2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
59 * File: vm/memory_object.c
60 * Author: Michael Wayne Young
62 * External memory management interface control functions.
66 * Interface dependencies:
69 #include <mach/std_types.h> /* For pointer_t */
70 #include <mach/mach_types.h>
73 #include <mach/kern_return.h>
74 #include <mach/memory_object.h>
75 #include <mach/memory_object_default.h>
76 #include <mach/memory_object_control_server.h>
77 #include <mach/host_priv_server.h>
78 #include <mach/boolean.h>
79 #include <mach/vm_prot.h>
80 #include <mach/message.h>
83 * Implementation dependencies:
85 #include <string.h> /* For memcpy() */
88 #include <kern/host.h>
89 #include <kern/thread.h> /* For current_thread() */
90 #include <kern/ipc_mig.h>
91 #include <kern/misc_protos.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_fault.h>
95 #include <vm/memory_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/pmap.h> /* For pmap_clear_modify */
99 #include <vm/vm_kern.h> /* For kernel_map, vm_move */
100 #include <vm/vm_map.h> /* For vm_map_pageable */
101 #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
102 #include <vm/vm_shared_region.h>
104 #include <vm/vm_external.h>
106 #include <vm/vm_protos.h>
108 memory_object_default_t memory_manager_default
= MEMORY_OBJECT_DEFAULT_NULL
;
109 decl_lck_mtx_data(, memory_manager_default_lock
)
113 * Routine: memory_object_should_return_page
116 * Determine whether the given page should be returned,
117 * based on the page's state and on the given return policy.
119 * We should return the page if one of the following is true:
121 * 1. Page is dirty and should_return is not RETURN_NONE.
122 * 2. Page is precious and should_return is RETURN_ALL.
123 * 3. Should_return is RETURN_ANYTHING.
125 * As a side effect, m->dirty will be made consistent
126 * with pmap_is_modified(m), if should_return is not
127 * MEMORY_OBJECT_RETURN_NONE.
130 #define memory_object_should_return_page(m, should_return) \
131 (should_return != MEMORY_OBJECT_RETURN_NONE && \
132 (((m)->dirty || ((m)->dirty = pmap_is_modified(VM_PAGE_GET_PHYS_PAGE(m)))) || \
133 ((m)->precious && (should_return) == MEMORY_OBJECT_RETURN_ALL) || \
134 (should_return) == MEMORY_OBJECT_RETURN_ANYTHING))
136 typedef int memory_object_lock_result_t
;
138 #define MEMORY_OBJECT_LOCK_RESULT_DONE 0
139 #define MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK 1
140 #define MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN 2
141 #define MEMORY_OBJECT_LOCK_RESULT_MUST_FREE 3
143 memory_object_lock_result_t
memory_object_lock_page(
145 memory_object_return_t should_return
,
146 boolean_t should_flush
,
150 * Routine: memory_object_lock_page
153 * Perform the appropriate lock operations on the
154 * given page. See the description of
155 * "memory_object_lock_request" for the meanings
158 * Returns an indication that the operation
159 * completed, blocked, or that the page must
162 memory_object_lock_result_t
163 memory_object_lock_page(
165 memory_object_return_t should_return
,
166 boolean_t should_flush
,
169 XPR(XPR_MEMORY_OBJECT
,
170 "m_o_lock_page, page 0x%X rtn %d flush %d prot %d\n",
171 m
, should_return
, should_flush
, prot
, 0);
174 if (m
->busy
|| m
->cleaning
)
175 return (MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK
);
178 vm_pageout_steal_laundry(m
, FALSE
);
181 * Don't worry about pages for which the kernel
182 * does not have any data.
184 if (m
->absent
|| m
->error
|| m
->restart
) {
185 if (m
->error
&& should_flush
&& !VM_PAGE_WIRED(m
)) {
187 * dump the page, pager wants us to
188 * clean it up and there is no
189 * relevant data to return
191 return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE
);
193 return (MEMORY_OBJECT_LOCK_RESULT_DONE
);
195 assert(!m
->fictitious
);
197 if (VM_PAGE_WIRED(m
)) {
199 * The page is wired... just clean or return the page if needed.
200 * Wired pages don't get flushed or disconnected from the pmap.
202 if (memory_object_should_return_page(m
, should_return
))
203 return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN
);
205 return (MEMORY_OBJECT_LOCK_RESULT_DONE
);
210 * must do the pmap_disconnect before determining the
211 * need to return the page... otherwise it's possible
212 * for the page to go from the clean to the dirty state
213 * after we've made our decision
215 if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m
)) & VM_MEM_MODIFIED
) {
216 SET_PAGE_DIRTY(m
, FALSE
);
220 * If we are decreasing permission, do it now;
221 * let the fault handler take care of increases
222 * (pmap_page_protect may not increase protection).
224 if (prot
!= VM_PROT_NO_CHANGE
)
225 pmap_page_protect(VM_PAGE_GET_PHYS_PAGE(m
), VM_PROT_ALL
& ~prot
);
228 * Handle returning dirty or precious pages
230 if (memory_object_should_return_page(m
, should_return
)) {
232 * we use to do a pmap_disconnect here in support
233 * of memory_object_lock_request, but that routine
234 * no longer requires this... in any event, in
235 * our world, it would turn into a big noop since
236 * we don't lock the page in any way and as soon
237 * as we drop the object lock, the page can be
238 * faulted back into an address space
241 * pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
243 return (MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN
);
247 * Handle flushing clean pages
250 return (MEMORY_OBJECT_LOCK_RESULT_MUST_FREE
);
253 * we use to deactivate clean pages at this point,
254 * but we do not believe that an msync should change
255 * the 'age' of a page in the cache... here is the
256 * original comment and code concerning this...
258 * XXX Make clean but not flush a paging hint,
259 * and deactivate the pages. This is a hack
260 * because it overloads flush/clean with
261 * implementation-dependent meaning. This only
262 * happens to pages that are already clean.
264 * if (vm_page_deactivate_hint && (should_return != MEMORY_OBJECT_RETURN_NONE))
265 * return (MEMORY_OBJECT_LOCK_RESULT_MUST_DEACTIVATE);
268 return (MEMORY_OBJECT_LOCK_RESULT_DONE
);
274 * Routine: memory_object_lock_request [user interface]
277 * Control use of the data associated with the given
278 * memory object. For each page in the given range,
279 * perform the following operations, in order:
280 * 1) restrict access to the page (disallow
281 * forms specified by "prot");
282 * 2) return data to the manager (if "should_return"
283 * is RETURN_DIRTY and the page is dirty, or
284 * "should_return" is RETURN_ALL and the page
285 * is either dirty or precious); and,
286 * 3) flush the cached copy (if "should_flush"
288 * The set of pages is defined by a starting offset
289 * ("offset") and size ("size"). Only pages with the
290 * same page alignment as the starting offset are
293 * A single acknowledgement is sent (to the "reply_to"
294 * port) when these actions are complete. If successful,
295 * the naked send right for reply_to is consumed.
299 memory_object_lock_request(
300 memory_object_control_t control
,
301 memory_object_offset_t offset
,
302 memory_object_size_t size
,
303 memory_object_offset_t
* resid_offset
,
305 memory_object_return_t should_return
,
312 * Check for bogus arguments.
314 object
= memory_object_control_to_vm_object(control
);
315 if (object
== VM_OBJECT_NULL
)
316 return (KERN_INVALID_ARGUMENT
);
318 if ((prot
& ~VM_PROT_ALL
) != 0 && prot
!= VM_PROT_NO_CHANGE
)
319 return (KERN_INVALID_ARGUMENT
);
321 size
= round_page_64(size
);
324 * Lock the object, and acquire a paging reference to
325 * prevent the memory_object reference from being released.
327 vm_object_lock(object
);
328 vm_object_paging_begin(object
);
330 if (flags
& MEMORY_OBJECT_DATA_FLUSH_ALL
) {
331 if ((should_return
!= MEMORY_OBJECT_RETURN_NONE
) || offset
|| object
->copy
) {
332 flags
&= ~MEMORY_OBJECT_DATA_FLUSH_ALL
;
333 flags
|= MEMORY_OBJECT_DATA_FLUSH
;
336 offset
-= object
->paging_offset
;
338 if (flags
& MEMORY_OBJECT_DATA_FLUSH_ALL
)
339 vm_object_reap_pages(object
, REAP_DATA_FLUSH
);
341 (void)vm_object_update(object
, offset
, size
, resid_offset
,
342 io_errno
, should_return
, flags
, prot
);
344 vm_object_paging_end(object
);
345 vm_object_unlock(object
);
347 return (KERN_SUCCESS
);
351 * memory_object_release_name: [interface]
353 * Enforces name semantic on memory_object reference count decrement
354 * This routine should not be called unless the caller holds a name
355 * reference gained through the memory_object_named_create or the
356 * memory_object_rename call.
357 * If the TERMINATE_IDLE flag is set, the call will return if the
358 * reference count is not 1. i.e. idle with the only remaining reference
360 * If the decision is made to proceed the name field flag is set to
361 * false and the reference count is decremented. If the RESPECT_CACHE
362 * flag is set and the reference count has gone to zero, the
363 * memory_object is checked to see if it is cacheable otherwise when
364 * the reference count is zero, it is simply terminated.
368 memory_object_release_name(
369 memory_object_control_t control
,
374 object
= memory_object_control_to_vm_object(control
);
375 if (object
== VM_OBJECT_NULL
)
376 return (KERN_INVALID_ARGUMENT
);
378 return vm_object_release_name(object
, flags
);
384 * Routine: memory_object_destroy [user interface]
386 * Shut down a memory object, despite the
387 * presence of address map (or other) references
391 memory_object_destroy(
392 memory_object_control_t control
,
393 kern_return_t reason
)
397 object
= memory_object_control_to_vm_object(control
);
398 if (object
== VM_OBJECT_NULL
)
399 return (KERN_INVALID_ARGUMENT
);
401 return (vm_object_destroy(object
, reason
));
405 * Routine: vm_object_sync
407 * Kernel internal function to synch out pages in a given
408 * range within an object to its memory manager. Much the
409 * same as memory_object_lock_request but page protection
412 * If the should_flush and should_return flags are true pages
413 * are flushed, that is dirty & precious pages are written to
414 * the memory manager and then discarded. If should_return
415 * is false, only precious pages are returned to the memory
418 * If should flush is false and should_return true, the memory
419 * manager's copy of the pages is updated. If should_return
420 * is also false, only the precious pages are updated. This
421 * last option is of limited utility.
424 * FALSE if no pages were returned to the pager
431 vm_object_offset_t offset
,
432 vm_object_size_t size
,
433 boolean_t should_flush
,
434 boolean_t should_return
,
435 boolean_t should_iosync
)
441 "vm_o_sync, object 0x%X, offset 0x%X size 0x%x flush %d rtn %d\n",
442 object
, offset
, size
, should_flush
, should_return
);
445 * Lock the object, and acquire a paging reference to
446 * prevent the memory_object and control ports from
449 vm_object_lock(object
);
450 vm_object_paging_begin(object
);
453 flags
= MEMORY_OBJECT_DATA_FLUSH
;
455 * This flush is from an msync(), not a truncate(), so the
456 * contents of the file are not affected.
457 * MEMORY_OBECT_DATA_NO_CHANGE lets vm_object_update() know
458 * that the data is not changed and that there's no need to
459 * push the old contents to a copy object.
461 flags
|= MEMORY_OBJECT_DATA_NO_CHANGE
;
466 flags
|= MEMORY_OBJECT_IO_SYNC
;
468 rv
= vm_object_update(object
, offset
, (vm_object_size_t
)size
, NULL
, NULL
,
470 MEMORY_OBJECT_RETURN_ALL
:
471 MEMORY_OBJECT_RETURN_NONE
,
476 vm_object_paging_end(object
);
477 vm_object_unlock(object
);
483 #define LIST_REQ_PAGEOUT_PAGES(object, data_cnt, po, ro, ioerr, iosync) \
487 memory_object_t pager; \
489 if (object->object_slid) { \
490 panic("Objects with slid pages not allowed\n"); \
493 if ((pager = (object)->pager) != MEMORY_OBJECT_NULL) { \
494 vm_object_paging_begin(object); \
495 vm_object_unlock(object); \
498 upl_flags = UPL_MSYNC | UPL_IOSYNC; \
500 upl_flags = UPL_MSYNC; \
502 (void) memory_object_data_return(pager, \
504 (memory_object_cluster_size_t)data_cnt, \
511 vm_object_lock(object); \
512 vm_object_paging_end(object); \
516 extern struct vnode
*
517 vnode_pager_lookup_vnode(memory_object_t
);
520 vm_object_update_extent(
522 vm_object_offset_t offset
,
523 vm_object_offset_t offset_end
,
524 vm_object_offset_t
*offset_resid
,
526 boolean_t should_flush
,
527 memory_object_return_t should_return
,
528 boolean_t should_iosync
,
533 vm_object_offset_t paging_offset
= 0;
534 vm_object_offset_t next_offset
= offset
;
535 memory_object_lock_result_t page_lock_result
;
536 memory_object_cluster_size_t data_cnt
= 0;
537 struct vm_page_delayed_work dw_array
[DEFAULT_DELAYED_WORK_LIMIT
];
538 struct vm_page_delayed_work
*dwp
;
545 dw_limit
= DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT
);
549 offset
< offset_end
&& object
->resident_page_count
;
550 offset
+= PAGE_SIZE_64
) {
553 * Limit the number of pages to be cleaned at once to a contiguous
554 * run, or at most MAX_UPL_TRANSFER_BYTES
557 if ((data_cnt
>= MAX_UPL_TRANSFER_BYTES
) || (next_offset
!= offset
)) {
560 vm_page_do_delayed_work(object
, VM_KERN_MEMORY_NONE
, &dw_array
[0], dw_count
);
564 LIST_REQ_PAGEOUT_PAGES(object
, data_cnt
,
565 paging_offset
, offset_resid
, io_errno
, should_iosync
);
569 while ((m
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
573 page_lock_result
= memory_object_lock_page(m
, should_return
, should_flush
, prot
);
575 if (data_cnt
&& page_lock_result
!= MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN
) {
577 * End of a run of dirty/precious pages.
580 vm_page_do_delayed_work(object
, VM_KERN_MEMORY_NONE
, &dw_array
[0], dw_count
);
584 LIST_REQ_PAGEOUT_PAGES(object
, data_cnt
,
585 paging_offset
, offset_resid
, io_errno
, should_iosync
);
587 * LIST_REQ_PAGEOUT_PAGES will drop the object lock which will
588 * allow the state of page 'm' to change... we need to re-lookup
595 switch (page_lock_result
) {
597 case MEMORY_OBJECT_LOCK_RESULT_DONE
:
600 case MEMORY_OBJECT_LOCK_RESULT_MUST_FREE
:
601 if (m
->dirty
== TRUE
)
603 dwp
->dw_mask
|= DW_vm_page_free
;
606 case MEMORY_OBJECT_LOCK_RESULT_MUST_BLOCK
:
607 PAGE_SLEEP(object
, m
, THREAD_UNINT
);
610 case MEMORY_OBJECT_LOCK_RESULT_MUST_RETURN
:
612 paging_offset
= offset
;
614 data_cnt
+= PAGE_SIZE
;
615 next_offset
= offset
+ PAGE_SIZE_64
;
618 * wired pages shouldn't be flushed and
619 * since they aren't on any queue,
620 * no need to remove them
622 if (!VM_PAGE_WIRED(m
)) {
626 * add additional state for the flush
628 m
->free_when_done
= TRUE
;
631 * we use to remove the page from the queues at this
632 * point, but we do not believe that an msync
633 * should cause the 'age' of a page to be changed
636 * dwp->dw_mask |= DW_VM_PAGE_QUEUES_REMOVE;
643 VM_PAGE_ADD_DELAYED_WORK(dwp
, m
, dw_count
);
645 if (dw_count
>= dw_limit
) {
646 vm_page_do_delayed_work(object
, VM_KERN_MEMORY_NONE
, &dw_array
[0], dw_count
);
656 task_update_logical_writes(current_task(), (dirty_count
* PAGE_SIZE
), TASK_WRITE_INVALIDATED
, vnode_pager_lookup_vnode(object
->pager
));
658 * We have completed the scan for applicable pages.
659 * Clean any pages that have been saved.
662 vm_page_do_delayed_work(object
, VM_KERN_MEMORY_NONE
, &dw_array
[0], dw_count
);
665 LIST_REQ_PAGEOUT_PAGES(object
, data_cnt
,
666 paging_offset
, offset_resid
, io_errno
, should_iosync
);
674 * Routine: vm_object_update
676 * Work function for m_o_lock_request(), vm_o_sync().
678 * Called with object locked and paging ref taken.
683 vm_object_offset_t offset
,
684 vm_object_size_t size
,
685 vm_object_offset_t
*resid_offset
,
687 memory_object_return_t should_return
,
689 vm_prot_t protection
)
691 vm_object_t copy_object
= VM_OBJECT_NULL
;
692 boolean_t data_returned
= FALSE
;
693 boolean_t update_cow
;
694 boolean_t should_flush
= (flags
& MEMORY_OBJECT_DATA_FLUSH
) ? TRUE
: FALSE
;
695 boolean_t should_iosync
= (flags
& MEMORY_OBJECT_IO_SYNC
) ? TRUE
: FALSE
;
696 vm_fault_return_t result
;
699 #define MAX_EXTENTS 8
700 #define EXTENT_SIZE (1024 * 1024 * 256)
701 #define RESIDENT_LIMIT (1024 * 32)
703 vm_object_offset_t e_base
;
704 vm_object_offset_t e_min
;
705 vm_object_offset_t e_max
;
706 } extents
[MAX_EXTENTS
];
709 * To avoid blocking while scanning for pages, save
710 * dirty pages to be cleaned all at once.
712 * XXXO A similar strategy could be used to limit the
713 * number of times that a scan must be restarted for
714 * other reasons. Those pages that would require blocking
715 * could be temporarily collected in another list, or
716 * their offsets could be recorded in a small array.
720 * XXX NOTE: May want to consider converting this to a page list
721 * XXX vm_map_copy interface. Need to understand object
722 * XXX coalescing implications before doing so.
725 update_cow
= ((flags
& MEMORY_OBJECT_DATA_FLUSH
)
726 && (!(flags
& MEMORY_OBJECT_DATA_NO_CHANGE
) &&
727 !(flags
& MEMORY_OBJECT_DATA_PURGE
)))
728 || (flags
& MEMORY_OBJECT_COPY_SYNC
);
730 if (update_cow
|| (flags
& (MEMORY_OBJECT_DATA_PURGE
| MEMORY_OBJECT_DATA_SYNC
))) {
733 while ((copy_object
= object
->copy
) != VM_OBJECT_NULL
) {
735 * need to do a try here since we're swimming upstream
736 * against the normal lock ordering... however, we need
737 * to hold the object stable until we gain control of the
738 * copy object so we have to be careful how we approach this
740 if (vm_object_lock_try(copy_object
)) {
742 * we 'won' the lock on the copy object...
743 * no need to hold the object lock any longer...
744 * take a real reference on the copy object because
745 * we're going to call vm_fault_page on it which may
746 * under certain conditions drop the lock and the paging
747 * reference we're about to take... the reference
748 * will keep the copy object from going away if that happens
750 vm_object_unlock(object
);
751 vm_object_reference_locked(copy_object
);
754 vm_object_unlock(object
);
757 mutex_pause(collisions
);
759 vm_object_lock(object
);
762 if ((copy_object
!= VM_OBJECT_NULL
&& update_cow
) || (flags
& MEMORY_OBJECT_DATA_SYNC
)) {
764 vm_map_size_t copy_size
;
765 vm_map_offset_t copy_offset
;
769 kern_return_t error
= 0;
770 struct vm_object_fault_info fault_info
;
772 if (copy_object
!= VM_OBJECT_NULL
) {
774 * translate offset with respect to shadow's offset
776 copy_offset
= (offset
>= copy_object
->vo_shadow_offset
) ?
777 (vm_map_offset_t
)(offset
- copy_object
->vo_shadow_offset
) :
780 if (copy_offset
> copy_object
->vo_size
)
781 copy_offset
= copy_object
->vo_size
;
784 * clip size with respect to shadow offset
786 if (offset
>= copy_object
->vo_shadow_offset
) {
788 } else if (size
>= copy_object
->vo_shadow_offset
- offset
) {
789 copy_size
= size
- (copy_object
->vo_shadow_offset
- offset
);
794 if (copy_offset
+ copy_size
> copy_object
->vo_size
) {
795 if (copy_object
->vo_size
>= copy_offset
) {
796 copy_size
= copy_object
->vo_size
- copy_offset
;
801 copy_size
+=copy_offset
;
804 copy_object
= object
;
806 copy_size
= offset
+ size
;
807 copy_offset
= offset
;
809 fault_info
.interruptible
= THREAD_UNINT
;
810 fault_info
.behavior
= VM_BEHAVIOR_SEQUENTIAL
;
811 fault_info
.user_tag
= 0;
812 fault_info
.pmap_options
= 0;
813 fault_info
.lo_offset
= copy_offset
;
814 fault_info
.hi_offset
= copy_size
;
815 fault_info
.no_cache
= FALSE
;
816 fault_info
.stealth
= TRUE
;
817 fault_info
.io_sync
= FALSE
;
818 fault_info
.cs_bypass
= FALSE
;
819 fault_info
.mark_zf_absent
= FALSE
;
820 fault_info
.batch_pmap_op
= FALSE
;
822 vm_object_paging_begin(copy_object
);
824 for (i
= copy_offset
; i
< copy_size
; i
+= PAGE_SIZE
) {
825 RETRY_COW_OF_LOCK_REQUEST
:
826 fault_info
.cluster_size
= (vm_size_t
) (copy_size
- i
);
827 assert(fault_info
.cluster_size
== copy_size
- i
);
829 prot
= VM_PROT_WRITE
|VM_PROT_READ
;
831 result
= vm_fault_page(copy_object
, i
,
832 VM_PROT_WRITE
|VM_PROT_READ
,
834 FALSE
, /* page not looked up */
844 case VM_FAULT_SUCCESS
:
847 VM_PAGE_OBJECT(page
), top_page
);
848 vm_object_lock(copy_object
);
849 vm_object_paging_begin(copy_object
);
851 if (( !VM_PAGE_NON_SPECULATIVE_PAGEABLE(page
))) {
853 vm_page_lockspin_queues();
855 if (( !VM_PAGE_NON_SPECULATIVE_PAGEABLE(page
))) {
856 vm_page_deactivate(page
);
858 vm_page_unlock_queues();
860 PAGE_WAKEUP_DONE(page
);
863 prot
= VM_PROT_WRITE
|VM_PROT_READ
;
864 vm_object_lock(copy_object
);
865 vm_object_paging_begin(copy_object
);
866 goto RETRY_COW_OF_LOCK_REQUEST
;
867 case VM_FAULT_INTERRUPTED
:
868 prot
= VM_PROT_WRITE
|VM_PROT_READ
;
869 vm_object_lock(copy_object
);
870 vm_object_paging_begin(copy_object
);
871 goto RETRY_COW_OF_LOCK_REQUEST
;
872 case VM_FAULT_MEMORY_SHORTAGE
:
874 prot
= VM_PROT_WRITE
|VM_PROT_READ
;
875 vm_object_lock(copy_object
);
876 vm_object_paging_begin(copy_object
);
877 goto RETRY_COW_OF_LOCK_REQUEST
;
878 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
879 /* success but no VM page: fail */
880 vm_object_paging_end(copy_object
);
881 vm_object_unlock(copy_object
);
883 case VM_FAULT_MEMORY_ERROR
:
884 if (object
!= copy_object
)
885 vm_object_deallocate(copy_object
);
886 vm_object_lock(object
);
887 goto BYPASS_COW_COPYIN
;
889 panic("vm_object_update: unexpected error 0x%x"
890 " from vm_fault_page()\n", result
);
894 vm_object_paging_end(copy_object
);
896 if ((flags
& (MEMORY_OBJECT_DATA_SYNC
| MEMORY_OBJECT_COPY_SYNC
))) {
897 if (copy_object
!= VM_OBJECT_NULL
&& copy_object
!= object
) {
898 vm_object_unlock(copy_object
);
899 vm_object_deallocate(copy_object
);
900 vm_object_lock(object
);
904 if (copy_object
!= VM_OBJECT_NULL
&& copy_object
!= object
) {
905 if ((flags
& MEMORY_OBJECT_DATA_PURGE
)) {
906 vm_object_lock_assert_exclusive(copy_object
);
907 copy_object
->shadow_severed
= TRUE
;
908 copy_object
->shadowed
= FALSE
;
909 copy_object
->shadow
= NULL
;
911 * delete the ref the COW was holding on the target object
913 vm_object_deallocate(object
);
915 vm_object_unlock(copy_object
);
916 vm_object_deallocate(copy_object
);
917 vm_object_lock(object
);
922 * when we have a really large range to check relative
923 * to the number of actual resident pages, we'd like
924 * to use the resident page list to drive our checks
925 * however, the object lock will get dropped while processing
926 * the page which means the resident queue can change which
927 * means we can't walk the queue as we process the pages
928 * we also want to do the processing in offset order to allow
929 * 'runs' of pages to be collected if we're being told to
930 * flush to disk... the resident page queue is NOT ordered.
932 * a temporary solution (until we figure out how to deal with
933 * large address spaces more generically) is to pre-flight
934 * the resident page queue (if it's small enough) and develop
935 * a collection of extents (that encompass actual resident pages)
936 * to visit. This will at least allow us to deal with some of the
937 * more pathological cases in a more efficient manner. The current
938 * worst case (a single resident page at the end of an extremely large
939 * range) can take minutes to complete for ranges in the terrabyte
940 * category... since this routine is called when truncating a file,
941 * and we currently support files up to 16 Tbytes in size, this
942 * is not a theoretical problem
945 if ((object
->resident_page_count
< RESIDENT_LIMIT
) &&
946 (atop_64(size
) > (unsigned)(object
->resident_page_count
/(8 * MAX_EXTENTS
)))) {
948 vm_object_offset_t start
;
949 vm_object_offset_t end
;
950 vm_object_size_t e_mask
;
956 e_mask
= ~((vm_object_size_t
)(EXTENT_SIZE
- 1));
958 m
= (vm_page_t
) vm_page_queue_first(&object
->memq
);
960 while (!vm_page_queue_end(&object
->memq
, (vm_page_queue_entry_t
) m
)) {
961 next
= (vm_page_t
) vm_page_queue_next(&m
->listq
);
963 if ((m
->offset
>= start
) && (m
->offset
< end
)) {
965 * this is a page we're interested in
966 * try to fit it into a current extent
968 for (n
= 0; n
< num_of_extents
; n
++) {
969 if ((m
->offset
& e_mask
) == extents
[n
].e_base
) {
971 * use (PAGE_SIZE - 1) to determine the
972 * max offset so that we don't wrap if
973 * we're at the last page of the space
975 if (m
->offset
< extents
[n
].e_min
)
976 extents
[n
].e_min
= m
->offset
;
977 else if ((m
->offset
+ (PAGE_SIZE
- 1)) > extents
[n
].e_max
)
978 extents
[n
].e_max
= m
->offset
+ (PAGE_SIZE
- 1);
982 if (n
== num_of_extents
) {
984 * didn't find a current extent that can encompass
987 if (n
< MAX_EXTENTS
) {
989 * if we still have room,
990 * create a new extent
992 extents
[n
].e_base
= m
->offset
& e_mask
;
993 extents
[n
].e_min
= m
->offset
;
994 extents
[n
].e_max
= m
->offset
+ (PAGE_SIZE
- 1);
999 * no room to create a new extent...
1000 * fall back to a single extent based
1001 * on the min and max page offsets
1002 * we find in the range we're interested in...
1003 * first, look through the extent list and
1004 * develop the overall min and max for the
1005 * pages we've looked at up to this point
1007 for (n
= 1; n
< num_of_extents
; n
++) {
1008 if (extents
[n
].e_min
< extents
[0].e_min
)
1009 extents
[0].e_min
= extents
[n
].e_min
;
1010 if (extents
[n
].e_max
> extents
[0].e_max
)
1011 extents
[0].e_max
= extents
[n
].e_max
;
1014 * now setup to run through the remaining pages
1015 * to determine the overall min and max
1016 * offset for the specified range
1018 extents
[0].e_base
= 0;
1023 * by continuing, we'll reprocess the
1024 * page that forced us to abandon trying
1025 * to develop multiple extents
1034 extents
[0].e_min
= offset
;
1035 extents
[0].e_max
= offset
+ (size
- 1);
1039 for (n
= 0; n
< num_of_extents
; n
++) {
1040 if (vm_object_update_extent(object
, extents
[n
].e_min
, extents
[n
].e_max
, resid_offset
, io_errno
,
1041 should_flush
, should_return
, should_iosync
, protection
))
1042 data_returned
= TRUE
;
1044 return (data_returned
);
1049 * Routine: memory_object_synchronize_completed [user interface]
1051 * Tell kernel that previously synchronized data
1052 * (memory_object_synchronize) has been queue or placed on the
1055 * Note: there may be multiple synchronize requests for a given
1056 * memory object outstanding but they will not overlap.
1060 memory_object_synchronize_completed(
1061 memory_object_control_t control
,
1062 memory_object_offset_t offset
,
1063 memory_object_size_t length
)
1068 object
= memory_object_control_to_vm_object(control
);
1070 XPR(XPR_MEMORY_OBJECT
,
1071 "m_o_sync_completed, object 0x%X, offset 0x%X length 0x%X\n",
1072 object
, offset
, length
, 0, 0);
1075 * Look for bogus arguments
1078 if (object
== VM_OBJECT_NULL
)
1079 return (KERN_INVALID_ARGUMENT
);
1081 vm_object_lock(object
);
1084 * search for sync request structure
1086 queue_iterate(&object
->msr_q
, msr
, msync_req_t
, msr_q
) {
1087 if (msr
->offset
== offset
&& msr
->length
== length
) {
1088 queue_remove(&object
->msr_q
, msr
, msync_req_t
, msr_q
);
1091 }/* queue_iterate */
1093 if (queue_end(&object
->msr_q
, (queue_entry_t
)msr
)) {
1094 vm_object_unlock(object
);
1095 return KERN_INVALID_ARGUMENT
;
1099 vm_object_unlock(object
);
1100 msr
->flag
= VM_MSYNC_DONE
;
1102 thread_wakeup((event_t
) msr
);
1104 return KERN_SUCCESS
;
1105 }/* memory_object_synchronize_completed */
1107 static kern_return_t
1108 vm_object_set_attributes_common(
1110 boolean_t may_cache
,
1111 memory_object_copy_strategy_t copy_strategy
,
1112 boolean_t temporary
,
1113 __unused boolean_t silent_overwrite
,
1114 boolean_t advisory_pageout
)
1116 boolean_t object_became_ready
;
1118 XPR(XPR_MEMORY_OBJECT
,
1119 "m_o_set_attr_com, object 0x%X flg %x strat %d\n",
1120 object
, (may_cache
&1)|((temporary
&1)<1), copy_strategy
, 0, 0);
1122 if (object
== VM_OBJECT_NULL
)
1123 return(KERN_INVALID_ARGUMENT
);
1126 * Verify the attributes of importance
1129 switch(copy_strategy
) {
1130 case MEMORY_OBJECT_COPY_NONE
:
1131 case MEMORY_OBJECT_COPY_DELAY
:
1134 return(KERN_INVALID_ARGUMENT
);
1142 vm_object_lock(object
);
1145 * Copy the attributes
1147 assert(!object
->internal
);
1148 object_became_ready
= !object
->pager_ready
;
1149 object
->copy_strategy
= copy_strategy
;
1150 object
->can_persist
= may_cache
;
1151 object
->temporary
= temporary
;
1152 // object->silent_overwrite = silent_overwrite;
1153 object
->advisory_pageout
= advisory_pageout
;
1156 * Wake up anyone waiting for the ready attribute
1157 * to become asserted.
1160 if (object_became_ready
) {
1161 object
->pager_ready
= TRUE
;
1162 vm_object_wakeup(object
, VM_OBJECT_EVENT_PAGER_READY
);
1165 vm_object_unlock(object
);
1167 return(KERN_SUCCESS
);
1171 * Set the memory object attribute as provided.
1173 * XXX This routine cannot be completed until the vm_msync, clean
1174 * in place, and cluster work is completed. See ifdef notyet
1175 * below and note that vm_object_set_attributes_common()
1176 * may have to be expanded.
1179 memory_object_change_attributes(
1180 memory_object_control_t control
,
1181 memory_object_flavor_t flavor
,
1182 memory_object_info_t attributes
,
1183 mach_msg_type_number_t count
)
1186 kern_return_t result
= KERN_SUCCESS
;
1187 boolean_t temporary
;
1188 boolean_t may_cache
;
1189 boolean_t invalidate
;
1190 memory_object_copy_strategy_t copy_strategy
;
1191 boolean_t silent_overwrite
;
1192 boolean_t advisory_pageout
;
1194 object
= memory_object_control_to_vm_object(control
);
1195 if (object
== VM_OBJECT_NULL
)
1196 return (KERN_INVALID_ARGUMENT
);
1198 vm_object_lock(object
);
1200 temporary
= object
->temporary
;
1201 may_cache
= object
->can_persist
;
1202 copy_strategy
= object
->copy_strategy
;
1203 // silent_overwrite = object->silent_overwrite;
1204 silent_overwrite
= FALSE
;
1205 advisory_pageout
= object
->advisory_pageout
;
1207 invalidate
= object
->invalidate
;
1209 vm_object_unlock(object
);
1212 case OLD_MEMORY_OBJECT_BEHAVIOR_INFO
:
1214 old_memory_object_behave_info_t behave
;
1216 if (count
!= OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT
) {
1217 result
= KERN_INVALID_ARGUMENT
;
1221 behave
= (old_memory_object_behave_info_t
) attributes
;
1223 temporary
= behave
->temporary
;
1224 invalidate
= behave
->invalidate
;
1225 copy_strategy
= behave
->copy_strategy
;
1230 case MEMORY_OBJECT_BEHAVIOR_INFO
:
1232 memory_object_behave_info_t behave
;
1234 if (count
!= MEMORY_OBJECT_BEHAVE_INFO_COUNT
) {
1235 result
= KERN_INVALID_ARGUMENT
;
1239 behave
= (memory_object_behave_info_t
) attributes
;
1241 temporary
= behave
->temporary
;
1242 invalidate
= behave
->invalidate
;
1243 copy_strategy
= behave
->copy_strategy
;
1244 silent_overwrite
= behave
->silent_overwrite
;
1245 advisory_pageout
= behave
->advisory_pageout
;
1249 case MEMORY_OBJECT_PERFORMANCE_INFO
:
1251 memory_object_perf_info_t perf
;
1253 if (count
!= MEMORY_OBJECT_PERF_INFO_COUNT
) {
1254 result
= KERN_INVALID_ARGUMENT
;
1258 perf
= (memory_object_perf_info_t
) attributes
;
1260 may_cache
= perf
->may_cache
;
1265 case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO
:
1267 old_memory_object_attr_info_t attr
;
1269 if (count
!= OLD_MEMORY_OBJECT_ATTR_INFO_COUNT
) {
1270 result
= KERN_INVALID_ARGUMENT
;
1274 attr
= (old_memory_object_attr_info_t
) attributes
;
1276 may_cache
= attr
->may_cache
;
1277 copy_strategy
= attr
->copy_strategy
;
1282 case MEMORY_OBJECT_ATTRIBUTE_INFO
:
1284 memory_object_attr_info_t attr
;
1286 if (count
!= MEMORY_OBJECT_ATTR_INFO_COUNT
) {
1287 result
= KERN_INVALID_ARGUMENT
;
1291 attr
= (memory_object_attr_info_t
) attributes
;
1293 copy_strategy
= attr
->copy_strategy
;
1294 may_cache
= attr
->may_cache_object
;
1295 temporary
= attr
->temporary
;
1301 result
= KERN_INVALID_ARGUMENT
;
1305 if (result
!= KERN_SUCCESS
)
1308 if (copy_strategy
== MEMORY_OBJECT_COPY_TEMPORARY
) {
1309 copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
1316 * XXX may_cache may become a tri-valued variable to handle
1317 * XXX uncache if not in use.
1319 return (vm_object_set_attributes_common(object
,
1328 memory_object_get_attributes(
1329 memory_object_control_t control
,
1330 memory_object_flavor_t flavor
,
1331 memory_object_info_t attributes
, /* pointer to OUT array */
1332 mach_msg_type_number_t
*count
) /* IN/OUT */
1334 kern_return_t ret
= KERN_SUCCESS
;
1337 object
= memory_object_control_to_vm_object(control
);
1338 if (object
== VM_OBJECT_NULL
)
1339 return (KERN_INVALID_ARGUMENT
);
1341 vm_object_lock(object
);
1344 case OLD_MEMORY_OBJECT_BEHAVIOR_INFO
:
1346 old_memory_object_behave_info_t behave
;
1348 if (*count
< OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT
) {
1349 ret
= KERN_INVALID_ARGUMENT
;
1353 behave
= (old_memory_object_behave_info_t
) attributes
;
1354 behave
->copy_strategy
= object
->copy_strategy
;
1355 behave
->temporary
= object
->temporary
;
1356 #if notyet /* remove when vm_msync complies and clean in place fini */
1357 behave
->invalidate
= object
->invalidate
;
1359 behave
->invalidate
= FALSE
;
1362 *count
= OLD_MEMORY_OBJECT_BEHAVE_INFO_COUNT
;
1366 case MEMORY_OBJECT_BEHAVIOR_INFO
:
1368 memory_object_behave_info_t behave
;
1370 if (*count
< MEMORY_OBJECT_BEHAVE_INFO_COUNT
) {
1371 ret
= KERN_INVALID_ARGUMENT
;
1375 behave
= (memory_object_behave_info_t
) attributes
;
1376 behave
->copy_strategy
= object
->copy_strategy
;
1377 behave
->temporary
= object
->temporary
;
1378 #if notyet /* remove when vm_msync complies and clean in place fini */
1379 behave
->invalidate
= object
->invalidate
;
1381 behave
->invalidate
= FALSE
;
1383 behave
->advisory_pageout
= object
->advisory_pageout
;
1384 // behave->silent_overwrite = object->silent_overwrite;
1385 behave
->silent_overwrite
= FALSE
;
1386 *count
= MEMORY_OBJECT_BEHAVE_INFO_COUNT
;
1390 case MEMORY_OBJECT_PERFORMANCE_INFO
:
1392 memory_object_perf_info_t perf
;
1394 if (*count
< MEMORY_OBJECT_PERF_INFO_COUNT
) {
1395 ret
= KERN_INVALID_ARGUMENT
;
1399 perf
= (memory_object_perf_info_t
) attributes
;
1400 perf
->cluster_size
= PAGE_SIZE
;
1401 perf
->may_cache
= object
->can_persist
;
1403 *count
= MEMORY_OBJECT_PERF_INFO_COUNT
;
1407 case OLD_MEMORY_OBJECT_ATTRIBUTE_INFO
:
1409 old_memory_object_attr_info_t attr
;
1411 if (*count
< OLD_MEMORY_OBJECT_ATTR_INFO_COUNT
) {
1412 ret
= KERN_INVALID_ARGUMENT
;
1416 attr
= (old_memory_object_attr_info_t
) attributes
;
1417 attr
->may_cache
= object
->can_persist
;
1418 attr
->copy_strategy
= object
->copy_strategy
;
1420 *count
= OLD_MEMORY_OBJECT_ATTR_INFO_COUNT
;
1424 case MEMORY_OBJECT_ATTRIBUTE_INFO
:
1426 memory_object_attr_info_t attr
;
1428 if (*count
< MEMORY_OBJECT_ATTR_INFO_COUNT
) {
1429 ret
= KERN_INVALID_ARGUMENT
;
1433 attr
= (memory_object_attr_info_t
) attributes
;
1434 attr
->copy_strategy
= object
->copy_strategy
;
1435 attr
->cluster_size
= PAGE_SIZE
;
1436 attr
->may_cache_object
= object
->can_persist
;
1437 attr
->temporary
= object
->temporary
;
1439 *count
= MEMORY_OBJECT_ATTR_INFO_COUNT
;
1444 ret
= KERN_INVALID_ARGUMENT
;
1448 vm_object_unlock(object
);
1455 memory_object_iopl_request(
1457 memory_object_offset_t offset
,
1458 upl_size_t
*upl_size
,
1460 upl_page_info_array_t user_page_list
,
1461 unsigned int *page_list_count
,
1462 upl_control_flags_t
*flags
)
1466 upl_control_flags_t caller_flags
;
1468 caller_flags
= *flags
;
1470 if (caller_flags
& ~UPL_VALID_FLAGS
) {
1472 * For forward compatibility's sake,
1473 * reject any unknown flag.
1475 return KERN_INVALID_VALUE
;
1478 if (ip_kotype(port
) == IKOT_NAMED_ENTRY
) {
1479 vm_named_entry_t named_entry
;
1481 named_entry
= (vm_named_entry_t
)port
->ip_kobject
;
1482 /* a few checks to make sure user is obeying rules */
1483 if(*upl_size
== 0) {
1484 if(offset
>= named_entry
->size
)
1485 return(KERN_INVALID_RIGHT
);
1486 *upl_size
= (upl_size_t
)(named_entry
->size
- offset
);
1487 if (*upl_size
!= named_entry
->size
- offset
)
1488 return KERN_INVALID_ARGUMENT
;
1490 if(caller_flags
& UPL_COPYOUT_FROM
) {
1491 if((named_entry
->protection
& VM_PROT_READ
)
1493 return(KERN_INVALID_RIGHT
);
1496 if((named_entry
->protection
&
1497 (VM_PROT_READ
| VM_PROT_WRITE
))
1498 != (VM_PROT_READ
| VM_PROT_WRITE
)) {
1499 return(KERN_INVALID_RIGHT
);
1502 if(named_entry
->size
< (offset
+ *upl_size
))
1503 return(KERN_INVALID_ARGUMENT
);
1505 /* the callers parameter offset is defined to be the */
1506 /* offset from beginning of named entry offset in object */
1507 offset
= offset
+ named_entry
->offset
;
1509 if (named_entry
->is_sub_map
||
1510 named_entry
->is_copy
)
1511 return KERN_INVALID_ARGUMENT
;
1513 named_entry_lock(named_entry
);
1515 if (named_entry
->is_pager
) {
1516 object
= vm_object_enter(named_entry
->backing
.pager
,
1517 named_entry
->offset
+ named_entry
->size
,
1518 named_entry
->internal
,
1521 if (object
== VM_OBJECT_NULL
) {
1522 named_entry_unlock(named_entry
);
1523 return(KERN_INVALID_OBJECT
);
1526 /* JMM - drop reference on pager here? */
1528 /* create an extra reference for the named entry */
1529 vm_object_lock(object
);
1530 vm_object_reference_locked(object
);
1531 named_entry
->backing
.object
= object
;
1532 named_entry
->is_pager
= FALSE
;
1533 named_entry_unlock(named_entry
);
1535 /* wait for object to be ready */
1536 while (!object
->pager_ready
) {
1537 vm_object_wait(object
,
1538 VM_OBJECT_EVENT_PAGER_READY
,
1540 vm_object_lock(object
);
1542 vm_object_unlock(object
);
1544 /* This is the case where we are going to map */
1545 /* an already mapped object. If the object is */
1546 /* not ready it is internal. An external */
1547 /* object cannot be mapped until it is ready */
1548 /* we can therefore avoid the ready check */
1550 object
= named_entry
->backing
.object
;
1551 vm_object_reference(object
);
1552 named_entry_unlock(named_entry
);
1554 } else if (ip_kotype(port
) == IKOT_MEM_OBJ_CONTROL
) {
1555 memory_object_control_t control
;
1556 control
= (memory_object_control_t
) port
;
1557 if (control
== NULL
)
1558 return (KERN_INVALID_ARGUMENT
);
1559 object
= memory_object_control_to_vm_object(control
);
1560 if (object
== VM_OBJECT_NULL
)
1561 return (KERN_INVALID_ARGUMENT
);
1562 vm_object_reference(object
);
1564 return KERN_INVALID_ARGUMENT
;
1566 if (object
== VM_OBJECT_NULL
)
1567 return (KERN_INVALID_ARGUMENT
);
1569 if (!object
->private) {
1570 if (object
->phys_contiguous
) {
1571 *flags
= UPL_PHYS_CONTIG
;
1576 *flags
= UPL_DEV_MEMORY
| UPL_PHYS_CONTIG
;
1579 ret
= vm_object_iopl_request(object
,
1586 vm_object_deallocate(object
);
1591 * Routine: memory_object_upl_request [interface]
1593 * Cause the population of a portion of a vm_object.
1594 * Depending on the nature of the request, the pages
1595 * returned may be contain valid data or be uninitialized.
1600 memory_object_upl_request(
1601 memory_object_control_t control
,
1602 memory_object_offset_t offset
,
1605 upl_page_info_array_t user_page_list
,
1606 unsigned int *page_list_count
,
1611 object
= memory_object_control_to_vm_object(control
);
1612 if (object
== VM_OBJECT_NULL
)
1613 return (KERN_TERMINATED
);
1615 return vm_object_upl_request(object
,
1621 (upl_control_flags_t
)(unsigned int) cntrl_flags
);
1625 * Routine: memory_object_super_upl_request [interface]
1627 * Cause the population of a portion of a vm_object
1628 * in much the same way as memory_object_upl_request.
1629 * Depending on the nature of the request, the pages
1630 * returned may be contain valid data or be uninitialized.
1631 * However, the region may be expanded up to the super
1632 * cluster size provided.
1636 memory_object_super_upl_request(
1637 memory_object_control_t control
,
1638 memory_object_offset_t offset
,
1640 upl_size_t super_cluster
,
1642 upl_page_info_t
*user_page_list
,
1643 unsigned int *page_list_count
,
1648 object
= memory_object_control_to_vm_object(control
);
1649 if (object
== VM_OBJECT_NULL
)
1650 return (KERN_INVALID_ARGUMENT
);
1652 return vm_object_super_upl_request(object
,
1659 (upl_control_flags_t
)(unsigned int) cntrl_flags
);
1663 memory_object_cluster_size(memory_object_control_t control
, memory_object_offset_t
*start
,
1664 vm_size_t
*length
, uint32_t *io_streaming
, memory_object_fault_info_t fault_info
)
1668 object
= memory_object_control_to_vm_object(control
);
1670 if (object
== VM_OBJECT_NULL
|| object
->paging_offset
> *start
)
1671 return (KERN_INVALID_ARGUMENT
);
1673 *start
-= object
->paging_offset
;
1675 vm_object_cluster_size(object
, (vm_object_offset_t
*)start
, length
, (vm_object_fault_info_t
)fault_info
, io_streaming
);
1677 *start
+= object
->paging_offset
;
1679 return (KERN_SUCCESS
);
1683 int vm_stat_discard_cleared_reply
= 0;
1684 int vm_stat_discard_cleared_unset
= 0;
1685 int vm_stat_discard_cleared_too_late
= 0;
1690 * Routine: host_default_memory_manager [interface]
1692 * set/get the default memory manager port and default cluster
1695 * If successful, consumes the supplied naked send right.
1698 host_default_memory_manager(
1699 host_priv_t host_priv
,
1700 memory_object_default_t
*default_manager
,
1701 __unused memory_object_cluster_size_t cluster_size
)
1703 memory_object_default_t current_manager
;
1704 memory_object_default_t new_manager
;
1705 memory_object_default_t returned_manager
;
1706 kern_return_t result
= KERN_SUCCESS
;
1708 if (host_priv
== HOST_PRIV_NULL
)
1709 return(KERN_INVALID_HOST
);
1711 assert(host_priv
== &realhost
);
1713 new_manager
= *default_manager
;
1714 lck_mtx_lock(&memory_manager_default_lock
);
1715 current_manager
= memory_manager_default
;
1716 returned_manager
= MEMORY_OBJECT_DEFAULT_NULL
;
1718 if (new_manager
== MEMORY_OBJECT_DEFAULT_NULL
) {
1720 * Retrieve the current value.
1722 returned_manager
= current_manager
;
1723 memory_object_default_reference(returned_manager
);
1726 * Only allow the kernel to change the value.
1728 extern task_t kernel_task
;
1729 if (current_task() != kernel_task
) {
1730 result
= KERN_NO_ACCESS
;
1735 * If this is the first non-null manager, start
1736 * up the internal pager support.
1738 if (current_manager
== MEMORY_OBJECT_DEFAULT_NULL
) {
1739 result
= vm_pageout_internal_start();
1740 if (result
!= KERN_SUCCESS
)
1745 * Retrieve the current value,
1746 * and replace it with the supplied value.
1747 * We return the old reference to the caller
1748 * but we have to take a reference on the new
1751 returned_manager
= current_manager
;
1752 memory_manager_default
= new_manager
;
1753 memory_object_default_reference(new_manager
);
1756 * In case anyone's been waiting for a memory
1757 * manager to be established, wake them up.
1760 thread_wakeup((event_t
) &memory_manager_default
);
1763 * Now that we have a default pager for anonymous memory,
1764 * reactivate all the throttled pages (i.e. dirty pages with
1767 if (current_manager
== MEMORY_OBJECT_DEFAULT_NULL
)
1769 vm_page_reactivate_all_throttled();
1773 lck_mtx_unlock(&memory_manager_default_lock
);
1775 *default_manager
= returned_manager
;
1780 * Routine: memory_manager_default_reference
1782 * Returns a naked send right for the default
1783 * memory manager. The returned right is always
1784 * valid (not IP_NULL or IP_DEAD).
1787 __private_extern__ memory_object_default_t
1788 memory_manager_default_reference(void)
1790 memory_object_default_t current_manager
;
1792 lck_mtx_lock(&memory_manager_default_lock
);
1793 current_manager
= memory_manager_default
;
1794 while (current_manager
== MEMORY_OBJECT_DEFAULT_NULL
) {
1797 res
= lck_mtx_sleep(&memory_manager_default_lock
,
1799 (event_t
) &memory_manager_default
,
1801 assert(res
== THREAD_AWAKENED
);
1802 current_manager
= memory_manager_default
;
1804 memory_object_default_reference(current_manager
);
1805 lck_mtx_unlock(&memory_manager_default_lock
);
1807 return current_manager
;
1811 * Routine: memory_manager_default_check
1814 * Check whether a default memory manager has been set
1815 * up yet, or not. Returns KERN_SUCCESS if dmm exists,
1816 * and KERN_FAILURE if dmm does not exist.
1818 * If there is no default memory manager, log an error,
1819 * but only the first time.
1822 __private_extern__ kern_return_t
1823 memory_manager_default_check(void)
1825 memory_object_default_t current
;
1827 lck_mtx_lock(&memory_manager_default_lock
);
1828 current
= memory_manager_default
;
1829 if (current
== MEMORY_OBJECT_DEFAULT_NULL
) {
1830 static boolean_t logged
; /* initialized to 0 */
1831 boolean_t complain
= !logged
;
1833 lck_mtx_unlock(&memory_manager_default_lock
);
1835 printf("Warning: No default memory manager\n");
1836 return(KERN_FAILURE
);
1838 lck_mtx_unlock(&memory_manager_default_lock
);
1839 return(KERN_SUCCESS
);
1843 __private_extern__
void
1844 memory_manager_default_init(void)
1846 memory_manager_default
= MEMORY_OBJECT_DEFAULT_NULL
;
1847 lck_mtx_init(&memory_manager_default_lock
, &vm_object_lck_grp
, &vm_object_lck_attr
);
1852 /* Allow manipulation of individual page state. This is actually part of */
1853 /* the UPL regimen but takes place on the object rather than on a UPL */
1856 memory_object_page_op(
1857 memory_object_control_t control
,
1858 memory_object_offset_t offset
,
1860 ppnum_t
*phys_entry
,
1865 object
= memory_object_control_to_vm_object(control
);
1866 if (object
== VM_OBJECT_NULL
)
1867 return (KERN_INVALID_ARGUMENT
);
1869 return vm_object_page_op(object
, offset
, ops
, phys_entry
, flags
);
1873 * memory_object_range_op offers performance enhancement over
1874 * memory_object_page_op for page_op functions which do not require page
1875 * level state to be returned from the call. Page_op was created to provide
1876 * a low-cost alternative to page manipulation via UPLs when only a single
1877 * page was involved. The range_op call establishes the ability in the _op
1878 * family of functions to work on multiple pages where the lack of page level
1879 * state handling allows the caller to avoid the overhead of the upl structures.
1883 memory_object_range_op(
1884 memory_object_control_t control
,
1885 memory_object_offset_t offset_beg
,
1886 memory_object_offset_t offset_end
,
1892 object
= memory_object_control_to_vm_object(control
);
1893 if (object
== VM_OBJECT_NULL
)
1894 return (KERN_INVALID_ARGUMENT
);
1896 return vm_object_range_op(object
,
1900 (uint32_t *) range
);
1905 memory_object_mark_used(
1906 memory_object_control_t control
)
1910 if (control
== NULL
)
1913 object
= memory_object_control_to_vm_object(control
);
1915 if (object
!= VM_OBJECT_NULL
)
1916 vm_object_cache_remove(object
);
1921 memory_object_mark_unused(
1922 memory_object_control_t control
,
1923 __unused boolean_t rage
)
1927 if (control
== NULL
)
1930 object
= memory_object_control_to_vm_object(control
);
1932 if (object
!= VM_OBJECT_NULL
)
1933 vm_object_cache_add(object
);
1937 memory_object_mark_io_tracking(
1938 memory_object_control_t control
)
1942 if (control
== NULL
)
1944 object
= memory_object_control_to_vm_object(control
);
1946 if (object
!= VM_OBJECT_NULL
) {
1947 vm_object_lock(object
);
1948 object
->io_tracking
= TRUE
;
1949 vm_object_unlock(object
);
1953 #if CONFIG_SECLUDED_MEMORY
1955 memory_object_mark_eligible_for_secluded(
1956 memory_object_control_t control
,
1957 boolean_t eligible_for_secluded
)
1961 if (control
== NULL
)
1963 object
= memory_object_control_to_vm_object(control
);
1965 if (object
== VM_OBJECT_NULL
) {
1969 vm_object_lock(object
);
1970 if (eligible_for_secluded
&&
1971 secluded_for_filecache
&& /* global boot-arg */
1972 !object
->eligible_for_secluded
) {
1973 object
->eligible_for_secluded
= TRUE
;
1974 vm_page_secluded
.eligible_for_secluded
+= object
->resident_page_count
;
1975 } else if (!eligible_for_secluded
&&
1976 object
->eligible_for_secluded
) {
1977 object
->eligible_for_secluded
= FALSE
;
1978 vm_page_secluded
.eligible_for_secluded
-= object
->resident_page_count
;
1979 if (object
->resident_page_count
) {
1980 /* XXX FBDP TODO: flush pages from secluded queue? */
1981 // printf("FBDP TODO: flush %d pages from %p from secluded queue\n", object->resident_page_count, object);
1984 vm_object_unlock(object
);
1986 #endif /* CONFIG_SECLUDED_MEMORY */
1989 memory_object_pages_resident(
1990 memory_object_control_t control
,
1991 boolean_t
* has_pages_resident
)
1995 *has_pages_resident
= FALSE
;
1997 object
= memory_object_control_to_vm_object(control
);
1998 if (object
== VM_OBJECT_NULL
)
1999 return (KERN_INVALID_ARGUMENT
);
2001 if (object
->resident_page_count
)
2002 *has_pages_resident
= TRUE
;
2004 return (KERN_SUCCESS
);
2008 memory_object_signed(
2009 memory_object_control_t control
,
2010 boolean_t is_signed
)
2014 object
= memory_object_control_to_vm_object(control
);
2015 if (object
== VM_OBJECT_NULL
)
2016 return KERN_INVALID_ARGUMENT
;
2018 vm_object_lock(object
);
2019 object
->code_signed
= is_signed
;
2020 vm_object_unlock(object
);
2022 return KERN_SUCCESS
;
2026 memory_object_is_signed(
2027 memory_object_control_t control
)
2029 boolean_t is_signed
;
2032 object
= memory_object_control_to_vm_object(control
);
2033 if (object
== VM_OBJECT_NULL
)
2036 vm_object_lock_shared(object
);
2037 is_signed
= object
->code_signed
;
2038 vm_object_unlock(object
);
2044 memory_object_is_slid(
2045 memory_object_control_t control
)
2047 vm_object_t object
= VM_OBJECT_NULL
;
2049 object
= memory_object_control_to_vm_object(control
);
2050 if (object
== VM_OBJECT_NULL
)
2053 return object
->object_slid
;
2056 static zone_t mem_obj_control_zone
;
2058 __private_extern__
void
2059 memory_object_control_bootstrap(void)
2063 i
= (vm_size_t
) sizeof (struct memory_object_control
);
2064 mem_obj_control_zone
= zinit (i
, 8192*i
, 4096, "mem_obj_control");
2065 zone_change(mem_obj_control_zone
, Z_CALLERACCT
, FALSE
);
2066 zone_change(mem_obj_control_zone
, Z_NOENCRYPT
, TRUE
);
2070 __private_extern__ memory_object_control_t
2071 memory_object_control_allocate(
2074 memory_object_control_t control
;
2076 control
= (memory_object_control_t
)zalloc(mem_obj_control_zone
);
2077 if (control
!= MEMORY_OBJECT_CONTROL_NULL
) {
2078 control
->moc_object
= object
;
2079 control
->moc_ikot
= IKOT_MEM_OBJ_CONTROL
; /* fake ip_kotype */
2084 __private_extern__
void
2085 memory_object_control_collapse(
2086 memory_object_control_t control
,
2089 assert((control
->moc_object
!= VM_OBJECT_NULL
) &&
2090 (control
->moc_object
!= object
));
2091 control
->moc_object
= object
;
2094 __private_extern__ vm_object_t
2095 memory_object_control_to_vm_object(
2096 memory_object_control_t control
)
2098 if (control
== MEMORY_OBJECT_CONTROL_NULL
||
2099 control
->moc_ikot
!= IKOT_MEM_OBJ_CONTROL
)
2100 return VM_OBJECT_NULL
;
2102 return (control
->moc_object
);
2105 memory_object_control_t
2106 convert_port_to_mo_control(
2107 __unused mach_port_t port
)
2109 return MEMORY_OBJECT_CONTROL_NULL
;
2114 convert_mo_control_to_port(
2115 __unused memory_object_control_t control
)
2117 return MACH_PORT_NULL
;
2121 memory_object_control_reference(
2122 __unused memory_object_control_t control
)
2128 * We only every issue one of these references, so kill it
2129 * when that gets released (should switch the real reference
2130 * counting in true port-less EMMI).
2133 memory_object_control_deallocate(
2134 memory_object_control_t control
)
2136 zfree(mem_obj_control_zone
, control
);
2140 memory_object_control_disable(
2141 memory_object_control_t control
)
2143 assert(control
->moc_object
!= VM_OBJECT_NULL
);
2144 control
->moc_object
= VM_OBJECT_NULL
;
2148 memory_object_default_reference(
2149 memory_object_default_t dmm
)
2151 ipc_port_make_send(dmm
);
2155 memory_object_default_deallocate(
2156 memory_object_default_t dmm
)
2158 ipc_port_release_send(dmm
);
2162 convert_port_to_memory_object(
2163 __unused mach_port_t port
)
2165 return (MEMORY_OBJECT_NULL
);
2170 convert_memory_object_to_port(
2171 __unused memory_object_t object
)
2173 return (MACH_PORT_NULL
);
2177 /* Routine memory_object_reference */
2178 void memory_object_reference(
2179 memory_object_t memory_object
)
2181 (memory_object
->mo_pager_ops
->memory_object_reference
)(
2185 /* Routine memory_object_deallocate */
2186 void memory_object_deallocate(
2187 memory_object_t memory_object
)
2189 (memory_object
->mo_pager_ops
->memory_object_deallocate
)(
2194 /* Routine memory_object_init */
2195 kern_return_t memory_object_init
2197 memory_object_t memory_object
,
2198 memory_object_control_t memory_control
,
2199 memory_object_cluster_size_t memory_object_page_size
2202 return (memory_object
->mo_pager_ops
->memory_object_init
)(
2205 memory_object_page_size
);
2208 /* Routine memory_object_terminate */
2209 kern_return_t memory_object_terminate
2211 memory_object_t memory_object
2214 return (memory_object
->mo_pager_ops
->memory_object_terminate
)(
2218 /* Routine memory_object_data_request */
2219 kern_return_t memory_object_data_request
2221 memory_object_t memory_object
,
2222 memory_object_offset_t offset
,
2223 memory_object_cluster_size_t length
,
2224 vm_prot_t desired_access
,
2225 memory_object_fault_info_t fault_info
2228 return (memory_object
->mo_pager_ops
->memory_object_data_request
)(
2236 /* Routine memory_object_data_return */
2237 kern_return_t memory_object_data_return
2239 memory_object_t memory_object
,
2240 memory_object_offset_t offset
,
2241 memory_object_cluster_size_t size
,
2242 memory_object_offset_t
*resid_offset
,
2245 boolean_t kernel_copy
,
2249 return (memory_object
->mo_pager_ops
->memory_object_data_return
)(
2260 /* Routine memory_object_data_initialize */
2261 kern_return_t memory_object_data_initialize
2263 memory_object_t memory_object
,
2264 memory_object_offset_t offset
,
2265 memory_object_cluster_size_t size
2268 return (memory_object
->mo_pager_ops
->memory_object_data_initialize
)(
2274 /* Routine memory_object_data_unlock */
2275 kern_return_t memory_object_data_unlock
2277 memory_object_t memory_object
,
2278 memory_object_offset_t offset
,
2279 memory_object_size_t size
,
2280 vm_prot_t desired_access
2283 return (memory_object
->mo_pager_ops
->memory_object_data_unlock
)(
2290 /* Routine memory_object_synchronize */
2291 kern_return_t memory_object_synchronize
2293 memory_object_t memory_object
,
2294 memory_object_offset_t offset
,
2295 memory_object_size_t size
,
2296 vm_sync_t sync_flags
2299 return (memory_object
->mo_pager_ops
->memory_object_synchronize
)(
2308 * memory_object_map() is called by VM (in vm_map_enter() and its variants)
2309 * each time a "named" VM object gets mapped directly or indirectly
2310 * (copy-on-write mapping). A "named" VM object has an extra reference held
2311 * by the pager to keep it alive until the pager decides that the
2312 * memory object (and its VM object) can be reclaimed.
2313 * VM calls memory_object_last_unmap() (in vm_object_deallocate()) when all
2314 * the mappings of that memory object have been removed.
2316 * For a given VM object, calls to memory_object_map() and memory_object_unmap()
2317 * are serialized (through object->mapping_in_progress), to ensure that the
2318 * pager gets a consistent view of the mapping status of the memory object.
2320 * This allows the pager to keep track of how many times a memory object
2321 * has been mapped and with which protections, to decide when it can be
2325 /* Routine memory_object_map */
2326 kern_return_t memory_object_map
2328 memory_object_t memory_object
,
2332 return (memory_object
->mo_pager_ops
->memory_object_map
)(
2337 /* Routine memory_object_last_unmap */
2338 kern_return_t memory_object_last_unmap
2340 memory_object_t memory_object
2343 return (memory_object
->mo_pager_ops
->memory_object_last_unmap
)(
2347 /* Routine memory_object_data_reclaim */
2348 kern_return_t memory_object_data_reclaim
2350 memory_object_t memory_object
,
2351 boolean_t reclaim_backing_store
2354 if (memory_object
->mo_pager_ops
->memory_object_data_reclaim
== NULL
)
2355 return KERN_NOT_SUPPORTED
;
2356 return (memory_object
->mo_pager_ops
->memory_object_data_reclaim
)(
2358 reclaim_backing_store
);
2362 convert_port_to_upl(
2368 if (!ip_active(port
) || (ip_kotype(port
) != IKOT_UPL
)) {
2372 upl
= (upl_t
) port
->ip_kobject
;
2381 convert_upl_to_port(
2384 return MACH_PORT_NULL
;
2387 __private_extern__
void
2389 __unused ipc_port_t port
,
2390 __unused mach_port_mscount_t mscount
)