]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cache.c
xnu-3789.31.2.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cache.c
1 /*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * This code is derived from software contributed to Berkeley by
34 * Poul-Henning Kamp of the FreeBSD Project.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 *
65 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
66 */
67 /*
68 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
69 * support for mandatory and extensible security protections. This notice
70 * is included in support of clause 2.2 (b) of the Apple Public License,
71 * Version 2.0.
72 */
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/time.h>
76 #include <sys/mount_internal.h>
77 #include <sys/vnode_internal.h>
78 #include <miscfs/specfs/specdev.h>
79 #include <sys/namei.h>
80 #include <sys/errno.h>
81 #include <sys/malloc.h>
82 #include <sys/kauth.h>
83 #include <sys/user.h>
84 #include <sys/paths.h>
85
86 #if CONFIG_MACF
87 #include <security/mac_framework.h>
88 #endif
89
90 /*
91 * Name caching works as follows:
92 *
93 * Names found by directory scans are retained in a cache
94 * for future reference. It is managed LRU, so frequently
95 * used names will hang around. Cache is indexed by hash value
96 * obtained from (vp, name) where vp refers to the directory
97 * containing name.
98 *
99 * If it is a "negative" entry, (i.e. for a name that is known NOT to
100 * exist) the vnode pointer will be NULL.
101 *
102 * Upon reaching the last segment of a path, if the reference
103 * is for DELETE, or NOCACHE is set (rewrite), and the
104 * name is located in the cache, it will be dropped.
105 */
106
107 /*
108 * Structures associated with name cacheing.
109 */
110
111 LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
112 u_long nchashmask;
113 u_long nchash; /* size of hash table - 1 */
114 long numcache; /* number of cache entries allocated */
115 int desiredNodes;
116 int desiredNegNodes;
117 int ncs_negtotal;
118 int nc_disabled = 0;
119 TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
120 TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
121
122
123 #if COLLECT_STATS
124
125 struct nchstats nchstats; /* cache effectiveness statistics */
126
127 #define NCHSTAT(v) { \
128 nchstats.v++; \
129 }
130 #define NAME_CACHE_LOCK() name_cache_lock()
131 #define NAME_CACHE_UNLOCK() name_cache_unlock()
132 #define NAME_CACHE_LOCK_SHARED() name_cache_lock()
133
134 #else
135
136 #define NCHSTAT(v)
137 #define NAME_CACHE_LOCK() name_cache_lock()
138 #define NAME_CACHE_UNLOCK() name_cache_unlock()
139 #define NAME_CACHE_LOCK_SHARED() name_cache_lock_shared()
140
141 #endif
142
143
144 /* vars for name cache list lock */
145 lck_grp_t * namecache_lck_grp;
146 lck_grp_attr_t * namecache_lck_grp_attr;
147 lck_attr_t * namecache_lck_attr;
148
149 lck_grp_t * strcache_lck_grp;
150 lck_grp_attr_t * strcache_lck_grp_attr;
151 lck_attr_t * strcache_lck_attr;
152
153 lck_rw_t * namecache_rw_lock;
154 lck_rw_t * strtable_rw_lock;
155
156 #define NUM_STRCACHE_LOCKS 1024
157
158 lck_mtx_t strcache_mtx_locks[NUM_STRCACHE_LOCKS];
159
160
161 static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
162 static const char *add_name_internal(const char *, uint32_t, u_int, boolean_t, u_int);
163 static void init_string_table(void);
164 static void cache_delete(struct namecache *, int);
165 static void cache_enter_locked(vnode_t dvp, vnode_t vp, struct componentname *cnp, const char *strname);
166
167 #ifdef DUMP_STRING_TABLE
168 /*
169 * Internal dump function used for debugging
170 */
171 void dump_string_table(void);
172 #endif /* DUMP_STRING_TABLE */
173
174 static void init_crc32(void);
175 static unsigned int crc32tab[256];
176
177
178 #define NCHHASH(dvp, hash_val) \
179 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
180
181 /*
182 * This function tries to check if a directory vp is a subdirectory of dvp
183 * only from valid v_parent pointers. It is called with the name cache lock
184 * held and does not drop the lock anytime inside the function.
185 *
186 * It returns a boolean that indicates whether or not it was able to
187 * successfully infer the parent/descendent relationship via the v_parent
188 * pointers, or if it could not infer such relationship and that the decision
189 * must be delegated to the owning filesystem.
190 *
191 * If it does not defer the decision, i.e. it was successfuly able to determine
192 * the parent/descendent relationship, *is_subdir tells the caller if vp is a
193 * subdirectory of dvp.
194 *
195 * If the decision is deferred, *next_vp is where it stopped i.e. *next_vp
196 * is the vnode whose parent is to be determined from the filesystem.
197 * *is_subdir, in this case, is not indicative of anything and should be
198 * ignored.
199 *
200 * The return value and output args should be used as follows :
201 *
202 * defer = cache_check_vnode_issubdir(vp, dvp, is_subdir, next_vp);
203 * if (!defer) {
204 * if (*is_subdir)
205 * vp is subdirectory;
206 * else
207 * vp is not a subdirectory;
208 * } else {
209 * if (*next_vp)
210 * check this vnode's parent from the filesystem
211 * else
212 * error (likely because of forced unmount).
213 * }
214 *
215 */
216 static boolean_t
217 cache_check_vnode_issubdir(vnode_t vp, vnode_t dvp, boolean_t *is_subdir,
218 vnode_t *next_vp)
219 {
220 vnode_t tvp = vp;
221 int defer = FALSE;
222
223 *is_subdir = FALSE;
224 *next_vp = NULLVP;
225 while (1) {
226 mount_t tmp;
227
228 if (tvp == dvp) {
229 *is_subdir = TRUE;
230 break;
231 } else if (tvp == rootvnode) {
232 /* *is_subdir = FALSE */
233 break;
234 }
235
236 tmp = tvp->v_mount;
237 while ((tvp->v_flag & VROOT) && tmp && tmp->mnt_vnodecovered &&
238 tvp != dvp && tvp != rootvnode) {
239 tvp = tmp->mnt_vnodecovered;
240 tmp = tvp->v_mount;
241 }
242
243 /*
244 * If dvp is not at the top of a mount "stack" then
245 * vp is not a subdirectory of dvp either.
246 */
247 if (tvp == dvp || tvp == rootvnode) {
248 /* *is_subdir = FALSE */
249 break;
250 }
251
252 if (!tmp) {
253 defer = TRUE;
254 *next_vp = NULLVP;
255 break;
256 }
257
258 if ((tvp->v_flag & VISHARDLINK) || !(tvp->v_parent)) {
259 defer = TRUE;
260 *next_vp = tvp;
261 break;
262 }
263
264 tvp = tvp->v_parent;
265 }
266
267 return (defer);
268 }
269
270 /* maximum times retry from potentially transient errors in vnode_issubdir */
271 #define MAX_ERROR_RETRY 3
272
273 /*
274 * This function checks if a given directory (vp) is a subdirectory of dvp.
275 * It walks backwards from vp and if it hits dvp in its parent chain,
276 * it is a subdirectory. If it encounters the root directory, it is not
277 * a subdirectory.
278 *
279 * This function returns an error if it is unsuccessful and 0 on success.
280 *
281 * On entry (and exit) vp has an iocount and if this function has to take
282 * any iocounts on other vnodes in the parent chain traversal, it releases them.
283 */
284 int
285 vnode_issubdir(vnode_t vp, vnode_t dvp, int *is_subdir, vfs_context_t ctx)
286 {
287 vnode_t start_vp, tvp;
288 vnode_t vp_with_iocount;
289 int error = 0;
290 char dotdotbuf[] = "..";
291 int error_retry_count = 0; /* retry count for potentially transient
292 errors */
293
294 *is_subdir = FALSE;
295 tvp = start_vp = vp;
296 /*
297 * Anytime we acquire an iocount in this function, we save the vnode
298 * in this variable and release it before exiting.
299 */
300 vp_with_iocount = NULLVP;
301
302 while (1) {
303 boolean_t defer;
304 vnode_t pvp;
305 uint32_t vid;
306 struct componentname cn;
307 boolean_t is_subdir_locked = FALSE;
308
309 if (tvp == dvp) {
310 *is_subdir = TRUE;
311 break;
312 } else if (tvp == rootvnode) {
313 /* *is_subdir = FALSE */
314 break;
315 }
316
317 NAME_CACHE_LOCK_SHARED();
318
319 defer = cache_check_vnode_issubdir(tvp, dvp, &is_subdir_locked,
320 &tvp);
321
322 if (defer && tvp)
323 vid = vnode_vid(tvp);
324
325 NAME_CACHE_UNLOCK();
326
327 if (!defer) {
328 *is_subdir = is_subdir_locked;
329 break;
330 }
331
332 if (!tvp) {
333 if (error_retry_count++ < MAX_ERROR_RETRY) {
334 tvp = vp;
335 continue;
336 }
337 error = ENOENT;
338 break;
339 }
340
341 if (tvp != start_vp) {
342 if (vp_with_iocount) {
343 vnode_put(vp_with_iocount);
344 vp_with_iocount = NULLVP;
345 }
346
347 error = vnode_getwithvid(tvp, vid);
348 if (error) {
349 if (error_retry_count++ < MAX_ERROR_RETRY) {
350 tvp = vp;
351 error = 0;
352 continue;
353 }
354 break;
355 }
356
357 vp_with_iocount = tvp;
358 }
359
360 bzero(&cn, sizeof(cn));
361 cn.cn_nameiop = LOOKUP;
362 cn.cn_flags = ISLASTCN | ISDOTDOT;
363 cn.cn_context = ctx;
364 cn.cn_pnbuf = &dotdotbuf[0];
365 cn.cn_pnlen = sizeof(dotdotbuf);
366 cn.cn_nameptr = cn.cn_pnbuf;
367 cn.cn_namelen = 2;
368
369 pvp = NULLVP;
370 if ((error = VNOP_LOOKUP(tvp, &pvp, &cn, ctx)))
371 break;
372
373 if (!(tvp->v_flag & VISHARDLINK) && tvp->v_parent != pvp) {
374 (void)vnode_update_identity(tvp, pvp, NULL, 0, 0,
375 VNODE_UPDATE_PARENT);
376 }
377
378 if (vp_with_iocount)
379 vnode_put(vp_with_iocount);
380
381 vp_with_iocount = tvp = pvp;
382 }
383
384 if (vp_with_iocount)
385 vnode_put(vp_with_iocount);
386
387 return (error);
388 }
389
390 /*
391 * This function builds the path to a filename in "buff". The
392 * length of the buffer *INCLUDING* the trailing zero byte is
393 * returned in outlen. NOTE: the length includes the trailing
394 * zero byte and thus the length is one greater than what strlen
395 * would return. This is important and lots of code elsewhere
396 * in the kernel assumes this behavior.
397 *
398 * This function can call vnop in file system if the parent vnode
399 * does not exist or when called for hardlinks via volfs path.
400 * If BUILDPATH_NO_FS_ENTER is set in flags, it only uses values present
401 * in the name cache and does not enter the file system.
402 *
403 * If BUILDPATH_CHECK_MOVED is set in flags, we return EAGAIN when
404 * we encounter ENOENT during path reconstruction. ENOENT means that
405 * one of the parents moved while we were building the path. The
406 * caller can special handle this case by calling build_path again.
407 *
408 * If BUILDPATH_VOLUME_RELATIVE is set in flags, we return path
409 * that is relative to the nearest mount point, i.e. do not
410 * cross over mount points during building the path.
411 *
412 * passed in vp must have a valid io_count reference
413 */
414 int
415 build_path(vnode_t first_vp, char *buff, int buflen, int *outlen, int flags, vfs_context_t ctx)
416 {
417 vnode_t vp, tvp;
418 vnode_t vp_with_iocount;
419 vnode_t proc_root_dir_vp;
420 char *end;
421 const char *str;
422 int len;
423 int ret = 0;
424 int fixhardlink;
425
426 if (first_vp == NULLVP)
427 return (EINVAL);
428
429 if (buflen <= 1)
430 return (ENOSPC);
431
432 /*
433 * Grab the process fd so we can evaluate fd_rdir.
434 */
435 if (vfs_context_proc(ctx)->p_fd)
436 proc_root_dir_vp = vfs_context_proc(ctx)->p_fd->fd_rdir;
437 else
438 proc_root_dir_vp = NULL;
439
440 vp_with_iocount = NULLVP;
441 again:
442 vp = first_vp;
443
444 end = &buff[buflen-1];
445 *end = '\0';
446
447 /*
448 * holding the NAME_CACHE_LOCK in shared mode is
449 * sufficient to stabilize both the vp->v_parent chain
450 * and the 'vp->v_mount->mnt_vnodecovered' chain
451 *
452 * if we need to drop this lock, we must first grab the v_id
453 * from the vnode we're currently working with... if that
454 * vnode doesn't already have an io_count reference (the vp
455 * passed in comes with one), we must grab a reference
456 * after we drop the NAME_CACHE_LOCK via vnode_getwithvid...
457 * deadlocks may result if you call vnode_get while holding
458 * the NAME_CACHE_LOCK... we lazily release the reference
459 * we pick up the next time we encounter a need to drop
460 * the NAME_CACHE_LOCK or before we return from this routine
461 */
462 NAME_CACHE_LOCK_SHARED();
463
464 /*
465 * Check if this is the root of a file system.
466 */
467 while (vp && vp->v_flag & VROOT) {
468 if (vp->v_mount == NULL) {
469 ret = EINVAL;
470 goto out_unlock;
471 }
472 if ((vp->v_mount->mnt_flag & MNT_ROOTFS) || (vp == proc_root_dir_vp)) {
473 /*
474 * It's the root of the root file system, so it's
475 * just "/".
476 */
477 *--end = '/';
478
479 goto out_unlock;
480 } else {
481 /*
482 * This the root of the volume and the caller does not
483 * want to cross mount points. Therefore just return
484 * '/' as the relative path.
485 */
486 if (flags & BUILDPATH_VOLUME_RELATIVE) {
487 *--end = '/';
488 goto out_unlock;
489 } else {
490 vp = vp->v_mount->mnt_vnodecovered;
491 }
492 }
493 }
494
495 while ((vp != NULLVP) && (vp->v_parent != vp)) {
496 int vid;
497
498 /*
499 * For hardlinks the v_name may be stale, so if its OK
500 * to enter a file system, ask the file system for the
501 * name and parent (below).
502 */
503 fixhardlink = (vp->v_flag & VISHARDLINK) &&
504 (vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
505 !(flags & BUILDPATH_NO_FS_ENTER);
506
507 if (!fixhardlink) {
508 str = vp->v_name;
509
510 if (str == NULL || *str == '\0') {
511 if (vp->v_parent != NULL)
512 ret = EINVAL;
513 else
514 ret = ENOENT;
515 goto out_unlock;
516 }
517 len = strlen(str);
518 /*
519 * Check that there's enough space (including space for the '/')
520 */
521 if ((end - buff) < (len + 1)) {
522 ret = ENOSPC;
523 goto out_unlock;
524 }
525 /*
526 * Copy the name backwards.
527 */
528 str += len;
529
530 for (; len > 0; len--)
531 *--end = *--str;
532 /*
533 * Add a path separator.
534 */
535 *--end = '/';
536 }
537
538 /*
539 * Walk up the parent chain.
540 */
541 if (((vp->v_parent != NULLVP) && !fixhardlink) ||
542 (flags & BUILDPATH_NO_FS_ENTER)) {
543
544 /*
545 * In this if () block we are not allowed to enter the filesystem
546 * to conclusively get the most accurate parent identifier.
547 * As a result, if 'vp' does not identify '/' and it
548 * does not have a valid v_parent, then error out
549 * and disallow further path construction
550 */
551 if ((vp->v_parent == NULLVP) && (rootvnode != vp)) {
552 /*
553 * Only '/' is allowed to have a NULL parent
554 * pointer. Upper level callers should ideally
555 * re-drive name lookup on receiving a ENOENT.
556 */
557 ret = ENOENT;
558
559 /* The code below will exit early if 'tvp = vp' == NULL */
560 }
561 vp = vp->v_parent;
562
563 /*
564 * if the vnode we have in hand isn't a directory and it
565 * has a v_parent, then we started with the resource fork
566 * so skip up to avoid getting a duplicate copy of the
567 * file name in the path.
568 */
569 if (vp && !vnode_isdir(vp) && vp->v_parent) {
570 vp = vp->v_parent;
571 }
572 } else {
573 /*
574 * No parent, go get it if supported.
575 */
576 struct vnode_attr va;
577 vnode_t dvp;
578
579 /*
580 * Make sure file system supports obtaining a path from id.
581 */
582 if (!(vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID)) {
583 ret = ENOENT;
584 goto out_unlock;
585 }
586 vid = vp->v_id;
587
588 NAME_CACHE_UNLOCK();
589
590 if (vp != first_vp && vp != vp_with_iocount) {
591 if (vp_with_iocount) {
592 vnode_put(vp_with_iocount);
593 vp_with_iocount = NULLVP;
594 }
595 if (vnode_getwithvid(vp, vid))
596 goto again;
597 vp_with_iocount = vp;
598 }
599 VATTR_INIT(&va);
600 VATTR_WANTED(&va, va_parentid);
601
602 if (fixhardlink) {
603 VATTR_WANTED(&va, va_name);
604 MALLOC_ZONE(va.va_name, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
605 } else {
606 va.va_name = NULL;
607 }
608 /*
609 * Ask the file system for its parent id and for its name (optional).
610 */
611 ret = vnode_getattr(vp, &va, ctx);
612
613 if (fixhardlink) {
614 if ((ret == 0) && (VATTR_IS_SUPPORTED(&va, va_name))) {
615 str = va.va_name;
616 vnode_update_identity(vp, NULL, str, strlen(str), 0, VNODE_UPDATE_NAME);
617 } else if (vp->v_name) {
618 str = vp->v_name;
619 ret = 0;
620 } else {
621 ret = ENOENT;
622 goto bad_news;
623 }
624 len = strlen(str);
625
626 /*
627 * Check that there's enough space.
628 */
629 if ((end - buff) < (len + 1)) {
630 ret = ENOSPC;
631 } else {
632 /* Copy the name backwards. */
633 str += len;
634
635 for (; len > 0; len--) {
636 *--end = *--str;
637 }
638 /*
639 * Add a path separator.
640 */
641 *--end = '/';
642 }
643 bad_news:
644 FREE_ZONE(va.va_name, MAXPATHLEN, M_NAMEI);
645 }
646 if (ret || !VATTR_IS_SUPPORTED(&va, va_parentid)) {
647 ret = ENOENT;
648 goto out;
649 }
650 /*
651 * Ask the file system for the parent vnode.
652 */
653 if ((ret = VFS_VGET(vp->v_mount, (ino64_t)va.va_parentid, &dvp, ctx)))
654 goto out;
655
656 if (!fixhardlink && (vp->v_parent != dvp))
657 vnode_update_identity(vp, dvp, NULL, 0, 0, VNODE_UPDATE_PARENT);
658
659 if (vp_with_iocount)
660 vnode_put(vp_with_iocount);
661 vp = dvp;
662 vp_with_iocount = vp;
663
664 NAME_CACHE_LOCK_SHARED();
665
666 /*
667 * if the vnode we have in hand isn't a directory and it
668 * has a v_parent, then we started with the resource fork
669 * so skip up to avoid getting a duplicate copy of the
670 * file name in the path.
671 */
672 if (vp && !vnode_isdir(vp) && vp->v_parent)
673 vp = vp->v_parent;
674 }
675
676 if (vp && (flags & BUILDPATH_CHECKACCESS)) {
677 vid = vp->v_id;
678
679 NAME_CACHE_UNLOCK();
680
681 if (vp != first_vp && vp != vp_with_iocount) {
682 if (vp_with_iocount) {
683 vnode_put(vp_with_iocount);
684 vp_with_iocount = NULLVP;
685 }
686 if (vnode_getwithvid(vp, vid))
687 goto again;
688 vp_with_iocount = vp;
689 }
690 if ((ret = vnode_authorize(vp, NULL, KAUTH_VNODE_SEARCH, ctx)))
691 goto out; /* no peeking */
692
693 NAME_CACHE_LOCK_SHARED();
694 }
695
696 /*
697 * When a mount point is crossed switch the vp.
698 * Continue until we find the root or we find
699 * a vnode that's not the root of a mounted
700 * file system.
701 */
702 tvp = vp;
703
704 while (tvp) {
705 if (tvp == proc_root_dir_vp)
706 goto out_unlock; /* encountered the root */
707
708 if (!(tvp->v_flag & VROOT) || !tvp->v_mount)
709 break; /* not the root of a mounted FS */
710
711 if (flags & BUILDPATH_VOLUME_RELATIVE) {
712 /* Do not cross over mount points */
713 tvp = NULL;
714 } else {
715 tvp = tvp->v_mount->mnt_vnodecovered;
716 }
717 }
718 if (tvp == NULLVP)
719 goto out_unlock;
720 vp = tvp;
721 }
722 out_unlock:
723 NAME_CACHE_UNLOCK();
724 out:
725 if (vp_with_iocount)
726 vnode_put(vp_with_iocount);
727 /*
728 * Slide the name down to the beginning of the buffer.
729 */
730 memmove(buff, end, &buff[buflen] - end);
731
732 /*
733 * length includes the trailing zero byte
734 */
735 *outlen = &buff[buflen] - end;
736
737 /* One of the parents was moved during path reconstruction.
738 * The caller is interested in knowing whether any of the
739 * parents moved via BUILDPATH_CHECK_MOVED, so return EAGAIN.
740 */
741 if ((ret == ENOENT) && (flags & BUILDPATH_CHECK_MOVED)) {
742 ret = EAGAIN;
743 }
744
745 return (ret);
746 }
747
748
749 /*
750 * return NULLVP if vp's parent doesn't
751 * exist, or we can't get a valid iocount
752 * else return the parent of vp
753 */
754 vnode_t
755 vnode_getparent(vnode_t vp)
756 {
757 vnode_t pvp = NULLVP;
758 int pvid;
759
760 NAME_CACHE_LOCK_SHARED();
761 /*
762 * v_parent is stable behind the name_cache lock
763 * however, the only thing we can really guarantee
764 * is that we've grabbed a valid iocount on the
765 * parent of 'vp' at the time we took the name_cache lock...
766 * once we drop the lock, vp could get re-parented
767 */
768 if ( (pvp = vp->v_parent) != NULLVP ) {
769 pvid = pvp->v_id;
770
771 NAME_CACHE_UNLOCK();
772
773 if (vnode_getwithvid(pvp, pvid) != 0)
774 pvp = NULL;
775 } else
776 NAME_CACHE_UNLOCK();
777 return (pvp);
778 }
779
780 const char *
781 vnode_getname(vnode_t vp)
782 {
783 const char *name = NULL;
784
785 NAME_CACHE_LOCK_SHARED();
786
787 if (vp->v_name)
788 name = vfs_addname(vp->v_name, strlen(vp->v_name), 0, 0);
789 NAME_CACHE_UNLOCK();
790
791 return (name);
792 }
793
794 void
795 vnode_putname(const char *name)
796 {
797 vfs_removename(name);
798 }
799
800 static const char unknown_vnodename[] = "(unknown vnode name)";
801
802 const char *
803 vnode_getname_printable(vnode_t vp)
804 {
805 const char *name = vnode_getname(vp);
806 if (name != NULL)
807 return name;
808
809 switch (vp->v_type) {
810 case VCHR:
811 case VBLK:
812 {
813 /*
814 * Create an artificial dev name from
815 * major and minor device number
816 */
817 char dev_name[64];
818 (void) snprintf(dev_name, sizeof(dev_name),
819 "%c(%u, %u)", VCHR == vp->v_type ? 'c':'b',
820 major(vp->v_rdev), minor(vp->v_rdev));
821 /*
822 * Add the newly created dev name to the name
823 * cache to allow easier cleanup. Also,
824 * vfs_addname allocates memory for the new name
825 * and returns it.
826 */
827 NAME_CACHE_LOCK_SHARED();
828 name = vfs_addname(dev_name, strlen(dev_name), 0, 0);
829 NAME_CACHE_UNLOCK();
830 return name;
831 }
832 default:
833 return unknown_vnodename;
834 }
835 }
836
837 void
838 vnode_putname_printable(const char *name)
839 {
840 if (name == unknown_vnodename)
841 return;
842 vnode_putname(name);
843 }
844
845
846 /*
847 * if VNODE_UPDATE_PARENT, and we can take
848 * a reference on dvp, then update vp with
849 * it's new parent... if vp already has a parent,
850 * then drop the reference vp held on it
851 *
852 * if VNODE_UPDATE_NAME,
853 * then drop string ref on v_name if it exists, and if name is non-NULL
854 * then pick up a string reference on name and record it in v_name...
855 * optionally pass in the length and hashval of name if known
856 *
857 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
858 */
859 void
860 vnode_update_identity(vnode_t vp, vnode_t dvp, const char *name, int name_len, uint32_t name_hashval, int flags)
861 {
862 struct namecache *ncp;
863 vnode_t old_parentvp = NULLVP;
864 #if NAMEDSTREAMS
865 int isstream = (vp->v_flag & VISNAMEDSTREAM);
866 int kusecountbumped = 0;
867 #endif
868 kauth_cred_t tcred = NULL;
869 const char *vname = NULL;
870 const char *tname = NULL;
871
872 if (flags & VNODE_UPDATE_PARENT) {
873 if (dvp && vnode_ref(dvp) != 0) {
874 dvp = NULLVP;
875 }
876 #if NAMEDSTREAMS
877 /* Don't count a stream's parent ref during unmounts */
878 if (isstream && dvp && (dvp != vp) && (dvp != vp->v_parent) && (dvp->v_type == VREG)) {
879 vnode_lock_spin(dvp);
880 ++dvp->v_kusecount;
881 kusecountbumped = 1;
882 vnode_unlock(dvp);
883 }
884 #endif
885 } else {
886 dvp = NULLVP;
887 }
888 if ( (flags & VNODE_UPDATE_NAME) ) {
889 if (name != vp->v_name) {
890 if (name && *name) {
891 if (name_len == 0)
892 name_len = strlen(name);
893 tname = vfs_addname(name, name_len, name_hashval, 0);
894 }
895 } else
896 flags &= ~VNODE_UPDATE_NAME;
897 }
898 if ( (flags & (VNODE_UPDATE_PURGE | VNODE_UPDATE_PARENT | VNODE_UPDATE_CACHE | VNODE_UPDATE_NAME)) ) {
899
900 NAME_CACHE_LOCK();
901
902 if ( (flags & VNODE_UPDATE_PURGE) ) {
903
904 if (vp->v_parent)
905 vp->v_parent->v_nc_generation++;
906
907 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
908 cache_delete(ncp, 1);
909
910 while ( (ncp = TAILQ_FIRST(&vp->v_ncchildren)) )
911 cache_delete(ncp, 1);
912
913 /*
914 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
915 */
916 tcred = vp->v_cred;
917 vp->v_cred = NOCRED;
918 vp->v_authorized_actions = 0;
919 }
920 if ( (flags & VNODE_UPDATE_NAME) ) {
921 vname = vp->v_name;
922 vp->v_name = tname;
923 }
924 if (flags & VNODE_UPDATE_PARENT) {
925 if (dvp != vp && dvp != vp->v_parent) {
926 old_parentvp = vp->v_parent;
927 vp->v_parent = dvp;
928 dvp = NULLVP;
929
930 if (old_parentvp)
931 flags |= VNODE_UPDATE_CACHE;
932 }
933 }
934 if (flags & VNODE_UPDATE_CACHE) {
935 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
936 cache_delete(ncp, 1);
937 }
938 NAME_CACHE_UNLOCK();
939
940 if (vname != NULL)
941 vfs_removename(vname);
942
943 if (IS_VALID_CRED(tcred))
944 kauth_cred_unref(&tcred);
945 }
946 if (dvp != NULLVP) {
947 #if NAMEDSTREAMS
948 /* Back-out the ref we took if we lost a race for vp->v_parent. */
949 if (kusecountbumped) {
950 vnode_lock_spin(dvp);
951 if (dvp->v_kusecount > 0)
952 --dvp->v_kusecount;
953 vnode_unlock(dvp);
954 }
955 #endif
956 vnode_rele(dvp);
957 }
958 if (old_parentvp) {
959 struct uthread *ut;
960
961 #if NAMEDSTREAMS
962 if (isstream) {
963 vnode_lock_spin(old_parentvp);
964 if ((old_parentvp->v_type != VDIR) && (old_parentvp->v_kusecount > 0))
965 --old_parentvp->v_kusecount;
966 vnode_unlock(old_parentvp);
967 }
968 #endif
969 ut = get_bsdthread_info(current_thread());
970
971 /*
972 * indicated to vnode_rele that it shouldn't do a
973 * vnode_reclaim at this time... instead it will
974 * chain the vnode to the uu_vreclaims list...
975 * we'll be responsible for calling vnode_reclaim
976 * on each of the vnodes in this list...
977 */
978 ut->uu_defer_reclaims = 1;
979 ut->uu_vreclaims = NULLVP;
980
981 while ( (vp = old_parentvp) != NULLVP ) {
982
983 vnode_lock_spin(vp);
984 vnode_rele_internal(vp, 0, 0, 1);
985
986 /*
987 * check to see if the vnode is now in the state
988 * that would have triggered a vnode_reclaim in vnode_rele
989 * if it is, we save it's parent pointer and then NULL
990 * out the v_parent field... we'll drop the reference
991 * that was held on the next iteration of this loop...
992 * this short circuits a potential deep recursion if we
993 * have a long chain of parents in this state...
994 * we'll sit in this loop until we run into
995 * a parent in this chain that is not in this state
996 *
997 * make our check and the vnode_rele atomic
998 * with respect to the current vnode we're working on
999 * by holding the vnode lock
1000 * if vnode_rele deferred the vnode_reclaim and has put
1001 * this vnode on the list to be reaped by us, than
1002 * it has left this vnode with an iocount == 1
1003 */
1004 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
1005 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
1006 /*
1007 * vnode_rele wanted to do a vnode_reclaim on this vnode
1008 * it should be sitting on the head of the uu_vreclaims chain
1009 * pull the parent pointer now so that when we do the
1010 * vnode_reclaim for each of the vnodes in the uu_vreclaims
1011 * list, we won't recurse back through here
1012 *
1013 * need to do a convert here in case vnode_rele_internal
1014 * returns with the lock held in the spin mode... it
1015 * can drop and retake the lock under certain circumstances
1016 */
1017 vnode_lock_convert(vp);
1018
1019 NAME_CACHE_LOCK();
1020 old_parentvp = vp->v_parent;
1021 vp->v_parent = NULLVP;
1022 NAME_CACHE_UNLOCK();
1023 } else {
1024 /*
1025 * we're done... we ran into a vnode that isn't
1026 * being terminated
1027 */
1028 old_parentvp = NULLVP;
1029 }
1030 vnode_unlock(vp);
1031 }
1032 ut->uu_defer_reclaims = 0;
1033
1034 while ( (vp = ut->uu_vreclaims) != NULLVP) {
1035 ut->uu_vreclaims = vp->v_defer_reclaimlist;
1036
1037 /*
1038 * vnode_put will drive the vnode_reclaim if
1039 * we are still the only reference on this vnode
1040 */
1041 vnode_put(vp);
1042 }
1043 }
1044 }
1045
1046
1047 /*
1048 * Mark a vnode as having multiple hard links. HFS makes use of this
1049 * because it keeps track of each link separately, and wants to know
1050 * which link was actually used.
1051 *
1052 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
1053 * so that HFS can post-process the lookup. Also, volfs will call
1054 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
1055 */
1056 void vnode_setmultipath(vnode_t vp)
1057 {
1058 vnode_lock_spin(vp);
1059
1060 /*
1061 * In theory, we're changing the vnode's identity as far as the
1062 * name cache is concerned, so we ought to grab the name cache lock
1063 * here. However, there is already a race, and grabbing the name
1064 * cache lock only makes the race window slightly smaller.
1065 *
1066 * The race happens because the vnode already exists in the name
1067 * cache, and could be found by one thread before another thread
1068 * can set the hard link flag.
1069 */
1070
1071 vp->v_flag |= VISHARDLINK;
1072
1073 vnode_unlock(vp);
1074 }
1075
1076
1077
1078 /*
1079 * backwards compatibility
1080 */
1081 void vnode_uncache_credentials(vnode_t vp)
1082 {
1083 vnode_uncache_authorized_action(vp, KAUTH_INVALIDATE_CACHED_RIGHTS);
1084 }
1085
1086
1087 /*
1088 * use the exclusive form of NAME_CACHE_LOCK to protect the update of the
1089 * following fields in the vnode: v_cred_timestamp, v_cred, v_authorized_actions
1090 * we use this lock so that we can look at the v_cred and v_authorized_actions
1091 * atomically while behind the NAME_CACHE_LOCK in shared mode in 'cache_lookup_path',
1092 * which is the super-hot path... if we are updating the authorized actions for this
1093 * vnode, we are already in the super-slow and far less frequented path so its not
1094 * that bad that we take the lock exclusive for this case... of course we strive
1095 * to hold it for the minimum amount of time possible
1096 */
1097
1098 void vnode_uncache_authorized_action(vnode_t vp, kauth_action_t action)
1099 {
1100 kauth_cred_t tcred = NOCRED;
1101
1102 NAME_CACHE_LOCK();
1103
1104 vp->v_authorized_actions &= ~action;
1105
1106 if (action == KAUTH_INVALIDATE_CACHED_RIGHTS &&
1107 IS_VALID_CRED(vp->v_cred)) {
1108 /*
1109 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1110 */
1111 tcred = vp->v_cred;
1112 vp->v_cred = NOCRED;
1113 }
1114 NAME_CACHE_UNLOCK();
1115
1116 if (tcred != NOCRED)
1117 kauth_cred_unref(&tcred);
1118 }
1119
1120
1121 extern int bootarg_vnode_cache_defeat; /* default = 0, from bsd_init.c */
1122
1123 boolean_t
1124 vnode_cache_is_authorized(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
1125 {
1126 kauth_cred_t ucred;
1127 boolean_t retval = FALSE;
1128
1129 /* Boot argument to defeat rights caching */
1130 if (bootarg_vnode_cache_defeat)
1131 return FALSE;
1132
1133 if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
1134 /*
1135 * a TTL is enabled on the rights cache... handle it here
1136 * a TTL of 0 indicates that no rights should be cached
1137 */
1138 if (vp->v_mount->mnt_authcache_ttl) {
1139 if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
1140 /*
1141 * For filesystems marked only MNTK_AUTH_OPAQUE (generally network ones),
1142 * we will only allow a SEARCH right on a directory to be cached...
1143 * that cached right always has a default TTL associated with it
1144 */
1145 if (action != KAUTH_VNODE_SEARCH || vp->v_type != VDIR)
1146 vp = NULLVP;
1147 }
1148 if (vp != NULLVP && vnode_cache_is_stale(vp) == TRUE) {
1149 vnode_uncache_authorized_action(vp, vp->v_authorized_actions);
1150 vp = NULLVP;
1151 }
1152 } else
1153 vp = NULLVP;
1154 }
1155 if (vp != NULLVP) {
1156 ucred = vfs_context_ucred(ctx);
1157
1158 NAME_CACHE_LOCK_SHARED();
1159
1160 if (vp->v_cred == ucred && (vp->v_authorized_actions & action) == action)
1161 retval = TRUE;
1162
1163 NAME_CACHE_UNLOCK();
1164 }
1165 return retval;
1166 }
1167
1168
1169 void vnode_cache_authorized_action(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
1170 {
1171 kauth_cred_t tcred = NOCRED;
1172 kauth_cred_t ucred;
1173 struct timeval tv;
1174 boolean_t ttl_active = FALSE;
1175
1176 ucred = vfs_context_ucred(ctx);
1177
1178 if (!IS_VALID_CRED(ucred) || action == 0)
1179 return;
1180
1181 if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
1182 /*
1183 * a TTL is enabled on the rights cache... handle it here
1184 * a TTL of 0 indicates that no rights should be cached
1185 */
1186 if (vp->v_mount->mnt_authcache_ttl == 0)
1187 return;
1188
1189 if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
1190 /*
1191 * only cache SEARCH action for filesystems marked
1192 * MNTK_AUTH_OPAQUE on VDIRs...
1193 * the lookup_path code will time these out
1194 */
1195 if ( (action & ~KAUTH_VNODE_SEARCH) || vp->v_type != VDIR )
1196 return;
1197 }
1198 ttl_active = TRUE;
1199
1200 microuptime(&tv);
1201 }
1202 NAME_CACHE_LOCK();
1203
1204 if (vp->v_cred != ucred) {
1205 kauth_cred_ref(ucred);
1206 /*
1207 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1208 */
1209 tcred = vp->v_cred;
1210 vp->v_cred = ucred;
1211 vp->v_authorized_actions = 0;
1212 }
1213 if (ttl_active == TRUE && vp->v_authorized_actions == 0) {
1214 /*
1215 * only reset the timestamnp on the
1216 * first authorization cached after the previous
1217 * timer has expired or we're switching creds...
1218 * 'vnode_cache_is_authorized' will clear the
1219 * authorized actions if the TTL is active and
1220 * it has expired
1221 */
1222 vp->v_cred_timestamp = tv.tv_sec;
1223 }
1224 vp->v_authorized_actions |= action;
1225
1226 NAME_CACHE_UNLOCK();
1227
1228 if (IS_VALID_CRED(tcred))
1229 kauth_cred_unref(&tcred);
1230 }
1231
1232
1233 boolean_t vnode_cache_is_stale(vnode_t vp)
1234 {
1235 struct timeval tv;
1236 boolean_t retval;
1237
1238 microuptime(&tv);
1239
1240 if ((tv.tv_sec - vp->v_cred_timestamp) > vp->v_mount->mnt_authcache_ttl)
1241 retval = TRUE;
1242 else
1243 retval = FALSE;
1244
1245 return retval;
1246 }
1247
1248
1249
1250 /*
1251 * Returns: 0 Success
1252 * ERECYCLE vnode was recycled from underneath us. Force lookup to be re-driven from namei.
1253 * This errno value should not be seen by anyone outside of the kernel.
1254 */
1255 int
1256 cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp,
1257 vfs_context_t ctx, int *dp_authorized, vnode_t last_dp)
1258 {
1259 char *cp; /* pointer into pathname argument */
1260 int vid;
1261 int vvid = 0; /* protected by vp != NULLVP */
1262 vnode_t vp = NULLVP;
1263 vnode_t tdp = NULLVP;
1264 kauth_cred_t ucred;
1265 boolean_t ttl_enabled = FALSE;
1266 struct timeval tv;
1267 mount_t mp;
1268 unsigned int hash;
1269 int error = 0;
1270 boolean_t dotdotchecked = FALSE;
1271
1272 #if CONFIG_TRIGGERS
1273 vnode_t trigger_vp;
1274 #endif /* CONFIG_TRIGGERS */
1275
1276 ucred = vfs_context_ucred(ctx);
1277 ndp->ni_flag &= ~(NAMEI_TRAILINGSLASH);
1278
1279 NAME_CACHE_LOCK_SHARED();
1280
1281 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
1282 ttl_enabled = TRUE;
1283 microuptime(&tv);
1284 }
1285 for (;;) {
1286 /*
1287 * Search a directory.
1288 *
1289 * The cn_hash value is for use by cache_lookup
1290 * The last component of the filename is left accessible via
1291 * cnp->cn_nameptr for callers that need the name.
1292 */
1293 hash = 0;
1294 cp = cnp->cn_nameptr;
1295
1296 while (*cp && (*cp != '/')) {
1297 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1298 }
1299 /*
1300 * the crc generator can legitimately generate
1301 * a 0... however, 0 for us means that we
1302 * haven't computed a hash, so use 1 instead
1303 */
1304 if (hash == 0)
1305 hash = 1;
1306 cnp->cn_hash = hash;
1307 cnp->cn_namelen = cp - cnp->cn_nameptr;
1308
1309 ndp->ni_pathlen -= cnp->cn_namelen;
1310 ndp->ni_next = cp;
1311
1312 /*
1313 * Replace multiple slashes by a single slash and trailing slashes
1314 * by a null. This must be done before VNOP_LOOKUP() because some
1315 * fs's don't know about trailing slashes. Remember if there were
1316 * trailing slashes to handle symlinks, existing non-directories
1317 * and non-existing files that won't be directories specially later.
1318 */
1319 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
1320 cp++;
1321 ndp->ni_pathlen--;
1322
1323 if (*cp == '\0') {
1324 ndp->ni_flag |= NAMEI_TRAILINGSLASH;
1325 *ndp->ni_next = '\0';
1326 }
1327 }
1328 ndp->ni_next = cp;
1329
1330 cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
1331
1332 if (*cp == '\0')
1333 cnp->cn_flags |= ISLASTCN;
1334
1335 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
1336 cnp->cn_flags |= ISDOTDOT;
1337
1338 *dp_authorized = 0;
1339 #if NAMEDRSRCFORK
1340 /*
1341 * Process a request for a file's resource fork.
1342 *
1343 * Consume the _PATH_RSRCFORKSPEC suffix and tag the path.
1344 */
1345 if ((ndp->ni_pathlen == sizeof(_PATH_RSRCFORKSPEC)) &&
1346 (cp[1] == '.' && cp[2] == '.') &&
1347 bcmp(cp, _PATH_RSRCFORKSPEC, sizeof(_PATH_RSRCFORKSPEC)) == 0) {
1348 /* Skip volfs file systems that don't support native streams. */
1349 if ((dp->v_mount != NULL) &&
1350 (dp->v_mount->mnt_flag & MNT_DOVOLFS) &&
1351 (dp->v_mount->mnt_kern_flag & MNTK_NAMED_STREAMS) == 0) {
1352 goto skiprsrcfork;
1353 }
1354 cnp->cn_flags |= CN_WANTSRSRCFORK;
1355 cnp->cn_flags |= ISLASTCN;
1356 ndp->ni_next[0] = '\0';
1357 ndp->ni_pathlen = 1;
1358 }
1359 skiprsrcfork:
1360 #endif
1361
1362 #if CONFIG_MACF
1363
1364 /*
1365 * Name cache provides authorization caching (see below)
1366 * that will short circuit MAC checks in lookup().
1367 * We must perform MAC check here. On denial
1368 * dp_authorized will remain 0 and second check will
1369 * be perfomed in lookup().
1370 */
1371 if (!(cnp->cn_flags & DONOTAUTH)) {
1372 error = mac_vnode_check_lookup(ctx, dp, cnp);
1373 if (error) {
1374 NAME_CACHE_UNLOCK();
1375 goto errorout;
1376 }
1377 }
1378 #endif /* MAC */
1379 if (ttl_enabled && ((tv.tv_sec - dp->v_cred_timestamp) > dp->v_mount->mnt_authcache_ttl))
1380 break;
1381
1382 /*
1383 * NAME_CACHE_LOCK holds these fields stable
1384 *
1385 * We can't cache KAUTH_VNODE_SEARCHBYANYONE for root correctly
1386 * so we make an ugly check for root here. root is always
1387 * allowed and breaking out of here only to find out that is
1388 * authorized by virtue of being root is very very expensive.
1389 */
1390 if ((dp->v_cred != ucred || !(dp->v_authorized_actions & KAUTH_VNODE_SEARCH)) &&
1391 !(dp->v_authorized_actions & KAUTH_VNODE_SEARCHBYANYONE) &&
1392 !vfs_context_issuser(ctx))
1393 break;
1394
1395 /*
1396 * indicate that we're allowed to traverse this directory...
1397 * even if we fail the cache lookup or decide to bail for
1398 * some other reason, this information is valid and is used
1399 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
1400 */
1401 *dp_authorized = 1;
1402
1403 if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
1404 if (cnp->cn_nameiop != LOOKUP)
1405 break;
1406 if (cnp->cn_flags & LOCKPARENT)
1407 break;
1408 if (cnp->cn_flags & NOCACHE)
1409 break;
1410 if (cnp->cn_flags & ISDOTDOT) {
1411 /*
1412 * Force directory hardlinks to go to
1413 * file system for ".." requests.
1414 */
1415 if (dp && (dp->v_flag & VISHARDLINK)) {
1416 break;
1417 }
1418 /*
1419 * Quit here only if we can't use
1420 * the parent directory pointer or
1421 * don't have one. Otherwise, we'll
1422 * use it below.
1423 */
1424 if ((dp->v_flag & VROOT) ||
1425 dp == ndp->ni_rootdir ||
1426 dp->v_parent == NULLVP)
1427 break;
1428 }
1429 }
1430
1431 if ((cnp->cn_flags & CN_SKIPNAMECACHE)) {
1432 /*
1433 * Force lookup to go to the filesystem with
1434 * all cnp fields set up.
1435 */
1436 break;
1437 }
1438
1439 /*
1440 * "." and ".." aren't supposed to be cached, so check
1441 * for them before checking the cache.
1442 */
1443 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')
1444 vp = dp;
1445 else if ( (cnp->cn_flags & ISDOTDOT) ) {
1446 /*
1447 * If this is a chrooted process, we need to check if
1448 * the process is trying to break out of its chrooted
1449 * jail. We do that by trying to determine if dp is
1450 * a subdirectory of ndp->ni_rootdir. If we aren't
1451 * able to determine that by the v_parent pointers, we
1452 * will leave the fast path.
1453 *
1454 * Since this function may see dotdot components
1455 * many times and it has the name cache lock held for
1456 * the entire duration, we optimise this by doing this
1457 * check only once per cache_lookup_path call.
1458 * If dotdotchecked is set, it means we've done this
1459 * check once already and don't need to do it again.
1460 */
1461 if (!dotdotchecked && (ndp->ni_rootdir != rootvnode)) {
1462 vnode_t tvp = dp;
1463 boolean_t defer = FALSE;
1464 boolean_t is_subdir = FALSE;
1465
1466 defer = cache_check_vnode_issubdir(tvp,
1467 ndp->ni_rootdir, &is_subdir, &tvp);
1468
1469 if (defer) {
1470 /* defer to Filesystem */
1471 break;
1472 } else if (!is_subdir) {
1473 /*
1474 * This process is trying to break out
1475 * of its chrooted jail, so all its
1476 * dotdot accesses will be translated to
1477 * its root directory.
1478 */
1479 vp = ndp->ni_rootdir;
1480 } else {
1481 /*
1482 * All good, let this dotdot access
1483 * proceed normally
1484 */
1485 vp = dp->v_parent;
1486 }
1487 dotdotchecked = TRUE;
1488 } else {
1489 vp = dp->v_parent;
1490 }
1491 } else {
1492 if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
1493 break;
1494
1495 if ( (vp->v_flag & VISHARDLINK) ) {
1496 /*
1497 * The file system wants a VNOP_LOOKUP on this vnode
1498 */
1499 vp = NULL;
1500 break;
1501 }
1502 }
1503 if ( (cnp->cn_flags & ISLASTCN) )
1504 break;
1505
1506 if (vp->v_type != VDIR) {
1507 if (vp->v_type != VLNK)
1508 vp = NULL;
1509 break;
1510 }
1511
1512 if ( (mp = vp->v_mountedhere) && ((cnp->cn_flags & NOCROSSMOUNT) == 0)) {
1513 vnode_t tmp_vp = mp->mnt_realrootvp;
1514 if (tmp_vp == NULLVP || mp->mnt_generation != mount_generation ||
1515 mp->mnt_realrootvp_vid != tmp_vp->v_id)
1516 break;
1517 vp = tmp_vp;
1518 }
1519
1520 #if CONFIG_TRIGGERS
1521 /*
1522 * After traversing all mountpoints stacked here, if we have a
1523 * trigger in hand, resolve it. Note that we don't need to
1524 * leave the fast path if the mount has already happened.
1525 */
1526 if (vp->v_resolve)
1527 break;
1528 #endif /* CONFIG_TRIGGERS */
1529
1530
1531 dp = vp;
1532 vp = NULLVP;
1533
1534 cnp->cn_nameptr = ndp->ni_next + 1;
1535 ndp->ni_pathlen--;
1536 while (*cnp->cn_nameptr == '/') {
1537 cnp->cn_nameptr++;
1538 ndp->ni_pathlen--;
1539 }
1540 }
1541 if (vp != NULLVP)
1542 vvid = vp->v_id;
1543 vid = dp->v_id;
1544
1545 NAME_CACHE_UNLOCK();
1546
1547 if ((vp != NULLVP) && (vp->v_type != VLNK) &&
1548 ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
1549 /*
1550 * if we've got a child and it's the last component, and
1551 * the lookup doesn't need to return the parent then we
1552 * can skip grabbing an iocount on the parent, since all
1553 * we're going to do with it is a vnode_put just before
1554 * we return from 'lookup'. If it's a symbolic link,
1555 * we need the parent in case the link happens to be
1556 * a relative pathname.
1557 */
1558 tdp = dp;
1559 dp = NULLVP;
1560 } else {
1561 need_dp:
1562 /*
1563 * return the last directory we looked at
1564 * with an io reference held. If it was the one passed
1565 * in as a result of the last iteration of VNOP_LOOKUP,
1566 * it should already hold an io ref. No need to increase ref.
1567 */
1568 if (last_dp != dp){
1569
1570 if (dp == ndp->ni_usedvp) {
1571 /*
1572 * if this vnode matches the one passed in via USEDVP
1573 * than this context already holds an io_count... just
1574 * use vnode_get to get an extra ref for lookup to play
1575 * with... can't use the getwithvid variant here because
1576 * it will block behind a vnode_drain which would result
1577 * in a deadlock (since we already own an io_count that the
1578 * vnode_drain is waiting on)... vnode_get grabs the io_count
1579 * immediately w/o waiting... it always succeeds
1580 */
1581 vnode_get(dp);
1582 } else if ((error = vnode_getwithvid_drainok(dp, vid))) {
1583 /*
1584 * failure indicates the vnode
1585 * changed identity or is being
1586 * TERMINATED... in either case
1587 * punt this lookup.
1588 *
1589 * don't necessarily return ENOENT, though, because
1590 * we really want to go back to disk and make sure it's
1591 * there or not if someone else is changing this
1592 * vnode. That being said, the one case where we do want
1593 * to return ENOENT is when the vnode's mount point is
1594 * in the process of unmounting and we might cause a deadlock
1595 * in our attempt to take an iocount. An ENODEV error return
1596 * is from vnode_get* is an indication this but we change that
1597 * ENOENT for upper layers.
1598 */
1599 if (error == ENODEV) {
1600 error = ENOENT;
1601 } else {
1602 error = ERECYCLE;
1603 }
1604 goto errorout;
1605 }
1606 }
1607 }
1608 if (vp != NULLVP) {
1609 if ( (vnode_getwithvid_drainok(vp, vvid)) ) {
1610 vp = NULLVP;
1611
1612 /*
1613 * can't get reference on the vp we'd like
1614 * to return... if we didn't grab a reference
1615 * on the directory (due to fast path bypass),
1616 * then we need to do it now... we can't return
1617 * with both ni_dvp and ni_vp NULL, and no
1618 * error condition
1619 */
1620 if (dp == NULLVP) {
1621 dp = tdp;
1622 goto need_dp;
1623 }
1624 }
1625 }
1626
1627 ndp->ni_dvp = dp;
1628 ndp->ni_vp = vp;
1629
1630 #if CONFIG_TRIGGERS
1631 trigger_vp = vp ? vp : dp;
1632 if ((error == 0) && (trigger_vp != NULLVP) && vnode_isdir(trigger_vp)) {
1633 error = vnode_trigger_resolve(trigger_vp, ndp, ctx);
1634 if (error) {
1635 if (vp)
1636 vnode_put(vp);
1637 if (dp)
1638 vnode_put(dp);
1639 goto errorout;
1640 }
1641 }
1642 #endif /* CONFIG_TRIGGERS */
1643
1644 errorout:
1645 /*
1646 * If we came into cache_lookup_path after an iteration of the lookup loop that
1647 * resulted in a call to VNOP_LOOKUP, then VNOP_LOOKUP returned a vnode with a io ref
1648 * on it. It is now the job of cache_lookup_path to drop the ref on this vnode
1649 * when it is no longer needed. If we get to this point, and last_dp is not NULL
1650 * and it is ALSO not the dvp we want to return to caller of this function, it MUST be
1651 * the case that we got to a subsequent path component and this previous vnode is
1652 * no longer needed. We can then drop the io ref on it.
1653 */
1654 if ((last_dp != NULLVP) && (last_dp != ndp->ni_dvp)){
1655 vnode_put(last_dp);
1656 }
1657
1658 //initialized to 0, should be the same if no error cases occurred.
1659 return error;
1660 }
1661
1662
1663 static vnode_t
1664 cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
1665 {
1666 struct namecache *ncp;
1667 struct nchashhead *ncpp;
1668 long namelen = cnp->cn_namelen;
1669 unsigned int hashval = cnp->cn_hash;
1670
1671 if (nc_disabled) {
1672 return NULL;
1673 }
1674
1675 ncpp = NCHHASH(dvp, cnp->cn_hash);
1676 LIST_FOREACH(ncp, ncpp, nc_hash) {
1677 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1678 if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1679 break;
1680 }
1681 }
1682 if (ncp == 0) {
1683 /*
1684 * We failed to find an entry
1685 */
1686 NCHSTAT(ncs_miss);
1687 return (NULL);
1688 }
1689 NCHSTAT(ncs_goodhits);
1690
1691 return (ncp->nc_vp);
1692 }
1693
1694
1695 unsigned int hash_string(const char *cp, int len);
1696 //
1697 // Have to take a len argument because we may only need to
1698 // hash part of a componentname.
1699 //
1700 unsigned int
1701 hash_string(const char *cp, int len)
1702 {
1703 unsigned hash = 0;
1704
1705 if (len) {
1706 while (len--) {
1707 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1708 }
1709 } else {
1710 while (*cp != '\0') {
1711 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1712 }
1713 }
1714 /*
1715 * the crc generator can legitimately generate
1716 * a 0... however, 0 for us means that we
1717 * haven't computed a hash, so use 1 instead
1718 */
1719 if (hash == 0)
1720 hash = 1;
1721 return hash;
1722 }
1723
1724
1725 /*
1726 * Lookup an entry in the cache
1727 *
1728 * We don't do this if the segment name is long, simply so the cache
1729 * can avoid holding long names (which would either waste space, or
1730 * add greatly to the complexity).
1731 *
1732 * Lookup is called with dvp pointing to the directory to search,
1733 * cnp pointing to the name of the entry being sought. If the lookup
1734 * succeeds, the vnode is returned in *vpp, and a status of -1 is
1735 * returned. If the lookup determines that the name does not exist
1736 * (negative cacheing), a status of ENOENT is returned. If the lookup
1737 * fails, a status of zero is returned.
1738 */
1739
1740 int
1741 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
1742 {
1743 struct namecache *ncp;
1744 struct nchashhead *ncpp;
1745 long namelen = cnp->cn_namelen;
1746 unsigned int hashval;
1747 boolean_t have_exclusive = FALSE;
1748 uint32_t vid;
1749 vnode_t vp;
1750
1751 if (cnp->cn_hash == 0)
1752 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1753 hashval = cnp->cn_hash;
1754
1755 if (nc_disabled) {
1756 return 0;
1757 }
1758
1759 NAME_CACHE_LOCK_SHARED();
1760
1761 relook:
1762 ncpp = NCHHASH(dvp, cnp->cn_hash);
1763 LIST_FOREACH(ncp, ncpp, nc_hash) {
1764 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1765 if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1766 break;
1767 }
1768 }
1769 /* We failed to find an entry */
1770 if (ncp == 0) {
1771 NCHSTAT(ncs_miss);
1772 NAME_CACHE_UNLOCK();
1773 return (0);
1774 }
1775
1776 /* We don't want to have an entry, so dump it */
1777 if ((cnp->cn_flags & MAKEENTRY) == 0) {
1778 if (have_exclusive == TRUE) {
1779 NCHSTAT(ncs_badhits);
1780 cache_delete(ncp, 1);
1781 NAME_CACHE_UNLOCK();
1782 return (0);
1783 }
1784 NAME_CACHE_UNLOCK();
1785 NAME_CACHE_LOCK();
1786 have_exclusive = TRUE;
1787 goto relook;
1788 }
1789 vp = ncp->nc_vp;
1790
1791 /* We found a "positive" match, return the vnode */
1792 if (vp) {
1793 NCHSTAT(ncs_goodhits);
1794
1795 vid = vp->v_id;
1796 NAME_CACHE_UNLOCK();
1797
1798 if (vnode_getwithvid(vp, vid)) {
1799 #if COLLECT_STATS
1800 NAME_CACHE_LOCK();
1801 NCHSTAT(ncs_badvid);
1802 NAME_CACHE_UNLOCK();
1803 #endif
1804 return (0);
1805 }
1806 *vpp = vp;
1807 return (-1);
1808 }
1809
1810 /* We found a negative match, and want to create it, so purge */
1811 if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
1812 if (have_exclusive == TRUE) {
1813 NCHSTAT(ncs_badhits);
1814 cache_delete(ncp, 1);
1815 NAME_CACHE_UNLOCK();
1816 return (0);
1817 }
1818 NAME_CACHE_UNLOCK();
1819 NAME_CACHE_LOCK();
1820 have_exclusive = TRUE;
1821 goto relook;
1822 }
1823
1824 /*
1825 * We found a "negative" match, ENOENT notifies client of this match.
1826 */
1827 NCHSTAT(ncs_neghits);
1828
1829 NAME_CACHE_UNLOCK();
1830 return (ENOENT);
1831 }
1832
1833 const char *
1834 cache_enter_create(vnode_t dvp, vnode_t vp, struct componentname *cnp)
1835 {
1836 const char *strname;
1837
1838 if (cnp->cn_hash == 0)
1839 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1840
1841 /*
1842 * grab 2 references on the string entered
1843 * one for the cache_enter_locked to consume
1844 * and the second to be consumed by v_name (vnode_create call point)
1845 */
1846 strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, TRUE, 0);
1847
1848 NAME_CACHE_LOCK();
1849
1850 cache_enter_locked(dvp, vp, cnp, strname);
1851
1852 NAME_CACHE_UNLOCK();
1853
1854 return (strname);
1855 }
1856
1857
1858 /*
1859 * Add an entry to the cache...
1860 * but first check to see if the directory
1861 * that this entry is to be associated with has
1862 * had any cache_purges applied since we took
1863 * our identity snapshot... this check needs to
1864 * be done behind the name cache lock
1865 */
1866 void
1867 cache_enter_with_gen(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, int gen)
1868 {
1869
1870 if (cnp->cn_hash == 0)
1871 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1872
1873 NAME_CACHE_LOCK();
1874
1875 if (dvp->v_nc_generation == gen)
1876 (void)cache_enter_locked(dvp, vp, cnp, NULL);
1877
1878 NAME_CACHE_UNLOCK();
1879 }
1880
1881
1882 /*
1883 * Add an entry to the cache.
1884 */
1885 void
1886 cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
1887 {
1888 const char *strname;
1889
1890 if (cnp->cn_hash == 0)
1891 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1892
1893 /*
1894 * grab 1 reference on the string entered
1895 * for the cache_enter_locked to consume
1896 */
1897 strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1898
1899 NAME_CACHE_LOCK();
1900
1901 cache_enter_locked(dvp, vp, cnp, strname);
1902
1903 NAME_CACHE_UNLOCK();
1904 }
1905
1906
1907 static void
1908 cache_enter_locked(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, const char *strname)
1909 {
1910 struct namecache *ncp, *negp;
1911 struct nchashhead *ncpp;
1912
1913 if (nc_disabled)
1914 return;
1915
1916 /*
1917 * if the entry is for -ve caching vp is null
1918 */
1919 if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
1920 /*
1921 * someone beat us to the punch..
1922 * this vnode is already in the cache
1923 */
1924 if (strname != NULL)
1925 vfs_removename(strname);
1926 return;
1927 }
1928 /*
1929 * We allocate a new entry if we are less than the maximum
1930 * allowed and the one at the front of the list is in use.
1931 * Otherwise we use the one at the front of the list.
1932 */
1933 if (numcache < desiredNodes &&
1934 ((ncp = nchead.tqh_first) == NULL ||
1935 ncp->nc_hash.le_prev != 0)) {
1936 /*
1937 * Allocate one more entry
1938 */
1939 ncp = (struct namecache *)_MALLOC_ZONE(sizeof(*ncp), M_CACHE, M_WAITOK);
1940 numcache++;
1941 } else {
1942 /*
1943 * reuse an old entry
1944 */
1945 ncp = TAILQ_FIRST(&nchead);
1946 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1947
1948 if (ncp->nc_hash.le_prev != 0) {
1949 /*
1950 * still in use... we need to
1951 * delete it before re-using it
1952 */
1953 NCHSTAT(ncs_stolen);
1954 cache_delete(ncp, 0);
1955 }
1956 }
1957 NCHSTAT(ncs_enters);
1958
1959 /*
1960 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
1961 */
1962 ncp->nc_vp = vp;
1963 ncp->nc_dvp = dvp;
1964 ncp->nc_hashval = cnp->cn_hash;
1965
1966 if (strname == NULL)
1967 ncp->nc_name = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1968 else
1969 ncp->nc_name = strname;
1970
1971 //
1972 // If the bytes of the name associated with the vnode differ,
1973 // use the name associated with the vnode since the file system
1974 // may have set that explicitly in the case of a lookup on a
1975 // case-insensitive file system where the case of the looked up
1976 // name differs from what is on disk. For more details, see:
1977 // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
1978 //
1979 const char *vn_name = vp ? vp->v_name : NULL;
1980 unsigned int len = vn_name ? strlen(vn_name) : 0;
1981 if (vn_name && ncp && ncp->nc_name && strncmp(ncp->nc_name, vn_name, len) != 0) {
1982 unsigned int hash = hash_string(vn_name, len);
1983
1984 vfs_removename(ncp->nc_name);
1985 ncp->nc_name = add_name_internal(vn_name, len, hash, FALSE, 0);
1986 ncp->nc_hashval = hash;
1987 }
1988
1989 /*
1990 * make us the newest entry in the cache
1991 * i.e. we'll be the last to be stolen
1992 */
1993 TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
1994
1995 ncpp = NCHHASH(dvp, cnp->cn_hash);
1996 #if DIAGNOSTIC
1997 {
1998 struct namecache *p;
1999
2000 for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
2001 if (p == ncp)
2002 panic("cache_enter: duplicate");
2003 }
2004 #endif
2005 /*
2006 * make us available to be found via lookup
2007 */
2008 LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
2009
2010 if (vp) {
2011 /*
2012 * add to the list of name cache entries
2013 * that point at vp
2014 */
2015 LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
2016 } else {
2017 /*
2018 * this is a negative cache entry (vp == NULL)
2019 * stick it on the negative cache list.
2020 */
2021 TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
2022
2023 ncs_negtotal++;
2024
2025 if (ncs_negtotal > desiredNegNodes) {
2026 /*
2027 * if we've reached our desired limit
2028 * of negative cache entries, delete
2029 * the oldest
2030 */
2031 negp = TAILQ_FIRST(&neghead);
2032 cache_delete(negp, 1);
2033 }
2034 }
2035 /*
2036 * add us to the list of name cache entries that
2037 * are children of dvp
2038 */
2039 if (vp)
2040 TAILQ_INSERT_TAIL(&dvp->v_ncchildren, ncp, nc_child);
2041 else
2042 TAILQ_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
2043 }
2044
2045
2046 /*
2047 * Initialize CRC-32 remainder table.
2048 */
2049 static void init_crc32(void)
2050 {
2051 /*
2052 * the CRC-32 generator polynomial is:
2053 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
2054 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
2055 */
2056 unsigned int crc32_polynomial = 0x04c11db7;
2057 unsigned int i,j;
2058
2059 /*
2060 * pre-calculate the CRC-32 remainder for each possible octet encoding
2061 */
2062 for (i = 0; i < 256; i++) {
2063 unsigned int crc_rem = i << 24;
2064
2065 for (j = 0; j < 8; j++) {
2066 if (crc_rem & 0x80000000)
2067 crc_rem = (crc_rem << 1) ^ crc32_polynomial;
2068 else
2069 crc_rem = (crc_rem << 1);
2070 }
2071 crc32tab[i] = crc_rem;
2072 }
2073 }
2074
2075
2076 /*
2077 * Name cache initialization, from vfs_init() when we are booting
2078 */
2079 void
2080 nchinit(void)
2081 {
2082 int i;
2083
2084 desiredNegNodes = (desiredvnodes / 10);
2085 desiredNodes = desiredvnodes + desiredNegNodes;
2086
2087 TAILQ_INIT(&nchead);
2088 TAILQ_INIT(&neghead);
2089
2090 init_crc32();
2091
2092 nchashtbl = hashinit(MAX(CONFIG_NC_HASH, (2 *desiredNodes)), M_CACHE, &nchash);
2093 nchashmask = nchash;
2094 nchash++;
2095
2096 init_string_table();
2097
2098 /* Allocate name cache lock group attribute and group */
2099 namecache_lck_grp_attr= lck_grp_attr_alloc_init();
2100
2101 namecache_lck_grp = lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr);
2102
2103 /* Allocate name cache lock attribute */
2104 namecache_lck_attr = lck_attr_alloc_init();
2105
2106 /* Allocate name cache lock */
2107 namecache_rw_lock = lck_rw_alloc_init(namecache_lck_grp, namecache_lck_attr);
2108
2109
2110 /* Allocate string cache lock group attribute and group */
2111 strcache_lck_grp_attr= lck_grp_attr_alloc_init();
2112
2113 strcache_lck_grp = lck_grp_alloc_init("String Cache", strcache_lck_grp_attr);
2114
2115 /* Allocate string cache lock attribute */
2116 strcache_lck_attr = lck_attr_alloc_init();
2117
2118 /* Allocate string cache lock */
2119 strtable_rw_lock = lck_rw_alloc_init(strcache_lck_grp, strcache_lck_attr);
2120
2121 for (i = 0; i < NUM_STRCACHE_LOCKS; i++)
2122 lck_mtx_init(&strcache_mtx_locks[i], strcache_lck_grp, strcache_lck_attr);
2123 }
2124
2125 void
2126 name_cache_lock_shared(void)
2127 {
2128 lck_rw_lock_shared(namecache_rw_lock);
2129 }
2130
2131 void
2132 name_cache_lock(void)
2133 {
2134 lck_rw_lock_exclusive(namecache_rw_lock);
2135 }
2136
2137 void
2138 name_cache_unlock(void)
2139 {
2140 lck_rw_done(namecache_rw_lock);
2141 }
2142
2143
2144 int
2145 resize_namecache(u_int newsize)
2146 {
2147 struct nchashhead *new_table;
2148 struct nchashhead *old_table;
2149 struct nchashhead *old_head, *head;
2150 struct namecache *entry, *next;
2151 uint32_t i, hashval;
2152 int dNodes, dNegNodes;
2153 u_long new_size, old_size;
2154
2155 dNegNodes = (newsize / 10);
2156 dNodes = newsize + dNegNodes;
2157
2158 // we don't support shrinking yet
2159 if (dNodes <= desiredNodes) {
2160 return 0;
2161 }
2162 new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
2163 new_size = nchashmask + 1;
2164
2165 if (new_table == NULL) {
2166 return ENOMEM;
2167 }
2168
2169 NAME_CACHE_LOCK();
2170 // do the switch!
2171 old_table = nchashtbl;
2172 nchashtbl = new_table;
2173 old_size = nchash;
2174 nchash = new_size;
2175
2176 // walk the old table and insert all the entries into
2177 // the new table
2178 //
2179 for(i=0; i < old_size; i++) {
2180 old_head = &old_table[i];
2181 for (entry=old_head->lh_first; entry != NULL; entry=next) {
2182 //
2183 // XXXdbg - Beware: this assumes that hash_string() does
2184 // the same thing as what happens in
2185 // lookup() over in vfs_lookup.c
2186 hashval = hash_string(entry->nc_name, 0);
2187 entry->nc_hashval = hashval;
2188 head = NCHHASH(entry->nc_dvp, hashval);
2189
2190 next = entry->nc_hash.le_next;
2191 LIST_INSERT_HEAD(head, entry, nc_hash);
2192 }
2193 }
2194 desiredNodes = dNodes;
2195 desiredNegNodes = dNegNodes;
2196
2197 NAME_CACHE_UNLOCK();
2198 FREE(old_table, M_CACHE);
2199
2200 return 0;
2201 }
2202
2203 static void
2204 cache_delete(struct namecache *ncp, int age_entry)
2205 {
2206 NCHSTAT(ncs_deletes);
2207
2208 if (ncp->nc_vp) {
2209 LIST_REMOVE(ncp, nc_un.nc_link);
2210 } else {
2211 TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
2212 ncs_negtotal--;
2213 }
2214 TAILQ_REMOVE(&(ncp->nc_dvp->v_ncchildren), ncp, nc_child);
2215
2216 LIST_REMOVE(ncp, nc_hash);
2217 /*
2218 * this field is used to indicate
2219 * that the entry is in use and
2220 * must be deleted before it can
2221 * be reused...
2222 */
2223 ncp->nc_hash.le_prev = NULL;
2224
2225 if (age_entry) {
2226 /*
2227 * make it the next one available
2228 * for cache_enter's use
2229 */
2230 TAILQ_REMOVE(&nchead, ncp, nc_entry);
2231 TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
2232 }
2233 vfs_removename(ncp->nc_name);
2234 ncp->nc_name = NULL;
2235 }
2236
2237
2238 /*
2239 * purge the entry associated with the
2240 * specified vnode from the name cache
2241 */
2242 void
2243 cache_purge(vnode_t vp)
2244 {
2245 struct namecache *ncp;
2246 kauth_cred_t tcred = NULL;
2247
2248 if ((LIST_FIRST(&vp->v_nclinks) == NULL) &&
2249 (TAILQ_FIRST(&vp->v_ncchildren) == NULL) &&
2250 (vp->v_cred == NOCRED) &&
2251 (vp->v_parent == NULLVP))
2252 return;
2253
2254 NAME_CACHE_LOCK();
2255
2256 if (vp->v_parent)
2257 vp->v_parent->v_nc_generation++;
2258
2259 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
2260 cache_delete(ncp, 1);
2261
2262 while ( (ncp = TAILQ_FIRST(&vp->v_ncchildren)) )
2263 cache_delete(ncp, 1);
2264
2265 /*
2266 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
2267 */
2268 tcred = vp->v_cred;
2269 vp->v_cred = NOCRED;
2270 vp->v_authorized_actions = 0;
2271
2272 NAME_CACHE_UNLOCK();
2273
2274 if (IS_VALID_CRED(tcred))
2275 kauth_cred_unref(&tcred);
2276 }
2277
2278 /*
2279 * Purge all negative cache entries that are children of the
2280 * given vnode. A case-insensitive file system (or any file
2281 * system that has multiple equivalent names for the same
2282 * directory entry) can use this when creating or renaming
2283 * to remove negative entries that may no longer apply.
2284 */
2285 void
2286 cache_purge_negatives(vnode_t vp)
2287 {
2288 struct namecache *ncp, *next_ncp;
2289
2290 NAME_CACHE_LOCK();
2291
2292 TAILQ_FOREACH_SAFE(ncp, &vp->v_ncchildren, nc_child, next_ncp) {
2293 if (ncp->nc_vp)
2294 break;
2295
2296 cache_delete(ncp, 1);
2297 }
2298
2299 NAME_CACHE_UNLOCK();
2300 }
2301
2302 /*
2303 * Flush all entries referencing a particular filesystem.
2304 *
2305 * Since we need to check it anyway, we will flush all the invalid
2306 * entries at the same time.
2307 */
2308 void
2309 cache_purgevfs(struct mount *mp)
2310 {
2311 struct nchashhead *ncpp;
2312 struct namecache *ncp;
2313
2314 NAME_CACHE_LOCK();
2315 /* Scan hash tables for applicable entries */
2316 for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
2317 restart:
2318 for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
2319 if (ncp->nc_dvp->v_mount == mp) {
2320 cache_delete(ncp, 0);
2321 goto restart;
2322 }
2323 }
2324 }
2325 NAME_CACHE_UNLOCK();
2326 }
2327
2328
2329
2330 //
2331 // String ref routines
2332 //
2333 static LIST_HEAD(stringhead, string_t) *string_ref_table;
2334 static u_long string_table_mask;
2335 static uint32_t filled_buckets=0;
2336
2337
2338 typedef struct string_t {
2339 LIST_ENTRY(string_t) hash_chain;
2340 const char *str;
2341 uint32_t refcount;
2342 } string_t;
2343
2344
2345 static void
2346 resize_string_ref_table(void)
2347 {
2348 struct stringhead *new_table;
2349 struct stringhead *old_table;
2350 struct stringhead *old_head, *head;
2351 string_t *entry, *next;
2352 uint32_t i, hashval;
2353 u_long new_mask, old_mask;
2354
2355 /*
2356 * need to hold the table lock exclusively
2357 * in order to grow the table... need to recheck
2358 * the need to resize again after we've taken
2359 * the lock exclusively in case some other thread
2360 * beat us to the punch
2361 */
2362 lck_rw_lock_exclusive(strtable_rw_lock);
2363
2364 if (4 * filled_buckets < ((string_table_mask + 1) * 3)) {
2365 lck_rw_done(strtable_rw_lock);
2366 return;
2367 }
2368 new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
2369
2370 if (new_table == NULL) {
2371 printf("failed to resize the hash table.\n");
2372 lck_rw_done(strtable_rw_lock);
2373 return;
2374 }
2375
2376 // do the switch!
2377 old_table = string_ref_table;
2378 string_ref_table = new_table;
2379 old_mask = string_table_mask;
2380 string_table_mask = new_mask;
2381 filled_buckets = 0;
2382
2383 // walk the old table and insert all the entries into
2384 // the new table
2385 //
2386 for (i = 0; i <= old_mask; i++) {
2387 old_head = &old_table[i];
2388 for (entry = old_head->lh_first; entry != NULL; entry = next) {
2389 hashval = hash_string((const char *)entry->str, 0);
2390 head = &string_ref_table[hashval & string_table_mask];
2391 if (head->lh_first == NULL) {
2392 filled_buckets++;
2393 }
2394 next = entry->hash_chain.le_next;
2395 LIST_INSERT_HEAD(head, entry, hash_chain);
2396 }
2397 }
2398 lck_rw_done(strtable_rw_lock);
2399
2400 FREE(old_table, M_CACHE);
2401 }
2402
2403
2404 static void
2405 init_string_table(void)
2406 {
2407 string_ref_table = hashinit(CONFIG_VFS_NAMES, M_CACHE, &string_table_mask);
2408 }
2409
2410
2411 const char *
2412 vfs_addname(const char *name, uint32_t len, u_int hashval, u_int flags)
2413 {
2414 return (add_name_internal(name, len, hashval, FALSE, flags));
2415 }
2416
2417
2418 static const char *
2419 add_name_internal(const char *name, uint32_t len, u_int hashval, boolean_t need_extra_ref, __unused u_int flags)
2420 {
2421 struct stringhead *head;
2422 string_t *entry;
2423 uint32_t chain_len = 0;
2424 uint32_t hash_index;
2425 uint32_t lock_index;
2426 char *ptr;
2427
2428 if (len > MAXPATHLEN)
2429 len = MAXPATHLEN;
2430
2431 /*
2432 * if the length already accounts for the null-byte, then
2433 * subtract one so later on we don't index past the end
2434 * of the string.
2435 */
2436 if (len > 0 && name[len-1] == '\0') {
2437 len--;
2438 }
2439 if (hashval == 0) {
2440 hashval = hash_string(name, len);
2441 }
2442
2443 /*
2444 * take this lock 'shared' to keep the hash stable
2445 * if someone else decides to grow the pool they
2446 * will take this lock exclusively
2447 */
2448 lck_rw_lock_shared(strtable_rw_lock);
2449
2450 /*
2451 * If the table gets more than 3/4 full, resize it
2452 */
2453 if (4 * filled_buckets >= ((string_table_mask + 1) * 3)) {
2454 lck_rw_done(strtable_rw_lock);
2455
2456 resize_string_ref_table();
2457
2458 lck_rw_lock_shared(strtable_rw_lock);
2459 }
2460 hash_index = hashval & string_table_mask;
2461 lock_index = hash_index % NUM_STRCACHE_LOCKS;
2462
2463 head = &string_ref_table[hash_index];
2464
2465 lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2466
2467 for (entry = head->lh_first; entry != NULL; chain_len++, entry = entry->hash_chain.le_next) {
2468 if (memcmp(entry->str, name, len) == 0 && entry->str[len] == 0) {
2469 entry->refcount++;
2470 break;
2471 }
2472 }
2473 if (entry == NULL) {
2474 lck_mtx_convert_spin(&strcache_mtx_locks[lock_index]);
2475 /*
2476 * it wasn't already there so add it.
2477 */
2478 MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
2479
2480 if (head->lh_first == NULL) {
2481 OSAddAtomic(1, &filled_buckets);
2482 }
2483 ptr = (char *)((char *)entry + sizeof(string_t));
2484 strncpy(ptr, name, len);
2485 ptr[len] = '\0';
2486 entry->str = ptr;
2487 entry->refcount = 1;
2488 LIST_INSERT_HEAD(head, entry, hash_chain);
2489 }
2490 if (need_extra_ref == TRUE)
2491 entry->refcount++;
2492
2493 lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2494 lck_rw_done(strtable_rw_lock);
2495
2496 return (const char *)entry->str;
2497 }
2498
2499
2500 int
2501 vfs_removename(const char *nameref)
2502 {
2503 struct stringhead *head;
2504 string_t *entry;
2505 uint32_t hashval;
2506 uint32_t hash_index;
2507 uint32_t lock_index;
2508 int retval = ENOENT;
2509
2510 hashval = hash_string(nameref, 0);
2511
2512 /*
2513 * take this lock 'shared' to keep the hash stable
2514 * if someone else decides to grow the pool they
2515 * will take this lock exclusively
2516 */
2517 lck_rw_lock_shared(strtable_rw_lock);
2518 /*
2519 * must compute the head behind the table lock
2520 * since the size and location of the table
2521 * can change on the fly
2522 */
2523 hash_index = hashval & string_table_mask;
2524 lock_index = hash_index % NUM_STRCACHE_LOCKS;
2525
2526 head = &string_ref_table[hash_index];
2527
2528 lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2529
2530 for (entry = head->lh_first; entry != NULL; entry = entry->hash_chain.le_next) {
2531 if (entry->str == nameref) {
2532 entry->refcount--;
2533
2534 if (entry->refcount == 0) {
2535 LIST_REMOVE(entry, hash_chain);
2536
2537 if (head->lh_first == NULL) {
2538 OSAddAtomic(-1, &filled_buckets);
2539 }
2540 } else {
2541 entry = NULL;
2542 }
2543 retval = 0;
2544 break;
2545 }
2546 }
2547 lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2548 lck_rw_done(strtable_rw_lock);
2549
2550 if (entry != NULL)
2551 FREE(entry, M_TEMP);
2552
2553 return retval;
2554 }
2555
2556
2557 #ifdef DUMP_STRING_TABLE
2558 void
2559 dump_string_table(void)
2560 {
2561 struct stringhead *head;
2562 string_t *entry;
2563 u_long i;
2564
2565 lck_rw_lock_shared(strtable_rw_lock);
2566
2567 for (i = 0; i <= string_table_mask; i++) {
2568 head = &string_ref_table[i];
2569 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
2570 printf("%6d - %s\n", entry->refcount, entry->str);
2571 }
2572 }
2573 lck_rw_done(strtable_rw_lock);
2574 }
2575 #endif /* DUMP_STRING_TABLE */