta_state
->dts_necbs
> 0))) {
7917 lck_mtx_unlock(&dtrace_lock
);
7918 lck_mtx_unlock(&mod_lock
);
7919 lck_mtx_unlock(&dtrace_provider_lock
);
7925 * Attempt to destroy the probes associated with this provider.
7927 if (old
->dtpv_ecb_count
!=0) {
7929 * We have at least one ECB; we can't remove this provider.
7932 lck_mtx_unlock(&dtrace_lock
);
7933 lck_mtx_unlock(&mod_lock
);
7934 lck_mtx_unlock(&dtrace_provider_lock
);
7940 * All of the probes for this provider are disabled; we can safely
7941 * remove all of them from their hash chains and from the probe array.
7943 for (i
= 0; i
< dtrace_nprobes
&& old
->dtpv_probe_count
!=0; i
++) {
7944 if ((probe
= dtrace_probes
[i
]) == NULL
)
7947 if (probe
->dtpr_provider
!= old
)
7950 dtrace_probes
[i
] = NULL
;
7951 old
->dtpv_probe_count
--;
7953 dtrace_hash_remove(dtrace_bymod
, probe
);
7954 dtrace_hash_remove(dtrace_byfunc
, probe
);
7955 dtrace_hash_remove(dtrace_byname
, probe
);
7957 if (first
== NULL
) {
7959 probe
->dtpr_nextmod
= NULL
;
7961 probe
->dtpr_nextmod
= first
;
7967 * The provider's probes have been removed from the hash chains and
7968 * from the probe array. Now issue a dtrace_sync() to be sure that
7969 * everyone has cleared out from any probe array processing.
7973 for (probe
= first
; probe
!= NULL
; probe
= first
) {
7974 first
= probe
->dtpr_nextmod
;
7976 old
->dtpv_pops
.dtps_destroy(old
->dtpv_arg
, probe
->dtpr_id
,
7978 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
7979 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
7980 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
7981 vmem_free(dtrace_arena
, (void *)(uintptr_t)(probe
->dtpr_id
), 1);
7982 zfree(dtrace_probe_t_zone
, probe
);
7985 if ((prev
= dtrace_provider
) == old
) {
7986 ASSERT(self
|| dtrace_devi
== NULL
);
7987 ASSERT(old
->dtpv_next
== NULL
|| dtrace_devi
== NULL
);
7988 dtrace_provider
= old
->dtpv_next
;
7990 while (prev
!= NULL
&& prev
->dtpv_next
!= old
)
7991 prev
= prev
->dtpv_next
;
7994 panic("attempt to unregister non-existent "
7995 "dtrace provider %p\n", (void *)id
);
7998 prev
->dtpv_next
= old
->dtpv_next
;
8002 lck_mtx_unlock(&dtrace_lock
);
8003 lck_mtx_unlock(&mod_lock
);
8004 lck_mtx_unlock(&dtrace_provider_lock
);
8007 kmem_free(old
->dtpv_name
, strlen(old
->dtpv_name
) + 1);
8008 kmem_free(old
, sizeof (dtrace_provider_t
));
8014 * Invalidate the specified provider. All subsequent probe lookups for the
8015 * specified provider will fail, but its probes will not be removed.
8018 dtrace_invalidate(dtrace_provider_id_t id
)
8020 dtrace_provider_t
*pvp
= (dtrace_provider_t
*)id
;
8022 ASSERT(pvp
->dtpv_pops
.dtps_enable
!=
8023 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8025 lck_mtx_lock(&dtrace_provider_lock
);
8026 lck_mtx_lock(&dtrace_lock
);
8028 pvp
->dtpv_defunct
= 1;
8030 lck_mtx_unlock(&dtrace_lock
);
8031 lck_mtx_unlock(&dtrace_provider_lock
);
8035 * Indicate whether or not DTrace has attached.
8038 dtrace_attached(void)
8041 * dtrace_provider will be non-NULL iff the DTrace driver has
8042 * attached. (It's non-NULL because DTrace is always itself a
8045 return (dtrace_provider
!= NULL
);
8049 * Remove all the unenabled probes for the given provider. This function is
8050 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8051 * -- just as many of its associated probes as it can.
8054 dtrace_condense(dtrace_provider_id_t id
)
8056 dtrace_provider_t
*prov
= (dtrace_provider_t
*)id
;
8058 dtrace_probe_t
*probe
;
8061 * Make sure this isn't the dtrace provider itself.
8063 ASSERT(prov
->dtpv_pops
.dtps_enable
!=
8064 (int (*)(void *, dtrace_id_t
, void *))dtrace_enable_nullop
);
8066 lck_mtx_lock(&dtrace_provider_lock
);
8067 lck_mtx_lock(&dtrace_lock
);
8070 * Attempt to destroy the probes associated with this provider.
8072 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8073 if ((probe
= dtrace_probes
[i
]) == NULL
)
8076 if (probe
->dtpr_provider
!= prov
)
8079 if (probe
->dtpr_ecb
!= NULL
)
8082 dtrace_probes
[i
] = NULL
;
8083 prov
->dtpv_probe_count
--;
8085 dtrace_hash_remove(dtrace_bymod
, probe
);
8086 dtrace_hash_remove(dtrace_byfunc
, probe
);
8087 dtrace_hash_remove(dtrace_byname
, probe
);
8089 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, i
+ 1,
8091 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
8092 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
8093 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
8094 zfree(dtrace_probe_t_zone
, probe
);
8095 vmem_free(dtrace_arena
, (void *)((uintptr_t)i
+ 1), 1);
8098 lck_mtx_unlock(&dtrace_lock
);
8099 lck_mtx_unlock(&dtrace_provider_lock
);
8105 * DTrace Probe Management Functions
8107 * The functions in this section perform the DTrace probe management,
8108 * including functions to create probes, look-up probes, and call into the
8109 * providers to request that probes be provided. Some of these functions are
8110 * in the Provider-to-Framework API; these functions can be identified by the
8111 * fact that they are not declared "static".
8115 * Create a probe with the specified module name, function name, and name.
8118 dtrace_probe_create(dtrace_provider_id_t prov
, const char *mod
,
8119 const char *func
, const char *name
, int aframes
, void *arg
)
8121 dtrace_probe_t
*probe
, **probes
;
8122 dtrace_provider_t
*provider
= (dtrace_provider_t
*)prov
;
8125 if (provider
== dtrace_provider
) {
8126 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8128 lck_mtx_lock(&dtrace_lock
);
8131 id
= (dtrace_id_t
)(uintptr_t)vmem_alloc(dtrace_arena
, 1,
8132 VM_BESTFIT
| VM_SLEEP
);
8134 probe
= zalloc(dtrace_probe_t_zone
);
8135 bzero(probe
, sizeof (dtrace_probe_t
));
8137 probe
->dtpr_id
= id
;
8138 probe
->dtpr_gen
= dtrace_probegen
++;
8139 probe
->dtpr_mod
= dtrace_strdup(mod
);
8140 probe
->dtpr_func
= dtrace_strdup(func
);
8141 probe
->dtpr_name
= dtrace_strdup(name
);
8142 probe
->dtpr_arg
= arg
;
8143 probe
->dtpr_aframes
= aframes
;
8144 probe
->dtpr_provider
= provider
;
8146 dtrace_hash_add(dtrace_bymod
, probe
);
8147 dtrace_hash_add(dtrace_byfunc
, probe
);
8148 dtrace_hash_add(dtrace_byname
, probe
);
8150 if (id
- 1 >= (dtrace_id_t
)dtrace_nprobes
) {
8151 size_t osize
= dtrace_nprobes
* sizeof (dtrace_probe_t
*);
8152 size_t nsize
= osize
<< 1;
8156 ASSERT(dtrace_probes
== NULL
);
8157 nsize
= sizeof (dtrace_probe_t
*);
8160 probes
= kmem_zalloc(nsize
, KM_SLEEP
);
8162 if (dtrace_probes
== NULL
) {
8164 dtrace_probes
= probes
;
8167 dtrace_probe_t
**oprobes
= dtrace_probes
;
8169 bcopy(oprobes
, probes
, osize
);
8170 dtrace_membar_producer();
8171 dtrace_probes
= probes
;
8176 * All CPUs are now seeing the new probes array; we can
8177 * safely free the old array.
8179 kmem_free(oprobes
, osize
);
8180 dtrace_nprobes
<<= 1;
8183 ASSERT(id
- 1 < (dtrace_id_t
)dtrace_nprobes
);
8186 ASSERT(dtrace_probes
[id
- 1] == NULL
);
8187 dtrace_probes
[id
- 1] = probe
;
8188 provider
->dtpv_probe_count
++;
8190 if (provider
!= dtrace_provider
)
8191 lck_mtx_unlock(&dtrace_lock
);
8196 static dtrace_probe_t
*
8197 dtrace_probe_lookup_id(dtrace_id_t id
)
8199 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8201 if (id
== 0 || id
> (dtrace_id_t
)dtrace_nprobes
)
8204 return (dtrace_probes
[id
- 1]);
8208 dtrace_probe_lookup_match(dtrace_probe_t
*probe
, void *arg1
, void *arg2
)
8210 #pragma unused(arg2)
8211 *((dtrace_id_t
*)arg1
) = probe
->dtpr_id
;
8213 return (DTRACE_MATCH_DONE
);
8217 * Look up a probe based on provider and one or more of module name, function
8218 * name and probe name.
8221 dtrace_probe_lookup(dtrace_provider_id_t prid
, const char *mod
,
8222 const char *func
, const char *name
)
8224 dtrace_probekey_t pkey
;
8228 pkey
.dtpk_prov
= ((dtrace_provider_t
*)prid
)->dtpv_name
;
8229 pkey
.dtpk_pmatch
= &dtrace_match_string
;
8230 pkey
.dtpk_mod
= mod
;
8231 pkey
.dtpk_mmatch
= mod
? &dtrace_match_string
: &dtrace_match_nul
;
8232 pkey
.dtpk_func
= func
;
8233 pkey
.dtpk_fmatch
= func
? &dtrace_match_string
: &dtrace_match_nul
;
8234 pkey
.dtpk_name
= name
;
8235 pkey
.dtpk_nmatch
= name
? &dtrace_match_string
: &dtrace_match_nul
;
8236 pkey
.dtpk_id
= DTRACE_IDNONE
;
8238 lck_mtx_lock(&dtrace_lock
);
8239 match
= dtrace_match(&pkey
, DTRACE_PRIV_ALL
, 0, 0,
8240 dtrace_probe_lookup_match
, &id
, NULL
);
8241 lck_mtx_unlock(&dtrace_lock
);
8243 ASSERT(match
== 1 || match
== 0);
8244 return (match
? id
: 0);
8248 * Returns the probe argument associated with the specified probe.
8251 dtrace_probe_arg(dtrace_provider_id_t id
, dtrace_id_t pid
)
8253 dtrace_probe_t
*probe
;
8256 lck_mtx_lock(&dtrace_lock
);
8258 if ((probe
= dtrace_probe_lookup_id(pid
)) != NULL
&&
8259 probe
->dtpr_provider
== (dtrace_provider_t
*)id
)
8260 rval
= probe
->dtpr_arg
;
8262 lck_mtx_unlock(&dtrace_lock
);
8268 * Copy a probe into a probe description.
8271 dtrace_probe_description(const dtrace_probe_t
*prp
, dtrace_probedesc_t
*pdp
)
8273 bzero(pdp
, sizeof (dtrace_probedesc_t
));
8274 pdp
->dtpd_id
= prp
->dtpr_id
;
8276 /* APPLE NOTE: Darwin employs size bounded string operation. */
8277 (void) strlcpy(pdp
->dtpd_provider
,
8278 prp
->dtpr_provider
->dtpv_name
, DTRACE_PROVNAMELEN
);
8280 (void) strlcpy(pdp
->dtpd_mod
, prp
->dtpr_mod
, DTRACE_MODNAMELEN
);
8281 (void) strlcpy(pdp
->dtpd_func
, prp
->dtpr_func
, DTRACE_FUNCNAMELEN
);
8282 (void) strlcpy(pdp
->dtpd_name
, prp
->dtpr_name
, DTRACE_NAMELEN
);
8286 * Called to indicate that a probe -- or probes -- should be provided by a
8287 * specfied provider. If the specified description is NULL, the provider will
8288 * be told to provide all of its probes. (This is done whenever a new
8289 * consumer comes along, or whenever a retained enabling is to be matched.) If
8290 * the specified description is non-NULL, the provider is given the
8291 * opportunity to dynamically provide the specified probe, allowing providers
8292 * to support the creation of probes on-the-fly. (So-called _autocreated_
8293 * probes.) If the provider is NULL, the operations will be applied to all
8294 * providers; if the provider is non-NULL the operations will only be applied
8295 * to the specified provider. The dtrace_provider_lock must be held, and the
8296 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8297 * will need to grab the dtrace_lock when it reenters the framework through
8298 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8301 dtrace_probe_provide(dtrace_probedesc_t
*desc
, dtrace_provider_t
*prv
)
8306 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
8310 prv
= dtrace_provider
;
8315 * First, call the blanket provide operation.
8317 prv
->dtpv_pops
.dtps_provide(prv
->dtpv_arg
, desc
);
8320 * Now call the per-module provide operation. We will grab
8321 * mod_lock to prevent the list from being modified. Note
8322 * that this also prevents the mod_busy bits from changing.
8323 * (mod_busy can only be changed with mod_lock held.)
8325 lck_mtx_lock(&mod_lock
);
8327 ctl
= dtrace_modctl_list
;
8329 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
8330 ctl
= ctl
->mod_next
;
8333 lck_mtx_unlock(&mod_lock
);
8334 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
8338 * Iterate over each probe, and call the Framework-to-Provider API function
8342 dtrace_probe_foreach(uintptr_t offs
)
8344 dtrace_provider_t
*prov
;
8345 void (*func
)(void *, dtrace_id_t
, void *);
8346 dtrace_probe_t
*probe
;
8347 dtrace_icookie_t cookie
;
8351 * We disable interrupts to walk through the probe array. This is
8352 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8353 * won't see stale data.
8355 cookie
= dtrace_interrupt_disable();
8357 for (i
= 0; i
< dtrace_nprobes
; i
++) {
8358 if ((probe
= dtrace_probes
[i
]) == NULL
)
8361 if (probe
->dtpr_ecb
== NULL
) {
8363 * This probe isn't enabled -- don't call the function.
8368 prov
= probe
->dtpr_provider
;
8369 func
= *((void(**)(void *, dtrace_id_t
, void *))
8370 ((uintptr_t)&prov
->dtpv_pops
+ offs
));
8372 func(prov
->dtpv_arg
, i
+ 1, probe
->dtpr_arg
);
8375 dtrace_interrupt_enable(cookie
);
8379 dtrace_probe_enable(const dtrace_probedesc_t
*desc
, dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ep
)
8381 dtrace_probekey_t pkey
;
8386 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
8388 dtrace_ecb_create_cache
= NULL
;
8392 * If we're passed a NULL description, we're being asked to
8393 * create an ECB with a NULL probe.
8395 (void) dtrace_ecb_create_enable(NULL
, enab
, ep
);
8399 dtrace_probekey(desc
, &pkey
);
8400 dtrace_cred2priv(enab
->dten_vstate
->dtvs_state
->dts_cred
.dcr_cred
,
8401 &priv
, &uid
, &zoneid
);
8403 return (dtrace_match(&pkey
, priv
, uid
, zoneid
, dtrace_ecb_create_enable
,
8408 * DTrace Helper Provider Functions
8411 dtrace_dofattr2attr(dtrace_attribute_t
*attr
, const dof_attr_t dofattr
)
8413 attr
->dtat_name
= DOF_ATTR_NAME(dofattr
);
8414 attr
->dtat_data
= DOF_ATTR_DATA(dofattr
);
8415 attr
->dtat_class
= DOF_ATTR_CLASS(dofattr
);
8419 dtrace_dofprov2hprov(dtrace_helper_provdesc_t
*hprov
,
8420 const dof_provider_t
*dofprov
, char *strtab
)
8422 hprov
->dthpv_provname
= strtab
+ dofprov
->dofpv_name
;
8423 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_provider
,
8424 dofprov
->dofpv_provattr
);
8425 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_mod
,
8426 dofprov
->dofpv_modattr
);
8427 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_func
,
8428 dofprov
->dofpv_funcattr
);
8429 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_name
,
8430 dofprov
->dofpv_nameattr
);
8431 dtrace_dofattr2attr(&hprov
->dthpv_pattr
.dtpa_args
,
8432 dofprov
->dofpv_argsattr
);
8436 dtrace_helper_provide_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, proc_t
*p
)
8438 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8439 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8440 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
8441 dof_provider_t
*provider
;
8443 uint32_t *off
, *enoff
;
8447 dtrace_helper_provdesc_t dhpv
;
8448 dtrace_helper_probedesc_t dhpb
;
8449 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8450 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8453 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8454 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8455 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8456 prb_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8457 provider
->dofpv_probes
* dof
->dofh_secsize
);
8458 arg_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8459 provider
->dofpv_prargs
* dof
->dofh_secsize
);
8460 off_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8461 provider
->dofpv_proffs
* dof
->dofh_secsize
);
8463 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8464 off
= (uint32_t *)(uintptr_t)(daddr
+ off_sec
->dofs_offset
);
8465 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
8469 * See dtrace_helper_provider_validate().
8471 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
8472 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
) {
8473 enoff_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8474 provider
->dofpv_prenoffs
* dof
->dofh_secsize
);
8475 enoff
= (uint32_t *)(uintptr_t)(daddr
+ enoff_sec
->dofs_offset
);
8478 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
8481 * Create the provider.
8483 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8485 if ((parg
= mops
->dtms_provide_proc(meta
->dtm_arg
, &dhpv
, p
)) == NULL
)
8491 * Create the probes.
8493 for (i
= 0; i
< nprobes
; i
++) {
8494 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
8495 prb_sec
->dofs_offset
+ i
* prb_sec
->dofs_entsize
);
8497 dhpb
.dthpb_mod
= dhp
->dofhp_mod
;
8498 dhpb
.dthpb_func
= strtab
+ probe
->dofpr_func
;
8499 dhpb
.dthpb_name
= strtab
+ probe
->dofpr_name
;
8500 #if !defined(__APPLE__)
8501 dhpb
.dthpb_base
= probe
->dofpr_addr
;
8503 dhpb
.dthpb_base
= dhp
->dofhp_addr
; /* FIXME: James, why? */
8505 dhpb
.dthpb_offs
= (int32_t *)(off
+ probe
->dofpr_offidx
);
8506 dhpb
.dthpb_noffs
= probe
->dofpr_noffs
;
8507 if (enoff
!= NULL
) {
8508 dhpb
.dthpb_enoffs
= (int32_t *)(enoff
+ probe
->dofpr_enoffidx
);
8509 dhpb
.dthpb_nenoffs
= probe
->dofpr_nenoffs
;
8511 dhpb
.dthpb_enoffs
= NULL
;
8512 dhpb
.dthpb_nenoffs
= 0;
8514 dhpb
.dthpb_args
= arg
+ probe
->dofpr_argidx
;
8515 dhpb
.dthpb_nargc
= probe
->dofpr_nargc
;
8516 dhpb
.dthpb_xargc
= probe
->dofpr_xargc
;
8517 dhpb
.dthpb_ntypes
= strtab
+ probe
->dofpr_nargv
;
8518 dhpb
.dthpb_xtypes
= strtab
+ probe
->dofpr_xargv
;
8520 mops
->dtms_create_probe(meta
->dtm_arg
, parg
, &dhpb
);
8524 * Since we just created probes, we need to match our enablings
8525 * against those, with a precondition knowing that we have only
8526 * added probes from this provider
8528 char *prov_name
= mops
->dtms_provider_name(parg
);
8529 ASSERT(prov_name
!= NULL
);
8530 dtrace_match_cond_t cond
= {dtrace_cond_provider_match
, (void*)prov_name
};
8532 dtrace_enabling_matchall_with_cond(&cond
);
8536 dtrace_helper_provide(dof_helper_t
*dhp
, proc_t
*p
)
8538 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8539 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8542 LCK_MTX_ASSERT(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8544 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8545 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8546 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8548 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8551 dtrace_helper_provide_one(dhp
, sec
, p
);
8556 dtrace_helper_provider_remove_one(dof_helper_t
*dhp
, dof_sec_t
*sec
, proc_t
*p
)
8558 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8559 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8561 dof_provider_t
*provider
;
8563 dtrace_helper_provdesc_t dhpv
;
8564 dtrace_meta_t
*meta
= dtrace_meta_pid
;
8565 dtrace_mops_t
*mops
= &meta
->dtm_mops
;
8567 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
8568 str_sec
= (dof_sec_t
*)(uintptr_t)(daddr
+ dof
->dofh_secoff
+
8569 provider
->dofpv_strtab
* dof
->dofh_secsize
);
8571 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
8574 * Create the provider.
8576 dtrace_dofprov2hprov(&dhpv
, provider
, strtab
);
8578 mops
->dtms_remove_proc(meta
->dtm_arg
, &dhpv
, p
);
8584 dtrace_helper_provider_remove(dof_helper_t
*dhp
, proc_t
*p
)
8586 uintptr_t daddr
= (uintptr_t)dhp
->dofhp_dof
;
8587 dof_hdr_t
*dof
= (dof_hdr_t
*)daddr
;
8590 LCK_MTX_ASSERT(&dtrace_meta_lock
, LCK_MTX_ASSERT_OWNED
);
8592 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
8593 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
8594 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
8596 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
8599 dtrace_helper_provider_remove_one(dhp
, sec
, p
);
8604 * DTrace Meta Provider-to-Framework API Functions
8606 * These functions implement the Meta Provider-to-Framework API, as described
8607 * in <sys/dtrace.h>.
8610 dtrace_meta_register(const char *name
, const dtrace_mops_t
*mops
, void *arg
,
8611 dtrace_meta_provider_id_t
*idp
)
8613 dtrace_meta_t
*meta
;
8614 dtrace_helpers_t
*help
, *next
;
8617 *idp
= DTRACE_METAPROVNONE
;
8620 * We strictly don't need the name, but we hold onto it for
8621 * debuggability. All hail error queues!
8624 cmn_err(CE_WARN
, "failed to register meta-provider: "
8630 mops
->dtms_create_probe
== NULL
||
8631 mops
->dtms_provide_proc
== NULL
||
8632 mops
->dtms_remove_proc
== NULL
) {
8633 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8634 "invalid ops", name
);
8638 meta
= kmem_zalloc(sizeof (dtrace_meta_t
), KM_SLEEP
);
8639 meta
->dtm_mops
= *mops
;
8641 /* APPLE NOTE: Darwin employs size bounded string operation. */
8643 size_t bufsize
= strlen(name
) + 1;
8644 meta
->dtm_name
= kmem_alloc(bufsize
, KM_SLEEP
);
8645 (void) strlcpy(meta
->dtm_name
, name
, bufsize
);
8648 meta
->dtm_arg
= arg
;
8650 lck_mtx_lock(&dtrace_meta_lock
);
8651 lck_mtx_lock(&dtrace_lock
);
8653 if (dtrace_meta_pid
!= NULL
) {
8654 lck_mtx_unlock(&dtrace_lock
);
8655 lck_mtx_unlock(&dtrace_meta_lock
);
8656 cmn_err(CE_WARN
, "failed to register meta-register %s: "
8657 "user-land meta-provider exists", name
);
8658 kmem_free(meta
->dtm_name
, strlen(meta
->dtm_name
) + 1);
8659 kmem_free(meta
, sizeof (dtrace_meta_t
));
8663 dtrace_meta_pid
= meta
;
8664 *idp
= (dtrace_meta_provider_id_t
)meta
;
8667 * If there are providers and probes ready to go, pass them
8668 * off to the new meta provider now.
8671 help
= dtrace_deferred_pid
;
8672 dtrace_deferred_pid
= NULL
;
8674 lck_mtx_unlock(&dtrace_lock
);
8676 while (help
!= NULL
) {
8677 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
8678 proc_t
*p
= proc_find(help
->dthps_pid
);
8681 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
8686 next
= help
->dthps_next
;
8687 help
->dthps_next
= NULL
;
8688 help
->dthps_prev
= NULL
;
8689 help
->dthps_deferred
= 0;
8693 lck_mtx_unlock(&dtrace_meta_lock
);
8699 dtrace_meta_unregister(dtrace_meta_provider_id_t id
)
8701 dtrace_meta_t
**pp
, *old
= (dtrace_meta_t
*)id
;
8703 lck_mtx_lock(&dtrace_meta_lock
);
8704 lck_mtx_lock(&dtrace_lock
);
8706 if (old
== dtrace_meta_pid
) {
8707 pp
= &dtrace_meta_pid
;
8709 panic("attempt to unregister non-existent "
8710 "dtrace meta-provider %p\n", (void *)old
);
8713 if (old
->dtm_count
!= 0) {
8714 lck_mtx_unlock(&dtrace_lock
);
8715 lck_mtx_unlock(&dtrace_meta_lock
);
8721 lck_mtx_unlock(&dtrace_lock
);
8722 lck_mtx_unlock(&dtrace_meta_lock
);
8724 kmem_free(old
->dtm_name
, strlen(old
->dtm_name
) + 1);
8725 kmem_free(old
, sizeof (dtrace_meta_t
));
8732 * DTrace DIF Object Functions
8735 dtrace_difo_err(uint_t pc
, const char *format
, ...)
8737 if (dtrace_err_verbose
) {
8740 (void) uprintf("dtrace DIF object error: [%u]: ", pc
);
8741 va_start(alist
, format
);
8742 (void) vuprintf(format
, alist
);
8746 #ifdef DTRACE_ERRDEBUG
8747 dtrace_errdebug(format
);
8753 * Validate a DTrace DIF object by checking the IR instructions. The following
8754 * rules are currently enforced by dtrace_difo_validate():
8756 * 1. Each instruction must have a valid opcode
8757 * 2. Each register, string, variable, or subroutine reference must be valid
8758 * 3. No instruction can modify register %r0 (must be zero)
8759 * 4. All instruction reserved bits must be set to zero
8760 * 5. The last instruction must be a "ret" instruction
8761 * 6. All branch targets must reference a valid instruction _after_ the branch
8764 dtrace_difo_validate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
, uint_t nregs
,
8770 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
8773 int maxglobal
= -1, maxlocal
= -1, maxtlocal
= -1;
8775 kcheckload
= cr
== NULL
||
8776 (vstate
->dtvs_state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) == 0;
8778 dp
->dtdo_destructive
= 0;
8780 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
8781 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
8783 uint_t r1
= DIF_INSTR_R1(instr
);
8784 uint_t r2
= DIF_INSTR_R2(instr
);
8785 uint_t rd
= DIF_INSTR_RD(instr
);
8786 uint_t rs
= DIF_INSTR_RS(instr
);
8787 uint_t label
= DIF_INSTR_LABEL(instr
);
8788 uint_t v
= DIF_INSTR_VAR(instr
);
8789 uint_t subr
= DIF_INSTR_SUBR(instr
);
8790 uint_t type
= DIF_INSTR_TYPE(instr
);
8791 uint_t op
= DIF_INSTR_OP(instr
);
8809 err
+= efunc(pc
, "invalid register %u\n", r1
);
8811 err
+= efunc(pc
, "invalid register %u\n", r2
);
8813 err
+= efunc(pc
, "invalid register %u\n", rd
);
8815 err
+= efunc(pc
, "cannot write to %r0\n");
8821 err
+= efunc(pc
, "invalid register %u\n", r1
);
8823 err
+= efunc(pc
, "non-zero reserved bits\n");
8825 err
+= efunc(pc
, "invalid register %u\n", rd
);
8827 err
+= efunc(pc
, "cannot write to %r0\n");
8837 err
+= efunc(pc
, "invalid register %u\n", r1
);
8839 err
+= efunc(pc
, "non-zero reserved bits\n");
8841 err
+= efunc(pc
, "invalid register %u\n", rd
);
8843 err
+= efunc(pc
, "cannot write to %r0\n");
8845 dp
->dtdo_buf
[pc
] = DIF_INSTR_LOAD(op
+
8846 DIF_OP_RLDSB
- DIF_OP_LDSB
, r1
, rd
);
8856 err
+= efunc(pc
, "invalid register %u\n", r1
);
8858 err
+= efunc(pc
, "non-zero reserved bits\n");
8860 err
+= efunc(pc
, "invalid register %u\n", rd
);
8862 err
+= efunc(pc
, "cannot write to %r0\n");
8872 err
+= efunc(pc
, "invalid register %u\n", r1
);
8874 err
+= efunc(pc
, "non-zero reserved bits\n");
8876 err
+= efunc(pc
, "invalid register %u\n", rd
);
8878 err
+= efunc(pc
, "cannot write to %r0\n");
8885 err
+= efunc(pc
, "invalid register %u\n", r1
);
8887 err
+= efunc(pc
, "non-zero reserved bits\n");
8889 err
+= efunc(pc
, "invalid register %u\n", rd
);
8891 err
+= efunc(pc
, "cannot write to 0 address\n");
8896 err
+= efunc(pc
, "invalid register %u\n", r1
);
8898 err
+= efunc(pc
, "invalid register %u\n", r2
);
8900 err
+= efunc(pc
, "non-zero reserved bits\n");
8904 err
+= efunc(pc
, "invalid register %u\n", r1
);
8905 if (r2
!= 0 || rd
!= 0)
8906 err
+= efunc(pc
, "non-zero reserved bits\n");
8919 if (label
>= dp
->dtdo_len
) {
8920 err
+= efunc(pc
, "invalid branch target %u\n",
8924 err
+= efunc(pc
, "backward branch to %u\n",
8929 if (r1
!= 0 || r2
!= 0)
8930 err
+= efunc(pc
, "non-zero reserved bits\n");
8932 err
+= efunc(pc
, "invalid register %u\n", rd
);
8936 case DIF_OP_FLUSHTS
:
8937 if (r1
!= 0 || r2
!= 0 || rd
!= 0)
8938 err
+= efunc(pc
, "non-zero reserved bits\n");
8941 if (DIF_INSTR_INTEGER(instr
) >= dp
->dtdo_intlen
) {
8942 err
+= efunc(pc
, "invalid integer ref %u\n",
8943 DIF_INSTR_INTEGER(instr
));
8946 err
+= efunc(pc
, "invalid register %u\n", rd
);
8948 err
+= efunc(pc
, "cannot write to %r0\n");
8951 if (DIF_INSTR_STRING(instr
) >= dp
->dtdo_strlen
) {
8952 err
+= efunc(pc
, "invalid string ref %u\n",
8953 DIF_INSTR_STRING(instr
));
8956 err
+= efunc(pc
, "invalid register %u\n", rd
);
8958 err
+= efunc(pc
, "cannot write to %r0\n");
8962 if (r1
> DIF_VAR_ARRAY_MAX
)
8963 err
+= efunc(pc
, "invalid array %u\n", r1
);
8965 err
+= efunc(pc
, "invalid register %u\n", r2
);
8967 err
+= efunc(pc
, "invalid register %u\n", rd
);
8969 err
+= efunc(pc
, "cannot write to %r0\n");
8976 if (v
< DIF_VAR_OTHER_MIN
|| v
> DIF_VAR_OTHER_MAX
)
8977 err
+= efunc(pc
, "invalid variable %u\n", v
);
8979 err
+= efunc(pc
, "invalid register %u\n", rd
);
8981 err
+= efunc(pc
, "cannot write to %r0\n");
8988 if (v
< DIF_VAR_OTHER_UBASE
|| v
> DIF_VAR_OTHER_MAX
)
8989 err
+= efunc(pc
, "invalid variable %u\n", v
);
8991 err
+= efunc(pc
, "invalid register %u\n", rd
);
8994 if (subr
> DIF_SUBR_MAX
&&
8995 !(subr
>= DIF_SUBR_APPLE_MIN
&& subr
<= DIF_SUBR_APPLE_MAX
))
8996 err
+= efunc(pc
, "invalid subr %u\n", subr
);
8998 err
+= efunc(pc
, "invalid register %u\n", rd
);
9000 err
+= efunc(pc
, "cannot write to %r0\n");
9002 if (subr
== DIF_SUBR_COPYOUT
||
9003 subr
== DIF_SUBR_COPYOUTSTR
||
9004 subr
== DIF_SUBR_KDEBUG_TRACE
||
9005 subr
== DIF_SUBR_KDEBUG_TRACE_STRING
) {
9006 dp
->dtdo_destructive
= 1;
9010 if (type
!= DIF_TYPE_STRING
&& type
!= DIF_TYPE_CTF
)
9011 err
+= efunc(pc
, "invalid ref type %u\n", type
);
9013 err
+= efunc(pc
, "invalid register %u\n", r2
);
9015 err
+= efunc(pc
, "invalid register %u\n", rs
);
9018 if (type
!= DIF_TYPE_CTF
)
9019 err
+= efunc(pc
, "invalid val type %u\n", type
);
9021 err
+= efunc(pc
, "invalid register %u\n", r2
);
9023 err
+= efunc(pc
, "invalid register %u\n", rs
);
9026 err
+= efunc(pc
, "invalid opcode %u\n",
9027 DIF_INSTR_OP(instr
));
9031 if (dp
->dtdo_len
!= 0 &&
9032 DIF_INSTR_OP(dp
->dtdo_buf
[dp
->dtdo_len
- 1]) != DIF_OP_RET
) {
9033 err
+= efunc(dp
->dtdo_len
- 1,
9034 "expected 'ret' as last DIF instruction\n");
9037 if (!(dp
->dtdo_rtype
.dtdt_flags
& (DIF_TF_BYREF
| DIF_TF_BYUREF
))) {
9039 * If we're not returning by reference, the size must be either
9040 * 0 or the size of one of the base types.
9042 switch (dp
->dtdo_rtype
.dtdt_size
) {
9044 case sizeof (uint8_t):
9045 case sizeof (uint16_t):
9046 case sizeof (uint32_t):
9047 case sizeof (uint64_t):
9051 err
+= efunc(dp
->dtdo_len
- 1, "bad return size\n");
9055 for (i
= 0; i
< dp
->dtdo_varlen
&& err
== 0; i
++) {
9056 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
], *existing
= NULL
;
9057 dtrace_diftype_t
*vt
, *et
;
9061 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
&&
9062 v
->dtdv_scope
!= DIFV_SCOPE_THREAD
&&
9063 v
->dtdv_scope
!= DIFV_SCOPE_LOCAL
) {
9064 err
+= efunc(i
, "unrecognized variable scope %d\n",
9069 if (v
->dtdv_kind
!= DIFV_KIND_ARRAY
&&
9070 v
->dtdv_kind
!= DIFV_KIND_SCALAR
) {
9071 err
+= efunc(i
, "unrecognized variable type %d\n",
9076 if ((id
= v
->dtdv_id
) > DIF_VARIABLE_MAX
) {
9077 err
+= efunc(i
, "%d exceeds variable id limit\n", id
);
9081 if (id
< DIF_VAR_OTHER_UBASE
)
9085 * For user-defined variables, we need to check that this
9086 * definition is identical to any previous definition that we
9089 ndx
= id
- DIF_VAR_OTHER_UBASE
;
9091 switch (v
->dtdv_scope
) {
9092 case DIFV_SCOPE_GLOBAL
:
9093 if (maxglobal
== -1 || ndx
> maxglobal
)
9096 if (ndx
< vstate
->dtvs_nglobals
) {
9097 dtrace_statvar_t
*svar
;
9099 if ((svar
= vstate
->dtvs_globals
[ndx
]) != NULL
)
9100 existing
= &svar
->dtsv_var
;
9105 case DIFV_SCOPE_THREAD
:
9106 if (maxtlocal
== -1 || ndx
> maxtlocal
)
9109 if (ndx
< vstate
->dtvs_ntlocals
)
9110 existing
= &vstate
->dtvs_tlocals
[ndx
];
9113 case DIFV_SCOPE_LOCAL
:
9114 if (maxlocal
== -1 || ndx
> maxlocal
)
9116 if (ndx
< vstate
->dtvs_nlocals
) {
9117 dtrace_statvar_t
*svar
;
9119 if ((svar
= vstate
->dtvs_locals
[ndx
]) != NULL
)
9120 existing
= &svar
->dtsv_var
;
9128 if (vt
->dtdt_flags
& DIF_TF_BYREF
) {
9129 if (vt
->dtdt_size
== 0) {
9130 err
+= efunc(i
, "zero-sized variable\n");
9134 if ((v
->dtdv_scope
== DIFV_SCOPE_GLOBAL
||
9135 v
->dtdv_scope
== DIFV_SCOPE_LOCAL
) &&
9136 vt
->dtdt_size
> dtrace_statvar_maxsize
) {
9137 err
+= efunc(i
, "oversized by-ref static\n");
9142 if (existing
== NULL
|| existing
->dtdv_id
== 0)
9145 ASSERT(existing
->dtdv_id
== v
->dtdv_id
);
9146 ASSERT(existing
->dtdv_scope
== v
->dtdv_scope
);
9148 if (existing
->dtdv_kind
!= v
->dtdv_kind
)
9149 err
+= efunc(i
, "%d changed variable kind\n", id
);
9151 et
= &existing
->dtdv_type
;
9153 if (vt
->dtdt_flags
!= et
->dtdt_flags
) {
9154 err
+= efunc(i
, "%d changed variable type flags\n", id
);
9158 if (vt
->dtdt_size
!= 0 && vt
->dtdt_size
!= et
->dtdt_size
) {
9159 err
+= efunc(i
, "%d changed variable type size\n", id
);
9164 for (pc
= 0; pc
< dp
->dtdo_len
&& err
== 0; pc
++) {
9165 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9167 uint_t v
= DIF_INSTR_VAR(instr
);
9168 uint_t op
= DIF_INSTR_OP(instr
);
9175 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxglobal
))
9176 err
+= efunc(pc
, "invalid variable %u\n", v
);
9182 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxtlocal
))
9183 err
+= efunc(pc
, "invalid variable %u\n", v
);
9187 if (v
> (uint_t
)(DIF_VAR_OTHER_UBASE
+ maxlocal
))
9188 err
+= efunc(pc
, "invalid variable %u\n", v
);
9199 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9200 * are much more constrained than normal DIFOs. Specifically, they may
9203 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9204 * miscellaneous string routines
9205 * 2. Access DTrace variables other than the args[] array, and the
9206 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9207 * 3. Have thread-local variables.
9208 * 4. Have dynamic variables.
9211 dtrace_difo_validate_helper(dtrace_difo_t
*dp
)
9213 int (*efunc
)(uint_t pc
, const char *, ...) = dtrace_difo_err
;
9217 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9218 dif_instr_t instr
= dp
->dtdo_buf
[pc
];
9220 uint_t v
= DIF_INSTR_VAR(instr
);
9221 uint_t subr
= DIF_INSTR_SUBR(instr
);
9222 uint_t op
= DIF_INSTR_OP(instr
);
9277 case DIF_OP_FLUSHTS
:
9289 if (v
>= DIF_VAR_OTHER_UBASE
)
9292 if (v
>= DIF_VAR_ARG0
&& v
<= DIF_VAR_ARG9
)
9295 if (v
== DIF_VAR_CURTHREAD
|| v
== DIF_VAR_PID
||
9296 v
== DIF_VAR_PPID
|| v
== DIF_VAR_TID
||
9297 v
== DIF_VAR_EXECNAME
|| v
== DIF_VAR_ZONENAME
||
9298 v
== DIF_VAR_UID
|| v
== DIF_VAR_GID
)
9301 err
+= efunc(pc
, "illegal variable %u\n", v
);
9308 err
+= efunc(pc
, "illegal dynamic variable load\n");
9314 err
+= efunc(pc
, "illegal dynamic variable store\n");
9318 if (subr
== DIF_SUBR_ALLOCA
||
9319 subr
== DIF_SUBR_BCOPY
||
9320 subr
== DIF_SUBR_COPYIN
||
9321 subr
== DIF_SUBR_COPYINTO
||
9322 subr
== DIF_SUBR_COPYINSTR
||
9323 subr
== DIF_SUBR_INDEX
||
9324 subr
== DIF_SUBR_INET_NTOA
||
9325 subr
== DIF_SUBR_INET_NTOA6
||
9326 subr
== DIF_SUBR_INET_NTOP
||
9327 subr
== DIF_SUBR_LLTOSTR
||
9328 subr
== DIF_SUBR_RINDEX
||
9329 subr
== DIF_SUBR_STRCHR
||
9330 subr
== DIF_SUBR_STRJOIN
||
9331 subr
== DIF_SUBR_STRRCHR
||
9332 subr
== DIF_SUBR_STRSTR
||
9333 subr
== DIF_SUBR_KDEBUG_TRACE
||
9334 subr
== DIF_SUBR_KDEBUG_TRACE_STRING
||
9335 subr
== DIF_SUBR_HTONS
||
9336 subr
== DIF_SUBR_HTONL
||
9337 subr
== DIF_SUBR_HTONLL
||
9338 subr
== DIF_SUBR_NTOHS
||
9339 subr
== DIF_SUBR_NTOHL
||
9340 subr
== DIF_SUBR_NTOHLL
)
9343 err
+= efunc(pc
, "invalid subr %u\n", subr
);
9347 err
+= efunc(pc
, "invalid opcode %u\n",
9348 DIF_INSTR_OP(instr
));
9356 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9360 dtrace_difo_cacheable(dtrace_difo_t
*dp
)
9367 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9368 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9370 if (v
->dtdv_scope
!= DIFV_SCOPE_GLOBAL
)
9373 switch (v
->dtdv_id
) {
9374 case DIF_VAR_CURTHREAD
:
9377 case DIF_VAR_EXECNAME
:
9378 case DIF_VAR_ZONENAME
:
9387 * This DIF object may be cacheable. Now we need to look for any
9388 * array loading instructions, any memory loading instructions, or
9389 * any stores to thread-local variables.
9391 for (i
= 0; i
< dp
->dtdo_len
; i
++) {
9392 uint_t op
= DIF_INSTR_OP(dp
->dtdo_buf
[i
]);
9394 if ((op
>= DIF_OP_LDSB
&& op
<= DIF_OP_LDX
) ||
9395 (op
>= DIF_OP_ULDSB
&& op
<= DIF_OP_ULDX
) ||
9396 (op
>= DIF_OP_RLDSB
&& op
<= DIF_OP_RLDX
) ||
9397 op
== DIF_OP_LDGA
|| op
== DIF_OP_STTS
)
9405 dtrace_difo_hold(dtrace_difo_t
*dp
)
9409 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9412 ASSERT(dp
->dtdo_refcnt
!= 0);
9415 * We need to check this DIF object for references to the variable
9416 * DIF_VAR_VTIMESTAMP.
9418 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9419 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9421 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9424 if (dtrace_vtime_references
++ == 0)
9425 dtrace_vtime_enable();
9430 * This routine calculates the dynamic variable chunksize for a given DIF
9431 * object. The calculation is not fool-proof, and can probably be tricked by
9432 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9433 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9434 * if a dynamic variable size exceeds the chunksize.
9437 dtrace_difo_chunksize(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9440 dtrace_key_t tupregs
[DIF_DTR_NREGS
+ 2]; /* +2 for thread and id */
9441 const dif_instr_t
*text
= dp
->dtdo_buf
;
9447 for (pc
= 0; pc
< dp
->dtdo_len
; pc
++) {
9448 dif_instr_t instr
= text
[pc
];
9449 uint_t op
= DIF_INSTR_OP(instr
);
9450 uint_t rd
= DIF_INSTR_RD(instr
);
9451 uint_t r1
= DIF_INSTR_R1(instr
);
9455 dtrace_key_t
*key
= tupregs
;
9459 sval
= dp
->dtdo_inttab
[DIF_INSTR_INTEGER(instr
)];
9464 key
= &tupregs
[DIF_DTR_NREGS
];
9465 key
[0].dttk_size
= 0;
9466 key
[1].dttk_size
= 0;
9468 scope
= DIFV_SCOPE_THREAD
;
9475 if (DIF_INSTR_OP(instr
) == DIF_OP_STTAA
)
9476 key
[nkeys
++].dttk_size
= 0;
9478 key
[nkeys
++].dttk_size
= 0;
9480 if (op
== DIF_OP_STTAA
) {
9481 scope
= DIFV_SCOPE_THREAD
;
9483 scope
= DIFV_SCOPE_GLOBAL
;
9489 if (ttop
== DIF_DTR_NREGS
)
9492 if ((srd
== 0 || sval
== 0) && r1
== DIF_TYPE_STRING
) {
9494 * If the register for the size of the "pushtr"
9495 * is %r0 (or the value is 0) and the type is
9496 * a string, we'll use the system-wide default
9499 tupregs
[ttop
++].dttk_size
=
9500 dtrace_strsize_default
;
9505 if (sval
> LONG_MAX
)
9508 tupregs
[ttop
++].dttk_size
= sval
;
9514 if (ttop
== DIF_DTR_NREGS
)
9517 tupregs
[ttop
++].dttk_size
= 0;
9520 case DIF_OP_FLUSHTS
:
9537 * We have a dynamic variable allocation; calculate its size.
9539 for (ksize
= 0, i
= 0; i
< nkeys
; i
++)
9540 ksize
+= P2ROUNDUP(key
[i
].dttk_size
, sizeof (uint64_t));
9542 size
= sizeof (dtrace_dynvar_t
);
9543 size
+= sizeof (dtrace_key_t
) * (nkeys
- 1);
9547 * Now we need to determine the size of the stored data.
9549 id
= DIF_INSTR_VAR(instr
);
9551 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9552 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9554 if (v
->dtdv_id
== id
&& v
->dtdv_scope
== scope
) {
9555 size
+= v
->dtdv_type
.dtdt_size
;
9560 if (i
== dp
->dtdo_varlen
)
9564 * We have the size. If this is larger than the chunk size
9565 * for our dynamic variable state, reset the chunk size.
9567 size
= P2ROUNDUP(size
, sizeof (uint64_t));
9570 * Before setting the chunk size, check that we're not going
9571 * to set it to a negative value...
9573 if (size
> LONG_MAX
)
9577 * ...and make certain that we didn't badly overflow.
9579 if (size
< ksize
|| size
< sizeof (dtrace_dynvar_t
))
9582 if (size
> vstate
->dtvs_dynvars
.dtds_chunksize
)
9583 vstate
->dtvs_dynvars
.dtds_chunksize
= size
;
9588 dtrace_difo_init(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9590 int oldsvars
, osz
, nsz
, otlocals
, ntlocals
;
9593 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9594 ASSERT(dp
->dtdo_buf
!= NULL
&& dp
->dtdo_len
!= 0);
9596 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9597 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9598 dtrace_statvar_t
*svar
;
9599 dtrace_statvar_t
***svarp
= NULL
;
9601 uint8_t scope
= v
->dtdv_scope
;
9602 int *np
= (int *)NULL
;
9604 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9607 id
-= DIF_VAR_OTHER_UBASE
;
9610 case DIFV_SCOPE_THREAD
:
9611 while (id
>= (uint_t
)(otlocals
= vstate
->dtvs_ntlocals
)) {
9612 dtrace_difv_t
*tlocals
;
9614 if ((ntlocals
= (otlocals
<< 1)) == 0)
9617 osz
= otlocals
* sizeof (dtrace_difv_t
);
9618 nsz
= ntlocals
* sizeof (dtrace_difv_t
);
9620 tlocals
= kmem_zalloc(nsz
, KM_SLEEP
);
9623 bcopy(vstate
->dtvs_tlocals
,
9625 kmem_free(vstate
->dtvs_tlocals
, osz
);
9628 vstate
->dtvs_tlocals
= tlocals
;
9629 vstate
->dtvs_ntlocals
= ntlocals
;
9632 vstate
->dtvs_tlocals
[id
] = *v
;
9635 case DIFV_SCOPE_LOCAL
:
9636 np
= &vstate
->dtvs_nlocals
;
9637 svarp
= &vstate
->dtvs_locals
;
9639 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9640 dsize
= (int)NCPU
* (v
->dtdv_type
.dtdt_size
+
9643 dsize
= (int)NCPU
* sizeof (uint64_t);
9647 case DIFV_SCOPE_GLOBAL
:
9648 np
= &vstate
->dtvs_nglobals
;
9649 svarp
= &vstate
->dtvs_globals
;
9651 if (v
->dtdv_type
.dtdt_flags
& DIF_TF_BYREF
)
9652 dsize
= v
->dtdv_type
.dtdt_size
+
9661 while (id
>= (uint_t
)(oldsvars
= *np
)) {
9662 dtrace_statvar_t
**statics
;
9663 int newsvars
, oldsize
, newsize
;
9665 if ((newsvars
= (oldsvars
<< 1)) == 0)
9668 oldsize
= oldsvars
* sizeof (dtrace_statvar_t
*);
9669 newsize
= newsvars
* sizeof (dtrace_statvar_t
*);
9671 statics
= kmem_zalloc(newsize
, KM_SLEEP
);
9674 bcopy(*svarp
, statics
, oldsize
);
9675 kmem_free(*svarp
, oldsize
);
9682 if ((svar
= (*svarp
)[id
]) == NULL
) {
9683 svar
= kmem_zalloc(sizeof (dtrace_statvar_t
), KM_SLEEP
);
9684 svar
->dtsv_var
= *v
;
9686 if ((svar
->dtsv_size
= dsize
) != 0) {
9687 svar
->dtsv_data
= (uint64_t)(uintptr_t)
9688 kmem_zalloc(dsize
, KM_SLEEP
);
9691 (*svarp
)[id
] = svar
;
9694 svar
->dtsv_refcnt
++;
9697 dtrace_difo_chunksize(dp
, vstate
);
9698 dtrace_difo_hold(dp
);
9701 static dtrace_difo_t
*
9702 dtrace_difo_duplicate(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9707 ASSERT(dp
->dtdo_buf
!= NULL
);
9708 ASSERT(dp
->dtdo_refcnt
!= 0);
9710 new = kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
9712 ASSERT(dp
->dtdo_buf
!= NULL
);
9713 sz
= dp
->dtdo_len
* sizeof (dif_instr_t
);
9714 new->dtdo_buf
= kmem_alloc(sz
, KM_SLEEP
);
9715 bcopy(dp
->dtdo_buf
, new->dtdo_buf
, sz
);
9716 new->dtdo_len
= dp
->dtdo_len
;
9718 if (dp
->dtdo_strtab
!= NULL
) {
9719 ASSERT(dp
->dtdo_strlen
!= 0);
9720 new->dtdo_strtab
= kmem_alloc(dp
->dtdo_strlen
, KM_SLEEP
);
9721 bcopy(dp
->dtdo_strtab
, new->dtdo_strtab
, dp
->dtdo_strlen
);
9722 new->dtdo_strlen
= dp
->dtdo_strlen
;
9725 if (dp
->dtdo_inttab
!= NULL
) {
9726 ASSERT(dp
->dtdo_intlen
!= 0);
9727 sz
= dp
->dtdo_intlen
* sizeof (uint64_t);
9728 new->dtdo_inttab
= kmem_alloc(sz
, KM_SLEEP
);
9729 bcopy(dp
->dtdo_inttab
, new->dtdo_inttab
, sz
);
9730 new->dtdo_intlen
= dp
->dtdo_intlen
;
9733 if (dp
->dtdo_vartab
!= NULL
) {
9734 ASSERT(dp
->dtdo_varlen
!= 0);
9735 sz
= dp
->dtdo_varlen
* sizeof (dtrace_difv_t
);
9736 new->dtdo_vartab
= kmem_alloc(sz
, KM_SLEEP
);
9737 bcopy(dp
->dtdo_vartab
, new->dtdo_vartab
, sz
);
9738 new->dtdo_varlen
= dp
->dtdo_varlen
;
9741 dtrace_difo_init(new, vstate
);
9746 dtrace_difo_destroy(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9750 ASSERT(dp
->dtdo_refcnt
== 0);
9752 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9753 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9754 dtrace_statvar_t
*svar
;
9755 dtrace_statvar_t
**svarp
= NULL
;
9757 uint8_t scope
= v
->dtdv_scope
;
9761 case DIFV_SCOPE_THREAD
:
9764 case DIFV_SCOPE_LOCAL
:
9765 np
= &vstate
->dtvs_nlocals
;
9766 svarp
= vstate
->dtvs_locals
;
9769 case DIFV_SCOPE_GLOBAL
:
9770 np
= &vstate
->dtvs_nglobals
;
9771 svarp
= vstate
->dtvs_globals
;
9778 if ((id
= v
->dtdv_id
) < DIF_VAR_OTHER_UBASE
)
9781 id
-= DIF_VAR_OTHER_UBASE
;
9783 ASSERT(id
< (uint_t
)*np
);
9786 ASSERT(svar
!= NULL
);
9787 ASSERT(svar
->dtsv_refcnt
> 0);
9789 if (--svar
->dtsv_refcnt
> 0)
9792 if (svar
->dtsv_size
!= 0) {
9793 ASSERT(svar
->dtsv_data
!= 0);
9794 kmem_free((void *)(uintptr_t)svar
->dtsv_data
,
9798 kmem_free(svar
, sizeof (dtrace_statvar_t
));
9802 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
9803 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
9804 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
9805 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
9807 kmem_free(dp
, sizeof (dtrace_difo_t
));
9811 dtrace_difo_release(dtrace_difo_t
*dp
, dtrace_vstate_t
*vstate
)
9815 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9816 ASSERT(dp
->dtdo_refcnt
!= 0);
9818 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
9819 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
9821 if (v
->dtdv_id
!= DIF_VAR_VTIMESTAMP
)
9824 ASSERT(dtrace_vtime_references
> 0);
9825 if (--dtrace_vtime_references
== 0)
9826 dtrace_vtime_disable();
9829 if (--dp
->dtdo_refcnt
== 0)
9830 dtrace_difo_destroy(dp
, vstate
);
9834 * DTrace Format Functions
9837 dtrace_format_add(dtrace_state_t
*state
, char *str
)
9840 uint16_t ndx
, len
= strlen(str
) + 1;
9842 fmt
= kmem_zalloc(len
, KM_SLEEP
);
9843 bcopy(str
, fmt
, len
);
9845 for (ndx
= 0; ndx
< state
->dts_nformats
; ndx
++) {
9846 if (state
->dts_formats
[ndx
] == NULL
) {
9847 state
->dts_formats
[ndx
] = fmt
;
9852 if (state
->dts_nformats
== USHRT_MAX
) {
9854 * This is only likely if a denial-of-service attack is being
9855 * attempted. As such, it's okay to fail silently here.
9857 kmem_free(fmt
, len
);
9862 * For simplicity, we always resize the formats array to be exactly the
9863 * number of formats.
9865 ndx
= state
->dts_nformats
++;
9866 new = kmem_alloc((ndx
+ 1) * sizeof (char *), KM_SLEEP
);
9868 if (state
->dts_formats
!= NULL
) {
9870 bcopy(state
->dts_formats
, new, ndx
* sizeof (char *));
9871 kmem_free(state
->dts_formats
, ndx
* sizeof (char *));
9874 state
->dts_formats
= new;
9875 state
->dts_formats
[ndx
] = fmt
;
9881 dtrace_format_remove(dtrace_state_t
*state
, uint16_t format
)
9885 ASSERT(state
->dts_formats
!= NULL
);
9886 ASSERT(format
<= state
->dts_nformats
);
9887 ASSERT(state
->dts_formats
[format
- 1] != NULL
);
9889 fmt
= state
->dts_formats
[format
- 1];
9890 kmem_free(fmt
, strlen(fmt
) + 1);
9891 state
->dts_formats
[format
- 1] = NULL
;
9895 dtrace_format_destroy(dtrace_state_t
*state
)
9899 if (state
->dts_nformats
== 0) {
9900 ASSERT(state
->dts_formats
== NULL
);
9904 ASSERT(state
->dts_formats
!= NULL
);
9906 for (i
= 0; i
< state
->dts_nformats
; i
++) {
9907 char *fmt
= state
->dts_formats
[i
];
9912 kmem_free(fmt
, strlen(fmt
) + 1);
9915 kmem_free(state
->dts_formats
, state
->dts_nformats
* sizeof (char *));
9916 state
->dts_nformats
= 0;
9917 state
->dts_formats
= NULL
;
9921 * DTrace Predicate Functions
9923 static dtrace_predicate_t
*
9924 dtrace_predicate_create(dtrace_difo_t
*dp
)
9926 dtrace_predicate_t
*pred
;
9928 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9929 ASSERT(dp
->dtdo_refcnt
!= 0);
9931 pred
= kmem_zalloc(sizeof (dtrace_predicate_t
), KM_SLEEP
);
9932 pred
->dtp_difo
= dp
;
9933 pred
->dtp_refcnt
= 1;
9935 if (!dtrace_difo_cacheable(dp
))
9938 if (dtrace_predcache_id
== DTRACE_CACHEIDNONE
) {
9940 * This is only theoretically possible -- we have had 2^32
9941 * cacheable predicates on this machine. We cannot allow any
9942 * more predicates to become cacheable: as unlikely as it is,
9943 * there may be a thread caching a (now stale) predicate cache
9944 * ID. (N.B.: the temptation is being successfully resisted to
9945 * have this cmn_err() "Holy shit -- we executed this code!")
9950 pred
->dtp_cacheid
= dtrace_predcache_id
++;
9956 dtrace_predicate_hold(dtrace_predicate_t
*pred
)
9958 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9959 ASSERT(pred
->dtp_difo
!= NULL
&& pred
->dtp_difo
->dtdo_refcnt
!= 0);
9960 ASSERT(pred
->dtp_refcnt
> 0);
9966 dtrace_predicate_release(dtrace_predicate_t
*pred
, dtrace_vstate_t
*vstate
)
9968 dtrace_difo_t
*dp
= pred
->dtp_difo
;
9969 #pragma unused(dp) /* __APPLE__ */
9971 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
9972 ASSERT(dp
!= NULL
&& dp
->dtdo_refcnt
!= 0);
9973 ASSERT(pred
->dtp_refcnt
> 0);
9975 if (--pred
->dtp_refcnt
== 0) {
9976 dtrace_difo_release(pred
->dtp_difo
, vstate
);
9977 kmem_free(pred
, sizeof (dtrace_predicate_t
));
9982 * DTrace Action Description Functions
9984 static dtrace_actdesc_t
*
9985 dtrace_actdesc_create(dtrace_actkind_t kind
, uint32_t ntuple
,
9986 uint64_t uarg
, uint64_t arg
)
9988 dtrace_actdesc_t
*act
;
9990 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind
) || (arg
!= 0 &&
9991 arg
>= KERNELBASE
) || (arg
== 0 && kind
== DTRACEACT_PRINTA
));
9993 act
= kmem_zalloc(sizeof (dtrace_actdesc_t
), KM_SLEEP
);
9994 act
->dtad_kind
= kind
;
9995 act
->dtad_ntuple
= ntuple
;
9996 act
->dtad_uarg
= uarg
;
9997 act
->dtad_arg
= arg
;
9998 act
->dtad_refcnt
= 1;
10004 dtrace_actdesc_hold(dtrace_actdesc_t
*act
)
10006 ASSERT(act
->dtad_refcnt
>= 1);
10007 act
->dtad_refcnt
++;
10011 dtrace_actdesc_release(dtrace_actdesc_t
*act
, dtrace_vstate_t
*vstate
)
10013 dtrace_actkind_t kind
= act
->dtad_kind
;
10016 ASSERT(act
->dtad_refcnt
>= 1);
10018 if (--act
->dtad_refcnt
!= 0)
10021 if ((dp
= act
->dtad_difo
) != NULL
)
10022 dtrace_difo_release(dp
, vstate
);
10024 if (DTRACEACT_ISPRINTFLIKE(kind
)) {
10025 char *str
= (char *)(uintptr_t)act
->dtad_arg
;
10027 ASSERT((str
!= NULL
&& (uintptr_t)str
>= KERNELBASE
) ||
10028 (str
== NULL
&& act
->dtad_kind
== DTRACEACT_PRINTA
));
10031 kmem_free(str
, strlen(str
) + 1);
10034 kmem_free(act
, sizeof (dtrace_actdesc_t
));
10038 * DTrace ECB Functions
10040 static dtrace_ecb_t
*
10041 dtrace_ecb_add(dtrace_state_t
*state
, dtrace_probe_t
*probe
)
10044 dtrace_epid_t epid
;
10046 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10048 ecb
= kmem_zalloc(sizeof (dtrace_ecb_t
), KM_SLEEP
);
10049 ecb
->dte_predicate
= NULL
;
10050 ecb
->dte_probe
= probe
;
10053 * The default size is the size of the default action: recording
10056 ecb
->dte_size
= ecb
->dte_needed
= sizeof (dtrace_rechdr_t
);
10057 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10059 epid
= state
->dts_epid
++;
10061 if (epid
- 1 >= (dtrace_epid_t
)state
->dts_necbs
) {
10062 dtrace_ecb_t
**oecbs
= state
->dts_ecbs
, **ecbs
;
10063 int necbs
= state
->dts_necbs
<< 1;
10065 ASSERT(epid
== (dtrace_epid_t
)state
->dts_necbs
+ 1);
10068 ASSERT(oecbs
== NULL
);
10072 ecbs
= kmem_zalloc(necbs
* sizeof (*ecbs
), KM_SLEEP
);
10075 bcopy(oecbs
, ecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10077 dtrace_membar_producer();
10078 state
->dts_ecbs
= ecbs
;
10080 if (oecbs
!= NULL
) {
10082 * If this state is active, we must dtrace_sync()
10083 * before we can free the old dts_ecbs array: we're
10084 * coming in hot, and there may be active ring
10085 * buffer processing (which indexes into the dts_ecbs
10086 * array) on another CPU.
10088 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
10091 kmem_free(oecbs
, state
->dts_necbs
* sizeof (*ecbs
));
10094 dtrace_membar_producer();
10095 state
->dts_necbs
= necbs
;
10098 ecb
->dte_state
= state
;
10100 ASSERT(state
->dts_ecbs
[epid
- 1] == NULL
);
10101 dtrace_membar_producer();
10102 state
->dts_ecbs
[(ecb
->dte_epid
= epid
) - 1] = ecb
;
10108 dtrace_ecb_enable(dtrace_ecb_t
*ecb
)
10110 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10112 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
10113 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10114 ASSERT(ecb
->dte_next
== NULL
);
10116 if (probe
== NULL
) {
10118 * This is the NULL probe -- there's nothing to do.
10123 probe
->dtpr_provider
->dtpv_ecb_count
++;
10124 if (probe
->dtpr_ecb
== NULL
) {
10125 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10128 * We're the first ECB on this probe.
10130 probe
->dtpr_ecb
= probe
->dtpr_ecb_last
= ecb
;
10132 if (ecb
->dte_predicate
!= NULL
)
10133 probe
->dtpr_predcache
= ecb
->dte_predicate
->dtp_cacheid
;
10135 return (prov
->dtpv_pops
.dtps_enable(prov
->dtpv_arg
,
10136 probe
->dtpr_id
, probe
->dtpr_arg
));
10139 * This probe is already active. Swing the last pointer to
10140 * point to the new ECB, and issue a dtrace_sync() to assure
10141 * that all CPUs have seen the change.
10143 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10144 probe
->dtpr_ecb_last
->dte_next
= ecb
;
10145 probe
->dtpr_ecb_last
= ecb
;
10146 probe
->dtpr_predcache
= 0;
10154 dtrace_ecb_resize(dtrace_ecb_t
*ecb
)
10156 dtrace_action_t
*act
;
10157 uint32_t curneeded
= UINT32_MAX
;
10158 uint32_t aggbase
= UINT32_MAX
;
10161 * If we record anything, we always record the dtrace_rechdr_t. (And
10162 * we always record it first.)
10164 ecb
->dte_size
= sizeof (dtrace_rechdr_t
);
10165 ecb
->dte_alignment
= sizeof (dtrace_epid_t
);
10167 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10168 dtrace_recdesc_t
*rec
= &act
->dta_rec
;
10169 ASSERT(rec
->dtrd_size
> 0 || rec
->dtrd_alignment
== 1);
10171 ecb
->dte_alignment
= MAX(ecb
->dte_alignment
, rec
->dtrd_alignment
);
10173 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10174 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10176 ASSERT(rec
->dtrd_size
!= 0);
10177 ASSERT(agg
->dtag_first
!= NULL
);
10178 ASSERT(act
->dta_prev
->dta_intuple
);
10179 ASSERT(aggbase
!= UINT32_MAX
);
10180 ASSERT(curneeded
!= UINT32_MAX
);
10182 agg
->dtag_base
= aggbase
;
10183 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10184 rec
->dtrd_offset
= curneeded
;
10185 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10187 curneeded
+= rec
->dtrd_size
;
10188 ecb
->dte_needed
= MAX(ecb
->dte_needed
, curneeded
);
10190 aggbase
= UINT32_MAX
;
10191 curneeded
= UINT32_MAX
;
10192 } else if (act
->dta_intuple
) {
10193 if (curneeded
== UINT32_MAX
) {
10195 * This is the first record in a tuple. Align
10196 * curneeded to be at offset 4 in an 8-byte
10199 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
10200 ASSERT(aggbase
== UINT32_MAX
);
10202 curneeded
= P2PHASEUP(ecb
->dte_size
,
10203 sizeof (uint64_t), sizeof (dtrace_aggid_t
));
10205 aggbase
= curneeded
- sizeof (dtrace_aggid_t
);
10206 ASSERT(IS_P2ALIGNED(aggbase
,
10207 sizeof (uint64_t)));
10210 curneeded
= P2ROUNDUP(curneeded
, rec
->dtrd_alignment
);
10211 rec
->dtrd_offset
= curneeded
;
10212 curneeded
+= rec
->dtrd_size
;
10213 if (curneeded
+ rec
->dtrd_size
< curneeded
)
10216 /* tuples must be followed by an aggregation */
10217 ASSERT(act
->dta_prev
== NULL
|| !act
->dta_prev
->dta_intuple
);
10218 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, rec
->dtrd_alignment
);
10219 rec
->dtrd_offset
= ecb
->dte_size
;
10220 if (ecb
->dte_size
+ rec
->dtrd_size
< ecb
->dte_size
)
10222 ecb
->dte_size
+= rec
->dtrd_size
;
10223 ecb
->dte_needed
= MAX(ecb
->dte_needed
, ecb
->dte_size
);
10227 if ((act
= ecb
->dte_action
) != NULL
&&
10228 !(act
->dta_kind
== DTRACEACT_SPECULATE
&& act
->dta_next
== NULL
) &&
10229 ecb
->dte_size
== sizeof (dtrace_rechdr_t
)) {
10231 * If the size is still sizeof (dtrace_rechdr_t), then all
10232 * actions store no data; set the size to 0.
10237 ecb
->dte_size
= P2ROUNDUP(ecb
->dte_size
, sizeof (dtrace_epid_t
));
10238 ecb
->dte_needed
= P2ROUNDUP(ecb
->dte_needed
, (sizeof (dtrace_epid_t
)));
10239 ecb
->dte_state
->dts_needed
= MAX(ecb
->dte_state
->dts_needed
, ecb
->dte_needed
);
10243 static dtrace_action_t
*
10244 dtrace_ecb_aggregation_create(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10246 dtrace_aggregation_t
*agg
;
10247 size_t size
= sizeof (uint64_t);
10248 int ntuple
= desc
->dtad_ntuple
;
10249 dtrace_action_t
*act
;
10250 dtrace_recdesc_t
*frec
;
10251 dtrace_aggid_t aggid
;
10252 dtrace_state_t
*state
= ecb
->dte_state
;
10254 agg
= kmem_zalloc(sizeof (dtrace_aggregation_t
), KM_SLEEP
);
10255 agg
->dtag_ecb
= ecb
;
10257 ASSERT(DTRACEACT_ISAGG(desc
->dtad_kind
));
10259 switch (desc
->dtad_kind
) {
10260 case DTRACEAGG_MIN
:
10261 agg
->dtag_initial
= INT64_MAX
;
10262 agg
->dtag_aggregate
= dtrace_aggregate_min
;
10265 case DTRACEAGG_MAX
:
10266 agg
->dtag_initial
= INT64_MIN
;
10267 agg
->dtag_aggregate
= dtrace_aggregate_max
;
10270 case DTRACEAGG_COUNT
:
10271 agg
->dtag_aggregate
= dtrace_aggregate_count
;
10274 case DTRACEAGG_QUANTIZE
:
10275 agg
->dtag_aggregate
= dtrace_aggregate_quantize
;
10276 size
= (((sizeof (uint64_t) * NBBY
) - 1) * 2 + 1) *
10280 case DTRACEAGG_LQUANTIZE
: {
10281 uint16_t step
= DTRACE_LQUANTIZE_STEP(desc
->dtad_arg
);
10282 uint16_t levels
= DTRACE_LQUANTIZE_LEVELS(desc
->dtad_arg
);
10284 agg
->dtag_initial
= desc
->dtad_arg
;
10285 agg
->dtag_aggregate
= dtrace_aggregate_lquantize
;
10287 if (step
== 0 || levels
== 0)
10290 size
= levels
* sizeof (uint64_t) + 3 * sizeof (uint64_t);
10294 case DTRACEAGG_LLQUANTIZE
: {
10295 uint16_t factor
= DTRACE_LLQUANTIZE_FACTOR(desc
->dtad_arg
);
10296 uint16_t low
= DTRACE_LLQUANTIZE_LOW(desc
->dtad_arg
);
10297 uint16_t high
= DTRACE_LLQUANTIZE_HIGH(desc
->dtad_arg
);
10298 uint16_t nsteps
= DTRACE_LLQUANTIZE_NSTEP(desc
->dtad_arg
);
10301 agg
->dtag_initial
= desc
->dtad_arg
;
10302 agg
->dtag_aggregate
= dtrace_aggregate_llquantize
;
10304 if (factor
< 2 || low
>= high
|| nsteps
< factor
)
10308 * Now check that the number of steps evenly divides a power
10309 * of the factor. (This assures both integer bucket size and
10310 * linearity within each magnitude.)
10312 for (v
= factor
; v
< nsteps
; v
*= factor
)
10315 if ((v
% nsteps
) || (nsteps
% factor
))
10318 size
= (dtrace_aggregate_llquantize_bucket(factor
, low
, high
, nsteps
, INT64_MAX
) + 2) * sizeof (uint64_t);
10322 case DTRACEAGG_AVG
:
10323 agg
->dtag_aggregate
= dtrace_aggregate_avg
;
10324 size
= sizeof (uint64_t) * 2;
10327 case DTRACEAGG_STDDEV
:
10328 agg
->dtag_aggregate
= dtrace_aggregate_stddev
;
10329 size
= sizeof (uint64_t) * 4;
10332 case DTRACEAGG_SUM
:
10333 agg
->dtag_aggregate
= dtrace_aggregate_sum
;
10340 agg
->dtag_action
.dta_rec
.dtrd_size
= size
;
10346 * We must make sure that we have enough actions for the n-tuple.
10348 for (act
= ecb
->dte_action_last
; act
!= NULL
; act
= act
->dta_prev
) {
10349 if (DTRACEACT_ISAGG(act
->dta_kind
))
10352 if (--ntuple
== 0) {
10354 * This is the action with which our n-tuple begins.
10356 agg
->dtag_first
= act
;
10362 * This n-tuple is short by ntuple elements. Return failure.
10364 ASSERT(ntuple
!= 0);
10366 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10371 * If the last action in the tuple has a size of zero, it's actually
10372 * an expression argument for the aggregating action.
10374 ASSERT(ecb
->dte_action_last
!= NULL
);
10375 act
= ecb
->dte_action_last
;
10377 if (act
->dta_kind
== DTRACEACT_DIFEXPR
) {
10378 ASSERT(act
->dta_difo
!= NULL
);
10380 if (act
->dta_difo
->dtdo_rtype
.dtdt_size
== 0)
10381 agg
->dtag_hasarg
= 1;
10385 * We need to allocate an id for this aggregation.
10387 aggid
= (dtrace_aggid_t
)(uintptr_t)vmem_alloc(state
->dts_aggid_arena
, 1,
10388 VM_BESTFIT
| VM_SLEEP
);
10390 if (aggid
- 1 >= (dtrace_aggid_t
)state
->dts_naggregations
) {
10391 dtrace_aggregation_t
**oaggs
= state
->dts_aggregations
;
10392 dtrace_aggregation_t
**aggs
;
10393 int naggs
= state
->dts_naggregations
<< 1;
10394 int onaggs
= state
->dts_naggregations
;
10396 ASSERT(aggid
== (dtrace_aggid_t
)state
->dts_naggregations
+ 1);
10399 ASSERT(oaggs
== NULL
);
10403 aggs
= kmem_zalloc(naggs
* sizeof (*aggs
), KM_SLEEP
);
10405 if (oaggs
!= NULL
) {
10406 bcopy(oaggs
, aggs
, onaggs
* sizeof (*aggs
));
10407 kmem_free(oaggs
, onaggs
* sizeof (*aggs
));
10410 state
->dts_aggregations
= aggs
;
10411 state
->dts_naggregations
= naggs
;
10414 ASSERT(state
->dts_aggregations
[aggid
- 1] == NULL
);
10415 state
->dts_aggregations
[(agg
->dtag_id
= aggid
) - 1] = agg
;
10417 frec
= &agg
->dtag_first
->dta_rec
;
10418 if (frec
->dtrd_alignment
< sizeof (dtrace_aggid_t
))
10419 frec
->dtrd_alignment
= sizeof (dtrace_aggid_t
);
10421 for (act
= agg
->dtag_first
; act
!= NULL
; act
= act
->dta_next
) {
10422 ASSERT(!act
->dta_intuple
);
10423 act
->dta_intuple
= 1;
10426 return (&agg
->dtag_action
);
10430 dtrace_ecb_aggregation_destroy(dtrace_ecb_t
*ecb
, dtrace_action_t
*act
)
10432 dtrace_aggregation_t
*agg
= (dtrace_aggregation_t
*)act
;
10433 dtrace_state_t
*state
= ecb
->dte_state
;
10434 dtrace_aggid_t aggid
= agg
->dtag_id
;
10436 ASSERT(DTRACEACT_ISAGG(act
->dta_kind
));
10437 vmem_free(state
->dts_aggid_arena
, (void *)(uintptr_t)aggid
, 1);
10439 ASSERT(state
->dts_aggregations
[aggid
- 1] == agg
);
10440 state
->dts_aggregations
[aggid
- 1] = NULL
;
10442 kmem_free(agg
, sizeof (dtrace_aggregation_t
));
10446 dtrace_ecb_action_add(dtrace_ecb_t
*ecb
, dtrace_actdesc_t
*desc
)
10448 dtrace_action_t
*action
, *last
;
10449 dtrace_difo_t
*dp
= desc
->dtad_difo
;
10450 uint32_t size
= 0, align
= sizeof (uint8_t), mask
;
10451 uint16_t format
= 0;
10452 dtrace_recdesc_t
*rec
;
10453 dtrace_state_t
*state
= ecb
->dte_state
;
10454 dtrace_optval_t
*opt
= state
->dts_options
;
10455 dtrace_optval_t nframes
=0, strsize
;
10456 uint64_t arg
= desc
->dtad_arg
;
10458 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10459 ASSERT(ecb
->dte_action
== NULL
|| ecb
->dte_action
->dta_refcnt
== 1);
10461 if (DTRACEACT_ISAGG(desc
->dtad_kind
)) {
10463 * If this is an aggregating action, there must be neither
10464 * a speculate nor a commit on the action chain.
10466 dtrace_action_t
*act
;
10468 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
10469 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10472 if (act
->dta_kind
== DTRACEACT_SPECULATE
)
10476 action
= dtrace_ecb_aggregation_create(ecb
, desc
);
10478 if (action
== NULL
)
10481 if (DTRACEACT_ISDESTRUCTIVE(desc
->dtad_kind
) ||
10482 (desc
->dtad_kind
== DTRACEACT_DIFEXPR
&&
10483 dp
!= NULL
&& dp
->dtdo_destructive
)) {
10484 state
->dts_destructive
= 1;
10487 switch (desc
->dtad_kind
) {
10488 case DTRACEACT_PRINTF
:
10489 case DTRACEACT_PRINTA
:
10490 case DTRACEACT_SYSTEM
:
10491 case DTRACEACT_FREOPEN
:
10492 case DTRACEACT_DIFEXPR
:
10494 * We know that our arg is a string -- turn it into a
10498 ASSERT(desc
->dtad_kind
== DTRACEACT_PRINTA
||
10499 desc
->dtad_kind
== DTRACEACT_DIFEXPR
);
10503 ASSERT(arg
> KERNELBASE
);
10504 format
= dtrace_format_add(state
,
10505 (char *)(uintptr_t)arg
);
10509 case DTRACEACT_LIBACT
:
10510 case DTRACEACT_TRACEMEM
:
10511 case DTRACEACT_TRACEMEM_DYNSIZE
:
10512 case DTRACEACT_APPLEBINARY
: /* __APPLE__ */
10516 if ((size
= dp
->dtdo_rtype
.dtdt_size
) != 0)
10519 if (dp
->dtdo_rtype
.dtdt_kind
== DIF_TYPE_STRING
) {
10520 if (!(dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10523 size
= opt
[DTRACEOPT_STRSIZE
];
10528 case DTRACEACT_STACK
:
10529 if ((nframes
= arg
) == 0) {
10530 nframes
= opt
[DTRACEOPT_STACKFRAMES
];
10531 ASSERT(nframes
> 0);
10535 size
= nframes
* sizeof (pc_t
);
10538 case DTRACEACT_JSTACK
:
10539 if ((strsize
= DTRACE_USTACK_STRSIZE(arg
)) == 0)
10540 strsize
= opt
[DTRACEOPT_JSTACKSTRSIZE
];
10542 if ((nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0)
10543 nframes
= opt
[DTRACEOPT_JSTACKFRAMES
];
10545 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10548 case DTRACEACT_USTACK
:
10549 if (desc
->dtad_kind
!= DTRACEACT_JSTACK
&&
10550 (nframes
= DTRACE_USTACK_NFRAMES(arg
)) == 0) {
10551 strsize
= DTRACE_USTACK_STRSIZE(arg
);
10552 nframes
= opt
[DTRACEOPT_USTACKFRAMES
];
10553 ASSERT(nframes
> 0);
10554 arg
= DTRACE_USTACK_ARG(nframes
, strsize
);
10558 * Save a slot for the pid.
10560 size
= (nframes
+ 1) * sizeof (uint64_t);
10561 size
+= DTRACE_USTACK_STRSIZE(arg
);
10562 size
= P2ROUNDUP(size
, (uint32_t)(sizeof (uintptr_t)));
10566 case DTRACEACT_SYM
:
10567 case DTRACEACT_MOD
:
10568 if (dp
== NULL
|| ((size
= dp
->dtdo_rtype
.dtdt_size
) !=
10569 sizeof (uint64_t)) ||
10570 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10574 case DTRACEACT_USYM
:
10575 case DTRACEACT_UMOD
:
10576 case DTRACEACT_UADDR
:
10578 (dp
->dtdo_rtype
.dtdt_size
!= sizeof (uint64_t)) ||
10579 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10583 * We have a slot for the pid, plus a slot for the
10584 * argument. To keep things simple (aligned with
10585 * bitness-neutral sizing), we store each as a 64-bit
10588 size
= 2 * sizeof (uint64_t);
10591 case DTRACEACT_STOP
:
10592 case DTRACEACT_BREAKPOINT
:
10593 case DTRACEACT_PANIC
:
10596 case DTRACEACT_CHILL
:
10597 case DTRACEACT_DISCARD
:
10598 case DTRACEACT_RAISE
:
10599 case DTRACEACT_PIDRESUME
: /* __APPLE__ */
10604 case DTRACEACT_EXIT
:
10606 (size
= dp
->dtdo_rtype
.dtdt_size
) != sizeof (int) ||
10607 (dp
->dtdo_rtype
.dtdt_flags
& DIF_TF_BYREF
))
10611 case DTRACEACT_SPECULATE
:
10612 if (ecb
->dte_size
> sizeof (dtrace_rechdr_t
))
10618 state
->dts_speculates
= 1;
10621 case DTRACEACT_COMMIT
: {
10622 dtrace_action_t
*act
= ecb
->dte_action
;
10624 for (; act
!= NULL
; act
= act
->dta_next
) {
10625 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10638 if (size
!= 0 || desc
->dtad_kind
== DTRACEACT_SPECULATE
) {
10640 * If this is a data-storing action or a speculate,
10641 * we must be sure that there isn't a commit on the
10644 dtrace_action_t
*act
= ecb
->dte_action
;
10646 for (; act
!= NULL
; act
= act
->dta_next
) {
10647 if (act
->dta_kind
== DTRACEACT_COMMIT
)
10652 action
= kmem_zalloc(sizeof (dtrace_action_t
), KM_SLEEP
);
10653 action
->dta_rec
.dtrd_size
= size
;
10656 action
->dta_refcnt
= 1;
10657 rec
= &action
->dta_rec
;
10658 size
= rec
->dtrd_size
;
10660 for (mask
= sizeof (uint64_t) - 1; size
!= 0 && mask
> 0; mask
>>= 1) {
10661 if (!(size
& mask
)) {
10667 action
->dta_kind
= desc
->dtad_kind
;
10669 if ((action
->dta_difo
= dp
) != NULL
)
10670 dtrace_difo_hold(dp
);
10672 rec
->dtrd_action
= action
->dta_kind
;
10673 rec
->dtrd_arg
= arg
;
10674 rec
->dtrd_uarg
= desc
->dtad_uarg
;
10675 rec
->dtrd_alignment
= (uint16_t)align
;
10676 rec
->dtrd_format
= format
;
10678 if ((last
= ecb
->dte_action_last
) != NULL
) {
10679 ASSERT(ecb
->dte_action
!= NULL
);
10680 action
->dta_prev
= last
;
10681 last
->dta_next
= action
;
10683 ASSERT(ecb
->dte_action
== NULL
);
10684 ecb
->dte_action
= action
;
10687 ecb
->dte_action_last
= action
;
10693 dtrace_ecb_action_remove(dtrace_ecb_t
*ecb
)
10695 dtrace_action_t
*act
= ecb
->dte_action
, *next
;
10696 dtrace_vstate_t
*vstate
= &ecb
->dte_state
->dts_vstate
;
10700 if (act
!= NULL
&& act
->dta_refcnt
> 1) {
10701 ASSERT(act
->dta_next
== NULL
|| act
->dta_next
->dta_refcnt
== 1);
10704 for (; act
!= NULL
; act
= next
) {
10705 next
= act
->dta_next
;
10706 ASSERT(next
!= NULL
|| act
== ecb
->dte_action_last
);
10707 ASSERT(act
->dta_refcnt
== 1);
10709 if ((format
= act
->dta_rec
.dtrd_format
) != 0)
10710 dtrace_format_remove(ecb
->dte_state
, format
);
10712 if ((dp
= act
->dta_difo
) != NULL
)
10713 dtrace_difo_release(dp
, vstate
);
10715 if (DTRACEACT_ISAGG(act
->dta_kind
)) {
10716 dtrace_ecb_aggregation_destroy(ecb
, act
);
10718 kmem_free(act
, sizeof (dtrace_action_t
));
10723 ecb
->dte_action
= NULL
;
10724 ecb
->dte_action_last
= NULL
;
10729 dtrace_ecb_disable(dtrace_ecb_t
*ecb
)
10732 * We disable the ECB by removing it from its probe.
10734 dtrace_ecb_t
*pecb
, *prev
= NULL
;
10735 dtrace_probe_t
*probe
= ecb
->dte_probe
;
10737 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10739 if (probe
== NULL
) {
10741 * This is the NULL probe; there is nothing to disable.
10746 for (pecb
= probe
->dtpr_ecb
; pecb
!= NULL
; pecb
= pecb
->dte_next
) {
10752 ASSERT(pecb
!= NULL
);
10754 if (prev
== NULL
) {
10755 probe
->dtpr_ecb
= ecb
->dte_next
;
10757 prev
->dte_next
= ecb
->dte_next
;
10760 if (ecb
== probe
->dtpr_ecb_last
) {
10761 ASSERT(ecb
->dte_next
== NULL
);
10762 probe
->dtpr_ecb_last
= prev
;
10765 probe
->dtpr_provider
->dtpv_ecb_count
--;
10767 * The ECB has been disconnected from the probe; now sync to assure
10768 * that all CPUs have seen the change before returning.
10772 if (probe
->dtpr_ecb
== NULL
) {
10774 * That was the last ECB on the probe; clear the predicate
10775 * cache ID for the probe, disable it and sync one more time
10776 * to assure that we'll never hit it again.
10778 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
10780 ASSERT(ecb
->dte_next
== NULL
);
10781 ASSERT(probe
->dtpr_ecb_last
== NULL
);
10782 probe
->dtpr_predcache
= DTRACE_CACHEIDNONE
;
10783 prov
->dtpv_pops
.dtps_disable(prov
->dtpv_arg
,
10784 probe
->dtpr_id
, probe
->dtpr_arg
);
10788 * There is at least one ECB remaining on the probe. If there
10789 * is _exactly_ one, set the probe's predicate cache ID to be
10790 * the predicate cache ID of the remaining ECB.
10792 ASSERT(probe
->dtpr_ecb_last
!= NULL
);
10793 ASSERT(probe
->dtpr_predcache
== DTRACE_CACHEIDNONE
);
10795 if (probe
->dtpr_ecb
== probe
->dtpr_ecb_last
) {
10796 dtrace_predicate_t
*p
= probe
->dtpr_ecb
->dte_predicate
;
10798 ASSERT(probe
->dtpr_ecb
->dte_next
== NULL
);
10801 probe
->dtpr_predcache
= p
->dtp_cacheid
;
10804 ecb
->dte_next
= NULL
;
10809 dtrace_ecb_destroy(dtrace_ecb_t
*ecb
)
10811 dtrace_state_t
*state
= ecb
->dte_state
;
10812 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
10813 dtrace_predicate_t
*pred
;
10814 dtrace_epid_t epid
= ecb
->dte_epid
;
10816 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10817 ASSERT(ecb
->dte_next
== NULL
);
10818 ASSERT(ecb
->dte_probe
== NULL
|| ecb
->dte_probe
->dtpr_ecb
!= ecb
);
10820 if ((pred
= ecb
->dte_predicate
) != NULL
)
10821 dtrace_predicate_release(pred
, vstate
);
10823 dtrace_ecb_action_remove(ecb
);
10825 ASSERT(state
->dts_ecbs
[epid
- 1] == ecb
);
10826 state
->dts_ecbs
[epid
- 1] = NULL
;
10828 kmem_free(ecb
, sizeof (dtrace_ecb_t
));
10831 static dtrace_ecb_t
*
10832 dtrace_ecb_create(dtrace_state_t
*state
, dtrace_probe_t
*probe
,
10833 dtrace_enabling_t
*enab
)
10836 dtrace_predicate_t
*pred
;
10837 dtrace_actdesc_t
*act
;
10838 dtrace_provider_t
*prov
;
10839 dtrace_ecbdesc_t
*desc
= enab
->dten_current
;
10841 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10842 ASSERT(state
!= NULL
);
10844 ecb
= dtrace_ecb_add(state
, probe
);
10845 ecb
->dte_uarg
= desc
->dted_uarg
;
10847 if ((pred
= desc
->dted_pred
.dtpdd_predicate
) != NULL
) {
10848 dtrace_predicate_hold(pred
);
10849 ecb
->dte_predicate
= pred
;
10852 if (probe
!= NULL
) {
10854 * If the provider shows more leg than the consumer is old
10855 * enough to see, we need to enable the appropriate implicit
10856 * predicate bits to prevent the ecb from activating at
10859 * Providers specifying DTRACE_PRIV_USER at register time
10860 * are stating that they need the /proc-style privilege
10861 * model to be enforced, and this is what DTRACE_COND_OWNER
10862 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10864 prov
= probe
->dtpr_provider
;
10865 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLPROC
) &&
10866 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10867 ecb
->dte_cond
|= DTRACE_COND_OWNER
;
10869 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_ALLZONE
) &&
10870 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_USER
))
10871 ecb
->dte_cond
|= DTRACE_COND_ZONEOWNER
;
10874 * If the provider shows us kernel innards and the user
10875 * is lacking sufficient privilege, enable the
10876 * DTRACE_COND_USERMODE implicit predicate.
10878 if (!(state
->dts_cred
.dcr_visible
& DTRACE_CRV_KERNEL
) &&
10879 (prov
->dtpv_priv
.dtpp_flags
& DTRACE_PRIV_KERNEL
))
10880 ecb
->dte_cond
|= DTRACE_COND_USERMODE
;
10883 if (dtrace_ecb_create_cache
!= NULL
) {
10885 * If we have a cached ecb, we'll use its action list instead
10886 * of creating our own (saving both time and space).
10888 dtrace_ecb_t
*cached
= dtrace_ecb_create_cache
;
10889 dtrace_action_t
*act_if
= cached
->dte_action
;
10891 if (act_if
!= NULL
) {
10892 ASSERT(act_if
->dta_refcnt
> 0);
10893 act_if
->dta_refcnt
++;
10894 ecb
->dte_action
= act_if
;
10895 ecb
->dte_action_last
= cached
->dte_action_last
;
10896 ecb
->dte_needed
= cached
->dte_needed
;
10897 ecb
->dte_size
= cached
->dte_size
;
10898 ecb
->dte_alignment
= cached
->dte_alignment
;
10904 for (act
= desc
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
10905 if ((enab
->dten_error
= dtrace_ecb_action_add(ecb
, act
)) != 0) {
10906 dtrace_ecb_destroy(ecb
);
10911 if ((enab
->dten_error
= dtrace_ecb_resize(ecb
)) != 0) {
10912 dtrace_ecb_destroy(ecb
);
10916 return (dtrace_ecb_create_cache
= ecb
);
10920 dtrace_ecb_create_enable(dtrace_probe_t
*probe
, void *arg1
, void *arg2
)
10923 dtrace_enabling_t
*enab
= arg1
;
10924 dtrace_ecbdesc_t
*ep
= arg2
;
10925 dtrace_state_t
*state
= enab
->dten_vstate
->dtvs_state
;
10927 ASSERT(state
!= NULL
);
10929 if (probe
!= NULL
&& ep
!= NULL
&& probe
->dtpr_gen
< ep
->dted_probegen
) {
10931 * This probe was created in a generation for which this
10932 * enabling has previously created ECBs; we don't want to
10933 * enable it again, so just kick out.
10935 return (DTRACE_MATCH_NEXT
);
10938 if ((ecb
= dtrace_ecb_create(state
, probe
, enab
)) == NULL
)
10939 return (DTRACE_MATCH_DONE
);
10941 if (dtrace_ecb_enable(ecb
) < 0)
10942 return (DTRACE_MATCH_FAIL
);
10944 return (DTRACE_MATCH_NEXT
);
10947 static dtrace_ecb_t
*
10948 dtrace_epid2ecb(dtrace_state_t
*state
, dtrace_epid_t id
)
10951 #pragma unused(ecb) /* __APPLE__ */
10953 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10955 if (id
== 0 || id
> (dtrace_epid_t
)state
->dts_necbs
)
10958 ASSERT(state
->dts_necbs
> 0 && state
->dts_ecbs
!= NULL
);
10959 ASSERT((ecb
= state
->dts_ecbs
[id
- 1]) == NULL
|| ecb
->dte_epid
== id
);
10961 return (state
->dts_ecbs
[id
- 1]);
10964 static dtrace_aggregation_t
*
10965 dtrace_aggid2agg(dtrace_state_t
*state
, dtrace_aggid_t id
)
10967 dtrace_aggregation_t
*agg
;
10968 #pragma unused(agg) /* __APPLE__ */
10970 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
10972 if (id
== 0 || id
> (dtrace_aggid_t
)state
->dts_naggregations
)
10975 ASSERT(state
->dts_naggregations
> 0 && state
->dts_aggregations
!= NULL
);
10976 ASSERT((agg
= state
->dts_aggregations
[id
- 1]) == NULL
||
10977 agg
->dtag_id
== id
);
10979 return (state
->dts_aggregations
[id
- 1]);
10983 * DTrace Buffer Functions
10985 * The following functions manipulate DTrace buffers. Most of these functions
10986 * are called in the context of establishing or processing consumer state;
10987 * exceptions are explicitly noted.
10991 * Note: called from cross call context. This function switches the two
10992 * buffers on a given CPU. The atomicity of this operation is assured by
10993 * disabling interrupts while the actual switch takes place; the disabling of
10994 * interrupts serializes the execution with any execution of dtrace_probe() on
10998 dtrace_buffer_switch(dtrace_buffer_t
*buf
)
11000 caddr_t tomax
= buf
->dtb_tomax
;
11001 caddr_t xamot
= buf
->dtb_xamot
;
11002 dtrace_icookie_t cookie
;
11005 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11006 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_RING
));
11008 cookie
= dtrace_interrupt_disable();
11009 now
= dtrace_gethrtime();
11010 buf
->dtb_tomax
= xamot
;
11011 buf
->dtb_xamot
= tomax
;
11012 buf
->dtb_xamot_drops
= buf
->dtb_drops
;
11013 buf
->dtb_xamot_offset
= buf
->dtb_offset
;
11014 buf
->dtb_xamot_errors
= buf
->dtb_errors
;
11015 buf
->dtb_xamot_flags
= buf
->dtb_flags
;
11016 buf
->dtb_offset
= 0;
11017 buf
->dtb_drops
= 0;
11018 buf
->dtb_errors
= 0;
11019 buf
->dtb_flags
&= ~(DTRACEBUF_ERROR
| DTRACEBUF_DROPPED
);
11020 buf
->dtb_interval
= now
- buf
->dtb_switched
;
11021 buf
->dtb_switched
= now
;
11022 buf
->dtb_cur_limit
= buf
->dtb_limit
;
11024 dtrace_interrupt_enable(cookie
);
11028 * Note: called from cross call context. This function activates a buffer
11029 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11030 * is guaranteed by the disabling of interrupts.
11033 dtrace_buffer_activate(dtrace_state_t
*state
)
11035 dtrace_buffer_t
*buf
;
11036 dtrace_icookie_t cookie
= dtrace_interrupt_disable();
11038 buf
= &state
->dts_buffer
[CPU
->cpu_id
];
11040 if (buf
->dtb_tomax
!= NULL
) {
11042 * We might like to assert that the buffer is marked inactive,
11043 * but this isn't necessarily true: the buffer for the CPU
11044 * that processes the BEGIN probe has its buffer activated
11045 * manually. In this case, we take the (harmless) action
11046 * re-clearing the bit INACTIVE bit.
11048 buf
->dtb_flags
&= ~DTRACEBUF_INACTIVE
;
11051 dtrace_interrupt_enable(cookie
);
11055 dtrace_buffer_canalloc(size_t size
)
11057 if (size
> (UINT64_MAX
- dtrace_buffer_memory_inuse
))
11059 if ((size
+ dtrace_buffer_memory_inuse
) > dtrace_buffer_memory_maxsize
)
11066 dtrace_buffer_alloc(dtrace_buffer_t
*bufs
, size_t limit
, size_t size
, int flags
,
11070 dtrace_buffer_t
*buf
;
11071 size_t size_before_alloc
= dtrace_buffer_memory_inuse
;
11073 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
11074 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11076 if (size
> (size_t)dtrace_nonroot_maxsize
&&
11077 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL
, B_FALSE
))
11083 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11086 buf
= &bufs
[cp
->cpu_id
];
11089 * If there is already a buffer allocated for this CPU, it
11090 * is only possible that this is a DR event. In this case,
11091 * the buffer size must match our specified size.
11093 if (buf
->dtb_tomax
!= NULL
) {
11094 ASSERT(buf
->dtb_size
== size
);
11098 ASSERT(buf
->dtb_xamot
== NULL
);
11100 /* DTrace, please do not eat all the memory. */
11101 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
11103 if ((buf
->dtb_tomax
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
11105 dtrace_buffer_memory_inuse
+= size
;
11107 /* Unsure that limit is always lower than size */
11108 limit
= limit
== size
? limit
- 1 : limit
;
11109 buf
->dtb_cur_limit
= limit
;
11110 buf
->dtb_limit
= limit
;
11111 buf
->dtb_size
= size
;
11112 buf
->dtb_flags
= flags
;
11113 buf
->dtb_offset
= 0;
11114 buf
->dtb_drops
= 0;
11116 if (flags
& DTRACEBUF_NOSWITCH
)
11119 /* DTrace, please do not eat all the memory. */
11120 if (dtrace_buffer_canalloc(size
) == B_FALSE
)
11122 if ((buf
->dtb_xamot
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
11124 dtrace_buffer_memory_inuse
+= size
;
11125 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11127 ASSERT(dtrace_buffer_memory_inuse
<= dtrace_buffer_memory_maxsize
);
11135 if (cpu
!= DTRACE_CPUALL
&& cpu
!= cp
->cpu_id
)
11138 buf
= &bufs
[cp
->cpu_id
];
11140 if (buf
->dtb_xamot
!= NULL
) {
11141 ASSERT(buf
->dtb_tomax
!= NULL
);
11142 ASSERT(buf
->dtb_size
== size
);
11143 kmem_free(buf
->dtb_xamot
, size
);
11146 if (buf
->dtb_tomax
!= NULL
) {
11147 ASSERT(buf
->dtb_size
== size
);
11148 kmem_free(buf
->dtb_tomax
, size
);
11151 buf
->dtb_tomax
= NULL
;
11152 buf
->dtb_xamot
= NULL
;
11154 } while ((cp
= cp
->cpu_next
) != cpu_list
);
11156 /* Restore the size saved before allocating memory */
11157 dtrace_buffer_memory_inuse
= size_before_alloc
;
11163 * Note: called from probe context. This function just increments the drop
11164 * count on a buffer. It has been made a function to allow for the
11165 * possibility of understanding the source of mysterious drop counts. (A
11166 * problem for which one may be particularly disappointed that DTrace cannot
11167 * be used to understand DTrace.)
11170 dtrace_buffer_drop(dtrace_buffer_t
*buf
)
11176 * Note: called from probe context. This function is called to reserve space
11177 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11178 * mstate. Returns the new offset in the buffer, or a negative value if an
11179 * error has occurred.
11182 dtrace_buffer_reserve(dtrace_buffer_t
*buf
, size_t needed
, size_t align
,
11183 dtrace_state_t
*state
, dtrace_mstate_t
*mstate
)
11185 intptr_t offs
= buf
->dtb_offset
, soffs
;
11190 if (buf
->dtb_flags
& DTRACEBUF_INACTIVE
)
11193 if ((tomax
= buf
->dtb_tomax
) == NULL
) {
11194 dtrace_buffer_drop(buf
);
11198 if (!(buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
))) {
11199 while (offs
& (align
- 1)) {
11201 * Assert that our alignment is off by a number which
11202 * is itself sizeof (uint32_t) aligned.
11204 ASSERT(!((align
- (offs
& (align
- 1))) &
11205 (sizeof (uint32_t) - 1)));
11206 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11207 offs
+= sizeof (uint32_t);
11210 if ((uint64_t)(soffs
= offs
+ needed
) > buf
->dtb_cur_limit
) {
11211 if (buf
->dtb_cur_limit
== buf
->dtb_limit
) {
11212 buf
->dtb_cur_limit
= buf
->dtb_size
;
11214 atomic_add_32(&state
->dts_buf_over_limit
, 1);
11216 * Set an AST on the current processor
11217 * so that we can wake up the process
11218 * outside of probe context, when we know
11219 * it is safe to do so
11221 minor_t minor
= getminor(state
->dts_dev
);
11222 ASSERT(minor
< 32);
11224 atomic_or_32(&dtrace_wake_clients
, 1 << minor
);
11227 if ((uint64_t)soffs
> buf
->dtb_size
) {
11228 dtrace_buffer_drop(buf
);
11233 if (mstate
== NULL
)
11236 mstate
->dtms_scratch_base
= (uintptr_t)tomax
+ soffs
;
11237 mstate
->dtms_scratch_size
= buf
->dtb_size
- soffs
;
11238 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11243 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11244 if (state
->dts_activity
!= DTRACE_ACTIVITY_COOLDOWN
&&
11245 (buf
->dtb_flags
& DTRACEBUF_FULL
))
11250 total_off
= needed
+ (offs
& (align
- 1));
11253 * For a ring buffer, life is quite a bit more complicated. Before
11254 * we can store any padding, we need to adjust our wrapping offset.
11255 * (If we've never before wrapped or we're not about to, no adjustment
11258 if ((buf
->dtb_flags
& DTRACEBUF_WRAPPED
) ||
11259 offs
+ total_off
> buf
->dtb_size
) {
11260 woffs
= buf
->dtb_xamot_offset
;
11262 if (offs
+ total_off
> buf
->dtb_size
) {
11264 * We can't fit in the end of the buffer. First, a
11265 * sanity check that we can fit in the buffer at all.
11267 if (total_off
> buf
->dtb_size
) {
11268 dtrace_buffer_drop(buf
);
11273 * We're going to be storing at the top of the buffer,
11274 * so now we need to deal with the wrapped offset. We
11275 * only reset our wrapped offset to 0 if it is
11276 * currently greater than the current offset. If it
11277 * is less than the current offset, it is because a
11278 * previous allocation induced a wrap -- but the
11279 * allocation didn't subsequently take the space due
11280 * to an error or false predicate evaluation. In this
11281 * case, we'll just leave the wrapped offset alone: if
11282 * the wrapped offset hasn't been advanced far enough
11283 * for this allocation, it will be adjusted in the
11286 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
11294 * Now we know that we're going to be storing to the
11295 * top of the buffer and that there is room for us
11296 * there. We need to clear the buffer from the current
11297 * offset to the end (there may be old gunk there).
11299 while ((uint64_t)offs
< buf
->dtb_size
)
11303 * We need to set our offset to zero. And because we
11304 * are wrapping, we need to set the bit indicating as
11305 * much. We can also adjust our needed space back
11306 * down to the space required by the ECB -- we know
11307 * that the top of the buffer is aligned.
11310 total_off
= needed
;
11311 buf
->dtb_flags
|= DTRACEBUF_WRAPPED
;
11314 * There is room for us in the buffer, so we simply
11315 * need to check the wrapped offset.
11317 if (woffs
< offs
) {
11319 * The wrapped offset is less than the offset.
11320 * This can happen if we allocated buffer space
11321 * that induced a wrap, but then we didn't
11322 * subsequently take the space due to an error
11323 * or false predicate evaluation. This is
11324 * okay; we know that _this_ allocation isn't
11325 * going to induce a wrap. We still can't
11326 * reset the wrapped offset to be zero,
11327 * however: the space may have been trashed in
11328 * the previous failed probe attempt. But at
11329 * least the wrapped offset doesn't need to
11330 * be adjusted at all...
11336 while (offs
+ total_off
> (size_t)woffs
) {
11337 dtrace_epid_t epid
= *(uint32_t *)(tomax
+ woffs
);
11340 if (epid
== DTRACE_EPIDNONE
) {
11341 size
= sizeof (uint32_t);
11343 ASSERT(epid
<= (dtrace_epid_t
)state
->dts_necbs
);
11344 ASSERT(state
->dts_ecbs
[epid
- 1] != NULL
);
11346 size
= state
->dts_ecbs
[epid
- 1]->dte_size
;
11349 ASSERT(woffs
+ size
<= buf
->dtb_size
);
11352 if (woffs
+ size
== buf
->dtb_size
) {
11354 * We've reached the end of the buffer; we want
11355 * to set the wrapped offset to 0 and break
11356 * out. However, if the offs is 0, then we're
11357 * in a strange edge-condition: the amount of
11358 * space that we want to reserve plus the size
11359 * of the record that we're overwriting is
11360 * greater than the size of the buffer. This
11361 * is problematic because if we reserve the
11362 * space but subsequently don't consume it (due
11363 * to a failed predicate or error) the wrapped
11364 * offset will be 0 -- yet the EPID at offset 0
11365 * will not be committed. This situation is
11366 * relatively easy to deal with: if we're in
11367 * this case, the buffer is indistinguishable
11368 * from one that hasn't wrapped; we need only
11369 * finish the job by clearing the wrapped bit,
11370 * explicitly setting the offset to be 0, and
11371 * zero'ing out the old data in the buffer.
11374 buf
->dtb_flags
&= ~DTRACEBUF_WRAPPED
;
11375 buf
->dtb_offset
= 0;
11378 while ((uint64_t)woffs
< buf
->dtb_size
)
11379 tomax
[woffs
++] = 0;
11390 * We have a wrapped offset. It may be that the wrapped offset
11391 * has become zero -- that's okay.
11393 buf
->dtb_xamot_offset
= woffs
;
11398 * Now we can plow the buffer with any necessary padding.
11400 while (offs
& (align
- 1)) {
11402 * Assert that our alignment is off by a number which
11403 * is itself sizeof (uint32_t) aligned.
11405 ASSERT(!((align
- (offs
& (align
- 1))) &
11406 (sizeof (uint32_t) - 1)));
11407 DTRACE_STORE(uint32_t, tomax
, offs
, DTRACE_EPIDNONE
);
11408 offs
+= sizeof (uint32_t);
11411 if (buf
->dtb_flags
& DTRACEBUF_FILL
) {
11412 if (offs
+ needed
> buf
->dtb_size
- state
->dts_reserve
) {
11413 buf
->dtb_flags
|= DTRACEBUF_FULL
;
11418 if (mstate
== NULL
)
11422 * For ring buffers and fill buffers, the scratch space is always
11423 * the inactive buffer.
11425 mstate
->dtms_scratch_base
= (uintptr_t)buf
->dtb_xamot
;
11426 mstate
->dtms_scratch_size
= buf
->dtb_size
;
11427 mstate
->dtms_scratch_ptr
= mstate
->dtms_scratch_base
;
11433 dtrace_buffer_polish(dtrace_buffer_t
*buf
)
11435 ASSERT(buf
->dtb_flags
& DTRACEBUF_RING
);
11436 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11438 if (!(buf
->dtb_flags
& DTRACEBUF_WRAPPED
))
11442 * We need to polish the ring buffer. There are three cases:
11444 * - The first (and presumably most common) is that there is no gap
11445 * between the buffer offset and the wrapped offset. In this case,
11446 * there is nothing in the buffer that isn't valid data; we can
11447 * mark the buffer as polished and return.
11449 * - The second (less common than the first but still more common
11450 * than the third) is that there is a gap between the buffer offset
11451 * and the wrapped offset, and the wrapped offset is larger than the
11452 * buffer offset. This can happen because of an alignment issue, or
11453 * can happen because of a call to dtrace_buffer_reserve() that
11454 * didn't subsequently consume the buffer space. In this case,
11455 * we need to zero the data from the buffer offset to the wrapped
11458 * - The third (and least common) is that there is a gap between the
11459 * buffer offset and the wrapped offset, but the wrapped offset is
11460 * _less_ than the buffer offset. This can only happen because a
11461 * call to dtrace_buffer_reserve() induced a wrap, but the space
11462 * was not subsequently consumed. In this case, we need to zero the
11463 * space from the offset to the end of the buffer _and_ from the
11464 * top of the buffer to the wrapped offset.
11466 if (buf
->dtb_offset
< buf
->dtb_xamot_offset
) {
11467 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11468 buf
->dtb_xamot_offset
- buf
->dtb_offset
);
11471 if (buf
->dtb_offset
> buf
->dtb_xamot_offset
) {
11472 bzero(buf
->dtb_tomax
+ buf
->dtb_offset
,
11473 buf
->dtb_size
- buf
->dtb_offset
);
11474 bzero(buf
->dtb_tomax
, buf
->dtb_xamot_offset
);
11479 dtrace_buffer_free(dtrace_buffer_t
*bufs
)
11483 for (i
= 0; i
< (int)NCPU
; i
++) {
11484 dtrace_buffer_t
*buf
= &bufs
[i
];
11486 if (buf
->dtb_tomax
== NULL
) {
11487 ASSERT(buf
->dtb_xamot
== NULL
);
11488 ASSERT(buf
->dtb_size
== 0);
11492 if (buf
->dtb_xamot
!= NULL
) {
11493 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
11494 kmem_free(buf
->dtb_xamot
, buf
->dtb_size
);
11496 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11497 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11500 kmem_free(buf
->dtb_tomax
, buf
->dtb_size
);
11501 ASSERT(dtrace_buffer_memory_inuse
>= buf
->dtb_size
);
11502 dtrace_buffer_memory_inuse
-= buf
->dtb_size
;
11505 buf
->dtb_tomax
= NULL
;
11506 buf
->dtb_xamot
= NULL
;
11511 * DTrace Enabling Functions
11513 static dtrace_enabling_t
*
11514 dtrace_enabling_create(dtrace_vstate_t
*vstate
)
11516 dtrace_enabling_t
*enab
;
11518 enab
= kmem_zalloc(sizeof (dtrace_enabling_t
), KM_SLEEP
);
11519 enab
->dten_vstate
= vstate
;
11525 dtrace_enabling_add(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
)
11527 dtrace_ecbdesc_t
**ndesc
;
11528 size_t osize
, nsize
;
11531 * We can't add to enablings after we've enabled them, or after we've
11534 ASSERT(enab
->dten_probegen
== 0);
11535 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11537 /* APPLE NOTE: this protects against gcc 4.0 botch on x86 */
11538 if (ecb
== NULL
) return;
11540 if (enab
->dten_ndesc
< enab
->dten_maxdesc
) {
11541 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11545 osize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11547 if (enab
->dten_maxdesc
== 0) {
11548 enab
->dten_maxdesc
= 1;
11550 enab
->dten_maxdesc
<<= 1;
11553 ASSERT(enab
->dten_ndesc
< enab
->dten_maxdesc
);
11555 nsize
= enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*);
11556 ndesc
= kmem_zalloc(nsize
, KM_SLEEP
);
11557 bcopy(enab
->dten_desc
, ndesc
, osize
);
11558 kmem_free(enab
->dten_desc
, osize
);
11560 enab
->dten_desc
= ndesc
;
11561 enab
->dten_desc
[enab
->dten_ndesc
++] = ecb
;
11565 dtrace_enabling_addlike(dtrace_enabling_t
*enab
, dtrace_ecbdesc_t
*ecb
,
11566 dtrace_probedesc_t
*pd
)
11568 dtrace_ecbdesc_t
*new;
11569 dtrace_predicate_t
*pred
;
11570 dtrace_actdesc_t
*act
;
11573 * We're going to create a new ECB description that matches the
11574 * specified ECB in every way, but has the specified probe description.
11576 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
11578 if ((pred
= ecb
->dted_pred
.dtpdd_predicate
) != NULL
)
11579 dtrace_predicate_hold(pred
);
11581 for (act
= ecb
->dted_action
; act
!= NULL
; act
= act
->dtad_next
)
11582 dtrace_actdesc_hold(act
);
11584 new->dted_action
= ecb
->dted_action
;
11585 new->dted_pred
= ecb
->dted_pred
;
11586 new->dted_probe
= *pd
;
11587 new->dted_uarg
= ecb
->dted_uarg
;
11589 dtrace_enabling_add(enab
, new);
11593 dtrace_enabling_dump(dtrace_enabling_t
*enab
)
11597 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11598 dtrace_probedesc_t
*desc
= &enab
->dten_desc
[i
]->dted_probe
;
11600 cmn_err(CE_NOTE
, "enabling probe %d (%s:%s:%s:%s)", i
,
11601 desc
->dtpd_provider
, desc
->dtpd_mod
,
11602 desc
->dtpd_func
, desc
->dtpd_name
);
11607 dtrace_enabling_destroy(dtrace_enabling_t
*enab
)
11610 dtrace_ecbdesc_t
*ep
;
11611 dtrace_vstate_t
*vstate
= enab
->dten_vstate
;
11613 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11615 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11616 dtrace_actdesc_t
*act
, *next
;
11617 dtrace_predicate_t
*pred
;
11619 ep
= enab
->dten_desc
[i
];
11621 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
)
11622 dtrace_predicate_release(pred
, vstate
);
11624 for (act
= ep
->dted_action
; act
!= NULL
; act
= next
) {
11625 next
= act
->dtad_next
;
11626 dtrace_actdesc_release(act
, vstate
);
11629 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
11632 kmem_free(enab
->dten_desc
,
11633 enab
->dten_maxdesc
* sizeof (dtrace_enabling_t
*));
11636 * If this was a retained enabling, decrement the dts_nretained count
11637 * and take it off of the dtrace_retained list.
11639 if (enab
->dten_prev
!= NULL
|| enab
->dten_next
!= NULL
||
11640 dtrace_retained
== enab
) {
11641 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11642 ASSERT(enab
->dten_vstate
->dtvs_state
->dts_nretained
> 0);
11643 enab
->dten_vstate
->dtvs_state
->dts_nretained
--;
11644 dtrace_retained_gen
++;
11647 if (enab
->dten_prev
== NULL
) {
11648 if (dtrace_retained
== enab
) {
11649 dtrace_retained
= enab
->dten_next
;
11651 if (dtrace_retained
!= NULL
)
11652 dtrace_retained
->dten_prev
= NULL
;
11655 ASSERT(enab
!= dtrace_retained
);
11656 ASSERT(dtrace_retained
!= NULL
);
11657 enab
->dten_prev
->dten_next
= enab
->dten_next
;
11660 if (enab
->dten_next
!= NULL
) {
11661 ASSERT(dtrace_retained
!= NULL
);
11662 enab
->dten_next
->dten_prev
= enab
->dten_prev
;
11665 kmem_free(enab
, sizeof (dtrace_enabling_t
));
11669 dtrace_enabling_retain(dtrace_enabling_t
*enab
)
11671 dtrace_state_t
*state
;
11673 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11674 ASSERT(enab
->dten_next
== NULL
&& enab
->dten_prev
== NULL
);
11675 ASSERT(enab
->dten_vstate
!= NULL
);
11677 state
= enab
->dten_vstate
->dtvs_state
;
11678 ASSERT(state
!= NULL
);
11681 * We only allow each state to retain dtrace_retain_max enablings.
11683 if (state
->dts_nretained
>= dtrace_retain_max
)
11686 state
->dts_nretained
++;
11687 dtrace_retained_gen
++;
11689 if (dtrace_retained
== NULL
) {
11690 dtrace_retained
= enab
;
11694 enab
->dten_next
= dtrace_retained
;
11695 dtrace_retained
->dten_prev
= enab
;
11696 dtrace_retained
= enab
;
11702 dtrace_enabling_replicate(dtrace_state_t
*state
, dtrace_probedesc_t
*match
,
11703 dtrace_probedesc_t
*create
)
11705 dtrace_enabling_t
*new, *enab
;
11706 int found
= 0, err
= ENOENT
;
11708 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11709 ASSERT(strlen(match
->dtpd_provider
) < DTRACE_PROVNAMELEN
);
11710 ASSERT(strlen(match
->dtpd_mod
) < DTRACE_MODNAMELEN
);
11711 ASSERT(strlen(match
->dtpd_func
) < DTRACE_FUNCNAMELEN
);
11712 ASSERT(strlen(match
->dtpd_name
) < DTRACE_NAMELEN
);
11714 new = dtrace_enabling_create(&state
->dts_vstate
);
11717 * Iterate over all retained enablings, looking for enablings that
11718 * match the specified state.
11720 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11724 * dtvs_state can only be NULL for helper enablings -- and
11725 * helper enablings can't be retained.
11727 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11729 if (enab
->dten_vstate
->dtvs_state
!= state
)
11733 * Now iterate over each probe description; we're looking for
11734 * an exact match to the specified probe description.
11736 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11737 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11738 dtrace_probedesc_t
*pd
= &ep
->dted_probe
;
11740 /* APPLE NOTE: Darwin employs size bounded string operation. */
11741 if (strncmp(pd
->dtpd_provider
, match
->dtpd_provider
, DTRACE_PROVNAMELEN
))
11744 if (strncmp(pd
->dtpd_mod
, match
->dtpd_mod
, DTRACE_MODNAMELEN
))
11747 if (strncmp(pd
->dtpd_func
, match
->dtpd_func
, DTRACE_FUNCNAMELEN
))
11750 if (strncmp(pd
->dtpd_name
, match
->dtpd_name
, DTRACE_NAMELEN
))
11754 * We have a winning probe! Add it to our growing
11758 dtrace_enabling_addlike(new, ep
, create
);
11762 if (!found
|| (err
= dtrace_enabling_retain(new)) != 0) {
11763 dtrace_enabling_destroy(new);
11771 dtrace_enabling_retract(dtrace_state_t
*state
)
11773 dtrace_enabling_t
*enab
, *next
;
11775 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11778 * Iterate over all retained enablings, destroy the enablings retained
11779 * for the specified state.
11781 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= next
) {
11782 next
= enab
->dten_next
;
11785 * dtvs_state can only be NULL for helper enablings -- and
11786 * helper enablings can't be retained.
11788 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11790 if (enab
->dten_vstate
->dtvs_state
== state
) {
11791 ASSERT(state
->dts_nretained
> 0);
11792 dtrace_enabling_destroy(enab
);
11796 ASSERT(state
->dts_nretained
== 0);
11800 dtrace_enabling_match(dtrace_enabling_t
*enab
, int *nmatched
, dtrace_match_cond_t
*cond
)
11803 int total_matched
= 0, matched
= 0;
11805 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
11806 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11808 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11809 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
11811 enab
->dten_current
= ep
;
11812 enab
->dten_error
= 0;
11815 * Before doing a dtrace_probe_enable, which is really
11816 * expensive, check that this enabling matches the matching precondition
11819 if (cond
&& (cond
->dmc_func(&ep
->dted_probe
, cond
->dmc_data
) == 0)) {
11823 * If a provider failed to enable a probe then get out and
11824 * let the consumer know we failed.
11826 if ((matched
= dtrace_probe_enable(&ep
->dted_probe
, enab
, ep
)) < 0)
11829 total_matched
+= matched
;
11831 if (enab
->dten_error
!= 0) {
11833 * If we get an error half-way through enabling the
11834 * probes, we kick out -- perhaps with some number of
11835 * them enabled. Leaving enabled probes enabled may
11836 * be slightly confusing for user-level, but we expect
11837 * that no one will attempt to actually drive on in
11838 * the face of such errors. If this is an anonymous
11839 * enabling (indicated with a NULL nmatched pointer),
11840 * we cmn_err() a message. We aren't expecting to
11841 * get such an error -- such as it can exist at all,
11842 * it would be a result of corrupted DOF in the driver
11845 if (nmatched
== NULL
) {
11846 cmn_err(CE_WARN
, "dtrace_enabling_match() "
11847 "error on %p: %d", (void *)ep
,
11851 return (enab
->dten_error
);
11854 ep
->dted_probegen
= dtrace_probegen
;
11857 if (nmatched
!= NULL
)
11858 *nmatched
= total_matched
;
11864 dtrace_enabling_matchall_with_cond(dtrace_match_cond_t
*cond
)
11866 dtrace_enabling_t
*enab
;
11868 lck_mtx_lock(&cpu_lock
);
11869 lck_mtx_lock(&dtrace_lock
);
11872 * Iterate over all retained enablings to see if any probes match
11873 * against them. We only perform this operation on enablings for which
11874 * we have sufficient permissions by virtue of being in the global zone
11875 * or in the same zone as the DTrace client. Because we can be called
11876 * after dtrace_detach() has been called, we cannot assert that there
11877 * are retained enablings. We can safely load from dtrace_retained,
11878 * however: the taskq_destroy() at the end of dtrace_detach() will
11879 * block pending our completion.
11883 * Darwin doesn't do zones.
11884 * Behave as if always in "global" zone."
11886 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11887 (void) dtrace_enabling_match(enab
, NULL
, cond
);
11890 lck_mtx_unlock(&dtrace_lock
);
11891 lck_mtx_unlock(&cpu_lock
);
11896 dtrace_enabling_matchall(void)
11898 dtrace_enabling_matchall_with_cond(NULL
);
11904 * If an enabling is to be enabled without having matched probes (that is, if
11905 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11906 * enabling must be _primed_ by creating an ECB for every ECB description.
11907 * This must be done to assure that we know the number of speculations, the
11908 * number of aggregations, the minimum buffer size needed, etc. before we
11909 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
11910 * enabling any probes, we create ECBs for every ECB decription, but with a
11911 * NULL probe -- which is exactly what this function does.
11914 dtrace_enabling_prime(dtrace_state_t
*state
)
11916 dtrace_enabling_t
*enab
;
11919 for (enab
= dtrace_retained
; enab
!= NULL
; enab
= enab
->dten_next
) {
11920 ASSERT(enab
->dten_vstate
->dtvs_state
!= NULL
);
11922 if (enab
->dten_vstate
->dtvs_state
!= state
)
11926 * We don't want to prime an enabling more than once, lest
11927 * we allow a malicious user to induce resource exhaustion.
11928 * (The ECBs that result from priming an enabling aren't
11929 * leaked -- but they also aren't deallocated until the
11930 * consumer state is destroyed.)
11932 if (enab
->dten_primed
)
11935 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11936 enab
->dten_current
= enab
->dten_desc
[i
];
11937 (void) dtrace_probe_enable(NULL
, enab
, NULL
);
11940 enab
->dten_primed
= 1;
11945 * Called to indicate that probes should be provided due to retained
11946 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
11947 * must take an initial lap through the enabling calling the dtps_provide()
11948 * entry point explicitly to allow for autocreated probes.
11951 dtrace_enabling_provide(dtrace_provider_t
*prv
)
11954 dtrace_probedesc_t desc
;
11955 dtrace_genid_t gen
;
11957 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
11958 LCK_MTX_ASSERT(&dtrace_provider_lock
, LCK_MTX_ASSERT_OWNED
);
11962 prv
= dtrace_provider
;
11966 dtrace_enabling_t
*enab
;
11967 void *parg
= prv
->dtpv_arg
;
11970 gen
= dtrace_retained_gen
;
11971 for (enab
= dtrace_retained
; enab
!= NULL
;
11972 enab
= enab
->dten_next
) {
11973 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
11974 desc
= enab
->dten_desc
[i
]->dted_probe
;
11975 lck_mtx_unlock(&dtrace_lock
);
11976 prv
->dtpv_pops
.dtps_provide(parg
, &desc
);
11977 lck_mtx_lock(&dtrace_lock
);
11979 * Process the retained enablings again if
11980 * they have changed while we weren't holding
11983 if (gen
!= dtrace_retained_gen
)
11987 } while (all
&& (prv
= prv
->dtpv_next
) != NULL
);
11989 lck_mtx_unlock(&dtrace_lock
);
11990 dtrace_probe_provide(NULL
, all
? NULL
: prv
);
11991 lck_mtx_lock(&dtrace_lock
);
11995 * DTrace DOF Functions
11999 dtrace_dof_error(dof_hdr_t
*dof
, const char *str
)
12001 #pragma unused(dof) /* __APPLE__ */
12002 if (dtrace_err_verbose
)
12003 cmn_err(CE_WARN
, "failed to process DOF: %s", str
);
12005 #ifdef DTRACE_ERRDEBUG
12006 dtrace_errdebug(str
);
12011 * Create DOF out of a currently enabled state. Right now, we only create
12012 * DOF containing the run-time options -- but this could be expanded to create
12013 * complete DOF representing the enabled state.
12016 dtrace_dof_create(dtrace_state_t
*state
)
12020 dof_optdesc_t
*opt
;
12021 int i
, len
= sizeof (dof_hdr_t
) +
12022 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)) +
12023 sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12025 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12027 dof
= dt_kmem_zalloc_aligned(len
, 8, KM_SLEEP
);
12028 dof
->dofh_ident
[DOF_ID_MAG0
] = DOF_MAG_MAG0
;
12029 dof
->dofh_ident
[DOF_ID_MAG1
] = DOF_MAG_MAG1
;
12030 dof
->dofh_ident
[DOF_ID_MAG2
] = DOF_MAG_MAG2
;
12031 dof
->dofh_ident
[DOF_ID_MAG3
] = DOF_MAG_MAG3
;
12033 dof
->dofh_ident
[DOF_ID_MODEL
] = DOF_MODEL_NATIVE
;
12034 dof
->dofh_ident
[DOF_ID_ENCODING
] = DOF_ENCODE_NATIVE
;
12035 dof
->dofh_ident
[DOF_ID_VERSION
] = DOF_VERSION
;
12036 dof
->dofh_ident
[DOF_ID_DIFVERS
] = DIF_VERSION
;
12037 dof
->dofh_ident
[DOF_ID_DIFIREG
] = DIF_DIR_NREGS
;
12038 dof
->dofh_ident
[DOF_ID_DIFTREG
] = DIF_DTR_NREGS
;
12040 dof
->dofh_flags
= 0;
12041 dof
->dofh_hdrsize
= sizeof (dof_hdr_t
);
12042 dof
->dofh_secsize
= sizeof (dof_sec_t
);
12043 dof
->dofh_secnum
= 1; /* only DOF_SECT_OPTDESC */
12044 dof
->dofh_secoff
= sizeof (dof_hdr_t
);
12045 dof
->dofh_loadsz
= len
;
12046 dof
->dofh_filesz
= len
;
12050 * Fill in the option section header...
12052 sec
= (dof_sec_t
*)((uintptr_t)dof
+ sizeof (dof_hdr_t
));
12053 sec
->dofs_type
= DOF_SECT_OPTDESC
;
12054 sec
->dofs_align
= sizeof (uint64_t);
12055 sec
->dofs_flags
= DOF_SECF_LOAD
;
12056 sec
->dofs_entsize
= sizeof (dof_optdesc_t
);
12058 opt
= (dof_optdesc_t
*)((uintptr_t)sec
+
12059 roundup(sizeof (dof_sec_t
), sizeof (uint64_t)));
12061 sec
->dofs_offset
= (uintptr_t)opt
- (uintptr_t)dof
;
12062 sec
->dofs_size
= sizeof (dof_optdesc_t
) * DTRACEOPT_MAX
;
12064 for (i
= 0; i
< DTRACEOPT_MAX
; i
++) {
12065 opt
[i
].dofo_option
= i
;
12066 opt
[i
].dofo_strtab
= DOF_SECIDX_NONE
;
12067 opt
[i
].dofo_value
= state
->dts_options
[i
];
12074 dtrace_dof_copyin(user_addr_t uarg
, int *errp
)
12076 dof_hdr_t hdr
, *dof
;
12078 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
12081 * First, we're going to copyin() the sizeof (dof_hdr_t).
12083 if (copyin(uarg
, &hdr
, sizeof (hdr
)) != 0) {
12084 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12090 * Now we'll allocate the entire DOF and copy it in -- provided
12091 * that the length isn't outrageous.
12093 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12094 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12099 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12100 dtrace_dof_error(&hdr
, "invalid load size");
12105 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
12107 if (copyin(uarg
, dof
, hdr
.dofh_loadsz
) != 0 ||
12108 dof
->dofh_loadsz
!= hdr
.dofh_loadsz
) {
12109 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
12118 dtrace_dof_copyin_from_proc(proc_t
* p
, user_addr_t uarg
, int *errp
)
12120 dof_hdr_t hdr
, *dof
;
12122 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
12125 * First, we're going to copyin() the sizeof (dof_hdr_t).
12127 if (uread(p
, &hdr
, sizeof(hdr
), uarg
) != KERN_SUCCESS
) {
12128 dtrace_dof_error(NULL
, "failed to copyin DOF header");
12134 * Now we'll allocate the entire DOF and copy it in -- provided
12135 * that the length isn't outrageous.
12137 if (hdr
.dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12138 dtrace_dof_error(&hdr
, "load size exceeds maximum");
12143 if (hdr
.dofh_loadsz
< sizeof (hdr
)) {
12144 dtrace_dof_error(&hdr
, "invalid load size");
12149 dof
= dt_kmem_alloc_aligned(hdr
.dofh_loadsz
, 8, KM_SLEEP
);
12151 if (uread(p
, dof
, hdr
.dofh_loadsz
, uarg
) != KERN_SUCCESS
) {
12152 dt_kmem_free_aligned(dof
, hdr
.dofh_loadsz
);
12161 dtrace_dof_destroy(dof_hdr_t
*dof
)
12163 dt_kmem_free_aligned(dof
, dof
->dofh_loadsz
);
12167 dtrace_dof_property(const char *name
)
12172 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) {
12176 if (!PEReadNVRAMProperty(name
, NULL
, &len
)) {
12180 dof
= dt_kmem_alloc_aligned(len
, 8, KM_SLEEP
);
12182 if (!PEReadNVRAMProperty(name
, dof
, &len
)) {
12183 dtrace_dof_destroy(dof
);
12184 dtrace_dof_error(NULL
, "unreadable DOF");
12188 if (len
< sizeof (dof_hdr_t
)) {
12189 dtrace_dof_destroy(dof
);
12190 dtrace_dof_error(NULL
, "truncated header");
12194 if (len
< dof
->dofh_loadsz
) {
12195 dtrace_dof_destroy(dof
);
12196 dtrace_dof_error(NULL
, "truncated DOF");
12200 if (len
!= dof
->dofh_loadsz
) {
12201 dtrace_dof_destroy(dof
);
12202 dtrace_dof_error(NULL
, "invalid DOF size");
12206 if (dof
->dofh_loadsz
>= (uint64_t)dtrace_dof_maxsize
) {
12207 dtrace_dof_destroy(dof
);
12208 dtrace_dof_error(NULL
, "oversized DOF");
12216 * Return the dof_sec_t pointer corresponding to a given section index. If the
12217 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12218 * a type other than DOF_SECT_NONE is specified, the header is checked against
12219 * this type and NULL is returned if the types do not match.
12222 dtrace_dof_sect(dof_hdr_t
*dof
, uint32_t type
, dof_secidx_t i
)
12224 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)
12225 ((uintptr_t)dof
+ dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12227 if (i
>= dof
->dofh_secnum
) {
12228 dtrace_dof_error(dof
, "referenced section index is invalid");
12232 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
)) {
12233 dtrace_dof_error(dof
, "referenced section is not loadable");
12237 if (type
!= DOF_SECT_NONE
&& type
!= sec
->dofs_type
) {
12238 dtrace_dof_error(dof
, "referenced section is the wrong type");
12245 static dtrace_probedesc_t
*
12246 dtrace_dof_probedesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_probedesc_t
*desc
)
12248 dof_probedesc_t
*probe
;
12250 uintptr_t daddr
= (uintptr_t)dof
;
12254 if (sec
->dofs_type
!= DOF_SECT_PROBEDESC
) {
12255 dtrace_dof_error(dof
, "invalid probe section");
12259 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12260 dtrace_dof_error(dof
, "bad alignment in probe description");
12264 if (sec
->dofs_offset
+ sizeof (dof_probedesc_t
) > dof
->dofh_loadsz
) {
12265 dtrace_dof_error(dof
, "truncated probe description");
12269 probe
= (dof_probedesc_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12270 strtab
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, probe
->dofp_strtab
);
12272 if (strtab
== NULL
)
12275 str
= daddr
+ strtab
->dofs_offset
;
12276 size
= strtab
->dofs_size
;
12278 if (probe
->dofp_provider
>= strtab
->dofs_size
) {
12279 dtrace_dof_error(dof
, "corrupt probe provider");
12283 (void) strncpy(desc
->dtpd_provider
,
12284 (char *)(str
+ probe
->dofp_provider
),
12285 MIN(DTRACE_PROVNAMELEN
- 1, size
- probe
->dofp_provider
));
12287 /* APPLE NOTE: Darwin employs size bounded string operation. */
12288 desc
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
12290 if (probe
->dofp_mod
>= strtab
->dofs_size
) {
12291 dtrace_dof_error(dof
, "corrupt probe module");
12295 (void) strncpy(desc
->dtpd_mod
, (char *)(str
+ probe
->dofp_mod
),
12296 MIN(DTRACE_MODNAMELEN
- 1, size
- probe
->dofp_mod
));
12298 /* APPLE NOTE: Darwin employs size bounded string operation. */
12299 desc
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
12301 if (probe
->dofp_func
>= strtab
->dofs_size
) {
12302 dtrace_dof_error(dof
, "corrupt probe function");
12306 (void) strncpy(desc
->dtpd_func
, (char *)(str
+ probe
->dofp_func
),
12307 MIN(DTRACE_FUNCNAMELEN
- 1, size
- probe
->dofp_func
));
12309 /* APPLE NOTE: Darwin employs size bounded string operation. */
12310 desc
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
12312 if (probe
->dofp_name
>= strtab
->dofs_size
) {
12313 dtrace_dof_error(dof
, "corrupt probe name");
12317 (void) strncpy(desc
->dtpd_name
, (char *)(str
+ probe
->dofp_name
),
12318 MIN(DTRACE_NAMELEN
- 1, size
- probe
->dofp_name
));
12320 /* APPLE NOTE: Darwin employs size bounded string operation. */
12321 desc
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
12326 static dtrace_difo_t
*
12327 dtrace_dof_difo(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12332 dof_difohdr_t
*dofd
;
12333 uintptr_t daddr
= (uintptr_t)dof
;
12334 size_t max_size
= dtrace_difo_maxsize
;
12339 static const struct {
12347 { DOF_SECT_DIF
, offsetof(dtrace_difo_t
, dtdo_buf
),
12348 offsetof(dtrace_difo_t
, dtdo_len
), sizeof (dif_instr_t
),
12349 sizeof (dif_instr_t
), "multiple DIF sections" },
12351 { DOF_SECT_INTTAB
, offsetof(dtrace_difo_t
, dtdo_inttab
),
12352 offsetof(dtrace_difo_t
, dtdo_intlen
), sizeof (uint64_t),
12353 sizeof (uint64_t), "multiple integer tables" },
12355 { DOF_SECT_STRTAB
, offsetof(dtrace_difo_t
, dtdo_strtab
),
12356 offsetof(dtrace_difo_t
, dtdo_strlen
), 0,
12357 sizeof (char), "multiple string tables" },
12359 { DOF_SECT_VARTAB
, offsetof(dtrace_difo_t
, dtdo_vartab
),
12360 offsetof(dtrace_difo_t
, dtdo_varlen
), sizeof (dtrace_difv_t
),
12361 sizeof (uint_t
), "multiple variable tables" },
12363 { DOF_SECT_NONE
, 0, 0, 0, 0, NULL
}
12366 if (sec
->dofs_type
!= DOF_SECT_DIFOHDR
) {
12367 dtrace_dof_error(dof
, "invalid DIFO header section");
12371 if (sec
->dofs_align
!= sizeof (dof_secidx_t
)) {
12372 dtrace_dof_error(dof
, "bad alignment in DIFO header");
12376 if (sec
->dofs_size
< sizeof (dof_difohdr_t
) ||
12377 sec
->dofs_size
% sizeof (dof_secidx_t
)) {
12378 dtrace_dof_error(dof
, "bad size in DIFO header");
12382 dofd
= (dof_difohdr_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
12383 n
= (sec
->dofs_size
- sizeof (*dofd
)) / sizeof (dof_secidx_t
) + 1;
12385 dp
= kmem_zalloc(sizeof (dtrace_difo_t
), KM_SLEEP
);
12386 dp
->dtdo_rtype
= dofd
->dofd_rtype
;
12388 for (l
= 0; l
< n
; l
++) {
12393 if ((subsec
= dtrace_dof_sect(dof
, DOF_SECT_NONE
,
12394 dofd
->dofd_links
[l
])) == NULL
)
12395 goto err
; /* invalid section link */
12397 if (ttl
+ subsec
->dofs_size
> max_size
) {
12398 dtrace_dof_error(dof
, "exceeds maximum size");
12402 ttl
+= subsec
->dofs_size
;
12404 for (i
= 0; difo
[i
].section
!= DOF_SECT_NONE
; i
++) {
12406 if (subsec
->dofs_type
!= (uint32_t)difo
[i
].section
)
12409 if (!(subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12410 dtrace_dof_error(dof
, "section not loaded");
12414 if (subsec
->dofs_align
!= (uint32_t)difo
[i
].align
) {
12415 dtrace_dof_error(dof
, "bad alignment");
12419 bufp
= (void **)((uintptr_t)dp
+ difo
[i
].bufoffs
);
12420 lenp
= (uint32_t *)((uintptr_t)dp
+ difo
[i
].lenoffs
);
12422 if (*bufp
!= NULL
) {
12423 dtrace_dof_error(dof
, difo
[i
].msg
);
12427 if ((uint32_t)difo
[i
].entsize
!= subsec
->dofs_entsize
) {
12428 dtrace_dof_error(dof
, "entry size mismatch");
12432 if (subsec
->dofs_entsize
!= 0 &&
12433 (subsec
->dofs_size
% subsec
->dofs_entsize
) != 0) {
12434 dtrace_dof_error(dof
, "corrupt entry size");
12438 *lenp
= subsec
->dofs_size
;
12439 *bufp
= kmem_alloc(subsec
->dofs_size
, KM_SLEEP
);
12440 bcopy((char *)(uintptr_t)(daddr
+ subsec
->dofs_offset
),
12441 *bufp
, subsec
->dofs_size
);
12443 if (subsec
->dofs_entsize
!= 0)
12444 *lenp
/= subsec
->dofs_entsize
;
12450 * If we encounter a loadable DIFO sub-section that is not
12451 * known to us, assume this is a broken program and fail.
12453 if (difo
[i
].section
== DOF_SECT_NONE
&&
12454 (subsec
->dofs_flags
& DOF_SECF_LOAD
)) {
12455 dtrace_dof_error(dof
, "unrecognized DIFO subsection");
12460 if (dp
->dtdo_buf
== NULL
) {
12462 * We can't have a DIF object without DIF text.
12464 dtrace_dof_error(dof
, "missing DIF text");
12469 * Before we validate the DIF object, run through the variable table
12470 * looking for the strings -- if any of their size are under, we'll set
12471 * their size to be the system-wide default string size. Note that
12472 * this should _not_ happen if the "strsize" option has been set --
12473 * in this case, the compiler should have set the size to reflect the
12474 * setting of the option.
12476 for (i
= 0; i
< dp
->dtdo_varlen
; i
++) {
12477 dtrace_difv_t
*v
= &dp
->dtdo_vartab
[i
];
12478 dtrace_diftype_t
*t
= &v
->dtdv_type
;
12480 if (v
->dtdv_id
< DIF_VAR_OTHER_UBASE
)
12483 if (t
->dtdt_kind
== DIF_TYPE_STRING
&& t
->dtdt_size
== 0)
12484 t
->dtdt_size
= dtrace_strsize_default
;
12487 if (dtrace_difo_validate(dp
, vstate
, DIF_DIR_NREGS
, cr
) != 0)
12490 dtrace_difo_init(dp
, vstate
);
12494 kmem_free(dp
->dtdo_buf
, dp
->dtdo_len
* sizeof (dif_instr_t
));
12495 kmem_free(dp
->dtdo_inttab
, dp
->dtdo_intlen
* sizeof (uint64_t));
12496 kmem_free(dp
->dtdo_strtab
, dp
->dtdo_strlen
);
12497 kmem_free(dp
->dtdo_vartab
, dp
->dtdo_varlen
* sizeof (dtrace_difv_t
));
12499 kmem_free(dp
, sizeof (dtrace_difo_t
));
12503 static dtrace_predicate_t
*
12504 dtrace_dof_predicate(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12509 if ((dp
= dtrace_dof_difo(dof
, sec
, vstate
, cr
)) == NULL
)
12512 return (dtrace_predicate_create(dp
));
12515 static dtrace_actdesc_t
*
12516 dtrace_dof_actdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12519 dtrace_actdesc_t
*act
, *first
= NULL
, *last
= NULL
, *next
;
12520 dof_actdesc_t
*desc
;
12521 dof_sec_t
*difosec
;
12523 uintptr_t daddr
= (uintptr_t)dof
;
12525 dtrace_actkind_t kind
;
12527 if (sec
->dofs_type
!= DOF_SECT_ACTDESC
) {
12528 dtrace_dof_error(dof
, "invalid action section");
12532 if (sec
->dofs_offset
+ sizeof (dof_actdesc_t
) > dof
->dofh_loadsz
) {
12533 dtrace_dof_error(dof
, "truncated action description");
12537 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12538 dtrace_dof_error(dof
, "bad alignment in action description");
12542 if (sec
->dofs_size
< sec
->dofs_entsize
) {
12543 dtrace_dof_error(dof
, "section entry size exceeds total size");
12547 if (sec
->dofs_entsize
!= sizeof (dof_actdesc_t
)) {
12548 dtrace_dof_error(dof
, "bad entry size in action description");
12552 if (sec
->dofs_size
/ sec
->dofs_entsize
> dtrace_actions_max
) {
12553 dtrace_dof_error(dof
, "actions exceed dtrace_actions_max");
12557 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= sec
->dofs_entsize
) {
12558 desc
= (dof_actdesc_t
*)(daddr
+
12559 (uintptr_t)sec
->dofs_offset
+ offs
);
12560 kind
= (dtrace_actkind_t
)desc
->dofa_kind
;
12562 if ((DTRACEACT_ISPRINTFLIKE(kind
) &&
12563 (kind
!= DTRACEACT_PRINTA
|| desc
->dofa_strtab
!= DOF_SECIDX_NONE
)) ||
12564 (kind
== DTRACEACT_DIFEXPR
&& desc
->dofa_strtab
!= DOF_SECIDX_NONE
))
12571 * The argument to these actions is an index into the
12572 * DOF string table. For printf()-like actions, this
12573 * is the format string. For print(), this is the
12574 * CTF type of the expression result.
12576 if ((strtab
= dtrace_dof_sect(dof
,
12577 DOF_SECT_STRTAB
, desc
->dofa_strtab
)) == NULL
)
12580 str
= (char *)((uintptr_t)dof
+
12581 (uintptr_t)strtab
->dofs_offset
);
12583 for (i
= desc
->dofa_arg
; i
< strtab
->dofs_size
; i
++) {
12584 if (str
[i
] == '\0')
12588 if (i
>= strtab
->dofs_size
) {
12589 dtrace_dof_error(dof
, "bogus format string");
12593 if (i
== desc
->dofa_arg
) {
12594 dtrace_dof_error(dof
, "empty format string");
12598 i
-= desc
->dofa_arg
;
12599 fmt
= kmem_alloc(i
+ 1, KM_SLEEP
);
12600 bcopy(&str
[desc
->dofa_arg
], fmt
, i
+ 1);
12601 arg
= (uint64_t)(uintptr_t)fmt
;
12603 if (kind
== DTRACEACT_PRINTA
) {
12604 ASSERT(desc
->dofa_strtab
== DOF_SECIDX_NONE
);
12607 arg
= desc
->dofa_arg
;
12611 act
= dtrace_actdesc_create(kind
, desc
->dofa_ntuple
,
12612 desc
->dofa_uarg
, arg
);
12614 if (last
!= NULL
) {
12615 last
->dtad_next
= act
;
12622 if (desc
->dofa_difo
== DOF_SECIDX_NONE
)
12625 if ((difosec
= dtrace_dof_sect(dof
,
12626 DOF_SECT_DIFOHDR
, desc
->dofa_difo
)) == NULL
)
12629 act
->dtad_difo
= dtrace_dof_difo(dof
, difosec
, vstate
, cr
);
12631 if (act
->dtad_difo
== NULL
)
12635 ASSERT(first
!= NULL
);
12639 for (act
= first
; act
!= NULL
; act
= next
) {
12640 next
= act
->dtad_next
;
12641 dtrace_actdesc_release(act
, vstate
);
12647 static dtrace_ecbdesc_t
*
12648 dtrace_dof_ecbdesc(dof_hdr_t
*dof
, dof_sec_t
*sec
, dtrace_vstate_t
*vstate
,
12651 dtrace_ecbdesc_t
*ep
;
12652 dof_ecbdesc_t
*ecb
;
12653 dtrace_probedesc_t
*desc
;
12654 dtrace_predicate_t
*pred
= NULL
;
12656 if (sec
->dofs_size
< sizeof (dof_ecbdesc_t
)) {
12657 dtrace_dof_error(dof
, "truncated ECB description");
12661 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12662 dtrace_dof_error(dof
, "bad alignment in ECB description");
12666 ecb
= (dof_ecbdesc_t
*)((uintptr_t)dof
+ (uintptr_t)sec
->dofs_offset
);
12667 sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBEDESC
, ecb
->dofe_probes
);
12672 ep
= kmem_zalloc(sizeof (dtrace_ecbdesc_t
), KM_SLEEP
);
12673 ep
->dted_uarg
= ecb
->dofe_uarg
;
12674 desc
= &ep
->dted_probe
;
12676 if (dtrace_dof_probedesc(dof
, sec
, desc
) == NULL
)
12679 if (ecb
->dofe_pred
!= DOF_SECIDX_NONE
) {
12680 if ((sec
= dtrace_dof_sect(dof
,
12681 DOF_SECT_DIFOHDR
, ecb
->dofe_pred
)) == NULL
)
12684 if ((pred
= dtrace_dof_predicate(dof
, sec
, vstate
, cr
)) == NULL
)
12687 ep
->dted_pred
.dtpdd_predicate
= pred
;
12690 if (ecb
->dofe_actions
!= DOF_SECIDX_NONE
) {
12691 if ((sec
= dtrace_dof_sect(dof
,
12692 DOF_SECT_ACTDESC
, ecb
->dofe_actions
)) == NULL
)
12695 ep
->dted_action
= dtrace_dof_actdesc(dof
, sec
, vstate
, cr
);
12697 if (ep
->dted_action
== NULL
)
12705 dtrace_predicate_release(pred
, vstate
);
12706 kmem_free(ep
, sizeof (dtrace_ecbdesc_t
));
12711 * APPLE NOTE: dyld handles dof relocation.
12712 * Darwin does not need dtrace_dof_relocate()
12716 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12717 * header: it should be at the front of a memory region that is at least
12718 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12719 * size. It need not be validated in any other way.
12722 dtrace_dof_slurp(dof_hdr_t
*dof
, dtrace_vstate_t
*vstate
, cred_t
*cr
,
12723 dtrace_enabling_t
**enabp
, uint64_t ubase
, int noprobes
)
12725 #pragma unused(ubase) /* __APPLE__ */
12726 uint64_t len
= dof
->dofh_loadsz
, seclen
;
12727 uintptr_t daddr
= (uintptr_t)dof
;
12728 dtrace_ecbdesc_t
*ep
;
12729 dtrace_enabling_t
*enab
;
12732 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12733 ASSERT(dof
->dofh_loadsz
>= sizeof (dof_hdr_t
));
12736 * Check the DOF header identification bytes. In addition to checking
12737 * valid settings, we also verify that unused bits/bytes are zeroed so
12738 * we can use them later without fear of regressing existing binaries.
12740 if (bcmp(&dof
->dofh_ident
[DOF_ID_MAG0
],
12741 DOF_MAG_STRING
, DOF_MAG_STRLEN
) != 0) {
12742 dtrace_dof_error(dof
, "DOF magic string mismatch");
12746 if (dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_ILP32
&&
12747 dof
->dofh_ident
[DOF_ID_MODEL
] != DOF_MODEL_LP64
) {
12748 dtrace_dof_error(dof
, "DOF has invalid data model");
12752 if (dof
->dofh_ident
[DOF_ID_ENCODING
] != DOF_ENCODE_NATIVE
) {
12753 dtrace_dof_error(dof
, "DOF encoding mismatch");
12758 * APPLE NOTE: Darwin only supports DOF_VERSION_3 for now.
12760 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_3
) {
12761 dtrace_dof_error(dof
, "DOF version mismatch");
12765 if (dof
->dofh_ident
[DOF_ID_DIFVERS
] != DIF_VERSION_2
) {
12766 dtrace_dof_error(dof
, "DOF uses unsupported instruction set");
12770 if (dof
->dofh_ident
[DOF_ID_DIFIREG
] > DIF_DIR_NREGS
) {
12771 dtrace_dof_error(dof
, "DOF uses too many integer registers");
12775 if (dof
->dofh_ident
[DOF_ID_DIFTREG
] > DIF_DTR_NREGS
) {
12776 dtrace_dof_error(dof
, "DOF uses too many tuple registers");
12780 for (i
= DOF_ID_PAD
; i
< DOF_ID_SIZE
; i
++) {
12781 if (dof
->dofh_ident
[i
] != 0) {
12782 dtrace_dof_error(dof
, "DOF has invalid ident byte set");
12787 if (dof
->dofh_flags
& ~DOF_FL_VALID
) {
12788 dtrace_dof_error(dof
, "DOF has invalid flag bits set");
12792 if (dof
->dofh_secsize
== 0) {
12793 dtrace_dof_error(dof
, "zero section header size");
12798 * Check that the section headers don't exceed the amount of DOF
12799 * data. Note that we cast the section size and number of sections
12800 * to uint64_t's to prevent possible overflow in the multiplication.
12802 seclen
= (uint64_t)dof
->dofh_secnum
* (uint64_t)dof
->dofh_secsize
;
12804 if (dof
->dofh_secoff
> len
|| seclen
> len
||
12805 dof
->dofh_secoff
+ seclen
> len
) {
12806 dtrace_dof_error(dof
, "truncated section headers");
12810 if (!IS_P2ALIGNED(dof
->dofh_secoff
, sizeof (uint64_t))) {
12811 dtrace_dof_error(dof
, "misaligned section headers");
12815 if (!IS_P2ALIGNED(dof
->dofh_secsize
, sizeof (uint64_t))) {
12816 dtrace_dof_error(dof
, "misaligned section size");
12821 * Take an initial pass through the section headers to be sure that
12822 * the headers don't have stray offsets. If the 'noprobes' flag is
12823 * set, do not permit sections relating to providers, probes, or args.
12825 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12826 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12827 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12830 switch (sec
->dofs_type
) {
12831 case DOF_SECT_PROVIDER
:
12832 case DOF_SECT_PROBES
:
12833 case DOF_SECT_PRARGS
:
12834 case DOF_SECT_PROFFS
:
12835 dtrace_dof_error(dof
, "illegal sections "
12841 if (!(sec
->dofs_flags
& DOF_SECF_LOAD
))
12842 continue; /* just ignore non-loadable sections */
12844 if (sec
->dofs_align
& (sec
->dofs_align
- 1)) {
12845 dtrace_dof_error(dof
, "bad section alignment");
12849 if (sec
->dofs_offset
& (sec
->dofs_align
- 1)) {
12850 dtrace_dof_error(dof
, "misaligned section");
12854 if (sec
->dofs_offset
> len
|| sec
->dofs_size
> len
||
12855 sec
->dofs_offset
+ sec
->dofs_size
> len
) {
12856 dtrace_dof_error(dof
, "corrupt section header");
12860 if (sec
->dofs_type
== DOF_SECT_STRTAB
&& *((char *)daddr
+
12861 sec
->dofs_offset
+ sec
->dofs_size
- 1) != '\0') {
12862 dtrace_dof_error(dof
, "non-terminating string table");
12868 * APPLE NOTE: We have no further relocation to perform.
12869 * All dof values are relative offsets.
12872 if ((enab
= *enabp
) == NULL
)
12873 enab
= *enabp
= dtrace_enabling_create(vstate
);
12875 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12876 dof_sec_t
*sec
= (dof_sec_t
*)(daddr
+
12877 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12879 if (sec
->dofs_type
!= DOF_SECT_ECBDESC
)
12883 * APPLE NOTE: Defend against gcc 4.0 botch on x86.
12884 * not all paths out of inlined dtrace_dof_ecbdesc
12885 * are checked for the NULL return value.
12886 * Check for NULL explicitly here.
12888 ep
= dtrace_dof_ecbdesc(dof
, sec
, vstate
, cr
);
12890 dtrace_enabling_destroy(enab
);
12895 dtrace_enabling_add(enab
, ep
);
12902 * Process DOF for any options. This routine assumes that the DOF has been
12903 * at least processed by dtrace_dof_slurp().
12906 dtrace_dof_options(dof_hdr_t
*dof
, dtrace_state_t
*state
)
12912 dof_optdesc_t
*desc
;
12914 for (i
= 0; i
< dof
->dofh_secnum
; i
++) {
12915 dof_sec_t
*sec
= (dof_sec_t
*)((uintptr_t)dof
+
12916 (uintptr_t)dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
12918 if (sec
->dofs_type
!= DOF_SECT_OPTDESC
)
12921 if (sec
->dofs_align
!= sizeof (uint64_t)) {
12922 dtrace_dof_error(dof
, "bad alignment in "
12923 "option description");
12927 if ((entsize
= sec
->dofs_entsize
) == 0) {
12928 dtrace_dof_error(dof
, "zeroed option entry size");
12932 if (entsize
< sizeof (dof_optdesc_t
)) {
12933 dtrace_dof_error(dof
, "bad option entry size");
12937 for (offs
= 0; offs
< sec
->dofs_size
; offs
+= entsize
) {
12938 desc
= (dof_optdesc_t
*)((uintptr_t)dof
+
12939 (uintptr_t)sec
->dofs_offset
+ offs
);
12941 if (desc
->dofo_strtab
!= DOF_SECIDX_NONE
) {
12942 dtrace_dof_error(dof
, "non-zero option string");
12946 if (desc
->dofo_value
== (uint64_t)DTRACEOPT_UNSET
) {
12947 dtrace_dof_error(dof
, "unset option");
12951 if ((rval
= dtrace_state_option(state
,
12952 desc
->dofo_option
, desc
->dofo_value
)) != 0) {
12953 dtrace_dof_error(dof
, "rejected option");
12963 * DTrace Consumer State Functions
12966 dtrace_dstate_init(dtrace_dstate_t
*dstate
, size_t size
)
12968 size_t hashsize
, maxper
, min_size
, chunksize
= dstate
->dtds_chunksize
;
12971 dtrace_dynvar_t
*dvar
, *next
, *start
;
12974 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
12975 ASSERT(dstate
->dtds_base
== NULL
&& dstate
->dtds_percpu
== NULL
);
12977 bzero(dstate
, sizeof (dtrace_dstate_t
));
12979 if ((dstate
->dtds_chunksize
= chunksize
) == 0)
12980 dstate
->dtds_chunksize
= DTRACE_DYNVAR_CHUNKSIZE
;
12982 VERIFY(dstate
->dtds_chunksize
< (LONG_MAX
- sizeof (dtrace_dynhash_t
)));
12984 if (size
< (min_size
= dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
)))
12987 if ((base
= kmem_zalloc(size
, KM_NOSLEEP
)) == NULL
)
12990 dstate
->dtds_size
= size
;
12991 dstate
->dtds_base
= base
;
12992 dstate
->dtds_percpu
= kmem_cache_alloc(dtrace_state_cache
, KM_SLEEP
);
12993 bzero(dstate
->dtds_percpu
, (int)NCPU
* sizeof (dtrace_dstate_percpu_t
));
12995 hashsize
= size
/ (dstate
->dtds_chunksize
+ sizeof (dtrace_dynhash_t
));
12997 if (hashsize
!= 1 && (hashsize
& 1))
13000 dstate
->dtds_hashsize
= hashsize
;
13001 dstate
->dtds_hash
= dstate
->dtds_base
;
13004 * Set all of our hash buckets to point to the single sink, and (if
13005 * it hasn't already been set), set the sink's hash value to be the
13006 * sink sentinel value. The sink is needed for dynamic variable
13007 * lookups to know that they have iterated over an entire, valid hash
13010 for (i
= 0; i
< hashsize
; i
++)
13011 dstate
->dtds_hash
[i
].dtdh_chain
= &dtrace_dynhash_sink
;
13013 if (dtrace_dynhash_sink
.dtdv_hashval
!= DTRACE_DYNHASH_SINK
)
13014 dtrace_dynhash_sink
.dtdv_hashval
= DTRACE_DYNHASH_SINK
;
13017 * Determine number of active CPUs. Divide free list evenly among
13020 start
= (dtrace_dynvar_t
*)
13021 ((uintptr_t)base
+ hashsize
* sizeof (dtrace_dynhash_t
));
13022 limit
= (uintptr_t)base
+ size
;
13024 VERIFY((uintptr_t)start
< limit
);
13025 VERIFY((uintptr_t)start
>= (uintptr_t)base
);
13027 maxper
= (limit
- (uintptr_t)start
) / (int)NCPU
;
13028 maxper
= (maxper
/ dstate
->dtds_chunksize
) * dstate
->dtds_chunksize
;
13030 for (i
= 0; i
< NCPU
; i
++) {
13031 dstate
->dtds_percpu
[i
].dtdsc_free
= dvar
= start
;
13034 * If we don't even have enough chunks to make it once through
13035 * NCPUs, we're just going to allocate everything to the first
13036 * CPU. And if we're on the last CPU, we're going to allocate
13037 * whatever is left over. In either case, we set the limit to
13038 * be the limit of the dynamic variable space.
13040 if (maxper
== 0 || i
== NCPU
- 1) {
13041 limit
= (uintptr_t)base
+ size
;
13044 limit
= (uintptr_t)start
+ maxper
;
13045 start
= (dtrace_dynvar_t
*)limit
;
13048 VERIFY(limit
<= (uintptr_t)base
+ size
);
13051 next
= (dtrace_dynvar_t
*)((uintptr_t)dvar
+
13052 dstate
->dtds_chunksize
);
13054 if ((uintptr_t)next
+ dstate
->dtds_chunksize
>= limit
)
13057 VERIFY((uintptr_t)dvar
>= (uintptr_t)base
&&
13058 (uintptr_t)dvar
<= (uintptr_t)base
+ size
);
13059 dvar
->dtdv_next
= next
;
13071 dtrace_dstate_fini(dtrace_dstate_t
*dstate
)
13073 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13075 if (dstate
->dtds_base
== NULL
)
13078 kmem_free(dstate
->dtds_base
, dstate
->dtds_size
);
13079 kmem_cache_free(dtrace_state_cache
, dstate
->dtds_percpu
);
13083 dtrace_vstate_fini(dtrace_vstate_t
*vstate
)
13086 * Logical XOR, where are you?
13088 ASSERT((vstate
->dtvs_nglobals
== 0) ^ (vstate
->dtvs_globals
!= NULL
));
13090 if (vstate
->dtvs_nglobals
> 0) {
13091 kmem_free(vstate
->dtvs_globals
, vstate
->dtvs_nglobals
*
13092 sizeof (dtrace_statvar_t
*));
13095 if (vstate
->dtvs_ntlocals
> 0) {
13096 kmem_free(vstate
->dtvs_tlocals
, vstate
->dtvs_ntlocals
*
13097 sizeof (dtrace_difv_t
));
13100 ASSERT((vstate
->dtvs_nlocals
== 0) ^ (vstate
->dtvs_locals
!= NULL
));
13102 if (vstate
->dtvs_nlocals
> 0) {
13103 kmem_free(vstate
->dtvs_locals
, vstate
->dtvs_nlocals
*
13104 sizeof (dtrace_statvar_t
*));
13109 dtrace_state_clean(dtrace_state_t
*state
)
13111 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
)
13114 dtrace_dynvar_clean(&state
->dts_vstate
.dtvs_dynvars
);
13115 dtrace_speculation_clean(state
);
13119 dtrace_state_deadman(dtrace_state_t
*state
)
13125 now
= dtrace_gethrtime();
13127 if (state
!= dtrace_anon
.dta_state
&&
13128 now
- state
->dts_laststatus
>= dtrace_deadman_user
)
13132 * We must be sure that dts_alive never appears to be less than the
13133 * value upon entry to dtrace_state_deadman(), and because we lack a
13134 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13135 * store INT64_MAX to it, followed by a memory barrier, followed by
13136 * the new value. This assures that dts_alive never appears to be
13137 * less than its true value, regardless of the order in which the
13138 * stores to the underlying storage are issued.
13140 state
->dts_alive
= INT64_MAX
;
13141 dtrace_membar_producer();
13142 state
->dts_alive
= now
;
13146 dtrace_state_create(dev_t
*devp
, cred_t
*cr
, dtrace_state_t
**new_state
)
13151 dtrace_state_t
*state
;
13152 dtrace_optval_t
*opt
;
13153 int bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
), i
;
13155 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13156 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13158 /* Cause restart */
13161 if (devp
!= NULL
) {
13162 minor
= getminor(*devp
);
13165 minor
= DTRACE_NCLIENTS
- 1;
13168 state
= dtrace_state_allocate(minor
);
13169 if (NULL
== state
) {
13170 printf("dtrace_open: couldn't acquire minor number %d. This usually means that too many DTrace clients are in use at the moment", minor
);
13171 return (ERESTART
); /* can't reacquire */
13174 state
->dts_epid
= DTRACE_EPIDNONE
+ 1;
13176 (void) snprintf(c
, sizeof (c
), "dtrace_aggid_%d", minor
);
13177 state
->dts_aggid_arena
= vmem_create(c
, (void *)1, UINT32_MAX
, 1,
13178 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
13180 if (devp
!= NULL
) {
13181 major
= getemajor(*devp
);
13183 major
= ddi_driver_major(dtrace_devi
);
13186 state
->dts_dev
= makedevice(major
, minor
);
13189 *devp
= state
->dts_dev
;
13192 * We allocate NCPU buffers. On the one hand, this can be quite
13193 * a bit of memory per instance (nearly 36K on a Starcat). On the
13194 * other hand, it saves an additional memory reference in the probe
13197 state
->dts_buffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13198 state
->dts_aggbuffer
= kmem_zalloc(bufsize
, KM_SLEEP
);
13199 state
->dts_buf_over_limit
= 0;
13200 state
->dts_cleaner
= CYCLIC_NONE
;
13201 state
->dts_deadman
= CYCLIC_NONE
;
13202 state
->dts_vstate
.dtvs_state
= state
;
13204 for (i
= 0; i
< DTRACEOPT_MAX
; i
++)
13205 state
->dts_options
[i
] = DTRACEOPT_UNSET
;
13208 * Set the default options.
13210 opt
= state
->dts_options
;
13211 opt
[DTRACEOPT_BUFPOLICY
] = DTRACEOPT_BUFPOLICY_SWITCH
;
13212 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_AUTO
;
13213 opt
[DTRACEOPT_NSPEC
] = dtrace_nspec_default
;
13214 opt
[DTRACEOPT_SPECSIZE
] = dtrace_specsize_default
;
13215 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)DTRACE_CPUALL
;
13216 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_default
;
13217 opt
[DTRACEOPT_STACKFRAMES
] = dtrace_stackframes_default
;
13218 opt
[DTRACEOPT_USTACKFRAMES
] = dtrace_ustackframes_default
;
13219 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_default
;
13220 opt
[DTRACEOPT_AGGRATE
] = dtrace_aggrate_default
;
13221 opt
[DTRACEOPT_SWITCHRATE
] = dtrace_switchrate_default
;
13222 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_default
;
13223 opt
[DTRACEOPT_JSTACKFRAMES
] = dtrace_jstackframes_default
;
13224 opt
[DTRACEOPT_JSTACKSTRSIZE
] = dtrace_jstackstrsize_default
;
13225 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_default
;
13228 * Depending on the user credentials, we set flag bits which alter probe
13229 * visibility or the amount of destructiveness allowed. In the case of
13230 * actual anonymous tracing, or the possession of all privileges, all of
13231 * the normal checks are bypassed.
13233 #if defined(__APPLE__)
13234 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13235 if (dtrace_is_restricted() && !dtrace_are_restrictions_relaxed()) {
13237 * Allow only proc credentials when DTrace is
13238 * restricted by the current security policy
13240 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALLPROC
;
13241 state
->dts_cred
.dcr_action
= DTRACE_CRA_PROC
| DTRACE_CRA_PROC_CONTROL
| DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13244 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13245 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13250 if (cr
== NULL
|| PRIV_POLICY_ONLY(cr
, PRIV_ALL
, B_FALSE
)) {
13251 state
->dts_cred
.dcr_visible
= DTRACE_CRV_ALL
;
13252 state
->dts_cred
.dcr_action
= DTRACE_CRA_ALL
;
13256 * Set up the credentials for this instantiation. We take a
13257 * hold on the credential to prevent it from disappearing on
13258 * us; this in turn prevents the zone_t referenced by this
13259 * credential from disappearing. This means that we can
13260 * examine the credential and the zone from probe context.
13263 state
->dts_cred
.dcr_cred
= cr
;
13266 * CRA_PROC means "we have *some* privilege for dtrace" and
13267 * unlocks the use of variables like pid, zonename, etc.
13269 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
) ||
13270 PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13271 state
->dts_cred
.dcr_action
|= DTRACE_CRA_PROC
;
13275 * dtrace_user allows use of syscall and profile providers.
13276 * If the user also has proc_owner and/or proc_zone, we
13277 * extend the scope to include additional visibility and
13278 * destructive power.
13280 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_USER
, B_FALSE
)) {
13281 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
)) {
13282 state
->dts_cred
.dcr_visible
|=
13283 DTRACE_CRV_ALLPROC
;
13285 state
->dts_cred
.dcr_action
|=
13286 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13289 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
)) {
13290 state
->dts_cred
.dcr_visible
|=
13291 DTRACE_CRV_ALLZONE
;
13293 state
->dts_cred
.dcr_action
|=
13294 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13298 * If we have all privs in whatever zone this is,
13299 * we can do destructive things to processes which
13300 * have altered credentials.
13302 * APPLE NOTE: Darwin doesn't do zones.
13303 * Behave as if zone always has destructive privs.
13306 state
->dts_cred
.dcr_action
|=
13307 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13311 * Holding the dtrace_kernel privilege also implies that
13312 * the user has the dtrace_user privilege from a visibility
13313 * perspective. But without further privileges, some
13314 * destructive actions are not available.
13316 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_KERNEL
, B_FALSE
)) {
13318 * Make all probes in all zones visible. However,
13319 * this doesn't mean that all actions become available
13322 state
->dts_cred
.dcr_visible
|= DTRACE_CRV_KERNEL
|
13323 DTRACE_CRV_ALLPROC
| DTRACE_CRV_ALLZONE
;
13325 state
->dts_cred
.dcr_action
|= DTRACE_CRA_KERNEL
|
13328 * Holding proc_owner means that destructive actions
13329 * for *this* zone are allowed.
13331 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13332 state
->dts_cred
.dcr_action
|=
13333 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13336 * Holding proc_zone means that destructive actions
13337 * for this user/group ID in all zones is allowed.
13339 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13340 state
->dts_cred
.dcr_action
|=
13341 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13344 * If we have all privs in whatever zone this is,
13345 * we can do destructive things to processes which
13346 * have altered credentials.
13348 * APPLE NOTE: Darwin doesn't do zones.
13349 * Behave as if zone always has destructive privs.
13351 state
->dts_cred
.dcr_action
|=
13352 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG
;
13356 * Holding the dtrace_proc privilege gives control over fasttrap
13357 * and pid providers. We need to grant wider destructive
13358 * privileges in the event that the user has proc_owner and/or
13361 if (PRIV_POLICY_ONLY(cr
, PRIV_DTRACE_PROC
, B_FALSE
)) {
13362 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_OWNER
, B_FALSE
))
13363 state
->dts_cred
.dcr_action
|=
13364 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER
;
13366 if (PRIV_POLICY_ONLY(cr
, PRIV_PROC_ZONE
, B_FALSE
))
13367 state
->dts_cred
.dcr_action
|=
13368 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE
;
13373 *new_state
= state
;
13374 return(0); /* Success */
13378 dtrace_state_buffer(dtrace_state_t
*state
, dtrace_buffer_t
*buf
, int which
)
13380 dtrace_optval_t
*opt
= state
->dts_options
, size
;
13381 processorid_t cpu
= 0;
13382 size_t limit
= buf
->dtb_size
;
13383 int flags
= 0, rval
;
13385 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13386 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13387 ASSERT(which
< DTRACEOPT_MAX
);
13388 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
||
13389 (state
== dtrace_anon
.dta_state
&&
13390 state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
));
13392 if (opt
[which
] == DTRACEOPT_UNSET
|| opt
[which
] == 0)
13395 if (opt
[DTRACEOPT_CPU
] != DTRACEOPT_UNSET
)
13396 cpu
= opt
[DTRACEOPT_CPU
];
13398 if (which
== DTRACEOPT_SPECSIZE
)
13399 flags
|= DTRACEBUF_NOSWITCH
;
13401 if (which
== DTRACEOPT_BUFSIZE
) {
13402 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_RING
)
13403 flags
|= DTRACEBUF_RING
;
13405 if (opt
[DTRACEOPT_BUFPOLICY
] == DTRACEOPT_BUFPOLICY_FILL
)
13406 flags
|= DTRACEBUF_FILL
;
13408 if (state
!= dtrace_anon
.dta_state
||
13409 state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
13410 flags
|= DTRACEBUF_INACTIVE
;
13413 for (size
= opt
[which
]; (size_t)size
>= sizeof (uint64_t); size
>>= 1) {
13415 * The size must be 8-byte aligned. If the size is not 8-byte
13416 * aligned, drop it down by the difference.
13418 if (size
& (sizeof (uint64_t) - 1))
13419 size
-= size
& (sizeof (uint64_t) - 1);
13421 if (size
< state
->dts_reserve
) {
13423 * Buffers always must be large enough to accommodate
13424 * their prereserved space. We return E2BIG instead
13425 * of ENOMEM in this case to allow for user-level
13426 * software to differentiate the cases.
13430 limit
= opt
[DTRACEOPT_BUFLIMIT
] * size
/ 100;
13431 rval
= dtrace_buffer_alloc(buf
, limit
, size
, flags
, cpu
);
13433 if (rval
!= ENOMEM
) {
13438 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13446 dtrace_state_buffers(dtrace_state_t
*state
)
13448 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13451 if ((rval
= dtrace_state_buffer(state
, state
->dts_buffer
,
13452 DTRACEOPT_BUFSIZE
)) != 0)
13455 if ((rval
= dtrace_state_buffer(state
, state
->dts_aggbuffer
,
13456 DTRACEOPT_AGGSIZE
)) != 0)
13459 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13460 if ((rval
= dtrace_state_buffer(state
,
13461 spec
[i
].dtsp_buffer
, DTRACEOPT_SPECSIZE
)) != 0)
13469 dtrace_state_prereserve(dtrace_state_t
*state
)
13472 dtrace_probe_t
*probe
;
13474 state
->dts_reserve
= 0;
13476 if (state
->dts_options
[DTRACEOPT_BUFPOLICY
] != DTRACEOPT_BUFPOLICY_FILL
)
13480 * If our buffer policy is a "fill" buffer policy, we need to set the
13481 * prereserved space to be the space required by the END probes.
13483 probe
= dtrace_probes
[dtrace_probeid_end
- 1];
13484 ASSERT(probe
!= NULL
);
13486 for (ecb
= probe
->dtpr_ecb
; ecb
!= NULL
; ecb
= ecb
->dte_next
) {
13487 if (ecb
->dte_state
!= state
)
13490 state
->dts_reserve
+= ecb
->dte_needed
+ ecb
->dte_alignment
;
13495 dtrace_state_go(dtrace_state_t
*state
, processorid_t
*cpu
)
13497 dtrace_optval_t
*opt
= state
->dts_options
, sz
, nspec
;
13498 dtrace_speculation_t
*spec
;
13499 dtrace_buffer_t
*buf
;
13500 cyc_handler_t hdlr
;
13502 int rval
= 0, i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13503 dtrace_icookie_t cookie
;
13505 lck_mtx_lock(&cpu_lock
);
13506 lck_mtx_lock(&dtrace_lock
);
13508 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
13514 * Before we can perform any checks, we must prime all of the
13515 * retained enablings that correspond to this state.
13517 dtrace_enabling_prime(state
);
13519 if (state
->dts_destructive
&& !state
->dts_cred
.dcr_destructive
) {
13524 dtrace_state_prereserve(state
);
13527 * Now we want to do is try to allocate our speculations.
13528 * We do not automatically resize the number of speculations; if
13529 * this fails, we will fail the operation.
13531 nspec
= opt
[DTRACEOPT_NSPEC
];
13532 ASSERT(nspec
!= DTRACEOPT_UNSET
);
13534 if (nspec
> INT_MAX
) {
13539 spec
= kmem_zalloc(nspec
* sizeof (dtrace_speculation_t
), KM_NOSLEEP
);
13541 if (spec
== NULL
) {
13546 state
->dts_speculations
= spec
;
13547 state
->dts_nspeculations
= (int)nspec
;
13549 for (i
= 0; i
< nspec
; i
++) {
13550 if ((buf
= kmem_zalloc(bufsize
, KM_NOSLEEP
)) == NULL
) {
13555 spec
[i
].dtsp_buffer
= buf
;
13558 if (opt
[DTRACEOPT_GRABANON
] != DTRACEOPT_UNSET
) {
13559 if (dtrace_anon
.dta_state
== NULL
) {
13564 if (state
->dts_necbs
!= 0) {
13569 state
->dts_anon
= dtrace_anon_grab();
13570 ASSERT(state
->dts_anon
!= NULL
);
13571 state
= state
->dts_anon
;
13574 * We want "grabanon" to be set in the grabbed state, so we'll
13575 * copy that option value from the grabbing state into the
13578 state
->dts_options
[DTRACEOPT_GRABANON
] =
13579 opt
[DTRACEOPT_GRABANON
];
13581 *cpu
= dtrace_anon
.dta_beganon
;
13584 * If the anonymous state is active (as it almost certainly
13585 * is if the anonymous enabling ultimately matched anything),
13586 * we don't allow any further option processing -- but we
13587 * don't return failure.
13589 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13593 if (opt
[DTRACEOPT_AGGSIZE
] != DTRACEOPT_UNSET
&&
13594 opt
[DTRACEOPT_AGGSIZE
] != 0) {
13595 if (state
->dts_aggregations
== NULL
) {
13597 * We're not going to create an aggregation buffer
13598 * because we don't have any ECBs that contain
13599 * aggregations -- set this option to 0.
13601 opt
[DTRACEOPT_AGGSIZE
] = 0;
13604 * If we have an aggregation buffer, we must also have
13605 * a buffer to use as scratch.
13607 if (opt
[DTRACEOPT_BUFSIZE
] == DTRACEOPT_UNSET
||
13608 (size_t)opt
[DTRACEOPT_BUFSIZE
] < state
->dts_needed
) {
13609 opt
[DTRACEOPT_BUFSIZE
] = state
->dts_needed
;
13614 if (opt
[DTRACEOPT_SPECSIZE
] != DTRACEOPT_UNSET
&&
13615 opt
[DTRACEOPT_SPECSIZE
] != 0) {
13616 if (!state
->dts_speculates
) {
13618 * We're not going to create speculation buffers
13619 * because we don't have any ECBs that actually
13620 * speculate -- set the speculation size to 0.
13622 opt
[DTRACEOPT_SPECSIZE
] = 0;
13627 * The bare minimum size for any buffer that we're actually going to
13628 * do anything to is sizeof (uint64_t).
13630 sz
= sizeof (uint64_t);
13632 if ((state
->dts_needed
!= 0 && opt
[DTRACEOPT_BUFSIZE
] < sz
) ||
13633 (state
->dts_speculates
&& opt
[DTRACEOPT_SPECSIZE
] < sz
) ||
13634 (state
->dts_aggregations
!= NULL
&& opt
[DTRACEOPT_AGGSIZE
] < sz
)) {
13636 * A buffer size has been explicitly set to 0 (or to a size
13637 * that will be adjusted to 0) and we need the space -- we
13638 * need to return failure. We return ENOSPC to differentiate
13639 * it from failing to allocate a buffer due to failure to meet
13640 * the reserve (for which we return E2BIG).
13646 if ((rval
= dtrace_state_buffers(state
)) != 0)
13649 if ((sz
= opt
[DTRACEOPT_DYNVARSIZE
]) == DTRACEOPT_UNSET
)
13650 sz
= dtrace_dstate_defsize
;
13653 rval
= dtrace_dstate_init(&state
->dts_vstate
.dtvs_dynvars
, sz
);
13658 if (opt
[DTRACEOPT_BUFRESIZE
] == DTRACEOPT_BUFRESIZE_MANUAL
)
13660 } while (sz
>>= 1);
13662 opt
[DTRACEOPT_DYNVARSIZE
] = sz
;
13667 if (opt
[DTRACEOPT_STATUSRATE
] > dtrace_statusrate_max
)
13668 opt
[DTRACEOPT_STATUSRATE
] = dtrace_statusrate_max
;
13670 if (opt
[DTRACEOPT_CLEANRATE
] == 0)
13671 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13673 if (opt
[DTRACEOPT_CLEANRATE
] < dtrace_cleanrate_min
)
13674 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_min
;
13676 if (opt
[DTRACEOPT_CLEANRATE
] > dtrace_cleanrate_max
)
13677 opt
[DTRACEOPT_CLEANRATE
] = dtrace_cleanrate_max
;
13679 if (opt
[DTRACEOPT_STRSIZE
] > dtrace_strsize_max
)
13680 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_max
;
13682 if (opt
[DTRACEOPT_STRSIZE
] < dtrace_strsize_min
)
13683 opt
[DTRACEOPT_STRSIZE
] = dtrace_strsize_min
;
13685 if (opt
[DTRACEOPT_BUFLIMIT
] > dtrace_buflimit_max
)
13686 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_max
;
13688 if (opt
[DTRACEOPT_BUFLIMIT
] < dtrace_buflimit_min
)
13689 opt
[DTRACEOPT_BUFLIMIT
] = dtrace_buflimit_min
;
13691 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_clean
;
13692 hdlr
.cyh_arg
= state
;
13693 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13696 when
.cyt_interval
= opt
[DTRACEOPT_CLEANRATE
];
13698 state
->dts_cleaner
= cyclic_add(&hdlr
, &when
);
13700 hdlr
.cyh_func
= (cyc_func_t
)dtrace_state_deadman
;
13701 hdlr
.cyh_arg
= state
;
13702 hdlr
.cyh_level
= CY_LOW_LEVEL
;
13705 when
.cyt_interval
= dtrace_deadman_interval
;
13707 state
->dts_alive
= state
->dts_laststatus
= dtrace_gethrtime();
13708 state
->dts_deadman
= cyclic_add(&hdlr
, &when
);
13710 state
->dts_activity
= DTRACE_ACTIVITY_WARMUP
;
13713 * Now it's time to actually fire the BEGIN probe. We need to disable
13714 * interrupts here both to record the CPU on which we fired the BEGIN
13715 * probe (the data from this CPU will be processed first at user
13716 * level) and to manually activate the buffer for this CPU.
13718 cookie
= dtrace_interrupt_disable();
13719 *cpu
= CPU
->cpu_id
;
13720 ASSERT(state
->dts_buffer
[*cpu
].dtb_flags
& DTRACEBUF_INACTIVE
);
13721 state
->dts_buffer
[*cpu
].dtb_flags
&= ~DTRACEBUF_INACTIVE
;
13723 dtrace_probe(dtrace_probeid_begin
,
13724 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13725 dtrace_interrupt_enable(cookie
);
13727 * We may have had an exit action from a BEGIN probe; only change our
13728 * state to ACTIVE if we're still in WARMUP.
13730 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
||
13731 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
);
13733 if (state
->dts_activity
== DTRACE_ACTIVITY_WARMUP
)
13734 state
->dts_activity
= DTRACE_ACTIVITY_ACTIVE
;
13737 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13738 * want each CPU to transition its principal buffer out of the
13739 * INACTIVE state. Doing this assures that no CPU will suddenly begin
13740 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13741 * atomically transition from processing none of a state's ECBs to
13742 * processing all of them.
13744 dtrace_xcall(DTRACE_CPUALL
,
13745 (dtrace_xcall_t
)dtrace_buffer_activate
, state
);
13749 dtrace_buffer_free(state
->dts_buffer
);
13750 dtrace_buffer_free(state
->dts_aggbuffer
);
13752 if ((nspec
= state
->dts_nspeculations
) == 0) {
13753 ASSERT(state
->dts_speculations
== NULL
);
13757 spec
= state
->dts_speculations
;
13758 ASSERT(spec
!= NULL
);
13760 for (i
= 0; i
< state
->dts_nspeculations
; i
++) {
13761 if ((buf
= spec
[i
].dtsp_buffer
) == NULL
)
13764 dtrace_buffer_free(buf
);
13765 kmem_free(buf
, bufsize
);
13768 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
13769 state
->dts_nspeculations
= 0;
13770 state
->dts_speculations
= NULL
;
13773 lck_mtx_unlock(&dtrace_lock
);
13774 lck_mtx_unlock(&cpu_lock
);
13780 dtrace_state_stop(dtrace_state_t
*state
, processorid_t
*cpu
)
13782 dtrace_icookie_t cookie
;
13784 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13786 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
&&
13787 state
->dts_activity
!= DTRACE_ACTIVITY_DRAINING
)
13791 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13792 * to be sure that every CPU has seen it. See below for the details
13793 * on why this is done.
13795 state
->dts_activity
= DTRACE_ACTIVITY_DRAINING
;
13799 * By this point, it is impossible for any CPU to be still processing
13800 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
13801 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13802 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
13803 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13804 * iff we're in the END probe.
13806 state
->dts_activity
= DTRACE_ACTIVITY_COOLDOWN
;
13808 ASSERT(state
->dts_activity
== DTRACE_ACTIVITY_COOLDOWN
);
13811 * Finally, we can release the reserve and call the END probe. We
13812 * disable interrupts across calling the END probe to allow us to
13813 * return the CPU on which we actually called the END probe. This
13814 * allows user-land to be sure that this CPU's principal buffer is
13817 state
->dts_reserve
= 0;
13819 cookie
= dtrace_interrupt_disable();
13820 *cpu
= CPU
->cpu_id
;
13821 dtrace_probe(dtrace_probeid_end
,
13822 (uint64_t)(uintptr_t)state
, 0, 0, 0, 0);
13823 dtrace_interrupt_enable(cookie
);
13825 state
->dts_activity
= DTRACE_ACTIVITY_STOPPED
;
13832 dtrace_state_option(dtrace_state_t
*state
, dtrace_optid_t option
,
13833 dtrace_optval_t val
)
13835 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13837 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
)
13840 if (option
>= DTRACEOPT_MAX
)
13843 if (option
!= DTRACEOPT_CPU
&& val
< 0)
13847 case DTRACEOPT_DESTRUCTIVE
:
13849 * Prevent consumers from enabling destructive actions if DTrace
13850 * is running in a restricted environment, or if actions are
13853 if (dtrace_is_restricted() || dtrace_destructive_disallow
)
13856 state
->dts_cred
.dcr_destructive
= 1;
13859 case DTRACEOPT_BUFSIZE
:
13860 case DTRACEOPT_DYNVARSIZE
:
13861 case DTRACEOPT_AGGSIZE
:
13862 case DTRACEOPT_SPECSIZE
:
13863 case DTRACEOPT_STRSIZE
:
13867 if (val
>= LONG_MAX
) {
13869 * If this is an otherwise negative value, set it to
13870 * the highest multiple of 128m less than LONG_MAX.
13871 * Technically, we're adjusting the size without
13872 * regard to the buffer resizing policy, but in fact,
13873 * this has no effect -- if we set the buffer size to
13874 * ~LONG_MAX and the buffer policy is ultimately set to
13875 * be "manual", the buffer allocation is guaranteed to
13876 * fail, if only because the allocation requires two
13877 * buffers. (We set the the size to the highest
13878 * multiple of 128m because it ensures that the size
13879 * will remain a multiple of a megabyte when
13880 * repeatedly halved -- all the way down to 15m.)
13882 val
= LONG_MAX
- (1 << 27) + 1;
13886 state
->dts_options
[option
] = val
;
13892 dtrace_state_destroy(dtrace_state_t
*state
)
13895 dtrace_vstate_t
*vstate
= &state
->dts_vstate
;
13896 minor_t minor
= getminor(state
->dts_dev
);
13897 int i
, bufsize
= (int)NCPU
* sizeof (dtrace_buffer_t
);
13898 dtrace_speculation_t
*spec
= state
->dts_speculations
;
13899 int nspec
= state
->dts_nspeculations
;
13902 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
13903 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
13906 * First, retract any retained enablings for this state.
13908 dtrace_enabling_retract(state
);
13909 ASSERT(state
->dts_nretained
== 0);
13911 if (state
->dts_activity
== DTRACE_ACTIVITY_ACTIVE
||
13912 state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
) {
13914 * We have managed to come into dtrace_state_destroy() on a
13915 * hot enabling -- almost certainly because of a disorderly
13916 * shutdown of a consumer. (That is, a consumer that is
13917 * exiting without having called dtrace_stop().) In this case,
13918 * we're going to set our activity to be KILLED, and then
13919 * issue a sync to be sure that everyone is out of probe
13920 * context before we start blowing away ECBs.
13922 state
->dts_activity
= DTRACE_ACTIVITY_KILLED
;
13927 * Release the credential hold we took in dtrace_state_create().
13929 if (state
->dts_cred
.dcr_cred
!= NULL
)
13930 crfree(state
->dts_cred
.dcr_cred
);
13933 * Now we can safely disable and destroy any enabled probes. Because
13934 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13935 * (especially if they're all enabled), we take two passes through the
13936 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13937 * in the second we disable whatever is left over.
13939 for (match
= DTRACE_PRIV_KERNEL
; ; match
= 0) {
13940 for (i
= 0; i
< state
->dts_necbs
; i
++) {
13941 if ((ecb
= state
->dts_ecbs
[i
]) == NULL
)
13944 if (match
&& ecb
->dte_probe
!= NULL
) {
13945 dtrace_probe_t
*probe
= ecb
->dte_probe
;
13946 dtrace_provider_t
*prov
= probe
->dtpr_provider
;
13948 if (!(prov
->dtpv_priv
.dtpp_flags
& match
))
13952 dtrace_ecb_disable(ecb
);
13953 dtrace_ecb_destroy(ecb
);
13961 * Before we free the buffers, perform one more sync to assure that
13962 * every CPU is out of probe context.
13966 dtrace_buffer_free(state
->dts_buffer
);
13967 dtrace_buffer_free(state
->dts_aggbuffer
);
13969 for (i
= 0; i
< nspec
; i
++)
13970 dtrace_buffer_free(spec
[i
].dtsp_buffer
);
13972 if (state
->dts_cleaner
!= CYCLIC_NONE
)
13973 cyclic_remove(state
->dts_cleaner
);
13975 if (state
->dts_deadman
!= CYCLIC_NONE
)
13976 cyclic_remove(state
->dts_deadman
);
13978 dtrace_dstate_fini(&vstate
->dtvs_dynvars
);
13979 dtrace_vstate_fini(vstate
);
13980 kmem_free(state
->dts_ecbs
, state
->dts_necbs
* sizeof (dtrace_ecb_t
*));
13982 if (state
->dts_aggregations
!= NULL
) {
13984 for (i
= 0; i
< state
->dts_naggregations
; i
++)
13985 ASSERT(state
->dts_aggregations
[i
] == NULL
);
13987 ASSERT(state
->dts_naggregations
> 0);
13988 kmem_free(state
->dts_aggregations
,
13989 state
->dts_naggregations
* sizeof (dtrace_aggregation_t
*));
13992 kmem_free(state
->dts_buffer
, bufsize
);
13993 kmem_free(state
->dts_aggbuffer
, bufsize
);
13995 for (i
= 0; i
< nspec
; i
++)
13996 kmem_free(spec
[i
].dtsp_buffer
, bufsize
);
13998 kmem_free(spec
, nspec
* sizeof (dtrace_speculation_t
));
14000 dtrace_format_destroy(state
);
14002 vmem_destroy(state
->dts_aggid_arena
);
14003 dtrace_state_free(minor
);
14007 * DTrace Anonymous Enabling Functions
14009 static dtrace_state_t
*
14010 dtrace_anon_grab(void)
14012 dtrace_state_t
*state
;
14014 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14016 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14017 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14021 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14022 ASSERT(dtrace_retained
!= NULL
);
14024 dtrace_enabling_destroy(dtrace_anon
.dta_enabling
);
14025 dtrace_anon
.dta_enabling
= NULL
;
14026 dtrace_anon
.dta_state
= NULL
;
14032 dtrace_anon_property(void)
14035 dtrace_state_t
*state
;
14037 char c
[32]; /* enough for "dof-data-" + digits */
14039 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14040 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
14042 for (i
= 0; ; i
++) {
14043 (void) snprintf(c
, sizeof (c
), "dof-data-%d", i
);
14045 dtrace_err_verbose
= 1;
14047 if ((dof
= dtrace_dof_property(c
)) == NULL
) {
14048 dtrace_err_verbose
= 0;
14053 * We want to create anonymous state, so we need to transition
14054 * the kernel debugger to indicate that DTrace is active. If
14055 * this fails (e.g. because the debugger has modified text in
14056 * some way), we won't continue with the processing.
14058 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
14059 cmn_err(CE_NOTE
, "kernel debugger active; anonymous "
14060 "enabling ignored.");
14061 dtrace_dof_destroy(dof
);
14066 * If we haven't allocated an anonymous state, we'll do so now.
14068 if ((state
= dtrace_anon
.dta_state
) == NULL
) {
14069 rv
= dtrace_state_create(NULL
, NULL
, &state
);
14070 dtrace_anon
.dta_state
= state
;
14071 if (rv
!= 0 || state
== NULL
) {
14073 * This basically shouldn't happen: the only
14074 * failure mode from dtrace_state_create() is a
14075 * failure of ddi_soft_state_zalloc() that
14076 * itself should never happen. Still, the
14077 * interface allows for a failure mode, and
14078 * we want to fail as gracefully as possible:
14079 * we'll emit an error message and cease
14080 * processing anonymous state in this case.
14082 cmn_err(CE_WARN
, "failed to create "
14083 "anonymous state");
14084 dtrace_dof_destroy(dof
);
14089 rv
= dtrace_dof_slurp(dof
, &state
->dts_vstate
, CRED(),
14090 &dtrace_anon
.dta_enabling
, 0, B_TRUE
);
14093 rv
= dtrace_dof_options(dof
, state
);
14095 dtrace_err_verbose
= 0;
14096 dtrace_dof_destroy(dof
);
14100 * This is malformed DOF; chuck any anonymous state
14103 ASSERT(dtrace_anon
.dta_enabling
== NULL
);
14104 dtrace_state_destroy(state
);
14105 dtrace_anon
.dta_state
= NULL
;
14109 ASSERT(dtrace_anon
.dta_enabling
!= NULL
);
14112 if (dtrace_anon
.dta_enabling
!= NULL
) {
14116 * dtrace_enabling_retain() can only fail because we are
14117 * trying to retain more enablings than are allowed -- but
14118 * we only have one anonymous enabling, and we are guaranteed
14119 * to be allowed at least one retained enabling; we assert
14120 * that dtrace_enabling_retain() returns success.
14122 rval
= dtrace_enabling_retain(dtrace_anon
.dta_enabling
);
14125 dtrace_enabling_dump(dtrace_anon
.dta_enabling
);
14130 * DTrace Helper Functions
14133 dtrace_helper_trace(dtrace_helper_action_t
*helper
,
14134 dtrace_mstate_t
*mstate
, dtrace_vstate_t
*vstate
, int where
)
14136 uint32_t size
, next
, nnext
;
14138 dtrace_helptrace_t
*ent
;
14139 uint16_t flags
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14141 if (!dtrace_helptrace_enabled
)
14144 ASSERT((uint32_t)vstate
->dtvs_nlocals
<= dtrace_helptrace_nlocals
);
14147 * What would a tracing framework be without its own tracing
14148 * framework? (Well, a hell of a lot simpler, for starters...)
14150 size
= sizeof (dtrace_helptrace_t
) + dtrace_helptrace_nlocals
*
14151 sizeof (uint64_t) - sizeof (uint64_t);
14154 * Iterate until we can allocate a slot in the trace buffer.
14157 next
= dtrace_helptrace_next
;
14159 if (next
+ size
< dtrace_helptrace_bufsize
) {
14160 nnext
= next
+ size
;
14164 } while (dtrace_cas32(&dtrace_helptrace_next
, next
, nnext
) != next
);
14167 * We have our slot; fill it in.
14172 ent
= (dtrace_helptrace_t
*)&dtrace_helptrace_buffer
[next
];
14173 ent
->dtht_helper
= helper
;
14174 ent
->dtht_where
= where
;
14175 ent
->dtht_nlocals
= vstate
->dtvs_nlocals
;
14177 ent
->dtht_fltoffs
= (mstate
->dtms_present
& DTRACE_MSTATE_FLTOFFS
) ?
14178 mstate
->dtms_fltoffs
: -1;
14179 ent
->dtht_fault
= DTRACE_FLAGS2FLT(flags
);
14180 ent
->dtht_illval
= cpu_core
[CPU
->cpu_id
].cpuc_dtrace_illval
;
14182 for (i
= 0; i
< vstate
->dtvs_nlocals
; i
++) {
14183 dtrace_statvar_t
*svar
;
14185 if ((svar
= vstate
->dtvs_locals
[i
]) == NULL
)
14188 ASSERT(svar
->dtsv_size
>= (int)NCPU
* sizeof (uint64_t));
14189 ent
->dtht_locals
[i
] =
14190 ((uint64_t *)(uintptr_t)svar
->dtsv_data
)[CPU
->cpu_id
];
14195 dtrace_helper(int which
, dtrace_mstate_t
*mstate
,
14196 dtrace_state_t
*state
, uint64_t arg0
, uint64_t arg1
)
14198 uint16_t *flags
= &cpu_core
[CPU
->cpu_id
].cpuc_dtrace_flags
;
14199 uint64_t sarg0
= mstate
->dtms_arg
[0];
14200 uint64_t sarg1
= mstate
->dtms_arg
[1];
14202 dtrace_helpers_t
*helpers
= curproc
->p_dtrace_helpers
;
14203 dtrace_helper_action_t
*helper
;
14204 dtrace_vstate_t
*vstate
;
14205 dtrace_difo_t
*pred
;
14206 int i
, trace
= dtrace_helptrace_enabled
;
14208 ASSERT(which
>= 0 && which
< DTRACE_NHELPER_ACTIONS
);
14210 if (helpers
== NULL
)
14213 if ((helper
= helpers
->dthps_actions
[which
]) == NULL
)
14216 vstate
= &helpers
->dthps_vstate
;
14217 mstate
->dtms_arg
[0] = arg0
;
14218 mstate
->dtms_arg
[1] = arg1
;
14221 * Now iterate over each helper. If its predicate evaluates to 'true',
14222 * we'll call the corresponding actions. Note that the below calls
14223 * to dtrace_dif_emulate() may set faults in machine state. This is
14224 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14225 * the stored DIF offset with its own (which is the desired behavior).
14226 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14227 * from machine state; this is okay, too.
14229 for (; helper
!= NULL
; helper
= helper
->dtha_next
) {
14230 if ((pred
= helper
->dtha_predicate
) != NULL
) {
14232 dtrace_helper_trace(helper
, mstate
, vstate
, 0);
14234 if (!dtrace_dif_emulate(pred
, mstate
, vstate
, state
))
14237 if (*flags
& CPU_DTRACE_FAULT
)
14241 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14243 dtrace_helper_trace(helper
,
14244 mstate
, vstate
, i
+ 1);
14246 rval
= dtrace_dif_emulate(helper
->dtha_actions
[i
],
14247 mstate
, vstate
, state
);
14249 if (*flags
& CPU_DTRACE_FAULT
)
14255 dtrace_helper_trace(helper
, mstate
, vstate
,
14256 DTRACE_HELPTRACE_NEXT
);
14260 dtrace_helper_trace(helper
, mstate
, vstate
,
14261 DTRACE_HELPTRACE_DONE
);
14264 * Restore the arg0 that we saved upon entry.
14266 mstate
->dtms_arg
[0] = sarg0
;
14267 mstate
->dtms_arg
[1] = sarg1
;
14273 dtrace_helper_trace(helper
, mstate
, vstate
,
14274 DTRACE_HELPTRACE_ERR
);
14277 * Restore the arg0 that we saved upon entry.
14279 mstate
->dtms_arg
[0] = sarg0
;
14280 mstate
->dtms_arg
[1] = sarg1
;
14286 dtrace_helper_action_destroy(dtrace_helper_action_t
*helper
,
14287 dtrace_vstate_t
*vstate
)
14291 if (helper
->dtha_predicate
!= NULL
)
14292 dtrace_difo_release(helper
->dtha_predicate
, vstate
);
14294 for (i
= 0; i
< helper
->dtha_nactions
; i
++) {
14295 ASSERT(helper
->dtha_actions
[i
] != NULL
);
14296 dtrace_difo_release(helper
->dtha_actions
[i
], vstate
);
14299 kmem_free(helper
->dtha_actions
,
14300 helper
->dtha_nactions
* sizeof (dtrace_difo_t
*));
14301 kmem_free(helper
, sizeof (dtrace_helper_action_t
));
14305 dtrace_helper_destroygen(proc_t
* p
, int gen
)
14307 dtrace_helpers_t
*help
= p
->p_dtrace_helpers
;
14308 dtrace_vstate_t
*vstate
;
14311 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14313 if (help
== NULL
|| gen
> help
->dthps_generation
)
14316 vstate
= &help
->dthps_vstate
;
14318 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
14319 dtrace_helper_action_t
*last
= NULL
, *h
, *next
;
14321 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
14322 next
= h
->dtha_next
;
14324 if (h
->dtha_generation
== gen
) {
14325 if (last
!= NULL
) {
14326 last
->dtha_next
= next
;
14328 help
->dthps_actions
[i
] = next
;
14331 dtrace_helper_action_destroy(h
, vstate
);
14339 * Interate until we've cleared out all helper providers with the
14340 * given generation number.
14343 dtrace_helper_provider_t
*prov
= NULL
;
14346 * Look for a helper provider with the right generation. We
14347 * have to start back at the beginning of the list each time
14348 * because we drop dtrace_lock. It's unlikely that we'll make
14349 * more than two passes.
14351 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14352 prov
= help
->dthps_provs
[i
];
14354 if (prov
->dthp_generation
== gen
)
14359 * If there were no matches, we're done.
14361 if (i
== help
->dthps_nprovs
)
14365 * Move the last helper provider into this slot.
14367 help
->dthps_nprovs
--;
14368 help
->dthps_provs
[i
] = help
->dthps_provs
[help
->dthps_nprovs
];
14369 help
->dthps_provs
[help
->dthps_nprovs
] = NULL
;
14371 lck_mtx_unlock(&dtrace_lock
);
14374 * If we have a meta provider, remove this helper provider.
14376 lck_mtx_lock(&dtrace_meta_lock
);
14377 if (dtrace_meta_pid
!= NULL
) {
14378 ASSERT(dtrace_deferred_pid
== NULL
);
14379 dtrace_helper_provider_remove(&prov
->dthp_prov
,
14382 lck_mtx_unlock(&dtrace_meta_lock
);
14384 dtrace_helper_provider_destroy(prov
);
14386 lck_mtx_lock(&dtrace_lock
);
14393 dtrace_helper_validate(dtrace_helper_action_t
*helper
)
14398 if ((dp
= helper
->dtha_predicate
) != NULL
)
14399 err
+= dtrace_difo_validate_helper(dp
);
14401 for (i
= 0; i
< helper
->dtha_nactions
; i
++)
14402 err
+= dtrace_difo_validate_helper(helper
->dtha_actions
[i
]);
14408 dtrace_helper_action_add(proc_t
* p
, int which
, dtrace_ecbdesc_t
*ep
)
14410 dtrace_helpers_t
*help
;
14411 dtrace_helper_action_t
*helper
, *last
;
14412 dtrace_actdesc_t
*act
;
14413 dtrace_vstate_t
*vstate
;
14414 dtrace_predicate_t
*pred
;
14415 int count
= 0, nactions
= 0, i
;
14417 if (which
< 0 || which
>= DTRACE_NHELPER_ACTIONS
)
14420 help
= p
->p_dtrace_helpers
;
14421 last
= help
->dthps_actions
[which
];
14422 vstate
= &help
->dthps_vstate
;
14424 for (count
= 0; last
!= NULL
; last
= last
->dtha_next
) {
14426 if (last
->dtha_next
== NULL
)
14431 * If we already have dtrace_helper_actions_max helper actions for this
14432 * helper action type, we'll refuse to add a new one.
14434 if (count
>= dtrace_helper_actions_max
)
14437 helper
= kmem_zalloc(sizeof (dtrace_helper_action_t
), KM_SLEEP
);
14438 helper
->dtha_generation
= help
->dthps_generation
;
14440 if ((pred
= ep
->dted_pred
.dtpdd_predicate
) != NULL
) {
14441 ASSERT(pred
->dtp_difo
!= NULL
);
14442 dtrace_difo_hold(pred
->dtp_difo
);
14443 helper
->dtha_predicate
= pred
->dtp_difo
;
14446 for (act
= ep
->dted_action
; act
!= NULL
; act
= act
->dtad_next
) {
14447 if (act
->dtad_kind
!= DTRACEACT_DIFEXPR
)
14450 if (act
->dtad_difo
== NULL
)
14456 helper
->dtha_actions
= kmem_zalloc(sizeof (dtrace_difo_t
*) *
14457 (helper
->dtha_nactions
= nactions
), KM_SLEEP
);
14459 for (act
= ep
->dted_action
, i
= 0; act
!= NULL
; act
= act
->dtad_next
) {
14460 dtrace_difo_hold(act
->dtad_difo
);
14461 helper
->dtha_actions
[i
++] = act
->dtad_difo
;
14464 if (!dtrace_helper_validate(helper
))
14467 if (last
== NULL
) {
14468 help
->dthps_actions
[which
] = helper
;
14470 last
->dtha_next
= helper
;
14473 if ((uint32_t)vstate
->dtvs_nlocals
> dtrace_helptrace_nlocals
) {
14474 dtrace_helptrace_nlocals
= vstate
->dtvs_nlocals
;
14475 dtrace_helptrace_next
= 0;
14480 dtrace_helper_action_destroy(helper
, vstate
);
14485 dtrace_helper_provider_register(proc_t
*p
, dtrace_helpers_t
*help
,
14486 dof_helper_t
*dofhp
)
14488 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
14490 lck_mtx_lock(&dtrace_meta_lock
);
14491 lck_mtx_lock(&dtrace_lock
);
14493 if (!dtrace_attached() || dtrace_meta_pid
== NULL
) {
14495 * If the dtrace module is loaded but not attached, or if
14496 * there aren't isn't a meta provider registered to deal with
14497 * these provider descriptions, we need to postpone creating
14498 * the actual providers until later.
14501 if (help
->dthps_next
== NULL
&& help
->dthps_prev
== NULL
&&
14502 dtrace_deferred_pid
!= help
) {
14503 help
->dthps_deferred
= 1;
14504 help
->dthps_pid
= p
->p_pid
;
14505 help
->dthps_next
= dtrace_deferred_pid
;
14506 help
->dthps_prev
= NULL
;
14507 if (dtrace_deferred_pid
!= NULL
)
14508 dtrace_deferred_pid
->dthps_prev
= help
;
14509 dtrace_deferred_pid
= help
;
14512 lck_mtx_unlock(&dtrace_lock
);
14514 } else if (dofhp
!= NULL
) {
14516 * If the dtrace module is loaded and we have a particular
14517 * helper provider description, pass that off to the
14521 lck_mtx_unlock(&dtrace_lock
);
14523 dtrace_helper_provide(dofhp
, p
);
14527 * Otherwise, just pass all the helper provider descriptions
14528 * off to the meta provider.
14532 lck_mtx_unlock(&dtrace_lock
);
14534 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14535 dtrace_helper_provide(&help
->dthps_provs
[i
]->dthp_prov
,
14540 lck_mtx_unlock(&dtrace_meta_lock
);
14544 dtrace_helper_provider_add(proc_t
* p
, dof_helper_t
*dofhp
, int gen
)
14546 dtrace_helpers_t
*help
;
14547 dtrace_helper_provider_t
*hprov
, **tmp_provs
;
14548 uint_t tmp_maxprovs
, i
;
14550 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14551 help
= p
->p_dtrace_helpers
;
14552 ASSERT(help
!= NULL
);
14555 * If we already have dtrace_helper_providers_max helper providers,
14556 * we're refuse to add a new one.
14558 if (help
->dthps_nprovs
>= dtrace_helper_providers_max
)
14562 * Check to make sure this isn't a duplicate.
14564 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
14565 if (dofhp
->dofhp_addr
==
14566 help
->dthps_provs
[i
]->dthp_prov
.dofhp_addr
)
14570 hprov
= kmem_zalloc(sizeof (dtrace_helper_provider_t
), KM_SLEEP
);
14571 hprov
->dthp_prov
= *dofhp
;
14572 hprov
->dthp_ref
= 1;
14573 hprov
->dthp_generation
= gen
;
14576 * Allocate a bigger table for helper providers if it's already full.
14578 if (help
->dthps_maxprovs
== help
->dthps_nprovs
) {
14579 tmp_maxprovs
= help
->dthps_maxprovs
;
14580 tmp_provs
= help
->dthps_provs
;
14582 if (help
->dthps_maxprovs
== 0)
14583 help
->dthps_maxprovs
= 2;
14585 help
->dthps_maxprovs
*= 2;
14586 if (help
->dthps_maxprovs
> dtrace_helper_providers_max
)
14587 help
->dthps_maxprovs
= dtrace_helper_providers_max
;
14589 ASSERT(tmp_maxprovs
< help
->dthps_maxprovs
);
14591 help
->dthps_provs
= kmem_zalloc(help
->dthps_maxprovs
*
14592 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
14594 if (tmp_provs
!= NULL
) {
14595 bcopy(tmp_provs
, help
->dthps_provs
, tmp_maxprovs
*
14596 sizeof (dtrace_helper_provider_t
*));
14597 kmem_free(tmp_provs
, tmp_maxprovs
*
14598 sizeof (dtrace_helper_provider_t
*));
14602 help
->dthps_provs
[help
->dthps_nprovs
] = hprov
;
14603 help
->dthps_nprovs
++;
14609 dtrace_helper_provider_destroy(dtrace_helper_provider_t
*hprov
)
14611 lck_mtx_lock(&dtrace_lock
);
14613 if (--hprov
->dthp_ref
== 0) {
14615 lck_mtx_unlock(&dtrace_lock
);
14616 dof
= (dof_hdr_t
*)(uintptr_t)hprov
->dthp_prov
.dofhp_dof
;
14617 dtrace_dof_destroy(dof
);
14618 kmem_free(hprov
, sizeof (dtrace_helper_provider_t
));
14620 lck_mtx_unlock(&dtrace_lock
);
14625 dtrace_helper_provider_validate(dof_hdr_t
*dof
, dof_sec_t
*sec
)
14627 uintptr_t daddr
= (uintptr_t)dof
;
14628 dof_sec_t
*str_sec
, *prb_sec
, *arg_sec
, *off_sec
, *enoff_sec
;
14629 dof_provider_t
*provider
;
14630 dof_probe_t
*probe
;
14632 char *strtab
, *typestr
;
14633 dof_stridx_t typeidx
;
14635 uint_t nprobes
, j
, k
;
14637 ASSERT(sec
->dofs_type
== DOF_SECT_PROVIDER
);
14639 if (sec
->dofs_offset
& (sizeof (uint_t
) - 1)) {
14640 dtrace_dof_error(dof
, "misaligned section offset");
14645 * The section needs to be large enough to contain the DOF provider
14646 * structure appropriate for the given version.
14648 if (sec
->dofs_size
<
14649 ((dof
->dofh_ident
[DOF_ID_VERSION
] == DOF_VERSION_1
) ?
14650 offsetof(dof_provider_t
, dofpv_prenoffs
) :
14651 sizeof (dof_provider_t
))) {
14652 dtrace_dof_error(dof
, "provider section too small");
14656 provider
= (dof_provider_t
*)(uintptr_t)(daddr
+ sec
->dofs_offset
);
14657 str_sec
= dtrace_dof_sect(dof
, DOF_SECT_STRTAB
, provider
->dofpv_strtab
);
14658 prb_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROBES
, provider
->dofpv_probes
);
14659 arg_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRARGS
, provider
->dofpv_prargs
);
14660 off_sec
= dtrace_dof_sect(dof
, DOF_SECT_PROFFS
, provider
->dofpv_proffs
);
14662 if (str_sec
== NULL
|| prb_sec
== NULL
||
14663 arg_sec
== NULL
|| off_sec
== NULL
)
14668 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
&&
14669 provider
->dofpv_prenoffs
!= DOF_SECT_NONE
&&
14670 (enoff_sec
= dtrace_dof_sect(dof
, DOF_SECT_PRENOFFS
,
14671 provider
->dofpv_prenoffs
)) == NULL
)
14674 strtab
= (char *)(uintptr_t)(daddr
+ str_sec
->dofs_offset
);
14676 if (provider
->dofpv_name
>= str_sec
->dofs_size
||
14677 strlen(strtab
+ provider
->dofpv_name
) >= DTRACE_PROVNAMELEN
) {
14678 dtrace_dof_error(dof
, "invalid provider name");
14682 if (prb_sec
->dofs_entsize
== 0 ||
14683 prb_sec
->dofs_entsize
> prb_sec
->dofs_size
) {
14684 dtrace_dof_error(dof
, "invalid entry size");
14688 if (prb_sec
->dofs_entsize
& (sizeof (uintptr_t) - 1)) {
14689 dtrace_dof_error(dof
, "misaligned entry size");
14693 if (off_sec
->dofs_entsize
!= sizeof (uint32_t)) {
14694 dtrace_dof_error(dof
, "invalid entry size");
14698 if (off_sec
->dofs_offset
& (sizeof (uint32_t) - 1)) {
14699 dtrace_dof_error(dof
, "misaligned section offset");
14703 if (arg_sec
->dofs_entsize
!= sizeof (uint8_t)) {
14704 dtrace_dof_error(dof
, "invalid entry size");
14708 arg
= (uint8_t *)(uintptr_t)(daddr
+ arg_sec
->dofs_offset
);
14710 nprobes
= prb_sec
->dofs_size
/ prb_sec
->dofs_entsize
;
14713 * Take a pass through the probes to check for errors.
14715 for (j
= 0; j
< nprobes
; j
++) {
14716 probe
= (dof_probe_t
*)(uintptr_t)(daddr
+
14717 prb_sec
->dofs_offset
+ j
* prb_sec
->dofs_entsize
);
14719 if (probe
->dofpr_func
>= str_sec
->dofs_size
) {
14720 dtrace_dof_error(dof
, "invalid function name");
14724 if (strlen(strtab
+ probe
->dofpr_func
) >= DTRACE_FUNCNAMELEN
) {
14725 dtrace_dof_error(dof
, "function name too long");
14729 if (probe
->dofpr_name
>= str_sec
->dofs_size
||
14730 strlen(strtab
+ probe
->dofpr_name
) >= DTRACE_NAMELEN
) {
14731 dtrace_dof_error(dof
, "invalid probe name");
14736 * The offset count must not wrap the index, and the offsets
14737 * must also not overflow the section's data.
14739 if (probe
->dofpr_offidx
+ probe
->dofpr_noffs
<
14740 probe
->dofpr_offidx
||
14741 (probe
->dofpr_offidx
+ probe
->dofpr_noffs
) *
14742 off_sec
->dofs_entsize
> off_sec
->dofs_size
) {
14743 dtrace_dof_error(dof
, "invalid probe offset");
14747 if (dof
->dofh_ident
[DOF_ID_VERSION
] != DOF_VERSION_1
) {
14749 * If there's no is-enabled offset section, make sure
14750 * there aren't any is-enabled offsets. Otherwise
14751 * perform the same checks as for probe offsets
14752 * (immediately above).
14754 if (enoff_sec
== NULL
) {
14755 if (probe
->dofpr_enoffidx
!= 0 ||
14756 probe
->dofpr_nenoffs
!= 0) {
14757 dtrace_dof_error(dof
, "is-enabled "
14758 "offsets with null section");
14761 } else if (probe
->dofpr_enoffidx
+
14762 probe
->dofpr_nenoffs
< probe
->dofpr_enoffidx
||
14763 (probe
->dofpr_enoffidx
+ probe
->dofpr_nenoffs
) *
14764 enoff_sec
->dofs_entsize
> enoff_sec
->dofs_size
) {
14765 dtrace_dof_error(dof
, "invalid is-enabled "
14770 if (probe
->dofpr_noffs
+ probe
->dofpr_nenoffs
== 0) {
14771 dtrace_dof_error(dof
, "zero probe and "
14772 "is-enabled offsets");
14775 } else if (probe
->dofpr_noffs
== 0) {
14776 dtrace_dof_error(dof
, "zero probe offsets");
14780 if (probe
->dofpr_argidx
+ probe
->dofpr_xargc
<
14781 probe
->dofpr_argidx
||
14782 (probe
->dofpr_argidx
+ probe
->dofpr_xargc
) *
14783 arg_sec
->dofs_entsize
> arg_sec
->dofs_size
) {
14784 dtrace_dof_error(dof
, "invalid args");
14788 typeidx
= probe
->dofpr_nargv
;
14789 typestr
= strtab
+ probe
->dofpr_nargv
;
14790 for (k
= 0; k
< probe
->dofpr_nargc
; k
++) {
14791 if (typeidx
>= str_sec
->dofs_size
) {
14792 dtrace_dof_error(dof
, "bad "
14793 "native argument type");
14797 typesz
= strlen(typestr
) + 1;
14798 if (typesz
> DTRACE_ARGTYPELEN
) {
14799 dtrace_dof_error(dof
, "native "
14800 "argument type too long");
14807 typeidx
= probe
->dofpr_xargv
;
14808 typestr
= strtab
+ probe
->dofpr_xargv
;
14809 for (k
= 0; k
< probe
->dofpr_xargc
; k
++) {
14810 if (arg
[probe
->dofpr_argidx
+ k
] > probe
->dofpr_nargc
) {
14811 dtrace_dof_error(dof
, "bad "
14812 "native argument index");
14816 if (typeidx
>= str_sec
->dofs_size
) {
14817 dtrace_dof_error(dof
, "bad "
14818 "translated argument type");
14822 typesz
= strlen(typestr
) + 1;
14823 if (typesz
> DTRACE_ARGTYPELEN
) {
14824 dtrace_dof_error(dof
, "translated argument "
14838 dtrace_helper_slurp(proc_t
* p
, dof_hdr_t
*dof
, dof_helper_t
*dhp
)
14840 dtrace_helpers_t
*help
;
14841 dtrace_vstate_t
*vstate
;
14842 dtrace_enabling_t
*enab
= NULL
;
14843 int i
, gen
, rv
, nhelpers
= 0, nprovs
= 0, destroy
= 1;
14844 uintptr_t daddr
= (uintptr_t)dof
;
14846 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
14848 if ((help
= p
->p_dtrace_helpers
) == NULL
)
14849 help
= dtrace_helpers_create(p
);
14851 vstate
= &help
->dthps_vstate
;
14853 if ((rv
= dtrace_dof_slurp(dof
, vstate
, NULL
, &enab
,
14854 dhp
!= NULL
? dhp
->dofhp_addr
: 0, B_FALSE
)) != 0) {
14855 dtrace_dof_destroy(dof
);
14860 * Look for helper providers and validate their descriptions.
14863 for (i
= 0; (uint32_t)i
< dof
->dofh_secnum
; i
++) {
14864 dof_sec_t
*sec
= (dof_sec_t
*)(uintptr_t)(daddr
+
14865 dof
->dofh_secoff
+ i
* dof
->dofh_secsize
);
14867 if (sec
->dofs_type
!= DOF_SECT_PROVIDER
)
14870 if (dtrace_helper_provider_validate(dof
, sec
) != 0) {
14871 dtrace_enabling_destroy(enab
);
14872 dtrace_dof_destroy(dof
);
14881 * Now we need to walk through the ECB descriptions in the enabling.
14883 for (i
= 0; i
< enab
->dten_ndesc
; i
++) {
14884 dtrace_ecbdesc_t
*ep
= enab
->dten_desc
[i
];
14885 dtrace_probedesc_t
*desc
= &ep
->dted_probe
;
14887 /* APPLE NOTE: Darwin employs size bounded string operation. */
14888 if (!LIT_STRNEQL(desc
->dtpd_provider
, "dtrace"))
14891 if (!LIT_STRNEQL(desc
->dtpd_mod
, "helper"))
14894 if (!LIT_STRNEQL(desc
->dtpd_func
, "ustack"))
14897 if ((rv
= dtrace_helper_action_add(p
, DTRACE_HELPER_ACTION_USTACK
,
14900 * Adding this helper action failed -- we are now going
14901 * to rip out the entire generation and return failure.
14903 (void) dtrace_helper_destroygen(p
, help
->dthps_generation
);
14904 dtrace_enabling_destroy(enab
);
14905 dtrace_dof_destroy(dof
);
14912 if (nhelpers
< enab
->dten_ndesc
)
14913 dtrace_dof_error(dof
, "unmatched helpers");
14915 gen
= help
->dthps_generation
++;
14916 dtrace_enabling_destroy(enab
);
14918 if (dhp
!= NULL
&& nprovs
> 0) {
14919 dhp
->dofhp_dof
= (uint64_t)(uintptr_t)dof
;
14920 if (dtrace_helper_provider_add(p
, dhp
, gen
) == 0) {
14921 lck_mtx_unlock(&dtrace_lock
);
14922 dtrace_helper_provider_register(p
, help
, dhp
);
14923 lck_mtx_lock(&dtrace_lock
);
14930 dtrace_dof_destroy(dof
);
14936 * APPLE NOTE: DTrace lazy dof implementation
14938 * DTrace user static probes (USDT probes) and helper actions are loaded
14939 * in a process by proccessing dof sections. The dof sections are passed
14940 * into the kernel by dyld, in a dof_ioctl_data_t block. It is rather
14941 * expensive to process dof for a process that will never use it. There
14942 * is a memory cost (allocating the providers/probes), and a cpu cost
14943 * (creating the providers/probes).
14945 * To reduce this cost, we use "lazy dof". The normal proceedure for
14946 * dof processing is to copyin the dof(s) pointed to by the dof_ioctl_data_t
14947 * block, and invoke dof_slurp_helper() on them. When "lazy dof" is
14948 * used, each process retains the dof_ioctl_data_t block, instead of
14949 * copying in the data it points to.
14951 * The dof_ioctl_data_t blocks are managed as if they were the actual
14952 * processed dof; on fork the block is copied to the child, on exec and
14953 * exit the block is freed.
14955 * If the process loads library(s) containing additional dof, the
14956 * new dof_ioctl_data_t is merged with the existing block.
14958 * There are a few catches that make this slightly more difficult.
14959 * When dyld registers dof_ioctl_data_t blocks, it expects a unique
14960 * identifier value for each dof in the block. In non-lazy dof terms,
14961 * this is the generation that dof was loaded in. If we hand back
14962 * a UID for a lazy dof, that same UID must be able to unload the
14963 * dof once it has become non-lazy. To meet this requirement, the
14964 * code that loads lazy dof requires that the UID's for dof(s) in
14965 * the lazy dof be sorted, and in ascending order. It is okay to skip
14966 * UID's, I.E., 1 -> 5 -> 6 is legal.
14968 * Once a process has become non-lazy, it will stay non-lazy. All
14969 * future dof operations for that process will be non-lazy, even
14970 * if the dof mode transitions back to lazy.
14972 * Always do lazy dof checks before non-lazy (I.E. In fork, exit, exec.).
14973 * That way if the lazy check fails due to transitioning to non-lazy, the
14974 * right thing is done with the newly faulted in dof.
14978 * This method is a bit squicky. It must handle:
14980 * dof should not be lazy.
14981 * dof should have been handled lazily, but there was an error
14982 * dof was handled lazily, and needs to be freed.
14983 * dof was handled lazily, and must not be freed.
14986 * Returns EACCESS if dof should be handled non-lazily.
14988 * KERN_SUCCESS and all other return codes indicate lazy handling of dof.
14990 * If the dofs data is claimed by this method, dofs_claimed will be set.
14991 * Callers should not free claimed dofs.
14994 dtrace_lazy_dofs_add(proc_t
*p
, dof_ioctl_data_t
* incoming_dofs
, int *dofs_claimed
)
14997 ASSERT(incoming_dofs
&& incoming_dofs
->dofiod_count
> 0);
15002 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15004 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15005 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
15008 * Any existing helpers force non-lazy behavior.
15010 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
15011 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15013 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
15014 unsigned int existing_dofs_count
= (existing_dofs
) ? existing_dofs
->dofiod_count
: 0;
15015 unsigned int i
, merged_dofs_count
= incoming_dofs
->dofiod_count
+ existing_dofs_count
;
15020 if (merged_dofs_count
== 0 || merged_dofs_count
> 1024) {
15021 dtrace_dof_error(NULL
, "lazy_dofs_add merged_dofs_count out of range");
15027 * Each dof being added must be assigned a unique generation.
15029 uint64_t generation
= (existing_dofs
) ? existing_dofs
->dofiod_helpers
[existing_dofs_count
- 1].dofhp_dof
+ 1 : 1;
15030 for (i
=0; i
<incoming_dofs
->dofiod_count
; i
++) {
15032 * We rely on these being the same so we can overwrite dofhp_dof and not lose info.
15034 ASSERT(incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
== incoming_dofs
->dofiod_helpers
[i
].dofhp_addr
);
15035 incoming_dofs
->dofiod_helpers
[i
].dofhp_dof
= generation
++;
15039 if (existing_dofs
) {
15041 * Merge the existing and incoming dofs
15043 size_t merged_dofs_size
= DOF_IOCTL_DATA_T_SIZE(merged_dofs_count
);
15044 dof_ioctl_data_t
* merged_dofs
= kmem_alloc(merged_dofs_size
, KM_SLEEP
);
15046 bcopy(&existing_dofs
->dofiod_helpers
[0],
15047 &merged_dofs
->dofiod_helpers
[0],
15048 sizeof(dof_helper_t
) * existing_dofs_count
);
15049 bcopy(&incoming_dofs
->dofiod_helpers
[0],
15050 &merged_dofs
->dofiod_helpers
[existing_dofs_count
],
15051 sizeof(dof_helper_t
) * incoming_dofs
->dofiod_count
);
15053 merged_dofs
->dofiod_count
= merged_dofs_count
;
15055 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
15057 p
->p_dtrace_lazy_dofs
= merged_dofs
;
15060 * Claim the incoming dofs
15063 p
->p_dtrace_lazy_dofs
= incoming_dofs
;
15067 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
15068 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
15069 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15074 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15079 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15087 * EINVAL: lazy dof is enabled, but the requested generation was not found.
15088 * EACCES: This removal needs to be handled non-lazily.
15091 dtrace_lazy_dofs_remove(proc_t
*p
, int generation
)
15095 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15097 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15098 ASSERT(dtrace_dof_mode
!= DTRACE_DOF_MODE_NEVER
);
15101 * Any existing helpers force non-lazy behavior.
15103 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
&& (p
->p_dtrace_helpers
== NULL
)) {
15104 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15106 dof_ioctl_data_t
* existing_dofs
= p
->p_dtrace_lazy_dofs
;
15108 if (existing_dofs
) {
15109 int index
, existing_dofs_count
= existing_dofs
->dofiod_count
;
15110 for (index
=0; index
<existing_dofs_count
; index
++) {
15111 if ((int)existing_dofs
->dofiod_helpers
[index
].dofhp_dof
== generation
) {
15112 dof_ioctl_data_t
* removed_dofs
= NULL
;
15115 * If there is only 1 dof, we'll delete it and swap in NULL.
15117 if (existing_dofs_count
> 1) {
15118 int removed_dofs_count
= existing_dofs_count
- 1;
15119 size_t removed_dofs_size
= DOF_IOCTL_DATA_T_SIZE(removed_dofs_count
);
15121 removed_dofs
= kmem_alloc(removed_dofs_size
, KM_SLEEP
);
15122 removed_dofs
->dofiod_count
= removed_dofs_count
;
15125 * copy the remaining data.
15128 bcopy(&existing_dofs
->dofiod_helpers
[0],
15129 &removed_dofs
->dofiod_helpers
[0],
15130 index
* sizeof(dof_helper_t
));
15133 if (index
< existing_dofs_count
-1) {
15134 bcopy(&existing_dofs
->dofiod_helpers
[index
+1],
15135 &removed_dofs
->dofiod_helpers
[index
],
15136 (existing_dofs_count
- index
- 1) * sizeof(dof_helper_t
));
15140 kmem_free(existing_dofs
, DOF_IOCTL_DATA_T_SIZE(existing_dofs_count
));
15142 p
->p_dtrace_lazy_dofs
= removed_dofs
;
15144 rval
= KERN_SUCCESS
;
15151 dof_ioctl_data_t
* all_dofs
= p
->p_dtrace_lazy_dofs
;
15154 for (i
=0; i
<all_dofs
->dofiod_count
-1; i
++) {
15155 ASSERT(all_dofs
->dofiod_helpers
[i
].dofhp_dof
< all_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15162 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15167 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15173 dtrace_lazy_dofs_destroy(proc_t
*p
)
15175 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15176 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15178 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15180 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
15181 p
->p_dtrace_lazy_dofs
= NULL
;
15183 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15184 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15187 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
15192 dtrace_lazy_dofs_proc_iterate_filter(proc_t
*p
, void* ignored
)
15194 #pragma unused(ignored)
15196 * Okay to NULL test without taking the sprlock.
15198 return p
->p_dtrace_lazy_dofs
!= NULL
;
15202 dtrace_lazy_dofs_process(proc_t
*p
) {
15204 * It is possible this process may exit during our attempt to
15205 * fault in the dof. We could fix this by holding locks longer,
15206 * but the errors are benign.
15208 lck_mtx_lock(&p
->p_dtrace_sprlock
);
15211 ASSERT(p
->p_dtrace_lazy_dofs
== NULL
|| p
->p_dtrace_helpers
== NULL
);
15212 ASSERT(dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
);
15214 dof_ioctl_data_t
* lazy_dofs
= p
->p_dtrace_lazy_dofs
;
15215 p
->p_dtrace_lazy_dofs
= NULL
;
15217 lck_mtx_unlock(&p
->p_dtrace_sprlock
);
15220 * Process each dof_helper_t
15222 if (lazy_dofs
!= NULL
) {
15226 for (i
=0; i
<lazy_dofs
->dofiod_count
; i
++) {
15228 * When loading lazy dof, we depend on the generations being sorted in ascending order.
15230 ASSERT(i
>= (lazy_dofs
->dofiod_count
- 1) || lazy_dofs
->dofiod_helpers
[i
].dofhp_dof
< lazy_dofs
->dofiod_helpers
[i
+1].dofhp_dof
);
15232 dof_helper_t
*dhp
= &lazy_dofs
->dofiod_helpers
[i
];
15235 * We stored the generation in dofhp_dof. Save it, and restore the original value.
15237 int generation
= dhp
->dofhp_dof
;
15238 dhp
->dofhp_dof
= dhp
->dofhp_addr
;
15240 dof_hdr_t
*dof
= dtrace_dof_copyin_from_proc(p
, dhp
->dofhp_dof
, &rval
);
15243 dtrace_helpers_t
*help
;
15245 lck_mtx_lock(&dtrace_lock
);
15248 * This must be done with the dtrace_lock held
15250 if ((help
= p
->p_dtrace_helpers
) == NULL
)
15251 help
= dtrace_helpers_create(p
);
15254 * If the generation value has been bumped, someone snuck in
15255 * when we released the dtrace lock. We have to dump this generation,
15256 * there is no safe way to load it.
15258 if (help
->dthps_generation
<= generation
) {
15259 help
->dthps_generation
= generation
;
15262 * dtrace_helper_slurp() takes responsibility for the dof --
15263 * it may free it now or it may save it and free it later.
15265 if ((rval
= dtrace_helper_slurp(p
, dof
, dhp
)) != generation
) {
15266 dtrace_dof_error(NULL
, "returned value did not match expected generation");
15270 lck_mtx_unlock(&dtrace_lock
);
15274 kmem_free(lazy_dofs
, DOF_IOCTL_DATA_T_SIZE(lazy_dofs
->dofiod_count
));
15279 dtrace_lazy_dofs_proc_iterate_doit(proc_t
*p
, void* ignored
)
15281 #pragma unused(ignored)
15283 dtrace_lazy_dofs_process(p
);
15285 return PROC_RETURNED
;
15288 #define DTRACE_LAZY_DOFS_DUPLICATED 1
15291 dtrace_lazy_dofs_duplicate(proc_t
*parent
, proc_t
*child
)
15293 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_NOTOWNED
);
15294 LCK_MTX_ASSERT(&parent
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
15295 LCK_MTX_ASSERT(&child
->p_dtrace_sprlock
, LCK_MTX_ASSERT_NOTOWNED
);
15297 lck_rw_lock_shared(&dtrace_dof_mode_lock
);
15298 lck_mtx_lock(&parent
->p_dtrace_sprlock
);
15301 * We need to make sure that the transition to lazy dofs -> helpers
15302 * was atomic for our parent
15304 ASSERT(parent
->p_dtrace_lazy_dofs
== NULL
|| parent
->p_dtrace_helpers
== NULL
);
15306 * In theory we should hold the child sprlock, but this is safe...
15308 ASSERT(child
->p_dtrace_lazy_dofs
== NULL
&& child
->p_dtrace_helpers
== NULL
);
15310 dof_ioctl_data_t
* parent_dofs
= parent
->p_dtrace_lazy_dofs
;
15311 dof_ioctl_data_t
* child_dofs
= NULL
;
15313 size_t parent_dofs_size
= DOF_IOCTL_DATA_T_SIZE(parent_dofs
->dofiod_count
);
15314 child_dofs
= kmem_alloc(parent_dofs_size
, KM_SLEEP
);
15315 bcopy(parent_dofs
, child_dofs
, parent_dofs_size
);
15318 lck_mtx_unlock(&parent
->p_dtrace_sprlock
);
15321 lck_mtx_lock(&child
->p_dtrace_sprlock
);
15322 child
->p_dtrace_lazy_dofs
= child_dofs
;
15323 lck_mtx_unlock(&child
->p_dtrace_sprlock
);
15325 * We process the DOF at this point if the mode is set to
15326 * LAZY_OFF. This can happen if DTrace is still processing the
15327 * DOF of other process (which can happen because the
15328 * protected pager can have a huge latency)
15329 * but has not processed our parent yet
15331 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
) {
15332 dtrace_lazy_dofs_process(child
);
15334 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15336 return DTRACE_LAZY_DOFS_DUPLICATED
;
15338 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
15343 static dtrace_helpers_t
*
15344 dtrace_helpers_create(proc_t
*p
)
15346 dtrace_helpers_t
*help
;
15348 LCK_MTX_ASSERT(&dtrace_lock
, LCK_MTX_ASSERT_OWNED
);
15349 ASSERT(p
->p_dtrace_helpers
== NULL
);
15351 help
= kmem_zalloc(sizeof (dtrace_helpers_t
), KM_SLEEP
);
15352 help
->dthps_actions
= kmem_zalloc(sizeof (dtrace_helper_action_t
*) *
15353 DTRACE_NHELPER_ACTIONS
, KM_SLEEP
);
15355 p
->p_dtrace_helpers
= help
;
15362 dtrace_helpers_destroy(proc_t
* p
)
15364 dtrace_helpers_t
*help
;
15365 dtrace_vstate_t
*vstate
;
15368 lck_mtx_lock(&dtrace_lock
);
15370 ASSERT(p
->p_dtrace_helpers
!= NULL
);
15371 ASSERT(dtrace_helpers
> 0);
15373 help
= p
->p_dtrace_helpers
;
15374 vstate
= &help
->dthps_vstate
;
15377 * We're now going to lose the help from this process.
15379 p
->p_dtrace_helpers
= NULL
;
15383 * Destory the helper actions.
15385 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15386 dtrace_helper_action_t
*h
, *next
;
15388 for (h
= help
->dthps_actions
[i
]; h
!= NULL
; h
= next
) {
15389 next
= h
->dtha_next
;
15390 dtrace_helper_action_destroy(h
, vstate
);
15395 lck_mtx_unlock(&dtrace_lock
);
15398 * Destroy the helper providers.
15400 if (help
->dthps_maxprovs
> 0) {
15401 lck_mtx_lock(&dtrace_meta_lock
);
15402 if (dtrace_meta_pid
!= NULL
) {
15403 ASSERT(dtrace_deferred_pid
== NULL
);
15405 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15406 dtrace_helper_provider_remove(
15407 &help
->dthps_provs
[i
]->dthp_prov
, p
);
15410 lck_mtx_lock(&dtrace_lock
);
15411 ASSERT(help
->dthps_deferred
== 0 ||
15412 help
->dthps_next
!= NULL
||
15413 help
->dthps_prev
!= NULL
||
15414 help
== dtrace_deferred_pid
);
15417 * Remove the helper from the deferred list.
15419 if (help
->dthps_next
!= NULL
)
15420 help
->dthps_next
->dthps_prev
= help
->dthps_prev
;
15421 if (help
->dthps_prev
!= NULL
)
15422 help
->dthps_prev
->dthps_next
= help
->dthps_next
;
15423 if (dtrace_deferred_pid
== help
) {
15424 dtrace_deferred_pid
= help
->dthps_next
;
15425 ASSERT(help
->dthps_prev
== NULL
);
15428 lck_mtx_unlock(&dtrace_lock
);
15431 lck_mtx_unlock(&dtrace_meta_lock
);
15433 for (i
= 0; i
< help
->dthps_nprovs
; i
++) {
15434 dtrace_helper_provider_destroy(help
->dthps_provs
[i
]);
15437 kmem_free(help
->dthps_provs
, help
->dthps_maxprovs
*
15438 sizeof (dtrace_helper_provider_t
*));
15441 lck_mtx_lock(&dtrace_lock
);
15443 dtrace_vstate_fini(&help
->dthps_vstate
);
15444 kmem_free(help
->dthps_actions
,
15445 sizeof (dtrace_helper_action_t
*) * DTRACE_NHELPER_ACTIONS
);
15446 kmem_free(help
, sizeof (dtrace_helpers_t
));
15449 lck_mtx_unlock(&dtrace_lock
);
15453 dtrace_helpers_duplicate(proc_t
*from
, proc_t
*to
)
15455 dtrace_helpers_t
*help
, *newhelp
;
15456 dtrace_helper_action_t
*helper
, *new, *last
;
15458 dtrace_vstate_t
*vstate
;
15460 int j
, sz
, hasprovs
= 0;
15462 lck_mtx_lock(&dtrace_lock
);
15463 ASSERT(from
->p_dtrace_helpers
!= NULL
);
15464 ASSERT(dtrace_helpers
> 0);
15466 help
= from
->p_dtrace_helpers
;
15467 newhelp
= dtrace_helpers_create(to
);
15468 ASSERT(to
->p_dtrace_helpers
!= NULL
);
15470 newhelp
->dthps_generation
= help
->dthps_generation
;
15471 vstate
= &newhelp
->dthps_vstate
;
15474 * Duplicate the helper actions.
15476 for (i
= 0; i
< DTRACE_NHELPER_ACTIONS
; i
++) {
15477 if ((helper
= help
->dthps_actions
[i
]) == NULL
)
15480 for (last
= NULL
; helper
!= NULL
; helper
= helper
->dtha_next
) {
15481 new = kmem_zalloc(sizeof (dtrace_helper_action_t
),
15483 new->dtha_generation
= helper
->dtha_generation
;
15485 if ((dp
= helper
->dtha_predicate
) != NULL
) {
15486 dp
= dtrace_difo_duplicate(dp
, vstate
);
15487 new->dtha_predicate
= dp
;
15490 new->dtha_nactions
= helper
->dtha_nactions
;
15491 sz
= sizeof (dtrace_difo_t
*) * new->dtha_nactions
;
15492 new->dtha_actions
= kmem_alloc(sz
, KM_SLEEP
);
15494 for (j
= 0; j
< new->dtha_nactions
; j
++) {
15495 dtrace_difo_t
*dpj
= helper
->dtha_actions
[j
];
15497 ASSERT(dpj
!= NULL
);
15498 dpj
= dtrace_difo_duplicate(dpj
, vstate
);
15499 new->dtha_actions
[j
] = dpj
;
15502 if (last
!= NULL
) {
15503 last
->dtha_next
= new;
15505 newhelp
->dthps_actions
[i
] = new;
15513 * Duplicate the helper providers and register them with the
15514 * DTrace framework.
15516 if (help
->dthps_nprovs
> 0) {
15517 newhelp
->dthps_nprovs
= help
->dthps_nprovs
;
15518 newhelp
->dthps_maxprovs
= help
->dthps_nprovs
;
15519 newhelp
->dthps_provs
= kmem_alloc(newhelp
->dthps_nprovs
*
15520 sizeof (dtrace_helper_provider_t
*), KM_SLEEP
);
15521 for (i
= 0; i
< newhelp
->dthps_nprovs
; i
++) {
15522 newhelp
->dthps_provs
[i
] = help
->dthps_provs
[i
];
15523 newhelp
->dthps_provs
[i
]->dthp_ref
++;
15529 lck_mtx_unlock(&dtrace_lock
);
15532 dtrace_helper_provider_register(to
, newhelp
, NULL
);
15536 * DTrace Process functions
15540 dtrace_proc_fork(proc_t
*parent_proc
, proc_t
*child_proc
, int spawn
)
15543 * This code applies to new processes who are copying the task
15544 * and thread state and address spaces of their parent process.
15548 * APPLE NOTE: Solaris does a sprlock() and drops the
15549 * proc_lock here. We're cheating a bit and only taking
15550 * the p_dtrace_sprlock lock. A full sprlock would
15551 * task_suspend the parent.
15553 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
15556 * Remove all DTrace tracepoints from the child process. We
15557 * need to do this _before_ duplicating USDT providers since
15558 * any associated probes may be immediately enabled.
15560 if (parent_proc
->p_dtrace_count
> 0) {
15561 dtrace_fasttrap_fork(parent_proc
, child_proc
);
15564 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
15567 * Duplicate any lazy dof(s). This must be done while NOT
15568 * holding the parent sprlock! Lock ordering is
15569 * dtrace_dof_mode_lock, then sprlock. It is imperative we
15570 * always call dtrace_lazy_dofs_duplicate, rather than null
15571 * check and call if !NULL. If we NULL test, during lazy dof
15572 * faulting we can race with the faulting code and proceed
15573 * from here to beyond the helpers copy. The lazy dof
15574 * faulting will then fail to copy the helpers to the child
15575 * process. We return if we duplicated lazy dofs as a process
15576 * can only have one at the same time to avoid a race between
15577 * a dtrace client and dtrace_proc_fork where a process would
15578 * end up with both lazy dofs and helpers.
15580 if (dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
) == DTRACE_LAZY_DOFS_DUPLICATED
) {
15585 * Duplicate any helper actions and providers if they haven't
15588 #if !defined(__APPLE__)
15591 * we set above informs the code to enable USDT probes that
15592 * sprlock() may fail because the child is being forked.
15596 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
15597 * never fails to find the child. We do not set SFORKING.
15599 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
15600 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
15606 dtrace_proc_exec(proc_t
*p
)
15609 * Invalidate any predicate evaluation already cached for this thread by DTrace.
15610 * That's because we've just stored to p_comm and DTrace refers to that when it
15611 * evaluates the "execname" special variable. uid and gid may have changed as well.
15613 dtrace_set_thread_predcache(current_thread(), 0);
15616 * Free any outstanding lazy dof entries. It is imperative we
15617 * always call dtrace_lazy_dofs_destroy, rather than null check
15618 * and call if !NULL. If we NULL test, during lazy dof faulting
15619 * we can race with the faulting code and proceed from here to
15620 * beyond the helpers cleanup. The lazy dof faulting will then
15621 * install new helpers which no longer belong to this process!
15623 dtrace_lazy_dofs_destroy(p
);
15627 * Clean up any DTrace helpers for the process.
15629 if (p
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_cleanup
) {
15630 (*dtrace_helpers_cleanup
)(p
);
15634 * Cleanup the DTrace provider associated with this process.
15637 if (p
->p_dtrace_probes
&& dtrace_fasttrap_exec_ptr
) {
15638 (*dtrace_fasttrap_exec_ptr
)(p
);
15644 dtrace_proc_exit(proc_t
*p
)
15647 * Free any outstanding lazy dof entries. It is imperative we
15648 * always call dtrace_lazy_dofs_destroy, rather than null check
15649 * and call if !NULL. If we NULL test, during lazy dof faulting
15650 * we can race with the faulting code and proceed from here to
15651 * beyond the helpers cleanup. The lazy dof faulting will then
15652 * install new helpers which will never be cleaned up, and leak.
15654 dtrace_lazy_dofs_destroy(p
);
15657 * Clean up any DTrace helper actions or probes for the process.
15659 if (p
->p_dtrace_helpers
!= NULL
) {
15660 (*dtrace_helpers_cleanup
)(p
);
15664 * Clean up any DTrace probes associated with this process.
15667 * APPLE NOTE: We release ptss pages/entries in dtrace_fasttrap_exit_ptr(),
15668 * call this after dtrace_helpers_cleanup()
15671 if (p
->p_dtrace_probes
&& dtrace_fasttrap_exit_ptr
) {
15672 (*dtrace_fasttrap_exit_ptr
)(p
);
15678 * DTrace Hook Functions
15682 * APPLE NOTE: dtrace_modctl_* routines for kext support.
15683 * Used to manipulate the modctl list within dtrace xnu.
15686 modctl_t
*dtrace_modctl_list
;
15689 dtrace_modctl_add(struct modctl
* newctl
)
15691 struct modctl
*nextp
, *prevp
;
15693 ASSERT(newctl
!= NULL
);
15694 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15696 // Insert new module at the front of the list,
15698 newctl
->mod_next
= dtrace_modctl_list
;
15699 dtrace_modctl_list
= newctl
;
15702 * If a module exists with the same name, then that module
15703 * must have been unloaded with enabled probes. We will move
15704 * the unloaded module to the new module's stale chain and
15705 * then stop traversing the list.
15709 nextp
= newctl
->mod_next
;
15711 while (nextp
!= NULL
) {
15712 if (nextp
->mod_loaded
) {
15713 /* This is a loaded module. Keep traversing. */
15715 nextp
= nextp
->mod_next
;
15719 /* Found an unloaded module */
15720 if (strncmp (newctl
->mod_modname
, nextp
->mod_modname
, KMOD_MAX_NAME
)) {
15721 /* Names don't match. Keep traversing. */
15723 nextp
= nextp
->mod_next
;
15727 /* We found a stale entry, move it. We're done. */
15728 prevp
->mod_next
= nextp
->mod_next
;
15729 newctl
->mod_stale
= nextp
;
15730 nextp
->mod_next
= NULL
;
15738 dtrace_modctl_lookup(struct kmod_info
* kmod
)
15740 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15742 struct modctl
* ctl
;
15744 for (ctl
= dtrace_modctl_list
; ctl
; ctl
=ctl
->mod_next
) {
15745 if (ctl
->mod_id
== kmod
->id
)
15752 * This routine is called from dtrace_module_unloaded().
15753 * It removes a modctl structure and its stale chain
15754 * from the kext shadow list.
15757 dtrace_modctl_remove(struct modctl
* ctl
)
15759 ASSERT(ctl
!= NULL
);
15760 LCK_MTX_ASSERT(&mod_lock
, LCK_MTX_ASSERT_OWNED
);
15761 modctl_t
*prevp
, *nextp
, *curp
;
15763 // Remove stale chain first
15764 for (curp
=ctl
->mod_stale
; curp
!= NULL
; curp
=nextp
) {
15765 nextp
= curp
->mod_stale
;
15766 /* There should NEVER be user symbols allocated at this point */
15767 ASSERT(curp
->mod_user_symbols
== NULL
);
15768 kmem_free(curp
, sizeof(modctl_t
));
15772 curp
= dtrace_modctl_list
;
15774 while (curp
!= ctl
) {
15776 curp
= curp
->mod_next
;
15779 if (prevp
!= NULL
) {
15780 prevp
->mod_next
= ctl
->mod_next
;
15783 dtrace_modctl_list
= ctl
->mod_next
;
15786 /* There should NEVER be user symbols allocated at this point */
15787 ASSERT(ctl
->mod_user_symbols
== NULL
);
15789 kmem_free (ctl
, sizeof(modctl_t
));
15793 * APPLE NOTE: The kext loader will call dtrace_module_loaded
15794 * when the kext is loaded in memory, but before calling the
15795 * kext's start routine.
15797 * Return 0 on success
15798 * Return -1 on failure
15802 dtrace_module_loaded(struct kmod_info
*kmod
, uint32_t flag
)
15804 dtrace_provider_t
*prv
;
15807 * If kernel symbols have been disabled, return immediately
15808 * DTRACE_KERNEL_SYMBOLS_NEVER is a permanent mode, it is safe to test without holding locks
15810 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
)
15813 struct modctl
*ctl
= NULL
;
15814 if (!kmod
|| kmod
->address
== 0 || kmod
->size
== 0)
15817 lck_mtx_lock(&dtrace_provider_lock
);
15818 lck_mtx_lock(&mod_lock
);
15821 * Have we seen this kext before?
15824 ctl
= dtrace_modctl_lookup(kmod
);
15827 /* bail... we already have this kext in the modctl list */
15828 lck_mtx_unlock(&mod_lock
);
15829 lck_mtx_unlock(&dtrace_provider_lock
);
15830 if (dtrace_err_verbose
)
15831 cmn_err(CE_WARN
, "dtrace load module already exists '%s %u' is failing against '%s %u'", kmod
->name
, (uint_t
)kmod
->id
, ctl
->mod_modname
, ctl
->mod_id
);
15835 ctl
= kmem_alloc(sizeof(struct modctl
), KM_SLEEP
);
15837 if (dtrace_err_verbose
)
15838 cmn_err(CE_WARN
, "dtrace module load '%s %u' is failing ", kmod
->name
, (uint_t
)kmod
->id
);
15839 lck_mtx_unlock(&mod_lock
);
15840 lck_mtx_unlock(&dtrace_provider_lock
);
15843 ctl
->mod_next
= NULL
;
15844 ctl
->mod_stale
= NULL
;
15845 strlcpy (ctl
->mod_modname
, kmod
->name
, sizeof(ctl
->mod_modname
));
15846 ctl
->mod_loadcnt
= kmod
->id
;
15847 ctl
->mod_nenabled
= 0;
15848 ctl
->mod_address
= kmod
->address
;
15849 ctl
->mod_size
= kmod
->size
;
15850 ctl
->mod_id
= kmod
->id
;
15851 ctl
->mod_loaded
= 1;
15852 ctl
->mod_flags
= 0;
15853 ctl
->mod_user_symbols
= NULL
;
15856 * Find the UUID for this module, if it has one
15858 kernel_mach_header_t
* header
= (kernel_mach_header_t
*)ctl
->mod_address
;
15859 struct load_command
* load_cmd
= (struct load_command
*)&header
[1];
15861 for (i
= 0; i
< header
->ncmds
; i
++) {
15862 if (load_cmd
->cmd
== LC_UUID
) {
15863 struct uuid_command
* uuid_cmd
= (struct uuid_command
*)load_cmd
;
15864 memcpy(ctl
->mod_uuid
, uuid_cmd
->uuid
, sizeof(uuid_cmd
->uuid
));
15865 ctl
->mod_flags
|= MODCTL_HAS_UUID
;
15868 load_cmd
= (struct load_command
*)((caddr_t
)load_cmd
+ load_cmd
->cmdsize
);
15871 if (ctl
->mod_address
== g_kernel_kmod_info
.address
) {
15872 ctl
->mod_flags
|= MODCTL_IS_MACH_KERNEL
;
15875 dtrace_modctl_add(ctl
);
15878 * We must hold the dtrace_lock to safely test non permanent dtrace_fbt_symbol_mode(s)
15880 lck_mtx_lock(&dtrace_lock
);
15883 * DTrace must decide if it will instrument modules lazily via
15884 * userspace symbols (default mode), or instrument immediately via
15885 * kernel symbols (non-default mode)
15887 * When in default/lazy mode, DTrace will only support modules
15888 * built with a valid UUID.
15890 * Overriding the default can be done explicitly in one of
15891 * the following two ways.
15893 * A module can force symbols from kernel space using the plist key,
15894 * OSBundleForceDTraceInit (see kmod.h). If this per kext state is set,
15895 * we fall through and instrument this module now.
15897 * Or, the boot-arg, dtrace_kernel_symbol_mode, can be set to force symbols
15898 * from kernel space (see dtrace_impl.h). If this system state is set
15899 * to a non-userspace mode, we fall through and instrument the module now.
15902 if ((dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) &&
15903 (!(flag
& KMOD_DTRACE_FORCE_INIT
)))
15905 /* We will instrument the module lazily -- this is the default */
15906 lck_mtx_unlock(&dtrace_lock
);
15907 lck_mtx_unlock(&mod_lock
);
15908 lck_mtx_unlock(&dtrace_provider_lock
);
15912 /* We will instrument the module immediately using kernel symbols */
15913 ctl
->mod_flags
|= MODCTL_HAS_KERNEL_SYMBOLS
;
15915 lck_mtx_unlock(&dtrace_lock
);
15918 * We're going to call each providers per-module provide operation
15919 * specifying only this module.
15921 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
15922 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
15925 * APPLE NOTE: The contract with the kext loader is that once this function
15926 * has completed, it may delete kernel symbols at will.
15927 * We must set this while still holding the mod_lock.
15929 ctl
->mod_flags
&= ~MODCTL_HAS_KERNEL_SYMBOLS
;
15931 lck_mtx_unlock(&mod_lock
);
15932 lck_mtx_unlock(&dtrace_provider_lock
);
15935 * If we have any retained enablings, we need to match against them.
15936 * Enabling probes requires that cpu_lock be held, and we cannot hold
15937 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15938 * module. (In particular, this happens when loading scheduling
15939 * classes.) So if we have any retained enablings, we need to dispatch
15940 * our task queue to do the match for us.
15942 lck_mtx_lock(&dtrace_lock
);
15944 if (dtrace_retained
== NULL
) {
15945 lck_mtx_unlock(&dtrace_lock
);
15951 * The cpu_lock mentioned above is only held by dtrace code, Apple's xnu never actually
15952 * holds it for any reason. Thus the comment above is invalid, we can directly invoke
15953 * dtrace_enabling_matchall without jumping through all the hoops, and we can avoid
15954 * the delay call as well.
15956 lck_mtx_unlock(&dtrace_lock
);
15958 dtrace_enabling_matchall();
15964 * Return 0 on success
15965 * Return -1 on failure
15968 dtrace_module_unloaded(struct kmod_info
*kmod
)
15970 dtrace_probe_t
template, *probe
, *first
, *next
;
15971 dtrace_provider_t
*prov
;
15972 struct modctl
*ctl
= NULL
;
15973 struct modctl
*syncctl
= NULL
;
15974 struct modctl
*nextsyncctl
= NULL
;
15977 lck_mtx_lock(&dtrace_provider_lock
);
15978 lck_mtx_lock(&mod_lock
);
15979 lck_mtx_lock(&dtrace_lock
);
15981 if (kmod
== NULL
) {
15985 ctl
= dtrace_modctl_lookup(kmod
);
15988 lck_mtx_unlock(&dtrace_lock
);
15989 lck_mtx_unlock(&mod_lock
);
15990 lck_mtx_unlock(&dtrace_provider_lock
);
15993 ctl
->mod_loaded
= 0;
15994 ctl
->mod_address
= 0;
15998 if (dtrace_bymod
== NULL
) {
16000 * The DTrace module is loaded (obviously) but not attached;
16001 * we don't have any work to do.
16004 (void)dtrace_modctl_remove(ctl
);
16005 lck_mtx_unlock(&dtrace_lock
);
16006 lck_mtx_unlock(&mod_lock
);
16007 lck_mtx_unlock(&dtrace_provider_lock
);
16011 /* Syncmode set means we target and traverse entire modctl list. */
16013 nextsyncctl
= dtrace_modctl_list
;
16018 /* find a stale modctl struct */
16019 for (syncctl
= nextsyncctl
; syncctl
!= NULL
; syncctl
=syncctl
->mod_next
) {
16020 if (syncctl
->mod_address
== 0)
16025 /* We have no more work to do */
16026 lck_mtx_unlock(&dtrace_lock
);
16027 lck_mtx_unlock(&mod_lock
);
16028 lck_mtx_unlock(&dtrace_provider_lock
);
16032 /* keep track of next syncctl in case this one is removed */
16033 nextsyncctl
= syncctl
->mod_next
;
16038 template.dtpr_mod
= ctl
->mod_modname
;
16040 for (probe
= first
= dtrace_hash_lookup(dtrace_bymod
, &template);
16041 probe
!= NULL
; probe
= probe
->dtpr_nextmod
) {
16042 if (probe
->dtpr_ecb
!= NULL
) {
16044 * This shouldn't _actually_ be possible -- we're
16045 * unloading a module that has an enabled probe in it.
16046 * (It's normally up to the provider to make sure that
16047 * this can't happen.) However, because dtps_enable()
16048 * doesn't have a failure mode, there can be an
16049 * enable/unload race. Upshot: we don't want to
16050 * assert, but we're not going to disable the
16056 /* We're syncing, let's look at next in list */
16060 lck_mtx_unlock(&dtrace_lock
);
16061 lck_mtx_unlock(&mod_lock
);
16062 lck_mtx_unlock(&dtrace_provider_lock
);
16064 if (dtrace_err_verbose
) {
16065 cmn_err(CE_WARN
, "unloaded module '%s' had "
16066 "enabled probes", ctl
->mod_modname
);
16074 for (first
= NULL
; probe
!= NULL
; probe
= next
) {
16075 ASSERT(dtrace_probes
[probe
->dtpr_id
- 1] == probe
);
16077 dtrace_probes
[probe
->dtpr_id
- 1] = NULL
;
16078 probe
->dtpr_provider
->dtpv_probe_count
--;
16080 next
= probe
->dtpr_nextmod
;
16081 dtrace_hash_remove(dtrace_bymod
, probe
);
16082 dtrace_hash_remove(dtrace_byfunc
, probe
);
16083 dtrace_hash_remove(dtrace_byname
, probe
);
16085 if (first
== NULL
) {
16087 probe
->dtpr_nextmod
= NULL
;
16089 probe
->dtpr_nextmod
= first
;
16095 * We've removed all of the module's probes from the hash chains and
16096 * from the probe array. Now issue a dtrace_sync() to be sure that
16097 * everyone has cleared out from any probe array processing.
16101 for (probe
= first
; probe
!= NULL
; probe
= first
) {
16102 first
= probe
->dtpr_nextmod
;
16103 prov
= probe
->dtpr_provider
;
16104 prov
->dtpv_pops
.dtps_destroy(prov
->dtpv_arg
, probe
->dtpr_id
,
16106 kmem_free(probe
->dtpr_mod
, strlen(probe
->dtpr_mod
) + 1);
16107 kmem_free(probe
->dtpr_func
, strlen(probe
->dtpr_func
) + 1);
16108 kmem_free(probe
->dtpr_name
, strlen(probe
->dtpr_name
) + 1);
16109 vmem_free(dtrace_arena
, (void *)(uintptr_t)probe
->dtpr_id
, 1);
16111 zfree(dtrace_probe_t_zone
, probe
);
16114 dtrace_modctl_remove(ctl
);
16119 lck_mtx_unlock(&dtrace_lock
);
16120 lck_mtx_unlock(&mod_lock
);
16121 lck_mtx_unlock(&dtrace_provider_lock
);
16127 dtrace_suspend(void)
16129 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_suspend
));
16133 dtrace_resume(void)
16135 dtrace_probe_foreach(offsetof(dtrace_pops_t
, dtps_resume
));
16139 dtrace_cpu_setup(cpu_setup_t what
, processorid_t cpu
)
16141 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16142 lck_mtx_lock(&dtrace_lock
);
16146 dtrace_state_t
*state
;
16147 dtrace_optval_t
*opt
, rs
, c
;
16150 * For now, we only allocate a new buffer for anonymous state.
16152 if ((state
= dtrace_anon
.dta_state
) == NULL
)
16155 if (state
->dts_activity
!= DTRACE_ACTIVITY_ACTIVE
)
16158 opt
= state
->dts_options
;
16159 c
= opt
[DTRACEOPT_CPU
];
16161 if (c
!= DTRACE_CPUALL
&& c
!= DTRACEOPT_UNSET
&& c
!= cpu
)
16165 * Regardless of what the actual policy is, we're going to
16166 * temporarily set our resize policy to be manual. We're
16167 * also going to temporarily set our CPU option to denote
16168 * the newly configured CPU.
16170 rs
= opt
[DTRACEOPT_BUFRESIZE
];
16171 opt
[DTRACEOPT_BUFRESIZE
] = DTRACEOPT_BUFRESIZE_MANUAL
;
16172 opt
[DTRACEOPT_CPU
] = (dtrace_optval_t
)cpu
;
16174 (void) dtrace_state_buffers(state
);
16176 opt
[DTRACEOPT_BUFRESIZE
] = rs
;
16177 opt
[DTRACEOPT_CPU
] = c
;
16184 * We don't free the buffer in the CPU_UNCONFIG case. (The
16185 * buffer will be freed when the consumer exits.)
16193 lck_mtx_unlock(&dtrace_lock
);
16198 dtrace_cpu_setup_initial(processorid_t cpu
)
16200 (void) dtrace_cpu_setup(CPU_CONFIG
, cpu
);
16204 dtrace_toxrange_add(uintptr_t base
, uintptr_t limit
)
16206 if (dtrace_toxranges
>= dtrace_toxranges_max
) {
16208 dtrace_toxrange_t
*range
;
16210 osize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
16213 ASSERT(dtrace_toxrange
== NULL
);
16214 ASSERT(dtrace_toxranges_max
== 0);
16215 dtrace_toxranges_max
= 1;
16217 dtrace_toxranges_max
<<= 1;
16220 nsize
= dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
);
16221 range
= kmem_zalloc(nsize
, KM_SLEEP
);
16223 if (dtrace_toxrange
!= NULL
) {
16224 ASSERT(osize
!= 0);
16225 bcopy(dtrace_toxrange
, range
, osize
);
16226 kmem_free(dtrace_toxrange
, osize
);
16229 dtrace_toxrange
= range
;
16232 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_base
== 0);
16233 ASSERT(dtrace_toxrange
[dtrace_toxranges
].dtt_limit
== 0);
16235 dtrace_toxrange
[dtrace_toxranges
].dtt_base
= base
;
16236 dtrace_toxrange
[dtrace_toxranges
].dtt_limit
= limit
;
16237 dtrace_toxranges
++;
16241 * DTrace Driver Cookbook Functions
16245 dtrace_attach(dev_info_t
*devi
, ddi_attach_cmd_t cmd
)
16247 #pragma unused(cmd) /* __APPLE__ */
16248 dtrace_provider_id_t id
;
16249 dtrace_state_t
*state
= NULL
;
16250 dtrace_enabling_t
*enab
;
16252 lck_mtx_lock(&cpu_lock
);
16253 lck_mtx_lock(&dtrace_provider_lock
);
16254 lck_mtx_lock(&dtrace_lock
);
16256 /* Darwin uses BSD cloning device driver to automagically obtain minor device number. */
16258 ddi_report_dev(devi
);
16259 dtrace_devi
= devi
;
16261 dtrace_modload
= dtrace_module_loaded
;
16262 dtrace_modunload
= dtrace_module_unloaded
;
16263 dtrace_cpu_init
= dtrace_cpu_setup_initial
;
16264 dtrace_helpers_cleanup
= dtrace_helpers_destroy
;
16265 dtrace_helpers_fork
= dtrace_helpers_duplicate
;
16266 dtrace_cpustart_init
= dtrace_suspend
;
16267 dtrace_cpustart_fini
= dtrace_resume
;
16268 dtrace_debugger_init
= dtrace_suspend
;
16269 dtrace_debugger_fini
= dtrace_resume
;
16271 register_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
16273 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16275 dtrace_arena
= vmem_create("dtrace", (void *)1, UINT32_MAX
, 1,
16276 NULL
, NULL
, NULL
, 0, VM_SLEEP
| VMC_IDENTIFIER
);
16277 dtrace_taskq
= taskq_create("dtrace_taskq", 1, maxclsyspri
,
16280 dtrace_state_cache
= kmem_cache_create("dtrace_state_cache",
16281 sizeof (dtrace_dstate_percpu_t
) * (int)NCPU
, DTRACE_STATE_ALIGN
,
16282 NULL
, NULL
, NULL
, NULL
, NULL
, 0);
16284 LCK_MTX_ASSERT(&cpu_lock
, LCK_MTX_ASSERT_OWNED
);
16286 dtrace_bymod
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_mod
),
16287 offsetof(dtrace_probe_t
, dtpr_nextmod
),
16288 offsetof(dtrace_probe_t
, dtpr_prevmod
));
16290 dtrace_byfunc
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_func
),
16291 offsetof(dtrace_probe_t
, dtpr_nextfunc
),
16292 offsetof(dtrace_probe_t
, dtpr_prevfunc
));
16294 dtrace_byname
= dtrace_hash_create(offsetof(dtrace_probe_t
, dtpr_name
),
16295 offsetof(dtrace_probe_t
, dtpr_nextname
),
16296 offsetof(dtrace_probe_t
, dtpr_prevname
));
16298 if (dtrace_retain_max
< 1) {
16299 cmn_err(CE_WARN
, "illegal value (%lu) for dtrace_retain_max; "
16300 "setting to 1", dtrace_retain_max
);
16301 dtrace_retain_max
= 1;
16305 * Now discover our toxic ranges.
16307 dtrace_toxic_ranges(dtrace_toxrange_add
);
16310 * Before we register ourselves as a provider to our own framework,
16311 * we would like to assert that dtrace_provider is NULL -- but that's
16312 * not true if we were loaded as a dependency of a DTrace provider.
16313 * Once we've registered, we can assert that dtrace_provider is our
16316 (void) dtrace_register("dtrace", &dtrace_provider_attr
,
16317 DTRACE_PRIV_NONE
, 0, &dtrace_provider_ops
, NULL
, &id
);
16319 ASSERT(dtrace_provider
!= NULL
);
16320 ASSERT((dtrace_provider_id_t
)dtrace_provider
== id
);
16322 #if defined (__x86_64__)
16323 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16324 dtrace_provider
, NULL
, NULL
, "BEGIN", 1, NULL
);
16325 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16326 dtrace_provider
, NULL
, NULL
, "END", 0, NULL
);
16327 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16328 dtrace_provider
, NULL
, NULL
, "ERROR", 3, NULL
);
16329 #elif (defined(__arm__) || defined(__arm64__))
16330 dtrace_probeid_begin
= dtrace_probe_create((dtrace_provider_id_t
)
16331 dtrace_provider
, NULL
, NULL
, "BEGIN", 2, NULL
);
16332 dtrace_probeid_end
= dtrace_probe_create((dtrace_provider_id_t
)
16333 dtrace_provider
, NULL
, NULL
, "END", 1, NULL
);
16334 dtrace_probeid_error
= dtrace_probe_create((dtrace_provider_id_t
)
16335 dtrace_provider
, NULL
, NULL
, "ERROR", 4, NULL
);
16337 #error Unknown Architecture
16340 dtrace_anon_property();
16341 lck_mtx_unlock(&cpu_lock
);
16344 * If DTrace helper tracing is enabled, we need to allocate the
16345 * trace buffer and initialize the values.
16347 if (dtrace_helptrace_enabled
) {
16348 ASSERT(dtrace_helptrace_buffer
== NULL
);
16349 dtrace_helptrace_buffer
=
16350 kmem_zalloc(dtrace_helptrace_bufsize
, KM_SLEEP
);
16351 dtrace_helptrace_next
= 0;
16355 * If there are already providers, we must ask them to provide their
16356 * probes, and then match any anonymous enabling against them. Note
16357 * that there should be no other retained enablings at this time:
16358 * the only retained enablings at this time should be the anonymous
16361 if (dtrace_anon
.dta_enabling
!= NULL
) {
16362 ASSERT(dtrace_retained
== dtrace_anon
.dta_enabling
);
16365 * APPLE NOTE: if handling anonymous dof, switch symbol modes.
16367 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
16368 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
16371 dtrace_enabling_provide(NULL
);
16372 state
= dtrace_anon
.dta_state
;
16375 * We couldn't hold cpu_lock across the above call to
16376 * dtrace_enabling_provide(), but we must hold it to actually
16377 * enable the probes. We have to drop all of our locks, pick
16378 * up cpu_lock, and regain our locks before matching the
16379 * retained anonymous enabling.
16381 lck_mtx_unlock(&dtrace_lock
);
16382 lck_mtx_unlock(&dtrace_provider_lock
);
16384 lck_mtx_lock(&cpu_lock
);
16385 lck_mtx_lock(&dtrace_provider_lock
);
16386 lck_mtx_lock(&dtrace_lock
);
16388 if ((enab
= dtrace_anon
.dta_enabling
) != NULL
)
16389 (void) dtrace_enabling_match(enab
, NULL
, NULL
);
16391 lck_mtx_unlock(&cpu_lock
);
16394 lck_mtx_unlock(&dtrace_lock
);
16395 lck_mtx_unlock(&dtrace_provider_lock
);
16397 if (state
!= NULL
) {
16399 * If we created any anonymous state, set it going now.
16401 (void) dtrace_state_go(state
, &dtrace_anon
.dta_beganon
);
16404 return (DDI_SUCCESS
);
16409 dtrace_open(dev_t
*devp
, int flag
, int otyp
, cred_t
*cred_p
)
16411 #pragma unused(flag, otyp)
16412 dtrace_state_t
*state
;
16418 /* APPLE: Darwin puts Helper on its own major device. */
16421 * If no DTRACE_PRIV_* bits are set in the credential, then the
16422 * caller lacks sufficient permission to do anything with DTrace.
16424 dtrace_cred2priv(cred_p
, &priv
, &uid
, &zoneid
);
16425 if (priv
== DTRACE_PRIV_NONE
)
16429 * APPLE NOTE: We delay the initialization of fasttrap as late as possible.
16430 * It certainly can't be later than now!
16435 * Ask all providers to provide all their probes.
16437 lck_mtx_lock(&dtrace_provider_lock
);
16438 dtrace_probe_provide(NULL
, NULL
);
16439 lck_mtx_unlock(&dtrace_provider_lock
);
16441 lck_mtx_lock(&cpu_lock
);
16442 lck_mtx_lock(&dtrace_lock
);
16444 dtrace_membar_producer();
16447 * If the kernel debugger is active (that is, if the kernel debugger
16448 * modified text in some way), we won't allow the open.
16450 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE
) != 0) {
16452 lck_mtx_unlock(&dtrace_lock
);
16453 lck_mtx_unlock(&cpu_lock
);
16457 rv
= dtrace_state_create(devp
, cred_p
, &state
);
16458 lck_mtx_unlock(&cpu_lock
);
16460 if (rv
!= 0 || state
== NULL
) {
16461 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16462 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16463 lck_mtx_unlock(&dtrace_lock
);
16464 /* propagate EAGAIN or ERESTART */
16468 lck_mtx_unlock(&dtrace_lock
);
16470 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
16473 * If we are currently lazy, transition states.
16475 * Unlike dtrace_close, we do not need to check the
16476 * value of dtrace_opens, as any positive value (and
16477 * we count as 1) means we transition states.
16479 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_ON
) {
16480 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_OFF
;
16482 * We do not need to hold the exclusive lock while processing
16483 * DOF on processes. We do need to make sure the mode does not get
16484 * changed to DTRACE_DOF_MODE_LAZY_ON during that stage though
16485 * (which should not happen anyway since it only happens in
16486 * dtrace_close). There is no way imcomplete USDT probes can be
16487 * activate by any DTrace clients here since they all have to
16488 * call dtrace_open and be blocked on dtrace_dof_mode_lock
16490 lck_rw_lock_exclusive_to_shared(&dtrace_dof_mode_lock
);
16492 * Iterate all existing processes and load lazy dofs.
16494 proc_iterate(PROC_ALLPROCLIST
| PROC_NOWAITTRANS
,
16495 dtrace_lazy_dofs_proc_iterate_doit
,
16497 dtrace_lazy_dofs_proc_iterate_filter
,
16500 lck_rw_unlock_shared(&dtrace_dof_mode_lock
);
16503 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
16508 * Update kernel symbol state.
16510 * We must own the provider and dtrace locks.
16512 * NOTE! It may appear there is a race by setting this value so late
16513 * after dtrace_probe_provide. However, any kext loaded after the
16514 * call to probe provide and before we set LAZY_OFF will be marked as
16515 * eligible for symbols from userspace. The same dtrace that is currently
16516 * calling dtrace_open() (this call!) will get a list of kexts needing
16517 * symbols and fill them in, thus closing the race window.
16519 * We want to set this value only after it certain it will succeed, as
16520 * this significantly reduces the complexity of error exits.
16522 lck_mtx_lock(&dtrace_lock
);
16523 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
) {
16524 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
;
16526 lck_mtx_unlock(&dtrace_lock
);
16533 dtrace_close(dev_t dev
, int flag
, int otyp
, cred_t
*cred_p
)
16535 #pragma unused(flag, otyp, cred_p) /* __APPLE__ */
16536 minor_t minor
= getminor(dev
);
16537 dtrace_state_t
*state
;
16539 /* APPLE NOTE: Darwin puts Helper on its own major device. */
16540 state
= dtrace_state_get(minor
);
16542 lck_mtx_lock(&cpu_lock
);
16543 lck_mtx_lock(&dtrace_lock
);
16545 if (state
->dts_anon
) {
16547 * There is anonymous state. Destroy that first.
16549 ASSERT(dtrace_anon
.dta_state
== NULL
);
16550 dtrace_state_destroy(state
->dts_anon
);
16553 dtrace_state_destroy(state
);
16554 ASSERT(dtrace_opens
> 0);
16557 * Only relinquish control of the kernel debugger interface when there
16558 * are no consumers and no anonymous enablings.
16560 if (--dtrace_opens
== 0 && dtrace_anon
.dta_enabling
== NULL
)
16561 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
16563 lck_mtx_unlock(&dtrace_lock
);
16564 lck_mtx_unlock(&cpu_lock
);
16567 * Lock ordering requires the dof mode lock be taken before
16570 lck_rw_lock_exclusive(&dtrace_dof_mode_lock
);
16571 lck_mtx_lock(&dtrace_lock
);
16573 if (dtrace_opens
== 0) {
16575 * If we are currently lazy-off, and this is the last close, transition to
16578 if (dtrace_dof_mode
== DTRACE_DOF_MODE_LAZY_OFF
) {
16579 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
16583 * If we are the last dtrace client, switch back to lazy (from userspace) symbols
16585 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_FROM_KERNEL
) {
16586 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
16590 lck_mtx_unlock(&dtrace_lock
);
16591 lck_rw_unlock_exclusive(&dtrace_dof_mode_lock
);
16594 * Kext probes may be retained past the end of the kext's lifespan. The
16595 * probes are kept until the last reference to them has been removed.
16596 * Since closing an active dtrace context is likely to drop that last reference,
16597 * lets take a shot at cleaning out the orphaned probes now.
16599 dtrace_module_unloaded(NULL
);
16606 dtrace_ioctl_helper(u_long cmd
, caddr_t arg
, int *rv
)
16610 * Safe to check this outside the dof mode lock
16612 if (dtrace_dof_mode
== DTRACE_DOF_MODE_NEVER
)
16613 return KERN_SUCCESS
;
16616 #if defined (__arm64__)
16617 case DTRACEHIOC_ADDDOF_U32
:
16618 case DTRACEHIOC_ADDDOF_U64
:
16620 case DTRACEHIOC_ADDDOF
:
16621 #endif /* __arm64__*/
16623 dof_helper_t
*dhp
= NULL
;
16624 size_t dof_ioctl_data_size
;
16625 dof_ioctl_data_t
* multi_dof
;
16628 user_addr_t user_address
= *(user_addr_t
*)arg
;
16629 uint64_t dof_count
;
16630 int multi_dof_claimed
= 0;
16631 proc_t
* p
= current_proc();
16634 * If this is a restricted process and dtrace is restricted,
16635 * do not allow DOFs to be registered
16637 if (dtrace_is_restricted() &&
16638 !dtrace_are_restrictions_relaxed() &&
16639 !dtrace_can_attach_to_proc(current_proc())) {
16644 * Read the number of DOF sections being passed in.
16646 if (copyin(user_address
+ offsetof(dof_ioctl_data_t
, dofiod_count
),
16648 sizeof(dof_count
))) {
16649 dtrace_dof_error(NULL
, "failed to copyin dofiod_count");
16654 * Range check the count.
16656 if (dof_count
== 0 || dof_count
> 1024) {
16657 dtrace_dof_error(NULL
, "dofiod_count is not valid");
16662 * Allocate a correctly sized structure and copyin the data.
16664 dof_ioctl_data_size
= DOF_IOCTL_DATA_T_SIZE(dof_count
);
16665 if ((multi_dof
= kmem_alloc(dof_ioctl_data_size
, KM_SLEEP
)) == NULL
)
16668 /* NOTE! We can no longer exit this method via return */
16669 if (copyin(user_address
, multi_dof
, dof_ioctl_data_size
) != 0) {
16670 dtrace_dof_error(NULL
, "failed copyin of dof_ioctl_data_t");
16676 * Check that the count didn't change between the first copyin and the second.
16678 if (multi_dof
->dofiod_count
!= dof_count
) {
16684 * Try to process lazily first.
16686 rval
= dtrace_lazy_dofs_add(p
, multi_dof
, &multi_dof_claimed
);
16689 * If rval is EACCES, we must be non-lazy.
16691 if (rval
== EACCES
) {
16694 * Process each dof_helper_t
16698 dhp
= &multi_dof
->dofiod_helpers
[i
];
16700 dof_hdr_t
*dof
= dtrace_dof_copyin(dhp
->dofhp_dof
, &rval
);
16703 lck_mtx_lock(&dtrace_lock
);
16706 * dtrace_helper_slurp() takes responsibility for the dof --
16707 * it may free it now or it may save it and free it later.
16709 if ((dhp
->dofhp_dof
= (uint64_t)dtrace_helper_slurp(p
, dof
, dhp
)) == -1ULL) {
16713 lck_mtx_unlock(&dtrace_lock
);
16715 } while (++i
< multi_dof
->dofiod_count
&& rval
== 0);
16719 * We need to copyout the multi_dof struct, because it contains
16720 * the generation (unique id) values needed to call DTRACEHIOC_REMOVE
16722 * This could certainly be better optimized.
16724 if (copyout(multi_dof
, user_address
, dof_ioctl_data_size
) != 0) {
16725 dtrace_dof_error(NULL
, "failed copyout of dof_ioctl_data_t");
16726 /* Don't overwrite pre-existing error code */
16727 if (rval
== 0) rval
= EFAULT
;
16732 * If we had to allocate struct memory, free it.
16734 if (multi_dof
!= NULL
&& !multi_dof_claimed
) {
16735 kmem_free(multi_dof
, dof_ioctl_data_size
);
16741 case DTRACEHIOC_REMOVE
: {
16742 int generation
= *(int*)arg
;
16743 proc_t
* p
= current_proc();
16748 int rval
= dtrace_lazy_dofs_remove(p
, generation
);
16751 * EACCES means non-lazy
16753 if (rval
== EACCES
) {
16754 lck_mtx_lock(&dtrace_lock
);
16755 rval
= dtrace_helper_destroygen(p
, generation
);
16756 lck_mtx_unlock(&dtrace_lock
);
16771 dtrace_ioctl(dev_t dev
, u_long cmd
, user_addr_t arg
, int md
, cred_t
*cr
, int *rv
)
16774 minor_t minor
= getminor(dev
);
16775 dtrace_state_t
*state
;
16778 /* Darwin puts Helper on its own major device. */
16780 state
= dtrace_state_get(minor
);
16782 if (state
->dts_anon
) {
16783 ASSERT(dtrace_anon
.dta_state
== NULL
);
16784 state
= state
->dts_anon
;
16788 case DTRACEIOC_PROVIDER
: {
16789 dtrace_providerdesc_t pvd
;
16790 dtrace_provider_t
*pvp
;
16792 if (copyin(arg
, &pvd
, sizeof (pvd
)) != 0)
16795 pvd
.dtvd_name
[DTRACE_PROVNAMELEN
- 1] = '\0';
16796 lck_mtx_lock(&dtrace_provider_lock
);
16798 for (pvp
= dtrace_provider
; pvp
!= NULL
; pvp
= pvp
->dtpv_next
) {
16799 if (strncmp(pvp
->dtpv_name
, pvd
.dtvd_name
, DTRACE_PROVNAMELEN
) == 0)
16803 lck_mtx_unlock(&dtrace_provider_lock
);
16808 bcopy(&pvp
->dtpv_priv
, &pvd
.dtvd_priv
, sizeof (dtrace_ppriv_t
));
16809 bcopy(&pvp
->dtpv_attr
, &pvd
.dtvd_attr
, sizeof (dtrace_pattr_t
));
16810 if (copyout(&pvd
, arg
, sizeof (pvd
)) != 0)
16816 case DTRACEIOC_EPROBE
: {
16817 dtrace_eprobedesc_t epdesc
;
16819 dtrace_action_t
*act
;
16825 if (copyin(arg
, &epdesc
, sizeof (epdesc
)) != 0)
16828 lck_mtx_lock(&dtrace_lock
);
16830 if ((ecb
= dtrace_epid2ecb(state
, epdesc
.dtepd_epid
)) == NULL
) {
16831 lck_mtx_unlock(&dtrace_lock
);
16835 if (ecb
->dte_probe
== NULL
) {
16836 lck_mtx_unlock(&dtrace_lock
);
16840 epdesc
.dtepd_probeid
= ecb
->dte_probe
->dtpr_id
;
16841 epdesc
.dtepd_uarg
= ecb
->dte_uarg
;
16842 epdesc
.dtepd_size
= ecb
->dte_size
;
16844 nrecs
= epdesc
.dtepd_nrecs
;
16845 epdesc
.dtepd_nrecs
= 0;
16846 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16847 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16850 epdesc
.dtepd_nrecs
++;
16854 * Now that we have the size, we need to allocate a temporary
16855 * buffer in which to store the complete description. We need
16856 * the temporary buffer to be able to drop dtrace_lock()
16857 * across the copyout(), below.
16859 size
= sizeof (dtrace_eprobedesc_t
) +
16860 (epdesc
.dtepd_nrecs
* sizeof (dtrace_recdesc_t
));
16862 buf
= kmem_alloc(size
, KM_SLEEP
);
16863 dest
= (uintptr_t)buf
;
16865 bcopy(&epdesc
, (void *)dest
, sizeof (epdesc
));
16866 dest
+= offsetof(dtrace_eprobedesc_t
, dtepd_rec
[0]);
16868 for (act
= ecb
->dte_action
; act
!= NULL
; act
= act
->dta_next
) {
16869 if (DTRACEACT_ISAGG(act
->dta_kind
) || act
->dta_intuple
)
16875 bcopy(&act
->dta_rec
, (void *)dest
,
16876 sizeof (dtrace_recdesc_t
));
16877 dest
+= sizeof (dtrace_recdesc_t
);
16880 lck_mtx_unlock(&dtrace_lock
);
16882 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16883 kmem_free(buf
, size
);
16887 kmem_free(buf
, size
);
16891 case DTRACEIOC_AGGDESC
: {
16892 dtrace_aggdesc_t aggdesc
;
16893 dtrace_action_t
*act
;
16894 dtrace_aggregation_t
*agg
;
16897 dtrace_recdesc_t
*lrec
;
16902 if (copyin(arg
, &aggdesc
, sizeof (aggdesc
)) != 0)
16905 lck_mtx_lock(&dtrace_lock
);
16907 if ((agg
= dtrace_aggid2agg(state
, aggdesc
.dtagd_id
)) == NULL
) {
16908 lck_mtx_unlock(&dtrace_lock
);
16912 aggdesc
.dtagd_epid
= agg
->dtag_ecb
->dte_epid
;
16914 nrecs
= aggdesc
.dtagd_nrecs
;
16915 aggdesc
.dtagd_nrecs
= 0;
16917 offs
= agg
->dtag_base
;
16918 lrec
= &agg
->dtag_action
.dta_rec
;
16919 aggdesc
.dtagd_size
= lrec
->dtrd_offset
+ lrec
->dtrd_size
- offs
;
16921 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16922 ASSERT(act
->dta_intuple
||
16923 DTRACEACT_ISAGG(act
->dta_kind
));
16926 * If this action has a record size of zero, it
16927 * denotes an argument to the aggregating action.
16928 * Because the presence of this record doesn't (or
16929 * shouldn't) affect the way the data is interpreted,
16930 * we don't copy it out to save user-level the
16931 * confusion of dealing with a zero-length record.
16933 if (act
->dta_rec
.dtrd_size
== 0) {
16934 ASSERT(agg
->dtag_hasarg
);
16938 aggdesc
.dtagd_nrecs
++;
16940 if (act
== &agg
->dtag_action
)
16945 * Now that we have the size, we need to allocate a temporary
16946 * buffer in which to store the complete description. We need
16947 * the temporary buffer to be able to drop dtrace_lock()
16948 * across the copyout(), below.
16950 size
= sizeof (dtrace_aggdesc_t
) +
16951 (aggdesc
.dtagd_nrecs
* sizeof (dtrace_recdesc_t
));
16953 buf
= kmem_alloc(size
, KM_SLEEP
);
16954 dest
= (uintptr_t)buf
;
16956 bcopy(&aggdesc
, (void *)dest
, sizeof (aggdesc
));
16957 dest
+= offsetof(dtrace_aggdesc_t
, dtagd_rec
[0]);
16959 for (act
= agg
->dtag_first
; ; act
= act
->dta_next
) {
16960 dtrace_recdesc_t rec
= act
->dta_rec
;
16963 * See the comment in the above loop for why we pass
16964 * over zero-length records.
16966 if (rec
.dtrd_size
== 0) {
16967 ASSERT(agg
->dtag_hasarg
);
16974 rec
.dtrd_offset
-= offs
;
16975 bcopy(&rec
, (void *)dest
, sizeof (rec
));
16976 dest
+= sizeof (dtrace_recdesc_t
);
16978 if (act
== &agg
->dtag_action
)
16982 lck_mtx_unlock(&dtrace_lock
);
16984 if (copyout(buf
, arg
, dest
- (uintptr_t)buf
) != 0) {
16985 kmem_free(buf
, size
);
16989 kmem_free(buf
, size
);
16993 case DTRACEIOC_ENABLE
: {
16995 dtrace_enabling_t
*enab
= NULL
;
16996 dtrace_vstate_t
*vstate
;
17002 * If a NULL argument has been passed, we take this as our
17003 * cue to reevaluate our enablings.
17006 dtrace_enabling_matchall();
17011 if ((dof
= dtrace_dof_copyin(arg
, &rval
)) == NULL
)
17014 lck_mtx_lock(&cpu_lock
);
17015 lck_mtx_lock(&dtrace_lock
);
17016 vstate
= &state
->dts_vstate
;
17018 if (state
->dts_activity
!= DTRACE_ACTIVITY_INACTIVE
) {
17019 lck_mtx_unlock(&dtrace_lock
);
17020 lck_mtx_unlock(&cpu_lock
);
17021 dtrace_dof_destroy(dof
);
17025 if (dtrace_dof_slurp(dof
, vstate
, cr
, &enab
, 0, B_TRUE
) != 0) {
17026 lck_mtx_unlock(&dtrace_lock
);
17027 lck_mtx_unlock(&cpu_lock
);
17028 dtrace_dof_destroy(dof
);
17032 if ((rval
= dtrace_dof_options(dof
, state
)) != 0) {
17033 dtrace_enabling_destroy(enab
);
17034 lck_mtx_unlock(&dtrace_lock
);
17035 lck_mtx_unlock(&cpu_lock
);
17036 dtrace_dof_destroy(dof
);
17040 if ((err
= dtrace_enabling_match(enab
, rv
, NULL
)) == 0) {
17041 err
= dtrace_enabling_retain(enab
);
17043 dtrace_enabling_destroy(enab
);
17046 lck_mtx_unlock(&dtrace_lock
);
17047 lck_mtx_unlock(&cpu_lock
);
17048 dtrace_dof_destroy(dof
);
17053 case DTRACEIOC_REPLICATE
: {
17054 dtrace_repldesc_t desc
;
17055 dtrace_probedesc_t
*match
= &desc
.dtrpd_match
;
17056 dtrace_probedesc_t
*create
= &desc
.dtrpd_create
;
17059 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17062 match
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17063 match
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17064 match
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17065 match
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17067 create
->dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17068 create
->dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17069 create
->dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17070 create
->dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17072 lck_mtx_lock(&dtrace_lock
);
17073 err
= dtrace_enabling_replicate(state
, match
, create
);
17074 lck_mtx_unlock(&dtrace_lock
);
17079 case DTRACEIOC_PROBEMATCH
:
17080 case DTRACEIOC_PROBES
: {
17081 dtrace_probe_t
*probe
= NULL
;
17082 dtrace_probedesc_t desc
;
17083 dtrace_probekey_t pkey
;
17090 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17093 desc
.dtpd_provider
[DTRACE_PROVNAMELEN
- 1] = '\0';
17094 desc
.dtpd_mod
[DTRACE_MODNAMELEN
- 1] = '\0';
17095 desc
.dtpd_func
[DTRACE_FUNCNAMELEN
- 1] = '\0';
17096 desc
.dtpd_name
[DTRACE_NAMELEN
- 1] = '\0';
17099 * Before we attempt to match this probe, we want to give
17100 * all providers the opportunity to provide it.
17102 if (desc
.dtpd_id
== DTRACE_IDNONE
) {
17103 lck_mtx_lock(&dtrace_provider_lock
);
17104 dtrace_probe_provide(&desc
, NULL
);
17105 lck_mtx_unlock(&dtrace_provider_lock
);
17109 if (cmd
== DTRACEIOC_PROBEMATCH
) {
17110 dtrace_probekey(&desc
, &pkey
);
17111 pkey
.dtpk_id
= DTRACE_IDNONE
;
17114 dtrace_cred2priv(cr
, &priv
, &uid
, &zoneid
);
17116 lck_mtx_lock(&dtrace_lock
);
17118 if (cmd
== DTRACEIOC_PROBEMATCH
) {
17119 /* Quiet compiler warning */
17120 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
17121 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
17122 (m
= dtrace_match_probe(probe
, &pkey
,
17123 priv
, uid
, zoneid
)) != 0)
17128 lck_mtx_unlock(&dtrace_lock
);
17133 /* Quiet compiler warning */
17134 for (i
= desc
.dtpd_id
; i
<= (dtrace_id_t
)dtrace_nprobes
; i
++) {
17135 if ((probe
= dtrace_probes
[i
- 1]) != NULL
&&
17136 dtrace_match_priv(probe
, priv
, uid
, zoneid
))
17141 if (probe
== NULL
) {
17142 lck_mtx_unlock(&dtrace_lock
);
17146 dtrace_probe_description(probe
, &desc
);
17147 lck_mtx_unlock(&dtrace_lock
);
17149 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17155 case DTRACEIOC_PROBEARG
: {
17156 dtrace_argdesc_t desc
;
17157 dtrace_probe_t
*probe
;
17158 dtrace_provider_t
*prov
;
17160 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17163 if (desc
.dtargd_id
== DTRACE_IDNONE
)
17166 if (desc
.dtargd_ndx
== DTRACE_ARGNONE
)
17169 lck_mtx_lock(&dtrace_provider_lock
);
17170 lck_mtx_lock(&mod_lock
);
17171 lck_mtx_lock(&dtrace_lock
);
17173 /* Quiet compiler warning */
17174 if (desc
.dtargd_id
> (dtrace_id_t
)dtrace_nprobes
) {
17175 lck_mtx_unlock(&dtrace_lock
);
17176 lck_mtx_unlock(&mod_lock
);
17177 lck_mtx_unlock(&dtrace_provider_lock
);
17181 if ((probe
= dtrace_probes
[desc
.dtargd_id
- 1]) == NULL
) {
17182 lck_mtx_unlock(&dtrace_lock
);
17183 lck_mtx_unlock(&mod_lock
);
17184 lck_mtx_unlock(&dtrace_provider_lock
);
17188 lck_mtx_unlock(&dtrace_lock
);
17190 prov
= probe
->dtpr_provider
;
17192 if (prov
->dtpv_pops
.dtps_getargdesc
== NULL
) {
17194 * There isn't any typed information for this probe.
17195 * Set the argument number to DTRACE_ARGNONE.
17197 desc
.dtargd_ndx
= DTRACE_ARGNONE
;
17199 desc
.dtargd_native
[0] = '\0';
17200 desc
.dtargd_xlate
[0] = '\0';
17201 desc
.dtargd_mapping
= desc
.dtargd_ndx
;
17203 prov
->dtpv_pops
.dtps_getargdesc(prov
->dtpv_arg
,
17204 probe
->dtpr_id
, probe
->dtpr_arg
, &desc
);
17207 lck_mtx_unlock(&mod_lock
);
17208 lck_mtx_unlock(&dtrace_provider_lock
);
17210 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17216 case DTRACEIOC_GO
: {
17217 processorid_t cpuid
;
17218 rval
= dtrace_state_go(state
, &cpuid
);
17223 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
17229 case DTRACEIOC_STOP
: {
17230 processorid_t cpuid
;
17232 lck_mtx_lock(&dtrace_lock
);
17233 rval
= dtrace_state_stop(state
, &cpuid
);
17234 lck_mtx_unlock(&dtrace_lock
);
17239 if (copyout(&cpuid
, arg
, sizeof (cpuid
)) != 0)
17245 case DTRACEIOC_DOFGET
: {
17246 dof_hdr_t hdr
, *dof
;
17249 if (copyin(arg
, &hdr
, sizeof (hdr
)) != 0)
17252 lck_mtx_lock(&dtrace_lock
);
17253 dof
= dtrace_dof_create(state
);
17254 lck_mtx_unlock(&dtrace_lock
);
17256 len
= MIN(hdr
.dofh_loadsz
, dof
->dofh_loadsz
);
17257 rval
= copyout(dof
, arg
, len
);
17258 dtrace_dof_destroy(dof
);
17260 return (rval
== 0 ? 0 : EFAULT
);
17263 case DTRACEIOC_SLEEP
: {
17266 uint64_t rvalue
= DTRACE_WAKE_TIMEOUT
;
17268 if (copyin(arg
, &time
, sizeof(time
)) != 0)
17271 nanoseconds_to_absolutetime((uint64_t)time
, &abstime
);
17272 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
17274 if (assert_wait_deadline(state
, THREAD_ABORTSAFE
, abstime
) == THREAD_WAITING
) {
17275 if (state
->dts_buf_over_limit
> 0) {
17276 clear_wait(current_thread(), THREAD_INTERRUPTED
);
17277 rvalue
= DTRACE_WAKE_BUF_LIMIT
;
17279 thread_block(THREAD_CONTINUE_NULL
);
17280 if (state
->dts_buf_over_limit
> 0) {
17281 rvalue
= DTRACE_WAKE_BUF_LIMIT
;
17286 if (copyout(&rvalue
, arg
, sizeof(rvalue
)) != 0)
17292 case DTRACEIOC_SIGNAL
: {
17297 case DTRACEIOC_AGGSNAP
:
17298 case DTRACEIOC_BUFSNAP
: {
17299 dtrace_bufdesc_t desc
;
17301 boolean_t over_limit
;
17302 dtrace_buffer_t
*buf
;
17304 if (copyin(arg
, &desc
, sizeof (desc
)) != 0)
17307 if ((int)desc
.dtbd_cpu
< 0 || desc
.dtbd_cpu
>= NCPU
)
17310 lck_mtx_lock(&dtrace_lock
);
17312 if (cmd
== DTRACEIOC_BUFSNAP
) {
17313 buf
= &state
->dts_buffer
[desc
.dtbd_cpu
];
17315 buf
= &state
->dts_aggbuffer
[desc
.dtbd_cpu
];
17318 if (buf
->dtb_flags
& (DTRACEBUF_RING
| DTRACEBUF_FILL
)) {
17319 size_t sz
= buf
->dtb_offset
;
17321 if (state
->dts_activity
!= DTRACE_ACTIVITY_STOPPED
) {
17322 lck_mtx_unlock(&dtrace_lock
);
17327 * If this buffer has already been consumed, we're
17328 * going to indicate that there's nothing left here
17331 if (buf
->dtb_flags
& DTRACEBUF_CONSUMED
) {
17332 lck_mtx_unlock(&dtrace_lock
);
17334 desc
.dtbd_size
= 0;
17335 desc
.dtbd_drops
= 0;
17336 desc
.dtbd_errors
= 0;
17337 desc
.dtbd_oldest
= 0;
17338 sz
= sizeof (desc
);
17340 if (copyout(&desc
, arg
, sz
) != 0)
17347 * If this is a ring buffer that has wrapped, we want
17348 * to copy the whole thing out.
17350 if (buf
->dtb_flags
& DTRACEBUF_WRAPPED
) {
17351 dtrace_buffer_polish(buf
);
17352 sz
= buf
->dtb_size
;
17355 if (copyout(buf
->dtb_tomax
, (user_addr_t
)desc
.dtbd_data
, sz
) != 0) {
17356 lck_mtx_unlock(&dtrace_lock
);
17360 desc
.dtbd_size
= sz
;
17361 desc
.dtbd_drops
= buf
->dtb_drops
;
17362 desc
.dtbd_errors
= buf
->dtb_errors
;
17363 desc
.dtbd_oldest
= buf
->dtb_xamot_offset
;
17364 desc
.dtbd_timestamp
= dtrace_gethrtime();
17366 lck_mtx_unlock(&dtrace_lock
);
17368 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17371 buf
->dtb_flags
|= DTRACEBUF_CONSUMED
;
17376 if (buf
->dtb_tomax
== NULL
) {
17377 ASSERT(buf
->dtb_xamot
== NULL
);
17378 lck_mtx_unlock(&dtrace_lock
);
17382 cached
= buf
->dtb_tomax
;
17383 over_limit
= buf
->dtb_cur_limit
== buf
->dtb_size
;
17385 ASSERT(!(buf
->dtb_flags
& DTRACEBUF_NOSWITCH
));
17387 dtrace_xcall(desc
.dtbd_cpu
,
17388 (dtrace_xcall_t
)dtrace_buffer_switch
, buf
);
17390 state
->dts_errors
+= buf
->dtb_xamot_errors
;
17393 * If the buffers did not actually switch, then the cross call
17394 * did not take place -- presumably because the given CPU is
17395 * not in the ready set. If this is the case, we'll return
17398 if (buf
->dtb_tomax
== cached
) {
17399 ASSERT(buf
->dtb_xamot
!= cached
);
17400 lck_mtx_unlock(&dtrace_lock
);
17404 ASSERT(cached
== buf
->dtb_xamot
);
17406 * At this point we know the buffer have switched, so we
17407 * can decrement the over limit count if the buffer was over
17408 * its limit. The new buffer might already be over its limit
17409 * yet, but we don't care since we're guaranteed not to be
17410 * checking the buffer over limit count at this point.
17413 uint32_t old
= atomic_add_32(&state
->dts_buf_over_limit
, -1);
17414 #pragma unused(old)
17417 * Verify that we didn't underflow the value
17423 * We have our snapshot; now copy it out.
17425 if (dtrace_buffer_copyout(buf
->dtb_xamot
,
17426 (user_addr_t
)desc
.dtbd_data
,
17427 buf
->dtb_xamot_offset
) != 0) {
17428 lck_mtx_unlock(&dtrace_lock
);
17432 desc
.dtbd_size
= buf
->dtb_xamot_offset
;
17433 desc
.dtbd_drops
= buf
->dtb_xamot_drops
;
17434 desc
.dtbd_errors
= buf
->dtb_xamot_errors
;
17435 desc
.dtbd_oldest
= 0;
17436 desc
.dtbd_timestamp
= buf
->dtb_switched
;
17438 lck_mtx_unlock(&dtrace_lock
);
17441 * Finally, copy out the buffer description.
17443 if (copyout(&desc
, arg
, sizeof (desc
)) != 0)
17449 case DTRACEIOC_CONF
: {
17450 dtrace_conf_t conf
;
17452 bzero(&conf
, sizeof (conf
));
17453 conf
.dtc_difversion
= DIF_VERSION
;
17454 conf
.dtc_difintregs
= DIF_DIR_NREGS
;
17455 conf
.dtc_diftupregs
= DIF_DTR_NREGS
;
17456 conf
.dtc_ctfmodel
= CTF_MODEL_NATIVE
;
17458 if (copyout(&conf
, arg
, sizeof (conf
)) != 0)
17464 case DTRACEIOC_STATUS
: {
17465 dtrace_status_t stat
;
17466 dtrace_dstate_t
*dstate
;
17471 * See the comment in dtrace_state_deadman() for the reason
17472 * for setting dts_laststatus to INT64_MAX before setting
17473 * it to the correct value.
17475 state
->dts_laststatus
= INT64_MAX
;
17476 dtrace_membar_producer();
17477 state
->dts_laststatus
= dtrace_gethrtime();
17479 bzero(&stat
, sizeof (stat
));
17481 lck_mtx_lock(&dtrace_lock
);
17483 if (state
->dts_activity
== DTRACE_ACTIVITY_INACTIVE
) {
17484 lck_mtx_unlock(&dtrace_lock
);
17488 if (state
->dts_activity
== DTRACE_ACTIVITY_DRAINING
)
17489 stat
.dtst_exiting
= 1;
17491 nerrs
= state
->dts_errors
;
17492 dstate
= &state
->dts_vstate
.dtvs_dynvars
;
17494 for (i
= 0; i
< (int)NCPU
; i
++) {
17495 dtrace_dstate_percpu_t
*dcpu
= &dstate
->dtds_percpu
[i
];
17497 stat
.dtst_dyndrops
+= dcpu
->dtdsc_drops
;
17498 stat
.dtst_dyndrops_dirty
+= dcpu
->dtdsc_dirty_drops
;
17499 stat
.dtst_dyndrops_rinsing
+= dcpu
->dtdsc_rinsing_drops
;
17501 if (state
->dts_buffer
[i
].dtb_flags
& DTRACEBUF_FULL
)
17502 stat
.dtst_filled
++;
17504 nerrs
+= state
->dts_buffer
[i
].dtb_errors
;
17506 for (j
= 0; j
< state
->dts_nspeculations
; j
++) {
17507 dtrace_speculation_t
*spec
;
17508 dtrace_buffer_t
*buf
;
17510 spec
= &state
->dts_speculations
[j
];
17511 buf
= &spec
->dtsp_buffer
[i
];
17512 stat
.dtst_specdrops
+= buf
->dtb_xamot_drops
;
17516 stat
.dtst_specdrops_busy
= state
->dts_speculations_busy
;
17517 stat
.dtst_specdrops_unavail
= state
->dts_speculations_unavail
;
17518 stat
.dtst_stkstroverflows
= state
->dts_stkstroverflows
;
17519 stat
.dtst_dblerrors
= state
->dts_dblerrors
;
17521 (state
->dts_activity
== DTRACE_ACTIVITY_KILLED
);
17522 stat
.dtst_errors
= nerrs
;
17524 lck_mtx_unlock(&dtrace_lock
);
17526 if (copyout(&stat
, arg
, sizeof (stat
)) != 0)
17532 case DTRACEIOC_FORMAT
: {
17533 dtrace_fmtdesc_t fmt
;
17537 if (copyin(arg
, &fmt
, sizeof (fmt
)) != 0)
17540 lck_mtx_lock(&dtrace_lock
);
17542 if (fmt
.dtfd_format
== 0 ||
17543 fmt
.dtfd_format
> state
->dts_nformats
) {
17544 lck_mtx_unlock(&dtrace_lock
);
17549 * Format strings are allocated contiguously and they are
17550 * never freed; if a format index is less than the number
17551 * of formats, we can assert that the format map is non-NULL
17552 * and that the format for the specified index is non-NULL.
17554 ASSERT(state
->dts_formats
!= NULL
);
17555 str
= state
->dts_formats
[fmt
.dtfd_format
- 1];
17556 ASSERT(str
!= NULL
);
17558 len
= strlen(str
) + 1;
17560 if (len
> fmt
.dtfd_length
) {
17561 fmt
.dtfd_length
= len
;
17563 if (copyout(&fmt
, arg
, sizeof (fmt
)) != 0) {
17564 lck_mtx_unlock(&dtrace_lock
);
17568 if (copyout(str
, (user_addr_t
)fmt
.dtfd_string
, len
) != 0) {
17569 lck_mtx_unlock(&dtrace_lock
);
17574 lck_mtx_unlock(&dtrace_lock
);
17578 case DTRACEIOC_MODUUIDSLIST
: {
17579 size_t module_uuids_list_size
;
17580 dtrace_module_uuids_list_t
* uuids_list
;
17581 uint64_t dtmul_count
;
17584 * Security restrictions make this operation illegal, if this is enabled DTrace
17585 * must refuse to provide any fbt probes.
17587 if (dtrace_fbt_probes_restricted()) {
17588 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17593 * Fail if the kernel symbol mode makes this operation illegal.
17594 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17595 * for them without holding the dtrace_lock.
17597 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
17598 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
17599 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_MODUUIDSLIST", dtrace_kernel_symbol_mode
);
17604 * Read the number of symbolsdesc structs being passed in.
17606 if (copyin(arg
+ offsetof(dtrace_module_uuids_list_t
, dtmul_count
),
17608 sizeof(dtmul_count
))) {
17609 cmn_err(CE_WARN
, "failed to copyin dtmul_count");
17614 * Range check the count. More than 2k kexts is probably an error.
17616 if (dtmul_count
> 2048) {
17617 cmn_err(CE_WARN
, "dtmul_count is not valid");
17622 * For all queries, we return EINVAL when the user specified
17623 * count does not match the actual number of modules we find
17626 * If the user specified count is zero, then this serves as a
17627 * simple query to count the available modules in need of symbols.
17632 if (dtmul_count
== 0)
17634 lck_mtx_lock(&mod_lock
);
17635 struct modctl
* ctl
= dtrace_modctl_list
;
17637 /* Update the private probes bit */
17638 if (dtrace_provide_private_probes
)
17639 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17641 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17642 if (!MOD_SYMBOLS_DONE(ctl
)) {
17646 ctl
= ctl
->mod_next
;
17648 lck_mtx_unlock(&mod_lock
);
17650 if (copyout(&dtmul_count
, arg
, sizeof (dtmul_count
)) != 0)
17657 * If we reach this point, then we have a request for full list data.
17658 * Allocate a correctly sized structure and copyin the data.
17660 module_uuids_list_size
= DTRACE_MODULE_UUIDS_LIST_SIZE(dtmul_count
);
17661 if ((uuids_list
= kmem_alloc(module_uuids_list_size
, KM_SLEEP
)) == NULL
)
17664 /* NOTE! We can no longer exit this method via return */
17665 if (copyin(arg
, uuids_list
, module_uuids_list_size
) != 0) {
17666 cmn_err(CE_WARN
, "failed copyin of dtrace_module_uuids_list_t");
17668 goto moduuidslist_cleanup
;
17672 * Check that the count didn't change between the first copyin and the second.
17674 if (uuids_list
->dtmul_count
!= dtmul_count
) {
17676 goto moduuidslist_cleanup
;
17680 * Build the list of UUID's that need symbols
17682 lck_mtx_lock(&mod_lock
);
17686 struct modctl
* ctl
= dtrace_modctl_list
;
17688 /* Update the private probes bit */
17689 if (dtrace_provide_private_probes
)
17690 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17693 * We assume that userspace symbols will be "better" than kernel level symbols,
17694 * as userspace can search for dSYM(s) and symbol'd binaries. Even if kernel syms
17695 * are available, add user syms if the module might use them.
17697 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17698 if (!MOD_SYMBOLS_DONE(ctl
)) {
17699 UUID
* uuid
= &uuids_list
->dtmul_uuid
[dtmul_count
];
17700 if (dtmul_count
++ < uuids_list
->dtmul_count
) {
17701 memcpy(uuid
, ctl
->mod_uuid
, sizeof(UUID
));
17704 ctl
= ctl
->mod_next
;
17707 lck_mtx_unlock(&mod_lock
);
17709 if (uuids_list
->dtmul_count
< dtmul_count
)
17712 uuids_list
->dtmul_count
= dtmul_count
;
17715 * Copyout the symbols list (or at least the count!)
17717 if (copyout(uuids_list
, arg
, module_uuids_list_size
) != 0) {
17718 cmn_err(CE_WARN
, "failed copyout of dtrace_symbolsdesc_list_t");
17722 moduuidslist_cleanup
:
17724 * If we had to allocate struct memory, free it.
17726 if (uuids_list
!= NULL
) {
17727 kmem_free(uuids_list
, module_uuids_list_size
);
17733 case DTRACEIOC_PROVMODSYMS
: {
17734 size_t module_symbols_size
;
17735 dtrace_module_symbols_t
* module_symbols
;
17736 uint64_t dtmodsyms_count
;
17739 * Security restrictions make this operation illegal, if this is enabled DTrace
17740 * must refuse to provide any fbt probes.
17742 if (dtrace_fbt_probes_restricted()) {
17743 cmn_err(CE_WARN
, "security restrictions disallow DTRACEIOC_MODUUIDSLIST");
17748 * Fail if the kernel symbol mode makes this operation illegal.
17749 * Both NEVER & ALWAYS_FROM_KERNEL are permanent states, it is legal to check
17750 * for them without holding the dtrace_lock.
17752 if (dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_NEVER
||
17753 dtrace_kernel_symbol_mode
== DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL
) {
17754 cmn_err(CE_WARN
, "dtrace_kernel_symbol_mode of %u disallows DTRACEIOC_PROVMODSYMS", dtrace_kernel_symbol_mode
);
17759 * Read the number of module symbols structs being passed in.
17761 if (copyin(arg
+ offsetof(dtrace_module_symbols_t
, dtmodsyms_count
),
17763 sizeof(dtmodsyms_count
))) {
17764 cmn_err(CE_WARN
, "failed to copyin dtmodsyms_count");
17769 * Range check the count. How much data can we pass around?
17772 if (dtmodsyms_count
== 0 || (dtmodsyms_count
> 100 * 1024)) {
17773 cmn_err(CE_WARN
, "dtmodsyms_count is not valid");
17778 * Allocate a correctly sized structure and copyin the data.
17780 module_symbols_size
= DTRACE_MODULE_SYMBOLS_SIZE(dtmodsyms_count
);
17781 if ((module_symbols
= kmem_alloc(module_symbols_size
, KM_SLEEP
)) == NULL
)
17786 /* NOTE! We can no longer exit this method via return */
17787 if (copyin(arg
, module_symbols
, module_symbols_size
) != 0) {
17788 cmn_err(CE_WARN
, "failed copyin of dtrace_module_symbols_t");
17790 goto module_symbols_cleanup
;
17794 * Check that the count didn't change between the first copyin and the second.
17796 if (module_symbols
->dtmodsyms_count
!= dtmodsyms_count
) {
17798 goto module_symbols_cleanup
;
17802 * Find the modctl to add symbols to.
17804 lck_mtx_lock(&dtrace_provider_lock
);
17805 lck_mtx_lock(&mod_lock
);
17807 struct modctl
* ctl
= dtrace_modctl_list
;
17809 /* Update the private probes bit */
17810 if (dtrace_provide_private_probes
)
17811 ctl
->mod_flags
|= MODCTL_FBT_PROVIDE_PRIVATE_PROBES
;
17813 ASSERT(!MOD_HAS_USERSPACE_SYMBOLS(ctl
));
17814 if (MOD_HAS_UUID(ctl
) && !MOD_SYMBOLS_DONE(ctl
)) {
17815 if (memcmp(module_symbols
->dtmodsyms_uuid
, ctl
->mod_uuid
, sizeof(UUID
)) == 0) {
17817 ctl
->mod_user_symbols
= module_symbols
;
17821 ctl
= ctl
->mod_next
;
17825 dtrace_provider_t
*prv
;
17828 * We're going to call each providers per-module provide operation
17829 * specifying only this module.
17831 for (prv
= dtrace_provider
; prv
!= NULL
; prv
= prv
->dtpv_next
)
17832 prv
->dtpv_pops
.dtps_provide_module(prv
->dtpv_arg
, ctl
);
17835 * We gave every provider a chance to provide with the user syms, go ahead and clear them
17837 ctl
->mod_user_symbols
= NULL
; /* MUST reset this to clear HAS_USERSPACE_SYMBOLS */
17840 lck_mtx_unlock(&mod_lock
);
17841 lck_mtx_unlock(&dtrace_provider_lock
);
17843 module_symbols_cleanup
:
17845 * If we had to allocate struct memory, free it.
17847 if (module_symbols
!= NULL
) {
17848 kmem_free(module_symbols
, module_symbols_size
);
17854 case DTRACEIOC_PROCWAITFOR
: {
17855 dtrace_procdesc_t pdesc
= {
17860 if ((rval
= copyin(arg
, &pdesc
, sizeof(pdesc
))) != 0)
17861 goto proc_waitfor_error
;
17863 if ((rval
= dtrace_proc_waitfor(&pdesc
)) != 0)
17864 goto proc_waitfor_error
;
17866 if ((rval
= copyout(&pdesc
, arg
, sizeof(pdesc
))) != 0)
17867 goto proc_waitfor_error
;
17871 proc_waitfor_error
:
17872 /* The process was suspended, revert this since the client will not do it. */
17873 if (pdesc
.p_pid
!= -1) {
17874 proc_t
*proc
= proc_find(pdesc
.p_pid
);
17875 if (proc
!= PROC_NULL
) {
17876 task_pidresume(proc
->task
);
17892 * APPLE NOTE: dtrace_detach not implemented
17894 #if !defined(__APPLE__)
17897 dtrace_detach(dev_info_t
*dip
, ddi_detach_cmd_t cmd
)
17899 dtrace_state_t
*state
;
17906 return (DDI_SUCCESS
);
17909 return (DDI_FAILURE
);
17912 lck_mtx_lock(&cpu_lock
);
17913 lck_mtx_lock(&dtrace_provider_lock
);
17914 lck_mtx_lock(&dtrace_lock
);
17916 ASSERT(dtrace_opens
== 0);
17918 if (dtrace_helpers
> 0) {
17919 lck_mtx_unlock(&dtrace_lock
);
17920 lck_mtx_unlock(&dtrace_provider_lock
);
17921 lck_mtx_unlock(&cpu_lock
);
17922 return (DDI_FAILURE
);
17925 if (dtrace_unregister((dtrace_provider_id_t
)dtrace_provider
) != 0) {
17926 lck_mtx_unlock(&dtrace_lock
);
17927 lck_mtx_unlock(&dtrace_provider_lock
);
17928 lck_mtx_unlock(&cpu_lock
);
17929 return (DDI_FAILURE
);
17932 dtrace_provider
= NULL
;
17934 if ((state
= dtrace_anon_grab()) != NULL
) {
17936 * If there were ECBs on this state, the provider should
17937 * have not been allowed to detach; assert that there is
17940 ASSERT(state
->dts_necbs
== 0);
17941 dtrace_state_destroy(state
);
17944 * If we're being detached with anonymous state, we need to
17945 * indicate to the kernel debugger that DTrace is now inactive.
17947 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE
);
17950 bzero(&dtrace_anon
, sizeof (dtrace_anon_t
));
17951 unregister_cpu_setup_func((cpu_setup_func_t
*)dtrace_cpu_setup
, NULL
);
17952 dtrace_cpu_init
= NULL
;
17953 dtrace_helpers_cleanup
= NULL
;
17954 dtrace_helpers_fork
= NULL
;
17955 dtrace_cpustart_init
= NULL
;
17956 dtrace_cpustart_fini
= NULL
;
17957 dtrace_debugger_init
= NULL
;
17958 dtrace_debugger_fini
= NULL
;
17959 dtrace_kreloc_init
= NULL
;
17960 dtrace_kreloc_fini
= NULL
;
17961 dtrace_modload
= NULL
;
17962 dtrace_modunload
= NULL
;
17964 lck_mtx_unlock(&cpu_lock
);
17966 if (dtrace_helptrace_enabled
) {
17967 kmem_free(dtrace_helptrace_buffer
, dtrace_helptrace_bufsize
);
17968 dtrace_helptrace_buffer
= NULL
;
17971 kmem_free(dtrace_probes
, dtrace_nprobes
* sizeof (dtrace_probe_t
*));
17972 dtrace_probes
= NULL
;
17973 dtrace_nprobes
= 0;
17975 dtrace_hash_destroy(dtrace_bymod
);
17976 dtrace_hash_destroy(dtrace_byfunc
);
17977 dtrace_hash_destroy(dtrace_byname
);
17978 dtrace_bymod
= NULL
;
17979 dtrace_byfunc
= NULL
;
17980 dtrace_byname
= NULL
;
17982 kmem_cache_destroy(dtrace_state_cache
);
17983 vmem_destroy(dtrace_arena
);
17985 if (dtrace_toxrange
!= NULL
) {
17986 kmem_free(dtrace_toxrange
,
17987 dtrace_toxranges_max
* sizeof (dtrace_toxrange_t
));
17988 dtrace_toxrange
= NULL
;
17989 dtrace_toxranges
= 0;
17990 dtrace_toxranges_max
= 0;
17993 ddi_remove_minor_node(dtrace_devi
, NULL
);
17994 dtrace_devi
= NULL
;
17996 ddi_soft_state_fini(&dtrace_softstate
);
17998 ASSERT(dtrace_vtime_references
== 0);
17999 ASSERT(dtrace_opens
== 0);
18000 ASSERT(dtrace_retained
== NULL
);
18002 lck_mtx_unlock(&dtrace_lock
);
18003 lck_mtx_unlock(&dtrace_provider_lock
);
18006 * We don't destroy the task queue until after we have dropped our
18007 * locks (taskq_destroy() may block on running tasks). To prevent
18008 * attempting to do work after we have effectively detached but before
18009 * the task queue has been destroyed, all tasks dispatched via the
18010 * task queue must check that DTrace is still attached before
18011 * performing any operation.
18013 taskq_destroy(dtrace_taskq
);
18014 dtrace_taskq
= NULL
;
18016 return (DDI_SUCCESS
);
18018 #endif /* __APPLE__ */
18020 d_open_t _dtrace_open
, helper_open
;
18021 d_close_t _dtrace_close
, helper_close
;
18022 d_ioctl_t _dtrace_ioctl
, helper_ioctl
;
18025 _dtrace_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18028 dev_t locdev
= dev
;
18030 return dtrace_open( &locdev
, flags
, devtype
, CRED());
18034 helper_open(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18036 #pragma unused(dev,flags,devtype,p)
18041 _dtrace_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18044 return dtrace_close( dev
, flags
, devtype
, CRED());
18048 helper_close(dev_t dev
, int flags
, int devtype
, struct proc
*p
)
18050 #pragma unused(dev,flags,devtype,p)
18055 _dtrace_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
18059 user_addr_t uaddrp
;
18061 if (proc_is64bit(p
))
18062 uaddrp
= *(user_addr_t
*)data
;
18064 uaddrp
= (user_addr_t
) *(uint32_t *)data
;
18066 err
= dtrace_ioctl(dev
, cmd
, uaddrp
, fflag
, CRED(), &rv
);
18068 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
18070 ASSERT( (err
& 0xfffff000) == 0 );
18071 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
18072 } else if (rv
!= 0) {
18073 ASSERT( (rv
& 0xfff00000) == 0 );
18074 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
18080 helper_ioctl(dev_t dev
, u_long cmd
, caddr_t data
, int fflag
, struct proc
*p
)
18082 #pragma unused(dev,fflag,p)
18085 err
= dtrace_ioctl_helper(cmd
, data
, &rv
);
18086 /* Darwin's BSD ioctls only return -1 or zero. Overload errno to mimic Solaris. 20 bits suffice. */
18088 ASSERT( (err
& 0xfffff000) == 0 );
18089 return (err
& 0xfff); /* ioctl will return -1 and will set errno to an error code < 4096 */
18090 } else if (rv
!= 0) {
18091 ASSERT( (rv
& 0xfff00000) == 0 );
18092 return (((rv
& 0xfffff) << 12)); /* ioctl will return -1 and will set errno to a value >= 4096 */
18097 #define HELPER_MAJOR -24 /* let the kernel pick the device number */
18100 * A struct describing which functions will get invoked for certain
18103 static struct cdevsw helper_cdevsw
=
18105 helper_open
, /* open */
18106 helper_close
, /* close */
18107 eno_rdwrt
, /* read */
18108 eno_rdwrt
, /* write */
18109 helper_ioctl
, /* ioctl */
18110 (stop_fcn_t
*)nulldev
, /* stop */
18111 (reset_fcn_t
*)nulldev
, /* reset */
18113 eno_select
, /* select */
18114 eno_mmap
, /* mmap */
18115 eno_strat
, /* strategy */
18116 eno_getc
, /* getc */
18117 eno_putc
, /* putc */
18121 static int helper_majdevno
= 0;
18123 static int gDTraceInited
= 0;
18126 helper_init( void )
18129 * Once the "helper" is initialized, it can take ioctl calls that use locks
18130 * and zones initialized in dtrace_init. Make certain dtrace_init was called
18134 if (!gDTraceInited
) {
18135 panic("helper_init before dtrace_init\n");
18138 if (0 >= helper_majdevno
)
18140 helper_majdevno
= cdevsw_add(HELPER_MAJOR
, &helper_cdevsw
);
18142 if (helper_majdevno
< 0) {
18143 printf("helper_init: failed to allocate a major number!\n");
18147 if (NULL
== devfs_make_node( makedev(helper_majdevno
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
18148 DTRACEMNR_HELPER
, 0 )) {
18149 printf("dtrace_init: failed to devfs_make_node for helper!\n");
18153 panic("helper_init: called twice!\n");
18156 #undef HELPER_MAJOR
18159 dtrace_clone_func(dev_t dev
, int action
)
18161 #pragma unused(dev)
18163 if (action
== DEVFS_CLONE_ALLOC
) {
18164 return dtrace_state_reserve();
18166 else if (action
== DEVFS_CLONE_FREE
) {
18172 void dtrace_ast(void);
18178 uint32_t clients
= atomic_and_32(&dtrace_wake_clients
, 0);
18182 * We disable preemption here to be sure that we won't get
18183 * interrupted by a wakeup to a thread that is higher
18184 * priority than us, so that we do issue all wakeups
18186 disable_preemption();
18187 for (i
= 0; i
< DTRACE_NCLIENTS
; i
++) {
18188 if (clients
& (1 << i
)) {
18189 dtrace_state_t
*state
= dtrace_state_get(i
);
18196 enable_preemption();
18200 #define DTRACE_MAJOR -24 /* let the kernel pick the device number */
18202 static struct cdevsw dtrace_cdevsw
=
18204 _dtrace_open
, /* open */
18205 _dtrace_close
, /* close */
18206 eno_rdwrt
, /* read */
18207 eno_rdwrt
, /* write */
18208 _dtrace_ioctl
, /* ioctl */
18209 (stop_fcn_t
*)nulldev
, /* stop */
18210 (reset_fcn_t
*)nulldev
, /* reset */
18212 eno_select
, /* select */
18213 eno_mmap
, /* mmap */
18214 eno_strat
, /* strategy */
18215 eno_getc
, /* getc */
18216 eno_putc
, /* putc */
18220 lck_attr_t
* dtrace_lck_attr
;
18221 lck_grp_attr_t
* dtrace_lck_grp_attr
;
18222 lck_grp_t
* dtrace_lck_grp
;
18224 static int gMajDevNo
;
18227 dtrace_init( void )
18229 if (0 == gDTraceInited
) {
18231 size_t size
= sizeof(dtrace_buffer_memory_maxsize
);
18234 * DTrace allocates buffers based on the maximum number
18235 * of enabled cpus. This call avoids any race when finding
18238 ASSERT(dtrace_max_cpus
== 0);
18239 ncpu
= dtrace_max_cpus
= ml_get_max_cpus();
18242 * Retrieve the size of the physical memory in order to define
18243 * the state buffer memory maximal size. If we cannot retrieve
18244 * this value, we'll consider that we have 1Gb of memory per CPU, that's
18245 * still better than raising a kernel panic.
18247 if (0 != kernel_sysctlbyname("hw.memsize", &dtrace_buffer_memory_maxsize
,
18250 dtrace_buffer_memory_maxsize
= ncpu
* 1024 * 1024 * 1024;
18251 printf("dtrace_init: failed to retrieve the hw.memsize, defaulted to %lld bytes\n",
18252 dtrace_buffer_memory_maxsize
);
18256 * Finally, divide by three to prevent DTrace from eating too
18259 dtrace_buffer_memory_maxsize
/= 3;
18260 ASSERT(dtrace_buffer_memory_maxsize
> 0);
18262 gMajDevNo
= cdevsw_add(DTRACE_MAJOR
, &dtrace_cdevsw
);
18264 if (gMajDevNo
< 0) {
18265 printf("dtrace_init: failed to allocate a major number!\n");
18270 if (NULL
== devfs_make_node_clone( makedev(gMajDevNo
, 0), DEVFS_CHAR
, UID_ROOT
, GID_WHEEL
, 0666,
18271 dtrace_clone_func
, DTRACEMNR_DTRACE
, 0 )) {
18272 printf("dtrace_init: failed to devfs_make_node_clone for dtrace!\n");
18277 #if defined(DTRACE_MEMORY_ZONES)
18279 * Initialize the dtrace kalloc-emulation zones.
18281 dtrace_alloc_init();
18282 #endif /* DTRACE_MEMORY_ZONES */
18285 * Allocate the dtrace_probe_t zone
18287 dtrace_probe_t_zone
= zinit(sizeof(dtrace_probe_t
),
18288 1024 * sizeof(dtrace_probe_t
),
18289 sizeof(dtrace_probe_t
),
18290 "dtrace.dtrace_probe_t");
18293 * Create the dtrace lock group and attrs.
18295 dtrace_lck_attr
= lck_attr_alloc_init();
18296 dtrace_lck_grp_attr
= lck_grp_attr_alloc_init();
18297 dtrace_lck_grp
= lck_grp_alloc_init("dtrace", dtrace_lck_grp_attr
);
18300 * We have to initialize all locks explicitly
18302 lck_mtx_init(&dtrace_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18303 lck_mtx_init(&dtrace_provider_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18304 lck_mtx_init(&dtrace_meta_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18305 lck_mtx_init(&dtrace_procwaitfor_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18307 lck_mtx_init(&dtrace_errlock
, dtrace_lck_grp
, dtrace_lck_attr
);
18309 lck_rw_init(&dtrace_dof_mode_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18312 * The cpu_core structure consists of per-CPU state available in any context.
18313 * On some architectures, this may mean that the page(s) containing the
18314 * NCPU-sized array of cpu_core structures must be locked in the TLB -- it
18315 * is up to the platform to assure that this is performed properly. Note that
18316 * the structure is sized to avoid false sharing.
18318 lck_mtx_init(&cpu_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18319 lck_mtx_init(&cyc_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18320 lck_mtx_init(&mod_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18323 * Initialize the CPU offline/online hooks.
18325 dtrace_install_cpu_hooks();
18327 dtrace_modctl_list
= NULL
;
18329 cpu_core
= (cpu_core_t
*)kmem_zalloc( ncpu
* sizeof(cpu_core_t
), KM_SLEEP
);
18330 for (i
= 0; i
< ncpu
; ++i
) {
18331 lck_mtx_init(&cpu_core
[i
].cpuc_pid_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18334 cpu_list
= (dtrace_cpu_t
*)kmem_zalloc( ncpu
* sizeof(dtrace_cpu_t
), KM_SLEEP
);
18335 for (i
= 0; i
< ncpu
; ++i
) {
18336 cpu_list
[i
].cpu_id
= (processorid_t
)i
;
18337 cpu_list
[i
].cpu_next
= &(cpu_list
[(i
+1) % ncpu
]);
18338 LIST_INIT(&cpu_list
[i
].cpu_cyc_list
);
18339 lck_rw_init(&cpu_list
[i
].cpu_ft_lock
, dtrace_lck_grp
, dtrace_lck_attr
);
18342 lck_mtx_lock(&cpu_lock
);
18343 for (i
= 0; i
< ncpu
; ++i
)
18344 /* FIXME: track CPU configuration */
18345 dtrace_cpu_setup_initial( (processorid_t
)i
); /* In lieu of register_cpu_setup_func() callback */
18346 lck_mtx_unlock(&cpu_lock
);
18348 (void)dtrace_abs_to_nano(0LL); /* Force once only call to clock_timebase_info (which can take a lock) */
18352 * See dtrace_impl.h for a description of dof modes.
18353 * The default is lazy dof.
18355 * FIXME: Warn if state is LAZY_OFF? It won't break anything, but
18356 * makes no sense...
18358 if (!PE_parse_boot_argn("dtrace_dof_mode", &dtrace_dof_mode
, sizeof (dtrace_dof_mode
))) {
18359 #if CONFIG_EMBEDDED
18360 /* Disable DOF mode by default for performance reasons */
18361 dtrace_dof_mode
= DTRACE_DOF_MODE_NEVER
;
18363 dtrace_dof_mode
= DTRACE_DOF_MODE_LAZY_ON
;
18368 * Sanity check of dof mode value.
18370 switch (dtrace_dof_mode
) {
18371 case DTRACE_DOF_MODE_NEVER
:
18372 case DTRACE_DOF_MODE_LAZY_ON
:
18373 /* valid modes, but nothing else we need to do */
18376 case DTRACE_DOF_MODE_LAZY_OFF
:
18377 case DTRACE_DOF_MODE_NON_LAZY
:
18378 /* Cannot wait for a dtrace_open to init fasttrap */
18383 /* Invalid, clamp to non lazy */
18384 dtrace_dof_mode
= DTRACE_DOF_MODE_NON_LAZY
;
18390 * See dtrace_impl.h for a description of kernel symbol modes.
18391 * The default is to wait for symbols from userspace (lazy symbols).
18393 if (!PE_parse_boot_argn("dtrace_kernel_symbol_mode", &dtrace_kernel_symbol_mode
, sizeof (dtrace_kernel_symbol_mode
))) {
18394 dtrace_kernel_symbol_mode
= DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE
;
18397 dtrace_restriction_policy_load();
18402 panic("dtrace_init: called twice!\n");
18406 dtrace_postinit(void)
18409 * Called from bsd_init after all provider's *_init() routines have been
18410 * run. That way, anonymous DOF enabled under dtrace_attach() is safe
18413 dtrace_attach( (dev_info_t
*)(uintptr_t)makedev(gMajDevNo
, 0), 0 ); /* Punning a dev_t to a dev_info_t* */
18416 * Add the mach_kernel to the module list for lazy processing
18418 struct kmod_info fake_kernel_kmod
;
18419 memset(&fake_kernel_kmod
, 0, sizeof(fake_kernel_kmod
));
18421 strlcpy(fake_kernel_kmod
.name
, "mach_kernel", sizeof(fake_kernel_kmod
.name
));
18422 fake_kernel_kmod
.id
= 1;
18423 fake_kernel_kmod
.address
= g_kernel_kmod_info
.address
;
18424 fake_kernel_kmod
.size
= g_kernel_kmod_info
.size
;
18426 if (dtrace_module_loaded(&fake_kernel_kmod
, 0) != 0) {
18427 printf("dtrace_postinit: Could not register mach_kernel modctl\n");
18430 if (!PE_parse_boot_argn("dtrace_provide_private_probes", &dtrace_provide_private_probes
, sizeof (dtrace_provide_private_probes
))) {
18431 dtrace_provide_private_probes
= 0;
18434 (void)OSKextRegisterKextsWithDTrace();
18436 #undef DTRACE_MAJOR
18439 * Routines used to register interest in cpu's being added to or removed
18443 register_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
18445 #pragma unused(ignore1,ignore2)
18449 unregister_cpu_setup_func(cpu_setup_func_t
*ignore1
, void *ignore2
)
18451 #pragma unused(ignore1,ignore2)