]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
xnu-3789.31.2.tar.gz
[apple/xnu.git] / bsd / netinet / ip_dummynet.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
31 * All rights reserved
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
55 */
56
57 #define DUMMYNET_DEBUG
58
59 /*
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
68 *
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 *
71 * Most important Changes:
72 *
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
78 *
79 * include files marked with XXX are probably not needed
80 */
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/time.h>
91 #include <sys/sysctl.h>
92 #include <net/if.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
95 #if DUMMYNET
96 #include <net/kpi_protocol.h>
97 #endif /* DUMMYNET */
98 #include <netinet/in.h>
99 #include <netinet/in_systm.h>
100 #include <netinet/in_var.h>
101 #include <netinet/ip.h>
102 #include <netinet/ip_fw.h>
103 #include <netinet/ip_dummynet.h>
104 #include <netinet/ip_var.h>
105
106 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
107 #include <netinet6/ip6_var.h>
108
109 static struct ip_fw default_rule;
110
111 /*
112 * We keep a private variable for the simulation time, but we could
113 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
114 */
115 static dn_key curr_time = 0 ; /* current simulation time */
116
117 /* this is for the timer that fires to call dummynet() - we only enable the timer when
118 there are packets to process, otherwise it's disabled */
119 static int timer_enabled = 0;
120
121 static int dn_hash_size = 64 ; /* default hash size */
122
123 /* statistics on number of queue searches and search steps */
124 static int searches, search_steps ;
125 static int pipe_expire = 1 ; /* expire queue if empty */
126 static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
127
128 static int red_lookup_depth = 256; /* RED - default lookup table depth */
129 static int red_avg_pkt_size = 512; /* RED - default medium packet size */
130 static int red_max_pkt_size = 1500; /* RED - default max packet size */
131
132 static int serialize = 0;
133
134 /*
135 * Three heaps contain queues and pipes that the scheduler handles:
136 *
137 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
138 *
139 * wfq_ready_heap contains the pipes associated with WF2Q flows
140 *
141 * extract_heap contains pipes associated with delay lines.
142 *
143 */
144 static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
145
146 static int heap_init(struct dn_heap *h, int size) ;
147 static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
148 static void heap_extract(struct dn_heap *h, void *obj);
149
150
151 static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
152 struct mbuf **tail);
153 static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
154 struct mbuf **tail);
155 static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
156 struct mbuf **tail);
157
158 /*
159 * Packets are retrieved from queues in Dummynet in chains instead of
160 * packet-by-packet. The entire list of packets is first dequeued and
161 * sent out by the following function.
162 */
163 static void dummynet_send(struct mbuf *m);
164
165 #define HASHSIZE 16
166 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
167 static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
168 static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
169
170
171 #ifdef SYSCTL_NODE
172 SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet,
173 CTLFLAG_RW | CTLFLAG_LOCKED, 0, "Dummynet");
174 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
175 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_hash_size, 0, "Default hash table size");
176 SYSCTL_QUAD(_net_inet_ip_dummynet, OID_AUTO, curr_time,
177 CTLFLAG_RD | CTLFLAG_LOCKED, &curr_time, "Current tick");
178 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
179 CTLFLAG_RD | CTLFLAG_LOCKED, &ready_heap.size, 0, "Size of ready heap");
180 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
181 CTLFLAG_RD | CTLFLAG_LOCKED, &extract_heap.size, 0, "Size of extract heap");
182 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches,
183 CTLFLAG_RD | CTLFLAG_LOCKED, &searches, 0, "Number of queue searches");
184 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps,
185 CTLFLAG_RD | CTLFLAG_LOCKED, &search_steps, 0, "Number of queue search steps");
186 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
187 CTLFLAG_RW | CTLFLAG_LOCKED, &pipe_expire, 0, "Expire queue if empty");
188 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
189 CTLFLAG_RW | CTLFLAG_LOCKED, &dn_max_ratio, 0,
190 "Max ratio between dynamic queues and buckets");
191 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
192 CTLFLAG_RD | CTLFLAG_LOCKED, &red_lookup_depth, 0, "Depth of RED lookup table");
193 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
194 CTLFLAG_RD | CTLFLAG_LOCKED, &red_avg_pkt_size, 0, "RED Medium packet size");
195 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
196 CTLFLAG_RD | CTLFLAG_LOCKED, &red_max_pkt_size, 0, "RED Max packet size");
197 #endif
198
199 #ifdef DUMMYNET_DEBUG
200 int dummynet_debug = 0;
201 #ifdef SYSCTL_NODE
202 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_LOCKED, &dummynet_debug,
203 0, "control debugging printfs");
204 #endif
205 #define DPRINTF(X) if (dummynet_debug) printf X
206 #else
207 #define DPRINTF(X)
208 #endif
209
210 /* contrary to the comment above random(), it does not actually
211 * return a value [0, 2^31 - 1], which breaks plr amongst other
212 * things. Masking it should work even if the behavior of
213 * the function is fixed.
214 */
215 #define MY_RANDOM (random() & 0x7FFFFFFF)
216
217 /* dummynet lock */
218 static lck_grp_t *dn_mutex_grp;
219 static lck_grp_attr_t *dn_mutex_grp_attr;
220 static lck_attr_t *dn_mutex_attr;
221 decl_lck_mtx_data(static, dn_mutex_data);
222 static lck_mtx_t *dn_mutex = &dn_mutex_data;
223
224 static int config_pipe(struct dn_pipe *p);
225 static int ip_dn_ctl(struct sockopt *sopt);
226
227 static void dummynet(void *);
228 static void dummynet_flush(void);
229 void dummynet_drain(void);
230 static ip_dn_io_t dummynet_io;
231
232 int if_tx_rdy(struct ifnet *ifp);
233
234 static void cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp);
235 static void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp);
236 static char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp);
237 static char* dn_copy_set_64(struct dn_flow_set *set, char *bp);
238 static int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p );
239
240 static void cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp);
241 static void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp);
242 static char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp);
243 static char* dn_copy_set_32(struct dn_flow_set *set, char *bp);
244 static int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p );
245
246
247 /*
248 * Heap management functions.
249 *
250 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
251 * Some macros help finding parent/children so we can optimize them.
252 *
253 * heap_init() is called to expand the heap when needed.
254 * Increment size in blocks of 16 entries.
255 * XXX failure to allocate a new element is a pretty bad failure
256 * as we basically stall a whole queue forever!!
257 * Returns 1 on error, 0 on success
258 */
259 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
260 #define HEAP_LEFT(x) ( 2*(x) + 1 )
261 #define HEAP_IS_LEFT(x) ( (x) & 1 )
262 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
263 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
264 #define HEAP_INCREMENT 15
265
266
267 int cp_pipe_from_user_32( struct sockopt *sopt, struct dn_pipe *p )
268 {
269 struct dn_pipe_32 user_pipe_32;
270 int error=0;
271
272 error = sooptcopyin(sopt, &user_pipe_32, sizeof(struct dn_pipe_32), sizeof(struct dn_pipe_32));
273 if ( !error ){
274 p->pipe_nr = user_pipe_32.pipe_nr;
275 p->bandwidth = user_pipe_32.bandwidth;
276 p->delay = user_pipe_32.delay;
277 p->V = user_pipe_32.V;
278 p->sum = user_pipe_32.sum;
279 p->numbytes = user_pipe_32.numbytes;
280 p->sched_time = user_pipe_32.sched_time;
281 bcopy( user_pipe_32.if_name, p->if_name, IFNAMSIZ);
282 p->ready = user_pipe_32.ready;
283
284 p->fs.fs_nr = user_pipe_32.fs.fs_nr;
285 p->fs.flags_fs = user_pipe_32.fs.flags_fs;
286 p->fs.parent_nr = user_pipe_32.fs.parent_nr;
287 p->fs.weight = user_pipe_32.fs.weight;
288 p->fs.qsize = user_pipe_32.fs.qsize;
289 p->fs.plr = user_pipe_32.fs.plr;
290 p->fs.flow_mask = user_pipe_32.fs.flow_mask;
291 p->fs.rq_size = user_pipe_32.fs.rq_size;
292 p->fs.rq_elements = user_pipe_32.fs.rq_elements;
293 p->fs.last_expired = user_pipe_32.fs.last_expired;
294 p->fs.backlogged = user_pipe_32.fs.backlogged;
295 p->fs.w_q = user_pipe_32.fs.w_q;
296 p->fs.max_th = user_pipe_32.fs.max_th;
297 p->fs.min_th = user_pipe_32.fs.min_th;
298 p->fs.max_p = user_pipe_32.fs.max_p;
299 p->fs.c_1 = user_pipe_32.fs.c_1;
300 p->fs.c_2 = user_pipe_32.fs.c_2;
301 p->fs.c_3 = user_pipe_32.fs.c_3;
302 p->fs.c_4 = user_pipe_32.fs.c_4;
303 p->fs.lookup_depth = user_pipe_32.fs.lookup_depth;
304 p->fs.lookup_step = user_pipe_32.fs.lookup_step;
305 p->fs.lookup_weight = user_pipe_32.fs.lookup_weight;
306 p->fs.avg_pkt_size = user_pipe_32.fs.avg_pkt_size;
307 p->fs.max_pkt_size = user_pipe_32.fs.max_pkt_size;
308 }
309 return error;
310 }
311
312
313 int cp_pipe_from_user_64( struct sockopt *sopt, struct dn_pipe *p )
314 {
315 struct dn_pipe_64 user_pipe_64;
316 int error=0;
317
318 error = sooptcopyin(sopt, &user_pipe_64, sizeof(struct dn_pipe_64), sizeof(struct dn_pipe_64));
319 if ( !error ){
320 p->pipe_nr = user_pipe_64.pipe_nr;
321 p->bandwidth = user_pipe_64.bandwidth;
322 p->delay = user_pipe_64.delay;
323 p->V = user_pipe_64.V;
324 p->sum = user_pipe_64.sum;
325 p->numbytes = user_pipe_64.numbytes;
326 p->sched_time = user_pipe_64.sched_time;
327 bcopy( user_pipe_64.if_name, p->if_name, IFNAMSIZ);
328 p->ready = user_pipe_64.ready;
329
330 p->fs.fs_nr = user_pipe_64.fs.fs_nr;
331 p->fs.flags_fs = user_pipe_64.fs.flags_fs;
332 p->fs.parent_nr = user_pipe_64.fs.parent_nr;
333 p->fs.weight = user_pipe_64.fs.weight;
334 p->fs.qsize = user_pipe_64.fs.qsize;
335 p->fs.plr = user_pipe_64.fs.plr;
336 p->fs.flow_mask = user_pipe_64.fs.flow_mask;
337 p->fs.rq_size = user_pipe_64.fs.rq_size;
338 p->fs.rq_elements = user_pipe_64.fs.rq_elements;
339 p->fs.last_expired = user_pipe_64.fs.last_expired;
340 p->fs.backlogged = user_pipe_64.fs.backlogged;
341 p->fs.w_q = user_pipe_64.fs.w_q;
342 p->fs.max_th = user_pipe_64.fs.max_th;
343 p->fs.min_th = user_pipe_64.fs.min_th;
344 p->fs.max_p = user_pipe_64.fs.max_p;
345 p->fs.c_1 = user_pipe_64.fs.c_1;
346 p->fs.c_2 = user_pipe_64.fs.c_2;
347 p->fs.c_3 = user_pipe_64.fs.c_3;
348 p->fs.c_4 = user_pipe_64.fs.c_4;
349 p->fs.lookup_depth = user_pipe_64.fs.lookup_depth;
350 p->fs.lookup_step = user_pipe_64.fs.lookup_step;
351 p->fs.lookup_weight = user_pipe_64.fs.lookup_weight;
352 p->fs.avg_pkt_size = user_pipe_64.fs.avg_pkt_size;
353 p->fs.max_pkt_size = user_pipe_64.fs.max_pkt_size;
354 }
355 return error;
356 }
357
358 static void
359 cp_flow_set_to_32_user(struct dn_flow_set *set, struct dn_flow_set_32 *fs_bp)
360 {
361 fs_bp->fs_nr = set->fs_nr;
362 fs_bp->flags_fs = set->flags_fs ;
363 fs_bp->parent_nr = set->parent_nr ;
364 fs_bp->weight = set->weight ;
365 fs_bp->qsize = set->qsize ;
366 fs_bp->plr = set->plr ;
367 fs_bp->flow_mask = set->flow_mask ;
368 fs_bp->rq_size = set->rq_size ;
369 fs_bp->rq_elements = set->rq_elements ;
370 fs_bp->last_expired = set->last_expired ;
371 fs_bp->backlogged = set->backlogged ;
372 fs_bp->w_q = set->w_q ;
373 fs_bp->max_th = set->max_th ;
374 fs_bp->min_th = set->min_th ;
375 fs_bp->max_p = set->max_p ;
376 fs_bp->c_1 = set->c_1 ;
377 fs_bp->c_2 = set->c_2 ;
378 fs_bp->c_3 = set->c_3 ;
379 fs_bp->c_4 = set->c_4 ;
380 fs_bp->w_q_lookup = CAST_DOWN_EXPLICIT(user32_addr_t, set->w_q_lookup) ;
381 fs_bp->lookup_depth = set->lookup_depth ;
382 fs_bp->lookup_step = set->lookup_step ;
383 fs_bp->lookup_weight = set->lookup_weight ;
384 fs_bp->avg_pkt_size = set->avg_pkt_size ;
385 fs_bp->max_pkt_size = set->max_pkt_size ;
386 }
387
388 static void
389 cp_flow_set_to_64_user(struct dn_flow_set *set, struct dn_flow_set_64 *fs_bp)
390 {
391 fs_bp->fs_nr = set->fs_nr;
392 fs_bp->flags_fs = set->flags_fs ;
393 fs_bp->parent_nr = set->parent_nr ;
394 fs_bp->weight = set->weight ;
395 fs_bp->qsize = set->qsize ;
396 fs_bp->plr = set->plr ;
397 fs_bp->flow_mask = set->flow_mask ;
398 fs_bp->rq_size = set->rq_size ;
399 fs_bp->rq_elements = set->rq_elements ;
400 fs_bp->last_expired = set->last_expired ;
401 fs_bp->backlogged = set->backlogged ;
402 fs_bp->w_q = set->w_q ;
403 fs_bp->max_th = set->max_th ;
404 fs_bp->min_th = set->min_th ;
405 fs_bp->max_p = set->max_p ;
406 fs_bp->c_1 = set->c_1 ;
407 fs_bp->c_2 = set->c_2 ;
408 fs_bp->c_3 = set->c_3 ;
409 fs_bp->c_4 = set->c_4 ;
410 fs_bp->w_q_lookup = CAST_DOWN(user64_addr_t, set->w_q_lookup) ;
411 fs_bp->lookup_depth = set->lookup_depth ;
412 fs_bp->lookup_step = set->lookup_step ;
413 fs_bp->lookup_weight = set->lookup_weight ;
414 fs_bp->avg_pkt_size = set->avg_pkt_size ;
415 fs_bp->max_pkt_size = set->max_pkt_size ;
416 }
417
418 static
419 void cp_queue_to_32_user( struct dn_flow_queue *q, struct dn_flow_queue_32 *qp)
420 {
421 qp->id = q->id;
422 qp->len = q->len;
423 qp->len_bytes = q->len_bytes;
424 qp->numbytes = q->numbytes;
425 qp->tot_pkts = q->tot_pkts;
426 qp->tot_bytes = q->tot_bytes;
427 qp->drops = q->drops;
428 qp->hash_slot = q->hash_slot;
429 qp->avg = q->avg;
430 qp->count = q->count;
431 qp->random = q->random;
432 qp->q_time = q->q_time;
433 qp->heap_pos = q->heap_pos;
434 qp->sched_time = q->sched_time;
435 qp->S = q->S;
436 qp->F = q->F;
437 }
438
439 static
440 void cp_queue_to_64_user( struct dn_flow_queue *q, struct dn_flow_queue_64 *qp)
441 {
442 qp->id = q->id;
443 qp->len = q->len;
444 qp->len_bytes = q->len_bytes;
445 qp->numbytes = q->numbytes;
446 qp->tot_pkts = q->tot_pkts;
447 qp->tot_bytes = q->tot_bytes;
448 qp->drops = q->drops;
449 qp->hash_slot = q->hash_slot;
450 qp->avg = q->avg;
451 qp->count = q->count;
452 qp->random = q->random;
453 qp->q_time = q->q_time;
454 qp->heap_pos = q->heap_pos;
455 qp->sched_time = q->sched_time;
456 qp->S = q->S;
457 qp->F = q->F;
458 }
459
460 static
461 char *cp_pipe_to_32_user(struct dn_pipe *p, struct dn_pipe_32 *pipe_bp)
462 {
463 char *bp;
464
465 pipe_bp->pipe_nr = p->pipe_nr;
466 pipe_bp->bandwidth = p->bandwidth;
467 pipe_bp->delay = p->delay;
468 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_32));
469 pipe_bp->scheduler_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->scheduler_heap.p);
470 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_32));
471 pipe_bp->not_eligible_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->not_eligible_heap.p);
472 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_32));
473 pipe_bp->idle_heap.p = CAST_DOWN_EXPLICIT(user32_addr_t, pipe_bp->idle_heap.p);
474 pipe_bp->V = p->V;
475 pipe_bp->sum = p->sum;
476 pipe_bp->numbytes = p->numbytes;
477 pipe_bp->sched_time = p->sched_time;
478 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
479 pipe_bp->ifp = CAST_DOWN_EXPLICIT(user32_addr_t, p->ifp);
480 pipe_bp->ready = p->ready;
481
482 cp_flow_set_to_32_user( &(p->fs), &(pipe_bp->fs));
483
484 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
485 /*
486 * XXX the following is a hack based on ->next being the
487 * first field in dn_pipe and dn_flow_set. The correct
488 * solution would be to move the dn_flow_set to the beginning
489 * of struct dn_pipe.
490 */
491 pipe_bp->next = CAST_DOWN_EXPLICIT( user32_addr_t, DN_IS_PIPE );
492 /* clean pointers */
493 pipe_bp->head = pipe_bp->tail = (user32_addr_t) 0 ;
494 pipe_bp->fs.next = (user32_addr_t)0 ;
495 pipe_bp->fs.pipe = (user32_addr_t)0 ;
496 pipe_bp->fs.rq = (user32_addr_t)0 ;
497 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_32);
498 return( dn_copy_set_32( &(p->fs), bp) );
499 }
500
501 static
502 char *cp_pipe_to_64_user(struct dn_pipe *p, struct dn_pipe_64 *pipe_bp)
503 {
504 char *bp;
505
506 pipe_bp->pipe_nr = p->pipe_nr;
507 pipe_bp->bandwidth = p->bandwidth;
508 pipe_bp->delay = p->delay;
509 bcopy( &(p->scheduler_heap), &(pipe_bp->scheduler_heap), sizeof(struct dn_heap_64));
510 pipe_bp->scheduler_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->scheduler_heap.p);
511 bcopy( &(p->not_eligible_heap), &(pipe_bp->not_eligible_heap), sizeof(struct dn_heap_64));
512 pipe_bp->not_eligible_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->not_eligible_heap.p);
513 bcopy( &(p->idle_heap), &(pipe_bp->idle_heap), sizeof(struct dn_heap_64));
514 pipe_bp->idle_heap.p = CAST_DOWN(user64_addr_t, pipe_bp->idle_heap.p);
515 pipe_bp->V = p->V;
516 pipe_bp->sum = p->sum;
517 pipe_bp->numbytes = p->numbytes;
518 pipe_bp->sched_time = p->sched_time;
519 bcopy( p->if_name, pipe_bp->if_name, IFNAMSIZ);
520 pipe_bp->ifp = CAST_DOWN(user64_addr_t, p->ifp);
521 pipe_bp->ready = p->ready;
522
523 cp_flow_set_to_64_user( &(p->fs), &(pipe_bp->fs));
524
525 pipe_bp->delay = (pipe_bp->delay * 1000) / (hz*10) ;
526 /*
527 * XXX the following is a hack based on ->next being the
528 * first field in dn_pipe and dn_flow_set. The correct
529 * solution would be to move the dn_flow_set to the beginning
530 * of struct dn_pipe.
531 */
532 pipe_bp->next = CAST_DOWN( user64_addr_t, DN_IS_PIPE );
533 /* clean pointers */
534 pipe_bp->head = pipe_bp->tail = USER_ADDR_NULL ;
535 pipe_bp->fs.next = USER_ADDR_NULL ;
536 pipe_bp->fs.pipe = USER_ADDR_NULL ;
537 pipe_bp->fs.rq = USER_ADDR_NULL ;
538 bp = ((char *)pipe_bp) + sizeof(struct dn_pipe_64);
539 return( dn_copy_set_64( &(p->fs), bp) );
540 }
541
542 static int
543 heap_init(struct dn_heap *h, int new_size)
544 {
545 struct dn_heap_entry *p;
546
547 if (h->size >= new_size ) {
548 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
549 h->size, new_size);
550 return 0 ;
551 }
552 new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
553 p = _MALLOC(new_size * sizeof(*p), M_DUMMYNET, M_DONTWAIT );
554 if (p == NULL) {
555 printf("dummynet: heap_init, resize %d failed\n", new_size );
556 return 1 ; /* error */
557 }
558 if (h->size > 0) {
559 bcopy(h->p, p, h->size * sizeof(*p) );
560 FREE(h->p, M_DUMMYNET);
561 }
562 h->p = p ;
563 h->size = new_size ;
564 return 0 ;
565 }
566
567 /*
568 * Insert element in heap. Normally, p != NULL, we insert p in
569 * a new position and bubble up. If p == NULL, then the element is
570 * already in place, and key is the position where to start the
571 * bubble-up.
572 * Returns 1 on failure (cannot allocate new heap entry)
573 *
574 * If offset > 0 the position (index, int) of the element in the heap is
575 * also stored in the element itself at the given offset in bytes.
576 */
577 #define SET_OFFSET(heap, node) \
578 if (heap->offset > 0) \
579 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
580 /*
581 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
582 */
583 #define RESET_OFFSET(heap, node) \
584 if (heap->offset > 0) \
585 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
586 static int
587 heap_insert(struct dn_heap *h, dn_key key1, void *p)
588 {
589 int son = h->elements ;
590
591 if (p == NULL) /* data already there, set starting point */
592 son = key1 ;
593 else { /* insert new element at the end, possibly resize */
594 son = h->elements ;
595 if (son == h->size) /* need resize... */
596 if (heap_init(h, h->elements+1) )
597 return 1 ; /* failure... */
598 h->p[son].object = p ;
599 h->p[son].key = key1 ;
600 h->elements++ ;
601 }
602 while (son > 0) { /* bubble up */
603 int father = HEAP_FATHER(son) ;
604 struct dn_heap_entry tmp ;
605
606 if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
607 break ; /* found right position */
608 /* son smaller than father, swap and repeat */
609 HEAP_SWAP(h->p[son], h->p[father], tmp) ;
610 SET_OFFSET(h, son);
611 son = father ;
612 }
613 SET_OFFSET(h, son);
614 return 0 ;
615 }
616
617 /*
618 * remove top element from heap, or obj if obj != NULL
619 */
620 static void
621 heap_extract(struct dn_heap *h, void *obj)
622 {
623 int child, father, maxelt = h->elements - 1 ;
624
625 if (maxelt < 0) {
626 printf("dummynet: warning, extract from empty heap 0x%llx\n",
627 (uint64_t)VM_KERNEL_ADDRPERM(h));
628 return ;
629 }
630 father = 0 ; /* default: move up smallest child */
631 if (obj != NULL) { /* extract specific element, index is at offset */
632 if (h->offset <= 0)
633 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
634 father = *((int *)((char *)obj + h->offset)) ;
635 if (father < 0 || father >= h->elements) {
636 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
637 father, h->elements);
638 panic("dummynet: heap_extract");
639 }
640 }
641 RESET_OFFSET(h, father);
642 child = HEAP_LEFT(father) ; /* left child */
643 while (child <= maxelt) { /* valid entry */
644 if (child != maxelt && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
645 child = child+1 ; /* take right child, otherwise left */
646 h->p[father] = h->p[child] ;
647 SET_OFFSET(h, father);
648 father = child ;
649 child = HEAP_LEFT(child) ; /* left child for next loop */
650 }
651 h->elements-- ;
652 if (father != maxelt) {
653 /*
654 * Fill hole with last entry and bubble up, reusing the insert code
655 */
656 h->p[father] = h->p[maxelt] ;
657 heap_insert(h, father, NULL); /* this one cannot fail */
658 }
659 }
660
661 /*
662 * heapify() will reorganize data inside an array to maintain the
663 * heap property. It is needed when we delete a bunch of entries.
664 */
665 static void
666 heapify(struct dn_heap *h)
667 {
668 int i ;
669
670 for (i = 0 ; i < h->elements ; i++ )
671 heap_insert(h, i , NULL) ;
672 }
673
674 /*
675 * cleanup the heap and free data structure
676 */
677 static void
678 heap_free(struct dn_heap *h)
679 {
680 if (h->size >0 )
681 FREE(h->p, M_DUMMYNET);
682 bzero(h, sizeof(*h));
683 }
684
685 /*
686 * --- end of heap management functions ---
687 */
688
689 /*
690 * Return the mbuf tag holding the dummynet state. As an optimization
691 * this is assumed to be the first tag on the list. If this turns out
692 * wrong we'll need to search the list.
693 */
694 static struct dn_pkt_tag *
695 dn_tag_get(struct mbuf *m)
696 {
697 struct m_tag *mtag = m_tag_first(m);
698
699 if (!(mtag != NULL &&
700 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
701 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET))
702 panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
703 (uint64_t)VM_KERNEL_ADDRPERM(m));
704
705 return (struct dn_pkt_tag *)(mtag+1);
706 }
707
708 /*
709 * Scheduler functions:
710 *
711 * transmit_event() is called when the delay-line needs to enter
712 * the scheduler, either because of existing pkts getting ready,
713 * or new packets entering the queue. The event handled is the delivery
714 * time of the packet.
715 *
716 * ready_event() does something similar with fixed-rate queues, and the
717 * event handled is the finish time of the head pkt.
718 *
719 * wfq_ready_event() does something similar with WF2Q queues, and the
720 * event handled is the start time of the head pkt.
721 *
722 * In all cases, we make sure that the data structures are consistent
723 * before passing pkts out, because this might trigger recursive
724 * invocations of the procedures.
725 */
726 static void
727 transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
728 {
729 struct mbuf *m ;
730 struct dn_pkt_tag *pkt = NULL;
731 u_int64_t schedule_time;
732
733 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
734 ASSERT(serialize >= 0);
735 if (serialize == 0) {
736 while ((m = pipe->head) != NULL) {
737 pkt = dn_tag_get(m);
738 if (!DN_KEY_LEQ(pkt->dn_output_time, curr_time))
739 break;
740
741 pipe->head = m->m_nextpkt;
742 if (*tail != NULL)
743 (*tail)->m_nextpkt = m;
744 else
745 *head = m;
746 *tail = m;
747 }
748
749 if (*tail != NULL)
750 (*tail)->m_nextpkt = NULL;
751 }
752
753 schedule_time = pkt == NULL || DN_KEY_LEQ(pkt->dn_output_time, curr_time) ?
754 curr_time + 1 : pkt->dn_output_time;
755
756 /* if there are leftover packets, put the pipe into the heap for next ready event */
757 if ((m = pipe->head) != NULL) {
758 pkt = dn_tag_get(m);
759 /* XXX should check errors on heap_insert, by draining the
760 * whole pipe p and hoping in the future we are more successful
761 */
762 heap_insert(&extract_heap, schedule_time, pipe);
763 }
764 }
765
766 /*
767 * the following macro computes how many ticks we have to wait
768 * before being able to transmit a packet. The credit is taken from
769 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
770 */
771
772 /* hz is 100, which gives a granularity of 10ms in the old timer.
773 * The timer has been changed to fire every 1ms, so the use of
774 * hz has been modified here. All instances of hz have been left
775 * in place but adjusted by a factor of 10 so that hz is functionally
776 * equal to 1000.
777 */
778 #define SET_TICKS(_m, q, p) \
779 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
780 p->bandwidth ;
781
782 /*
783 * extract pkt from queue, compute output time (could be now)
784 * and put into delay line (p_queue)
785 */
786 static void
787 move_pkt(struct mbuf *pkt, struct dn_flow_queue *q,
788 struct dn_pipe *p, int len)
789 {
790 struct dn_pkt_tag *dt = dn_tag_get(pkt);
791
792 q->head = pkt->m_nextpkt ;
793 q->len-- ;
794 q->len_bytes -= len ;
795
796 dt->dn_output_time = curr_time + p->delay ;
797
798 if (p->head == NULL)
799 p->head = pkt;
800 else
801 p->tail->m_nextpkt = pkt;
802 p->tail = pkt;
803 p->tail->m_nextpkt = NULL;
804 }
805
806 /*
807 * ready_event() is invoked every time the queue must enter the
808 * scheduler, either because the first packet arrives, or because
809 * a previously scheduled event fired.
810 * On invokation, drain as many pkts as possible (could be 0) and then
811 * if there are leftover packets reinsert the pkt in the scheduler.
812 */
813 static void
814 ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
815 {
816 struct mbuf *pkt;
817 struct dn_pipe *p = q->fs->pipe ;
818 int p_was_empty ;
819
820 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
821
822 if (p == NULL) {
823 printf("dummynet: ready_event pipe is gone\n");
824 return ;
825 }
826 p_was_empty = (p->head == NULL) ;
827
828 /*
829 * schedule fixed-rate queues linked to this pipe:
830 * Account for the bw accumulated since last scheduling, then
831 * drain as many pkts as allowed by q->numbytes and move to
832 * the delay line (in p) computing output time.
833 * bandwidth==0 (no limit) means we can drain the whole queue,
834 * setting len_scaled = 0 does the job.
835 */
836 q->numbytes += ( curr_time - q->sched_time ) * p->bandwidth;
837 while ( (pkt = q->head) != NULL ) {
838 int len = pkt->m_pkthdr.len;
839 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
840 if (len_scaled > q->numbytes )
841 break ;
842 q->numbytes -= len_scaled ;
843 move_pkt(pkt, q, p, len);
844 }
845 /*
846 * If we have more packets queued, schedule next ready event
847 * (can only occur when bandwidth != 0, otherwise we would have
848 * flushed the whole queue in the previous loop).
849 * To this purpose we record the current time and compute how many
850 * ticks to go for the finish time of the packet.
851 */
852 if ( (pkt = q->head) != NULL ) { /* this implies bandwidth != 0 */
853 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
854 q->sched_time = curr_time ;
855 heap_insert(&ready_heap, curr_time + t, (void *)q );
856 /* XXX should check errors on heap_insert, and drain the whole
857 * queue on error hoping next time we are luckier.
858 */
859 } else { /* RED needs to know when the queue becomes empty */
860 q->q_time = curr_time;
861 q->numbytes = 0;
862 }
863 /*
864 * If the delay line was empty call transmit_event(p) now.
865 * Otherwise, the scheduler will take care of it.
866 */
867 if (p_was_empty)
868 transmit_event(p, head, tail);
869 }
870
871 /*
872 * Called when we can transmit packets on WF2Q queues. Take pkts out of
873 * the queues at their start time, and enqueue into the delay line.
874 * Packets are drained until p->numbytes < 0. As long as
875 * len_scaled >= p->numbytes, the packet goes into the delay line
876 * with a deadline p->delay. For the last packet, if p->numbytes<0,
877 * there is an additional delay.
878 */
879 static void
880 ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
881 {
882 int p_was_empty = (p->head == NULL) ;
883 struct dn_heap *sch = &(p->scheduler_heap);
884 struct dn_heap *neh = &(p->not_eligible_heap) ;
885 int64_t p_numbytes = p->numbytes;
886
887 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
888
889 if (p->if_name[0] == 0) /* tx clock is simulated */
890 p_numbytes += ( curr_time - p->sched_time ) * p->bandwidth;
891 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
892 if (p->ifp && !IFCQ_IS_EMPTY(&p->ifp->if_snd))
893 return ;
894 else {
895 DPRINTF(("dummynet: pipe %d ready from %s --\n",
896 p->pipe_nr, p->if_name));
897 }
898 }
899
900 /*
901 * While we have backlogged traffic AND credit, we need to do
902 * something on the queue.
903 */
904 while ( p_numbytes >=0 && (sch->elements>0 || neh->elements >0) ) {
905 if (sch->elements > 0) { /* have some eligible pkts to send out */
906 struct dn_flow_queue *q = sch->p[0].object ;
907 struct mbuf *pkt = q->head;
908 struct dn_flow_set *fs = q->fs;
909 u_int64_t len = pkt->m_pkthdr.len;
910 int len_scaled = p->bandwidth ? len*8*(hz*10) : 0 ;
911
912 heap_extract(sch, NULL); /* remove queue from heap */
913 p_numbytes -= len_scaled ;
914 move_pkt(pkt, q, p, len);
915
916 p->V += (len<<MY_M) / p->sum ; /* update V */
917 q->S = q->F ; /* update start time */
918 if (q->len == 0) { /* Flow not backlogged any more */
919 fs->backlogged-- ;
920 heap_insert(&(p->idle_heap), q->F, q);
921 } else { /* still backlogged */
922 /*
923 * update F and position in backlogged queue, then
924 * put flow in not_eligible_heap (we will fix this later).
925 */
926 len = (q->head)->m_pkthdr.len;
927 q->F += (len<<MY_M)/(u_int64_t) fs->weight ;
928 if (DN_KEY_LEQ(q->S, p->V))
929 heap_insert(neh, q->S, q);
930 else
931 heap_insert(sch, q->F, q);
932 }
933 }
934 /*
935 * now compute V = max(V, min(S_i)). Remember that all elements in sch
936 * have by definition S_i <= V so if sch is not empty, V is surely
937 * the max and we must not update it. Conversely, if sch is empty
938 * we only need to look at neh.
939 */
940 if (sch->elements == 0 && neh->elements > 0)
941 p->V = MAX64 ( p->V, neh->p[0].key );
942 /* move from neh to sch any packets that have become eligible */
943 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V) ) {
944 struct dn_flow_queue *q = neh->p[0].object ;
945 heap_extract(neh, NULL);
946 heap_insert(sch, q->F, q);
947 }
948
949 if (p->if_name[0] != '\0') {/* tx clock is from a real thing */
950 p_numbytes = -1 ; /* mark not ready for I/O */
951 break ;
952 }
953 }
954 if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0
955 && p->idle_heap.elements > 0) {
956 /*
957 * no traffic and no events scheduled. We can get rid of idle-heap.
958 */
959 int i ;
960
961 for (i = 0 ; i < p->idle_heap.elements ; i++) {
962 struct dn_flow_queue *q = p->idle_heap.p[i].object ;
963
964 q->F = 0 ;
965 q->S = q->F + 1 ;
966 }
967 p->sum = 0 ;
968 p->V = 0 ;
969 p->idle_heap.elements = 0 ;
970 }
971 /*
972 * If we are getting clocks from dummynet (not a real interface) and
973 * If we are under credit, schedule the next ready event.
974 * Also fix the delivery time of the last packet.
975 */
976 if (p->if_name[0]==0 && p_numbytes < 0) { /* this implies bandwidth >0 */
977 dn_key t=0 ; /* number of ticks i have to wait */
978
979 if (p->bandwidth > 0)
980 t = ( p->bandwidth -1 - p_numbytes) / p->bandwidth ;
981 dn_tag_get(p->tail)->dn_output_time += t ;
982 p->sched_time = curr_time ;
983 heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
984 /* XXX should check errors on heap_insert, and drain the whole
985 * queue on error hoping next time we are luckier.
986 */
987 }
988
989 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
990 if (p_numbytes > INT_MAX)
991 p->numbytes = INT_MAX;
992 else if (p_numbytes < INT_MIN)
993 p->numbytes = INT_MIN;
994 else
995 p->numbytes = p_numbytes;
996
997 /*
998 * If the delay line was empty call transmit_event(p) now.
999 * Otherwise, the scheduler will take care of it.
1000 */
1001 if (p_was_empty)
1002 transmit_event(p, head, tail);
1003
1004 }
1005
1006 /*
1007 * This is called every 1ms. It is used to
1008 * increment the current tick counter and schedule expired events.
1009 */
1010 static void
1011 dummynet(__unused void * unused)
1012 {
1013 void *p ; /* generic parameter to handler */
1014 struct dn_heap *h ;
1015 struct dn_heap *heaps[3];
1016 struct mbuf *head = NULL, *tail = NULL;
1017 int i;
1018 struct dn_pipe *pe ;
1019 struct timespec ts;
1020 struct timeval tv;
1021
1022 heaps[0] = &ready_heap ; /* fixed-rate queues */
1023 heaps[1] = &wfq_ready_heap ; /* wfq queues */
1024 heaps[2] = &extract_heap ; /* delay line */
1025
1026 lck_mtx_lock(dn_mutex);
1027
1028 /* make all time measurements in milliseconds (ms) -
1029 * here we convert secs and usecs to msecs (just divide the
1030 * usecs and take the closest whole number).
1031 */
1032 microuptime(&tv);
1033 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1034
1035 for (i=0; i < 3 ; i++) {
1036 h = heaps[i];
1037 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time) ) {
1038 if (h->p[0].key > curr_time)
1039 printf("dummynet: warning, heap %d is %d ticks late\n",
1040 i, (int)(curr_time - h->p[0].key));
1041 p = h->p[0].object ; /* store a copy before heap_extract */
1042 heap_extract(h, NULL); /* need to extract before processing */
1043 if (i == 0)
1044 ready_event(p, &head, &tail) ;
1045 else if (i == 1) {
1046 struct dn_pipe *pipe = p;
1047 if (pipe->if_name[0] != '\0')
1048 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1049 pipe->if_name);
1050 else
1051 ready_event_wfq(p, &head, &tail) ;
1052 } else {
1053 transmit_event(p, &head, &tail);
1054 }
1055 }
1056 }
1057 /* sweep pipes trying to expire idle flow_queues */
1058 for (i = 0; i < HASHSIZE; i++)
1059 SLIST_FOREACH(pe, &pipehash[i], next)
1060 if (pe->idle_heap.elements > 0 &&
1061 DN_KEY_LT(pe->idle_heap.p[0].key, pe->V) ) {
1062 struct dn_flow_queue *q = pe->idle_heap.p[0].object ;
1063
1064 heap_extract(&(pe->idle_heap), NULL);
1065 q->S = q->F + 1 ; /* mark timestamp as invalid */
1066 pe->sum -= q->fs->weight ;
1067 }
1068
1069 /* check the heaps to see if there's still stuff in there, and
1070 * only set the timer if there are packets to process
1071 */
1072 timer_enabled = 0;
1073 for (i=0; i < 3 ; i++) {
1074 h = heaps[i];
1075 if (h->elements > 0) { // set the timer
1076 ts.tv_sec = 0;
1077 ts.tv_nsec = 1 * 1000000; // 1ms
1078 timer_enabled = 1;
1079 bsd_timeout(dummynet, NULL, &ts);
1080 break;
1081 }
1082 }
1083
1084 if (head != NULL)
1085 serialize++;
1086
1087 lck_mtx_unlock(dn_mutex);
1088
1089 /* Send out the de-queued list of ready-to-send packets */
1090 if (head != NULL) {
1091 dummynet_send(head);
1092 lck_mtx_lock(dn_mutex);
1093 serialize--;
1094 lck_mtx_unlock(dn_mutex);
1095 }
1096 }
1097
1098
1099 static void
1100 dummynet_send(struct mbuf *m)
1101 {
1102 struct dn_pkt_tag *pkt;
1103 struct mbuf *n;
1104
1105 for (; m != NULL; m = n) {
1106 n = m->m_nextpkt;
1107 m->m_nextpkt = NULL;
1108 pkt = dn_tag_get(m);
1109
1110 DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
1111 (uint64_t)VM_KERNEL_ADDRPERM(m), pkt->dn_dir,
1112 pkt->dn_flags));
1113
1114 switch (pkt->dn_dir) {
1115 case DN_TO_IP_OUT: {
1116 struct route tmp_rt;
1117
1118 /* route is already in the packet's dn_ro */
1119 bzero(&tmp_rt, sizeof (tmp_rt));
1120
1121 /* Force IP_RAWOUTPUT as the IP header is fully formed */
1122 pkt->dn_flags |= IP_RAWOUTPUT | IP_FORWARDING;
1123 (void)ip_output(m, NULL, &tmp_rt, pkt->dn_flags, NULL, NULL);
1124 ROUTE_RELEASE(&tmp_rt);
1125 break ;
1126 }
1127 case DN_TO_IP_IN :
1128 proto_inject(PF_INET, m);
1129 break ;
1130 #ifdef INET6
1131 case DN_TO_IP6_OUT: {
1132 /* routes already in the packet's dn_{ro6,pmtu} */
1133 ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
1134 break;
1135 }
1136 case DN_TO_IP6_IN:
1137 proto_inject(PF_INET6, m);
1138 break;
1139 #endif /* INET6 */
1140 default:
1141 printf("dummynet: bad switch %d!\n", pkt->dn_dir);
1142 m_freem(m);
1143 break ;
1144 }
1145 }
1146 }
1147
1148
1149
1150 /*
1151 * called by an interface when tx_rdy occurs.
1152 */
1153 int
1154 if_tx_rdy(struct ifnet *ifp)
1155 {
1156 struct dn_pipe *p;
1157 struct mbuf *head = NULL, *tail = NULL;
1158 int i;
1159
1160 lck_mtx_lock(dn_mutex);
1161
1162 for (i = 0; i < HASHSIZE; i++)
1163 SLIST_FOREACH(p, &pipehash[i], next)
1164 if (p->ifp == ifp)
1165 break ;
1166 if (p == NULL) {
1167 char buf[32];
1168 snprintf(buf, sizeof(buf), "%s", if_name(ifp));
1169 for (i = 0; i < HASHSIZE; i++)
1170 SLIST_FOREACH(p, &pipehash[i], next)
1171 if (!strcmp(p->if_name, buf) ) {
1172 p->ifp = ifp ;
1173 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf));
1174 break ;
1175 }
1176 }
1177 if (p != NULL) {
1178 DPRINTF(("dummynet: ++ tx rdy from %s - qlen %d\n", if_name(ifp),
1179 IFCQ_LEN(&ifp->if_snd)));
1180 p->numbytes = 0 ; /* mark ready for I/O */
1181 ready_event_wfq(p, &head, &tail);
1182 }
1183
1184 if (head != NULL) {
1185 serialize++;
1186 }
1187
1188 lck_mtx_unlock(dn_mutex);
1189
1190 /* Send out the de-queued list of ready-to-send packets */
1191 if (head != NULL) {
1192 dummynet_send(head);
1193 lck_mtx_lock(dn_mutex);
1194 serialize--;
1195 lck_mtx_unlock(dn_mutex);
1196 }
1197 return 0;
1198 }
1199
1200 /*
1201 * Unconditionally expire empty queues in case of shortage.
1202 * Returns the number of queues freed.
1203 */
1204 static int
1205 expire_queues(struct dn_flow_set *fs)
1206 {
1207 struct dn_flow_queue *q, *prev ;
1208 int i, initial_elements = fs->rq_elements ;
1209 struct timeval timenow;
1210
1211 /* reviewed for getmicrotime usage */
1212 getmicrotime(&timenow);
1213
1214 if (fs->last_expired == timenow.tv_sec)
1215 return 0 ;
1216 fs->last_expired = timenow.tv_sec ;
1217 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
1218 for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
1219 if (q->head != NULL || q->S != q->F+1) {
1220 prev = q ;
1221 q = q->next ;
1222 } else { /* entry is idle, expire it */
1223 struct dn_flow_queue *old_q = q ;
1224
1225 if (prev != NULL)
1226 prev->next = q = q->next ;
1227 else
1228 fs->rq[i] = q = q->next ;
1229 fs->rq_elements-- ;
1230 FREE(old_q, M_DUMMYNET);
1231 }
1232 return initial_elements - fs->rq_elements ;
1233 }
1234
1235 /*
1236 * If room, create a new queue and put at head of slot i;
1237 * otherwise, create or use the default queue.
1238 */
1239 static struct dn_flow_queue *
1240 create_queue(struct dn_flow_set *fs, int i)
1241 {
1242 struct dn_flow_queue *q ;
1243
1244 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
1245 expire_queues(fs) == 0) {
1246 /*
1247 * No way to get room, use or create overflow queue.
1248 */
1249 i = fs->rq_size ;
1250 if ( fs->rq[i] != NULL )
1251 return fs->rq[i] ;
1252 }
1253 q = _MALLOC(sizeof(*q), M_DUMMYNET, M_DONTWAIT | M_ZERO);
1254 if (q == NULL) {
1255 printf("dummynet: sorry, cannot allocate queue for new flow\n");
1256 return NULL ;
1257 }
1258 q->fs = fs ;
1259 q->hash_slot = i ;
1260 q->next = fs->rq[i] ;
1261 q->S = q->F + 1; /* hack - mark timestamp as invalid */
1262 fs->rq[i] = q ;
1263 fs->rq_elements++ ;
1264 return q ;
1265 }
1266
1267 /*
1268 * Given a flow_set and a pkt in last_pkt, find a matching queue
1269 * after appropriate masking. The queue is moved to front
1270 * so that further searches take less time.
1271 */
1272 static struct dn_flow_queue *
1273 find_queue(struct dn_flow_set *fs, struct ip_flow_id *id)
1274 {
1275 int i = 0 ; /* we need i and q for new allocations */
1276 struct dn_flow_queue *q, *prev;
1277 int is_v6 = IS_IP6_FLOW_ID(id);
1278
1279 if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
1280 q = fs->rq[0] ;
1281 else {
1282 /* first, do the masking, then hash */
1283 id->dst_port &= fs->flow_mask.dst_port ;
1284 id->src_port &= fs->flow_mask.src_port ;
1285 id->proto &= fs->flow_mask.proto ;
1286 id->flags = 0 ; /* we don't care about this one */
1287 if (is_v6) {
1288 APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
1289 APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
1290 id->flow_id6 &= fs->flow_mask.flow_id6;
1291
1292 i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
1293 ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
1294 ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
1295 ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
1296
1297 ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
1298 ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
1299 ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
1300 ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
1301
1302 ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
1303 ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
1304 ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
1305 ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
1306
1307 ((id->src_ip6.__u6_addr.__u6_addr32[0] >> 16) & 0xffff)^
1308 ((id->src_ip6.__u6_addr.__u6_addr32[1] >> 16) & 0xffff)^
1309 ((id->src_ip6.__u6_addr.__u6_addr32[2] >> 16) & 0xffff)^
1310 ((id->src_ip6.__u6_addr.__u6_addr32[3] >> 16) & 0xffff)^
1311
1312 (id->dst_port << 1) ^ (id->src_port) ^
1313 (id->proto ) ^
1314 (id->flow_id6);
1315 } else {
1316 id->dst_ip &= fs->flow_mask.dst_ip ;
1317 id->src_ip &= fs->flow_mask.src_ip ;
1318
1319 i = ( (id->dst_ip) & 0xffff ) ^
1320 ( (id->dst_ip >> 15) & 0xffff ) ^
1321 ( (id->src_ip << 1) & 0xffff ) ^
1322 ( (id->src_ip >> 16 ) & 0xffff ) ^
1323 (id->dst_port << 1) ^ (id->src_port) ^
1324 (id->proto );
1325 }
1326 i = i % fs->rq_size ;
1327 /* finally, scan the current list for a match */
1328 searches++ ;
1329 for (prev=NULL, q = fs->rq[i] ; q ; ) {
1330 search_steps++;
1331 if (is_v6 &&
1332 IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
1333 IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
1334 id->dst_port == q->id.dst_port &&
1335 id->src_port == q->id.src_port &&
1336 id->proto == q->id.proto &&
1337 id->flags == q->id.flags &&
1338 id->flow_id6 == q->id.flow_id6)
1339 break ; /* found */
1340
1341 if (!is_v6 && id->dst_ip == q->id.dst_ip &&
1342 id->src_ip == q->id.src_ip &&
1343 id->dst_port == q->id.dst_port &&
1344 id->src_port == q->id.src_port &&
1345 id->proto == q->id.proto &&
1346 id->flags == q->id.flags)
1347 break ; /* found */
1348
1349 /* No match. Check if we can expire the entry */
1350 if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
1351 /* entry is idle and not in any heap, expire it */
1352 struct dn_flow_queue *old_q = q ;
1353
1354 if (prev != NULL)
1355 prev->next = q = q->next ;
1356 else
1357 fs->rq[i] = q = q->next ;
1358 fs->rq_elements-- ;
1359 FREE(old_q, M_DUMMYNET);
1360 continue ;
1361 }
1362 prev = q ;
1363 q = q->next ;
1364 }
1365 if (q && prev != NULL) { /* found and not in front */
1366 prev->next = q->next ;
1367 q->next = fs->rq[i] ;
1368 fs->rq[i] = q ;
1369 }
1370 }
1371 if (q == NULL) { /* no match, need to allocate a new entry */
1372 q = create_queue(fs, i);
1373 if (q != NULL)
1374 q->id = *id ;
1375 }
1376 return q ;
1377 }
1378
1379 static int
1380 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
1381 {
1382 /*
1383 * RED algorithm
1384 *
1385 * RED calculates the average queue size (avg) using a low-pass filter
1386 * with an exponential weighted (w_q) moving average:
1387 * avg <- (1-w_q) * avg + w_q * q_size
1388 * where q_size is the queue length (measured in bytes or * packets).
1389 *
1390 * If q_size == 0, we compute the idle time for the link, and set
1391 * avg = (1 - w_q)^(idle/s)
1392 * where s is the time needed for transmitting a medium-sized packet.
1393 *
1394 * Now, if avg < min_th the packet is enqueued.
1395 * If avg > max_th the packet is dropped. Otherwise, the packet is
1396 * dropped with probability P function of avg.
1397 *
1398 */
1399
1400 int64_t p_b = 0;
1401 /* queue in bytes or packets ? */
1402 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
1403
1404 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time, q_size));
1405
1406 /* average queue size estimation */
1407 if (q_size != 0) {
1408 /*
1409 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1410 */
1411 int diff = SCALE(q_size) - q->avg;
1412 int64_t v = SCALE_MUL((int64_t) diff, (int64_t) fs->w_q);
1413
1414 q->avg += (int) v;
1415 } else {
1416 /*
1417 * queue is empty, find for how long the queue has been
1418 * empty and use a lookup table for computing
1419 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1420 * (small) packet.
1421 * XXX check wraps...
1422 */
1423 if (q->avg) {
1424 u_int t = (curr_time - q->q_time) / fs->lookup_step;
1425
1426 q->avg = (t < fs->lookup_depth) ?
1427 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
1428 }
1429 }
1430 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
1431
1432 /* should i drop ? */
1433
1434 if (q->avg < fs->min_th) {
1435 q->count = -1;
1436 return 0; /* accept packet ; */
1437 }
1438 if (q->avg >= fs->max_th) { /* average queue >= max threshold */
1439 if (fs->flags_fs & DN_IS_GENTLE_RED) {
1440 /*
1441 * According to Gentle-RED, if avg is greater than max_th the
1442 * packet is dropped with a probability
1443 * p_b = c_3 * avg - c_4
1444 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1445 */
1446 p_b = SCALE_MUL((int64_t) fs->c_3, (int64_t) q->avg) - fs->c_4;
1447 } else {
1448 q->count = -1;
1449 DPRINTF(("dummynet: - drop"));
1450 return 1 ;
1451 }
1452 } else if (q->avg > fs->min_th) {
1453 /*
1454 * we compute p_b using the linear dropping function p_b = c_1 *
1455 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1456 * max_p * min_th / (max_th - min_th)
1457 */
1458 p_b = SCALE_MUL((int64_t) fs->c_1, (int64_t) q->avg) - fs->c_2;
1459 }
1460 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
1461 p_b = (p_b * len) / fs->max_pkt_size;
1462 if (++q->count == 0)
1463 q->random = MY_RANDOM & 0xffff;
1464 else {
1465 /*
1466 * q->count counts packets arrived since last drop, so a greater
1467 * value of q->count means a greater packet drop probability.
1468 */
1469 if (SCALE_MUL(p_b, SCALE((int64_t) q->count)) > q->random) {
1470 q->count = 0;
1471 DPRINTF(("dummynet: - red drop"));
1472 /* after a drop we calculate a new random value */
1473 q->random = MY_RANDOM & 0xffff;
1474 return 1; /* drop */
1475 }
1476 }
1477 /* end of RED algorithm */
1478 return 0 ; /* accept */
1479 }
1480
1481 static __inline
1482 struct dn_flow_set *
1483 locate_flowset(int fs_nr)
1484 {
1485 struct dn_flow_set *fs;
1486 SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
1487 if (fs->fs_nr == fs_nr)
1488 return fs ;
1489
1490 return (NULL);
1491 }
1492
1493 static __inline struct dn_pipe *
1494 locate_pipe(int pipe_nr)
1495 {
1496 struct dn_pipe *pipe;
1497
1498 SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
1499 if (pipe->pipe_nr == pipe_nr)
1500 return (pipe);
1501
1502 return (NULL);
1503 }
1504
1505
1506
1507 /*
1508 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1509 * depending on whether WF2Q or fixed bw is used.
1510 *
1511 * pipe_nr pipe or queue the packet is destined for.
1512 * dir where shall we send the packet after dummynet.
1513 * m the mbuf with the packet
1514 * ifp the 'ifp' parameter from the caller.
1515 * NULL in ip_input, destination interface in ip_output,
1516 * real_dst in bdg_forward
1517 * ro route parameter (only used in ip_output, NULL otherwise)
1518 * dst destination address, only used by ip_output
1519 * rule matching rule, in case of multiple passes
1520 * flags flags from the caller, only used in ip_output
1521 *
1522 */
1523 static int
1524 dummynet_io(struct mbuf *m, int pipe_nr, int dir, struct ip_fw_args *fwa, int client)
1525 {
1526 struct mbuf *head = NULL, *tail = NULL;
1527 struct dn_pkt_tag *pkt;
1528 struct m_tag *mtag;
1529 struct dn_flow_set *fs = NULL;
1530 struct dn_pipe *pipe ;
1531 u_int64_t len = m->m_pkthdr.len ;
1532 struct dn_flow_queue *q = NULL ;
1533 int is_pipe = 0;
1534 struct timespec ts;
1535 struct timeval tv;
1536
1537 DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d client: %d\n",
1538 (uint64_t)VM_KERNEL_ADDRPERM(m), pipe_nr, dir, client));
1539
1540 #if IPFIREWALL
1541 #if IPFW2
1542 if (client == DN_CLIENT_IPFW) {
1543 ipfw_insn *cmd = fwa->fwa_ipfw_rule->cmd + fwa->fwa_ipfw_rule->act_ofs;
1544
1545 if (cmd->opcode == O_LOG)
1546 cmd += F_LEN(cmd);
1547 is_pipe = (cmd->opcode == O_PIPE);
1548 }
1549 #else
1550 if (client == DN_CLIENT_IPFW)
1551 is_pipe = (fwa->fwa_ipfw_rule->fw_flg & IP_FW_F_COMMAND) == IP_FW_F_PIPE;
1552 #endif
1553 #endif /* IPFIREWALL */
1554
1555 #if DUMMYNET
1556 if (client == DN_CLIENT_PF)
1557 is_pipe = fwa->fwa_flags == DN_IS_PIPE ? 1 : 0;
1558 #endif /* DUMMYNET */
1559
1560 pipe_nr &= 0xffff ;
1561
1562 lck_mtx_lock(dn_mutex);
1563
1564 /* make all time measurements in milliseconds (ms) -
1565 * here we convert secs and usecs to msecs (just divide the
1566 * usecs and take the closest whole number).
1567 */
1568 microuptime(&tv);
1569 curr_time = (tv.tv_sec * 1000) + (tv.tv_usec / 1000);
1570
1571 /*
1572 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1573 */
1574 if (is_pipe) {
1575 pipe = locate_pipe(pipe_nr);
1576 if (pipe != NULL)
1577 fs = &(pipe->fs);
1578 } else
1579 fs = locate_flowset(pipe_nr);
1580
1581
1582 if (fs == NULL){
1583 goto dropit ; /* this queue/pipe does not exist! */
1584 }
1585 pipe = fs->pipe ;
1586 if (pipe == NULL) { /* must be a queue, try find a matching pipe */
1587 pipe = locate_pipe(fs->parent_nr);
1588
1589 if (pipe != NULL)
1590 fs->pipe = pipe ;
1591 else {
1592 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1593 fs->parent_nr, fs->fs_nr);
1594 goto dropit ;
1595 }
1596 }
1597 q = find_queue(fs, &(fwa->fwa_id));
1598 if ( q == NULL )
1599 goto dropit ; /* cannot allocate queue */
1600 /*
1601 * update statistics, then check reasons to drop pkt
1602 */
1603 q->tot_bytes += len ;
1604 q->tot_pkts++ ;
1605 if ( fs->plr && (MY_RANDOM < fs->plr) )
1606 goto dropit ; /* random pkt drop */
1607 if ( fs->flags_fs & DN_QSIZE_IS_BYTES) {
1608 if (q->len_bytes > fs->qsize)
1609 goto dropit ; /* queue size overflow */
1610 } else {
1611 if (q->len >= fs->qsize)
1612 goto dropit ; /* queue count overflow */
1613 }
1614 if ( fs->flags_fs & DN_IS_RED && red_drops(fs, q, len) )
1615 goto dropit ;
1616
1617 /* XXX expensive to zero, see if we can remove it*/
1618 mtag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET,
1619 sizeof(struct dn_pkt_tag), M_NOWAIT, m);
1620 if ( mtag == NULL )
1621 goto dropit ; /* cannot allocate packet header */
1622 m_tag_prepend(m, mtag); /* attach to mbuf chain */
1623
1624 pkt = (struct dn_pkt_tag *)(mtag+1);
1625 bzero(pkt, sizeof(struct dn_pkt_tag));
1626 /* ok, i can handle the pkt now... */
1627 /* build and enqueue packet + parameters */
1628 /*
1629 * PF is checked before ipfw so remember ipfw rule only when
1630 * the caller is ipfw. When the caller is PF, fwa_ipfw_rule
1631 * is a fake rule just used for convenience
1632 */
1633 if (client == DN_CLIENT_IPFW)
1634 pkt->dn_ipfw_rule = fwa->fwa_ipfw_rule;
1635 pkt->dn_pf_rule = fwa->fwa_pf_rule;
1636 pkt->dn_dir = dir ;
1637 pkt->dn_client = client;
1638
1639 pkt->dn_ifp = fwa->fwa_oif;
1640 if (dir == DN_TO_IP_OUT) {
1641 /*
1642 * We need to copy *ro because for ICMP pkts (and maybe others)
1643 * the caller passed a pointer into the stack; dst might also be
1644 * a pointer into *ro so it needs to be updated.
1645 */
1646 if (fwa->fwa_ro) {
1647 route_copyout(&pkt->dn_ro, fwa->fwa_ro, sizeof (pkt->dn_ro));
1648 }
1649 if (fwa->fwa_dst) {
1650 if (fwa->fwa_dst == (struct sockaddr_in *)&fwa->fwa_ro->ro_dst) /* dst points into ro */
1651 fwa->fwa_dst = (struct sockaddr_in *)&(pkt->dn_ro.ro_dst) ;
1652
1653 bcopy (fwa->fwa_dst, &pkt->dn_dst, sizeof(pkt->dn_dst));
1654 }
1655 } else if (dir == DN_TO_IP6_OUT) {
1656 if (fwa->fwa_ro6) {
1657 route_copyout((struct route *)&pkt->dn_ro6,
1658 (struct route *)fwa->fwa_ro6, sizeof (pkt->dn_ro6));
1659 }
1660 if (fwa->fwa_ro6_pmtu) {
1661 route_copyout((struct route *)&pkt->dn_ro6_pmtu,
1662 (struct route *)fwa->fwa_ro6_pmtu, sizeof (pkt->dn_ro6_pmtu));
1663 }
1664 if (fwa->fwa_dst6) {
1665 if (fwa->fwa_dst6 == (struct sockaddr_in6 *)&fwa->fwa_ro6->ro_dst) /* dst points into ro */
1666 fwa->fwa_dst6 = (struct sockaddr_in6 *)&(pkt->dn_ro6.ro_dst) ;
1667
1668 bcopy (fwa->fwa_dst6, &pkt->dn_dst6, sizeof(pkt->dn_dst6));
1669 }
1670 pkt->dn_origifp = fwa->fwa_origifp;
1671 pkt->dn_mtu = fwa->fwa_mtu;
1672 pkt->dn_alwaysfrag = fwa->fwa_alwaysfrag;
1673 pkt->dn_unfragpartlen = fwa->fwa_unfragpartlen;
1674 if (fwa->fwa_exthdrs) {
1675 bcopy (fwa->fwa_exthdrs, &pkt->dn_exthdrs, sizeof(pkt->dn_exthdrs));
1676 /*
1677 * Need to zero out the source structure so the mbufs
1678 * won't be freed by ip6_output()
1679 */
1680 bzero(fwa->fwa_exthdrs, sizeof(struct ip6_exthdrs));
1681 }
1682 }
1683 if (dir == DN_TO_IP_OUT || dir == DN_TO_IP6_OUT) {
1684 pkt->dn_flags = fwa->fwa_oflags;
1685 if (fwa->fwa_ipoa != NULL)
1686 pkt->dn_ipoa = *(fwa->fwa_ipoa);
1687 }
1688 if (q->head == NULL)
1689 q->head = m;
1690 else
1691 q->tail->m_nextpkt = m;
1692 q->tail = m;
1693 q->len++;
1694 q->len_bytes += len ;
1695
1696 if ( q->head != m ) /* flow was not idle, we are done */
1697 goto done;
1698 /*
1699 * If we reach this point the flow was previously idle, so we need
1700 * to schedule it. This involves different actions for fixed-rate or
1701 * WF2Q queues.
1702 */
1703 if (is_pipe) {
1704 /*
1705 * Fixed-rate queue: just insert into the ready_heap.
1706 */
1707 dn_key t = 0 ;
1708 if (pipe->bandwidth)
1709 t = SET_TICKS(m, q, pipe);
1710 q->sched_time = curr_time ;
1711 if (t == 0) /* must process it now */
1712 ready_event( q , &head, &tail );
1713 else
1714 heap_insert(&ready_heap, curr_time + t , q );
1715 } else {
1716 /*
1717 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1718 * set S to the virtual time V for the controlling pipe, and update
1719 * the sum of weights for the pipe; otherwise, remove flow from
1720 * idle_heap and set S to max(F,V).
1721 * Second, compute finish time F = S + len/weight.
1722 * Third, if pipe was idle, update V=max(S, V).
1723 * Fourth, count one more backlogged flow.
1724 */
1725 if (DN_KEY_GT(q->S, q->F)) { /* means timestamps are invalid */
1726 q->S = pipe->V ;
1727 pipe->sum += fs->weight ; /* add weight of new queue */
1728 } else {
1729 heap_extract(&(pipe->idle_heap), q);
1730 q->S = MAX64(q->F, pipe->V ) ;
1731 }
1732 q->F = q->S + ( len<<MY_M )/(u_int64_t) fs->weight;
1733
1734 if (pipe->not_eligible_heap.elements == 0 &&
1735 pipe->scheduler_heap.elements == 0)
1736 pipe->V = MAX64 ( q->S, pipe->V );
1737 fs->backlogged++ ;
1738 /*
1739 * Look at eligibility. A flow is not eligibile if S>V (when
1740 * this happens, it means that there is some other flow already
1741 * scheduled for the same pipe, so the scheduler_heap cannot be
1742 * empty). If the flow is not eligible we just store it in the
1743 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1744 * and possibly invoke ready_event_wfq() right now if there is
1745 * leftover credit.
1746 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1747 * and for all flows in not_eligible_heap (NEH), S_i > V .
1748 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1749 * we only need to look into NEH.
1750 */
1751 if (DN_KEY_GT(q->S, pipe->V) ) { /* not eligible */
1752 if (pipe->scheduler_heap.elements == 0)
1753 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1754 heap_insert(&(pipe->not_eligible_heap), q->S, q);
1755 } else {
1756 heap_insert(&(pipe->scheduler_heap), q->F, q);
1757 if (pipe->numbytes >= 0) { /* pipe is idle */
1758 if (pipe->scheduler_heap.elements != 1)
1759 printf("dummynet: OUCH! pipe should have been idle!\n");
1760 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1761 pipe->pipe_nr, (int)(q->F >> MY_M)));
1762 pipe->sched_time = curr_time ;
1763 ready_event_wfq(pipe, &head, &tail);
1764 }
1765 }
1766 }
1767 done:
1768 /* start the timer and set global if not already set */
1769 if (!timer_enabled) {
1770 ts.tv_sec = 0;
1771 ts.tv_nsec = 1 * 1000000; // 1ms
1772 timer_enabled = 1;
1773 bsd_timeout(dummynet, NULL, &ts);
1774 }
1775
1776 lck_mtx_unlock(dn_mutex);
1777
1778 if (head != NULL) {
1779 dummynet_send(head);
1780 }
1781
1782 return 0;
1783
1784 dropit:
1785 if (q)
1786 q->drops++ ;
1787 lck_mtx_unlock(dn_mutex);
1788 m_freem(m);
1789 return ( (fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
1790 }
1791
1792 /*
1793 * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1794 * Doing this would probably save us the initial bzero of dn_pkt
1795 */
1796 #define DN_FREE_PKT(_m) do { \
1797 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1798 if (tag) { \
1799 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1800 ROUTE_RELEASE(&n->dn_ro); \
1801 } \
1802 m_tag_delete(_m, tag); \
1803 m_freem(_m); \
1804 } while (0)
1805
1806 /*
1807 * Dispose all packets and flow_queues on a flow_set.
1808 * If all=1, also remove red lookup table and other storage,
1809 * including the descriptor itself.
1810 * For the one in dn_pipe MUST also cleanup ready_heap...
1811 */
1812 static void
1813 purge_flow_set(struct dn_flow_set *fs, int all)
1814 {
1815 struct dn_flow_queue *q, *qn ;
1816 int i ;
1817
1818 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
1819
1820 for (i = 0 ; i <= fs->rq_size ; i++ ) {
1821 for (q = fs->rq[i] ; q ; q = qn ) {
1822 struct mbuf *m, *mnext;
1823
1824 mnext = q->head;
1825 while ((m = mnext) != NULL) {
1826 mnext = m->m_nextpkt;
1827 DN_FREE_PKT(m);
1828 }
1829 qn = q->next ;
1830 FREE(q, M_DUMMYNET);
1831 }
1832 fs->rq[i] = NULL ;
1833 }
1834 fs->rq_elements = 0 ;
1835 if (all) {
1836 /* RED - free lookup table */
1837 if (fs->w_q_lookup)
1838 FREE(fs->w_q_lookup, M_DUMMYNET);
1839 if (fs->rq)
1840 FREE(fs->rq, M_DUMMYNET);
1841 /* if this fs is not part of a pipe, free it */
1842 if (fs->pipe && fs != &(fs->pipe->fs) )
1843 FREE(fs, M_DUMMYNET);
1844 }
1845 }
1846
1847 /*
1848 * Dispose all packets queued on a pipe (not a flow_set).
1849 * Also free all resources associated to a pipe, which is about
1850 * to be deleted.
1851 */
1852 static void
1853 purge_pipe(struct dn_pipe *pipe)
1854 {
1855 struct mbuf *m, *mnext;
1856
1857 purge_flow_set( &(pipe->fs), 1 );
1858
1859 mnext = pipe->head;
1860 while ((m = mnext) != NULL) {
1861 mnext = m->m_nextpkt;
1862 DN_FREE_PKT(m);
1863 }
1864
1865 heap_free( &(pipe->scheduler_heap) );
1866 heap_free( &(pipe->not_eligible_heap) );
1867 heap_free( &(pipe->idle_heap) );
1868 }
1869
1870 /*
1871 * Delete all pipes and heaps returning memory. Must also
1872 * remove references from all ipfw rules to all pipes.
1873 */
1874 static void
1875 dummynet_flush(void)
1876 {
1877 struct dn_pipe *pipe, *pipe1;
1878 struct dn_flow_set *fs, *fs1;
1879 int i;
1880
1881 lck_mtx_lock(dn_mutex);
1882
1883 #if IPFW2
1884 /* remove all references to pipes ...*/
1885 flush_pipe_ptrs(NULL);
1886 #endif /* IPFW2 */
1887
1888 /* Free heaps so we don't have unwanted events. */
1889 heap_free(&ready_heap);
1890 heap_free(&wfq_ready_heap);
1891 heap_free(&extract_heap);
1892
1893 /*
1894 * Now purge all queued pkts and delete all pipes.
1895 *
1896 * XXXGL: can we merge the for(;;) cycles into one or not?
1897 */
1898 for (i = 0; i < HASHSIZE; i++)
1899 SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
1900 SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
1901 purge_flow_set(fs, 1);
1902 }
1903 for (i = 0; i < HASHSIZE; i++)
1904 SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
1905 SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
1906 purge_pipe(pipe);
1907 FREE(pipe, M_DUMMYNET);
1908 }
1909 lck_mtx_unlock(dn_mutex);
1910 }
1911
1912
1913 static void
1914 dn_ipfw_rule_delete_fs(struct dn_flow_set *fs, void *r)
1915 {
1916 int i ;
1917 struct dn_flow_queue *q ;
1918 struct mbuf *m ;
1919
1920 for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
1921 for (q = fs->rq[i] ; q ; q = q->next )
1922 for (m = q->head ; m ; m = m->m_nextpkt ) {
1923 struct dn_pkt_tag *pkt = dn_tag_get(m) ;
1924 if (pkt->dn_ipfw_rule == r)
1925 pkt->dn_ipfw_rule = &default_rule ;
1926 }
1927 }
1928 /*
1929 * when a firewall rule is deleted, scan all queues and remove the flow-id
1930 * from packets matching this rule.
1931 */
1932 void
1933 dn_ipfw_rule_delete(void *r)
1934 {
1935 struct dn_pipe *p ;
1936 struct dn_flow_set *fs ;
1937 struct dn_pkt_tag *pkt ;
1938 struct mbuf *m ;
1939 int i;
1940
1941 lck_mtx_lock(dn_mutex);
1942
1943 /*
1944 * If the rule references a queue (dn_flow_set), then scan
1945 * the flow set, otherwise scan pipes. Should do either, but doing
1946 * both does not harm.
1947 */
1948 for (i = 0; i < HASHSIZE; i++)
1949 SLIST_FOREACH(fs, &flowsethash[i], next)
1950 dn_ipfw_rule_delete_fs(fs, r);
1951
1952 for (i = 0; i < HASHSIZE; i++)
1953 SLIST_FOREACH(p, &pipehash[i], next) {
1954 fs = &(p->fs);
1955 dn_ipfw_rule_delete_fs(fs, r);
1956 for (m = p->head ; m ; m = m->m_nextpkt ) {
1957 pkt = dn_tag_get(m);
1958 if (pkt->dn_ipfw_rule == r)
1959 pkt->dn_ipfw_rule = &default_rule;
1960 }
1961 }
1962 lck_mtx_unlock(dn_mutex);
1963 }
1964
1965 /*
1966 * setup RED parameters
1967 */
1968 static int
1969 config_red(struct dn_flow_set *p, struct dn_flow_set * x)
1970 {
1971 int i;
1972
1973 x->w_q = p->w_q;
1974 x->min_th = SCALE(p->min_th);
1975 x->max_th = SCALE(p->max_th);
1976 x->max_p = p->max_p;
1977
1978 x->c_1 = p->max_p / (p->max_th - p->min_th);
1979 x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
1980 if (x->flags_fs & DN_IS_GENTLE_RED) {
1981 x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
1982 x->c_4 = (SCALE(1) - 2 * p->max_p);
1983 }
1984
1985 /* if the lookup table already exist, free and create it again */
1986 if (x->w_q_lookup) {
1987 FREE(x->w_q_lookup, M_DUMMYNET);
1988 x->w_q_lookup = NULL ;
1989 }
1990 if (red_lookup_depth == 0) {
1991 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1992 FREE(x, M_DUMMYNET);
1993 return EINVAL;
1994 }
1995 x->lookup_depth = red_lookup_depth;
1996 x->w_q_lookup = (u_int *) _MALLOC(x->lookup_depth * sizeof(int),
1997 M_DUMMYNET, M_DONTWAIT);
1998 if (x->w_q_lookup == NULL) {
1999 printf("dummynet: sorry, cannot allocate red lookup table\n");
2000 FREE(x, M_DUMMYNET);
2001 return ENOSPC;
2002 }
2003
2004 /* fill the lookup table with (1 - w_q)^x */
2005 x->lookup_step = p->lookup_step ;
2006 x->lookup_weight = p->lookup_weight ;
2007 x->w_q_lookup[0] = SCALE(1) - x->w_q;
2008 for (i = 1; i < x->lookup_depth; i++)
2009 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
2010 if (red_avg_pkt_size < 1)
2011 red_avg_pkt_size = 512 ;
2012 x->avg_pkt_size = red_avg_pkt_size ;
2013 if (red_max_pkt_size < 1)
2014 red_max_pkt_size = 1500 ;
2015 x->max_pkt_size = red_max_pkt_size ;
2016 return 0 ;
2017 }
2018
2019 static int
2020 alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
2021 {
2022 if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
2023 int l = pfs->rq_size;
2024
2025 if (l == 0)
2026 l = dn_hash_size;
2027 if (l < 4)
2028 l = 4;
2029 else if (l > DN_MAX_HASH_SIZE)
2030 l = DN_MAX_HASH_SIZE;
2031 x->rq_size = l;
2032 } else /* one is enough for null mask */
2033 x->rq_size = 1;
2034 x->rq = _MALLOC((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
2035 M_DUMMYNET, M_DONTWAIT | M_ZERO);
2036 if (x->rq == NULL) {
2037 printf("dummynet: sorry, cannot allocate queue\n");
2038 return ENOSPC;
2039 }
2040 x->rq_elements = 0;
2041 return 0 ;
2042 }
2043
2044 static void
2045 set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
2046 {
2047 x->flags_fs = src->flags_fs;
2048 x->qsize = src->qsize;
2049 x->plr = src->plr;
2050 x->flow_mask = src->flow_mask;
2051 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
2052 if (x->qsize > 1024*1024)
2053 x->qsize = 1024*1024 ;
2054 } else {
2055 if (x->qsize == 0)
2056 x->qsize = 50 ;
2057 if (x->qsize > 100)
2058 x->qsize = 50 ;
2059 }
2060 /* configuring RED */
2061 if ( x->flags_fs & DN_IS_RED )
2062 config_red(src, x) ; /* XXX should check errors */
2063 }
2064
2065 /*
2066 * setup pipe or queue parameters.
2067 */
2068
2069 static int
2070 config_pipe(struct dn_pipe *p)
2071 {
2072 int i, r;
2073 struct dn_flow_set *pfs = &(p->fs);
2074 struct dn_flow_queue *q;
2075
2076 /*
2077 * The config program passes parameters as follows:
2078 * bw = bits/second (0 means no limits),
2079 * delay = ms, must be translated into ticks.
2080 * qsize = slots/bytes
2081 */
2082 p->delay = ( p->delay * (hz*10) ) / 1000 ;
2083 /* We need either a pipe number or a flow_set number */
2084 if (p->pipe_nr == 0 && pfs->fs_nr == 0)
2085 return EINVAL ;
2086 if (p->pipe_nr != 0 && pfs->fs_nr != 0)
2087 return EINVAL ;
2088 if (p->pipe_nr != 0) { /* this is a pipe */
2089 struct dn_pipe *x, *b;
2090
2091 lck_mtx_lock(dn_mutex);
2092
2093 /* locate pipe */
2094 b = locate_pipe(p->pipe_nr);
2095
2096 if (b == NULL || b->pipe_nr != p->pipe_nr) { /* new pipe */
2097 x = _MALLOC(sizeof(struct dn_pipe), M_DUMMYNET, M_DONTWAIT | M_ZERO) ;
2098 if (x == NULL) {
2099 lck_mtx_unlock(dn_mutex);
2100 printf("dummynet: no memory for new pipe\n");
2101 return ENOSPC;
2102 }
2103 x->pipe_nr = p->pipe_nr;
2104 x->fs.pipe = x ;
2105 /* idle_heap is the only one from which we extract from the middle.
2106 */
2107 x->idle_heap.size = x->idle_heap.elements = 0 ;
2108 x->idle_heap.offset=offsetof(struct dn_flow_queue, heap_pos);
2109 } else {
2110 x = b;
2111 /* Flush accumulated credit for all queues */
2112 for (i = 0; i <= x->fs.rq_size; i++)
2113 for (q = x->fs.rq[i]; q; q = q->next)
2114 q->numbytes = 0;
2115 }
2116
2117 x->bandwidth = p->bandwidth ;
2118 x->numbytes = 0; /* just in case... */
2119 bcopy(p->if_name, x->if_name, sizeof(p->if_name) );
2120 x->ifp = NULL ; /* reset interface ptr */
2121 x->delay = p->delay ;
2122 set_fs_parms(&(x->fs), pfs);
2123
2124
2125 if ( x->fs.rq == NULL ) { /* a new pipe */
2126 r = alloc_hash(&(x->fs), pfs) ;
2127 if (r) {
2128 lck_mtx_unlock(dn_mutex);
2129 FREE(x, M_DUMMYNET);
2130 return r ;
2131 }
2132 SLIST_INSERT_HEAD(&pipehash[HASH(x->pipe_nr)],
2133 x, next);
2134 }
2135 lck_mtx_unlock(dn_mutex);
2136 } else { /* config queue */
2137 struct dn_flow_set *x, *b ;
2138
2139 lck_mtx_lock(dn_mutex);
2140 /* locate flow_set */
2141 b = locate_flowset(pfs->fs_nr);
2142
2143 if (b == NULL || b->fs_nr != pfs->fs_nr) { /* new */
2144 if (pfs->parent_nr == 0) { /* need link to a pipe */
2145 lck_mtx_unlock(dn_mutex);
2146 return EINVAL ;
2147 }
2148 x = _MALLOC(sizeof(struct dn_flow_set), M_DUMMYNET, M_DONTWAIT | M_ZERO);
2149 if (x == NULL) {
2150 lck_mtx_unlock(dn_mutex);
2151 printf("dummynet: no memory for new flow_set\n");
2152 return ENOSPC;
2153 }
2154 x->fs_nr = pfs->fs_nr;
2155 x->parent_nr = pfs->parent_nr;
2156 x->weight = pfs->weight ;
2157 if (x->weight == 0)
2158 x->weight = 1 ;
2159 else if (x->weight > 100)
2160 x->weight = 100 ;
2161 } else {
2162 /* Change parent pipe not allowed; must delete and recreate */
2163 if (pfs->parent_nr != 0 && b->parent_nr != pfs->parent_nr) {
2164 lck_mtx_unlock(dn_mutex);
2165 return EINVAL ;
2166 }
2167 x = b;
2168 }
2169 set_fs_parms(x, pfs);
2170
2171 if ( x->rq == NULL ) { /* a new flow_set */
2172 r = alloc_hash(x, pfs) ;
2173 if (r) {
2174 lck_mtx_unlock(dn_mutex);
2175 FREE(x, M_DUMMYNET);
2176 return r ;
2177 }
2178 SLIST_INSERT_HEAD(&flowsethash[HASH(x->fs_nr)],
2179 x, next);
2180 }
2181 lck_mtx_unlock(dn_mutex);
2182 }
2183 return 0 ;
2184 }
2185
2186 /*
2187 * Helper function to remove from a heap queues which are linked to
2188 * a flow_set about to be deleted.
2189 */
2190 static void
2191 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
2192 {
2193 int i = 0, found = 0 ;
2194 for (; i < h->elements ;)
2195 if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
2196 h->elements-- ;
2197 h->p[i] = h->p[h->elements] ;
2198 found++ ;
2199 } else
2200 i++ ;
2201 if (found)
2202 heapify(h);
2203 }
2204
2205 /*
2206 * helper function to remove a pipe from a heap (can be there at most once)
2207 */
2208 static void
2209 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
2210 {
2211 if (h->elements > 0) {
2212 int i = 0 ;
2213 for (i=0; i < h->elements ; i++ ) {
2214 if (h->p[i].object == p) { /* found it */
2215 h->elements-- ;
2216 h->p[i] = h->p[h->elements] ;
2217 heapify(h);
2218 break ;
2219 }
2220 }
2221 }
2222 }
2223
2224 /*
2225 * drain all queues. Called in case of severe mbuf shortage.
2226 */
2227 void
2228 dummynet_drain(void)
2229 {
2230 struct dn_flow_set *fs;
2231 struct dn_pipe *p;
2232 struct mbuf *m, *mnext;
2233 int i;
2234
2235 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2236
2237 heap_free(&ready_heap);
2238 heap_free(&wfq_ready_heap);
2239 heap_free(&extract_heap);
2240 /* remove all references to this pipe from flow_sets */
2241 for (i = 0; i < HASHSIZE; i++)
2242 SLIST_FOREACH(fs, &flowsethash[i], next)
2243 purge_flow_set(fs, 0);
2244
2245 for (i = 0; i < HASHSIZE; i++)
2246 SLIST_FOREACH(p, &pipehash[i], next) {
2247 purge_flow_set(&(p->fs), 0);
2248
2249 mnext = p->head;
2250 while ((m = mnext) != NULL) {
2251 mnext = m->m_nextpkt;
2252 DN_FREE_PKT(m);
2253 }
2254 p->head = p->tail = NULL ;
2255 }
2256 }
2257
2258 /*
2259 * Fully delete a pipe or a queue, cleaning up associated info.
2260 */
2261 static int
2262 delete_pipe(struct dn_pipe *p)
2263 {
2264 if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
2265 return EINVAL ;
2266 if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
2267 return EINVAL ;
2268 if (p->pipe_nr != 0) { /* this is an old-style pipe */
2269 struct dn_pipe *b;
2270 struct dn_flow_set *fs;
2271 int i;
2272
2273 lck_mtx_lock(dn_mutex);
2274 /* locate pipe */
2275 b = locate_pipe(p->pipe_nr);
2276 if(b == NULL){
2277 lck_mtx_unlock(dn_mutex);
2278 return EINVAL ; /* not found */
2279 }
2280
2281 /* Unlink from list of pipes. */
2282 SLIST_REMOVE(&pipehash[HASH(b->pipe_nr)], b, dn_pipe, next);
2283
2284 #if IPFW2
2285 /* remove references to this pipe from the ip_fw rules. */
2286 flush_pipe_ptrs(&(b->fs));
2287 #endif /* IPFW2 */
2288
2289 /* Remove all references to this pipe from flow_sets. */
2290 for (i = 0; i < HASHSIZE; i++)
2291 SLIST_FOREACH(fs, &flowsethash[i], next)
2292 if (fs->pipe == b) {
2293 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2294 p->pipe_nr, fs->fs_nr);
2295 fs->pipe = NULL ;
2296 purge_flow_set(fs, 0);
2297 }
2298 fs_remove_from_heap(&ready_heap, &(b->fs));
2299
2300 purge_pipe(b); /* remove all data associated to this pipe */
2301 /* remove reference to here from extract_heap and wfq_ready_heap */
2302 pipe_remove_from_heap(&extract_heap, b);
2303 pipe_remove_from_heap(&wfq_ready_heap, b);
2304 lck_mtx_unlock(dn_mutex);
2305
2306 FREE(b, M_DUMMYNET);
2307 } else { /* this is a WF2Q queue (dn_flow_set) */
2308 struct dn_flow_set *b;
2309
2310 lck_mtx_lock(dn_mutex);
2311 /* locate set */
2312 b = locate_flowset(p->fs.fs_nr);
2313 if (b == NULL) {
2314 lck_mtx_unlock(dn_mutex);
2315 return EINVAL ; /* not found */
2316 }
2317
2318 #if IPFW2
2319 /* remove references to this flow_set from the ip_fw rules. */
2320 flush_pipe_ptrs(b);
2321 #endif /* IPFW2 */
2322
2323 /* Unlink from list of flowsets. */
2324 SLIST_REMOVE( &flowsethash[HASH(b->fs_nr)], b, dn_flow_set, next);
2325
2326 if (b->pipe != NULL) {
2327 /* Update total weight on parent pipe and cleanup parent heaps */
2328 b->pipe->sum -= b->weight * b->backlogged ;
2329 fs_remove_from_heap(&(b->pipe->not_eligible_heap), b);
2330 fs_remove_from_heap(&(b->pipe->scheduler_heap), b);
2331 #if 1 /* XXX should i remove from idle_heap as well ? */
2332 fs_remove_from_heap(&(b->pipe->idle_heap), b);
2333 #endif
2334 }
2335 purge_flow_set(b, 1);
2336 lck_mtx_unlock(dn_mutex);
2337 }
2338 return 0 ;
2339 }
2340
2341 /*
2342 * helper function used to copy data from kernel in DUMMYNET_GET
2343 */
2344 static
2345 char* dn_copy_set_32(struct dn_flow_set *set, char *bp)
2346 {
2347 int i, copied = 0 ;
2348 struct dn_flow_queue *q;
2349 struct dn_flow_queue_32 *qp = (struct dn_flow_queue_32 *)bp;
2350
2351 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2352
2353 for (i = 0 ; i <= set->rq_size ; i++)
2354 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2355 if (q->hash_slot != i)
2356 printf("dummynet: ++ at %d: wrong slot (have %d, "
2357 "should be %d)\n", copied, q->hash_slot, i);
2358 if (q->fs != set)
2359 printf("dummynet: ++ at %d: wrong fs ptr "
2360 "(have 0x%llx, should be 0x%llx)\n", i,
2361 (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2362 (uint64_t)VM_KERNEL_ADDRPERM(set));
2363 copied++ ;
2364 cp_queue_to_32_user( q, qp );
2365 /* cleanup pointers */
2366 qp->next = (user32_addr_t)0 ;
2367 qp->head = qp->tail = (user32_addr_t)0 ;
2368 qp->fs = (user32_addr_t)0 ;
2369 }
2370 if (copied != set->rq_elements)
2371 printf("dummynet: ++ wrong count, have %d should be %d\n",
2372 copied, set->rq_elements);
2373 return (char *)qp ;
2374 }
2375
2376 static
2377 char* dn_copy_set_64(struct dn_flow_set *set, char *bp)
2378 {
2379 int i, copied = 0 ;
2380 struct dn_flow_queue *q;
2381 struct dn_flow_queue_64 *qp = (struct dn_flow_queue_64 *)bp;
2382
2383 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2384
2385 for (i = 0 ; i <= set->rq_size ; i++)
2386 for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
2387 if (q->hash_slot != i)
2388 printf("dummynet: ++ at %d: wrong slot (have %d, "
2389 "should be %d)\n", copied, q->hash_slot, i);
2390 if (q->fs != set)
2391 printf("dummynet: ++ at %d: wrong fs ptr "
2392 "(have 0x%llx, should be 0x%llx)\n", i,
2393 (uint64_t)VM_KERNEL_ADDRPERM(q->fs),
2394 (uint64_t)VM_KERNEL_ADDRPERM(set));
2395 copied++ ;
2396 //bcopy(q, qp, sizeof(*q));
2397 cp_queue_to_64_user( q, qp );
2398 /* cleanup pointers */
2399 qp->next = USER_ADDR_NULL ;
2400 qp->head = qp->tail = USER_ADDR_NULL ;
2401 qp->fs = USER_ADDR_NULL ;
2402 }
2403 if (copied != set->rq_elements)
2404 printf("dummynet: ++ wrong count, have %d should be %d\n",
2405 copied, set->rq_elements);
2406 return (char *)qp ;
2407 }
2408
2409 static size_t
2410 dn_calc_size(int is64user)
2411 {
2412 struct dn_flow_set *set ;
2413 struct dn_pipe *p ;
2414 size_t size = 0 ;
2415 size_t pipesize;
2416 size_t queuesize;
2417 size_t setsize;
2418 int i;
2419
2420 lck_mtx_assert(dn_mutex, LCK_MTX_ASSERT_OWNED);
2421 if ( is64user ){
2422 pipesize = sizeof(struct dn_pipe_64);
2423 queuesize = sizeof(struct dn_flow_queue_64);
2424 setsize = sizeof(struct dn_flow_set_64);
2425 }
2426 else {
2427 pipesize = sizeof(struct dn_pipe_32);
2428 queuesize = sizeof( struct dn_flow_queue_32 );
2429 setsize = sizeof(struct dn_flow_set_32);
2430 }
2431 /*
2432 * compute size of data structures: list of pipes and flow_sets.
2433 */
2434 for (i = 0; i < HASHSIZE; i++) {
2435 SLIST_FOREACH(p, &pipehash[i], next)
2436 size += sizeof(*p) +
2437 p->fs.rq_elements * sizeof(struct dn_flow_queue);
2438 SLIST_FOREACH(set, &flowsethash[i], next)
2439 size += sizeof (*set) +
2440 set->rq_elements * sizeof(struct dn_flow_queue);
2441 }
2442 return size;
2443 }
2444
2445 static int
2446 dummynet_get(struct sockopt *sopt)
2447 {
2448 char *buf, *bp=NULL; /* bp is the "copy-pointer" */
2449 size_t size ;
2450 struct dn_flow_set *set ;
2451 struct dn_pipe *p ;
2452 int error=0, i ;
2453 int is64user = 0;
2454
2455 /* XXX lock held too long */
2456 lck_mtx_lock(dn_mutex);
2457 /*
2458 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
2459 * cannot use this flag while holding a mutex.
2460 */
2461 if (proc_is64bit(sopt->sopt_p))
2462 is64user = 1;
2463 for (i = 0; i < 10; i++) {
2464 size = dn_calc_size(is64user);
2465 lck_mtx_unlock(dn_mutex);
2466 buf = _MALLOC(size, M_TEMP, M_WAITOK);
2467 if (buf == NULL)
2468 return ENOBUFS;
2469 lck_mtx_lock(dn_mutex);
2470 if (size == dn_calc_size(is64user))
2471 break;
2472 FREE(buf, M_TEMP);
2473 buf = NULL;
2474 }
2475 if (buf == NULL) {
2476 lck_mtx_unlock(dn_mutex);
2477 return ENOBUFS ;
2478 }
2479
2480
2481 bp = buf;
2482 for (i = 0; i < HASHSIZE; i++)
2483 SLIST_FOREACH(p, &pipehash[i], next) {
2484 /*
2485 * copy pipe descriptor into *bp, convert delay back to ms,
2486 * then copy the flow_set descriptor(s) one at a time.
2487 * After each flow_set, copy the queue descriptor it owns.
2488 */
2489 if ( is64user ){
2490 bp = cp_pipe_to_64_user(p, (struct dn_pipe_64 *)bp);
2491 }
2492 else{
2493 bp = cp_pipe_to_32_user(p, (struct dn_pipe_32 *)bp);
2494 }
2495 }
2496 for (i = 0; i < HASHSIZE; i++)
2497 SLIST_FOREACH(set, &flowsethash[i], next) {
2498 struct dn_flow_set_64 *fs_bp = (struct dn_flow_set_64 *)bp ;
2499 cp_flow_set_to_64_user(set, fs_bp);
2500 /* XXX same hack as above */
2501 fs_bp->next = CAST_DOWN(user64_addr_t, DN_IS_QUEUE);
2502 fs_bp->pipe = USER_ADDR_NULL;
2503 fs_bp->rq = USER_ADDR_NULL ;
2504 bp += sizeof(struct dn_flow_set_64);
2505 bp = dn_copy_set_64( set, bp );
2506 }
2507 lck_mtx_unlock(dn_mutex);
2508
2509 error = sooptcopyout(sopt, buf, size);
2510 FREE(buf, M_TEMP);
2511 return error ;
2512 }
2513
2514 /*
2515 * Handler for the various dummynet socket options (get, flush, config, del)
2516 */
2517 static int
2518 ip_dn_ctl(struct sockopt *sopt)
2519 {
2520 int error = 0 ;
2521 struct dn_pipe *p, tmp_pipe;
2522
2523 /* Disallow sets in really-really secure mode. */
2524 if (sopt->sopt_dir == SOPT_SET && securelevel >= 3)
2525 return (EPERM);
2526
2527 switch (sopt->sopt_name) {
2528 default :
2529 printf("dummynet: -- unknown option %d", sopt->sopt_name);
2530 return EINVAL ;
2531
2532 case IP_DUMMYNET_GET :
2533 error = dummynet_get(sopt);
2534 break ;
2535
2536 case IP_DUMMYNET_FLUSH :
2537 dummynet_flush() ;
2538 break ;
2539
2540 case IP_DUMMYNET_CONFIGURE :
2541 p = &tmp_pipe ;
2542 if (proc_is64bit(sopt->sopt_p))
2543 error = cp_pipe_from_user_64( sopt, p );
2544 else
2545 error = cp_pipe_from_user_32( sopt, p );
2546
2547 if (error)
2548 break ;
2549 error = config_pipe(p);
2550 break ;
2551
2552 case IP_DUMMYNET_DEL : /* remove a pipe or queue */
2553 p = &tmp_pipe ;
2554 if (proc_is64bit(sopt->sopt_p))
2555 error = cp_pipe_from_user_64( sopt, p );
2556 else
2557 error = cp_pipe_from_user_32( sopt, p );
2558 if (error)
2559 break ;
2560
2561 error = delete_pipe(p);
2562 break ;
2563 }
2564 return error ;
2565 }
2566
2567 void
2568 ip_dn_init(void)
2569 {
2570 /* setup locks */
2571 dn_mutex_grp_attr = lck_grp_attr_alloc_init();
2572 dn_mutex_grp = lck_grp_alloc_init("dn", dn_mutex_grp_attr);
2573 dn_mutex_attr = lck_attr_alloc_init();
2574 lck_mtx_init(dn_mutex, dn_mutex_grp, dn_mutex_attr);
2575
2576 ready_heap.size = ready_heap.elements = 0 ;
2577 ready_heap.offset = 0 ;
2578
2579 wfq_ready_heap.size = wfq_ready_heap.elements = 0 ;
2580 wfq_ready_heap.offset = 0 ;
2581
2582 extract_heap.size = extract_heap.elements = 0 ;
2583 extract_heap.offset = 0 ;
2584 ip_dn_ctl_ptr = ip_dn_ctl;
2585 ip_dn_io_ptr = dummynet_io;
2586
2587 bzero(&default_rule, sizeof default_rule);
2588 #if IPFIREWALL
2589 default_rule.act_ofs = 0;
2590 default_rule.rulenum = IPFW_DEFAULT_RULE;
2591 default_rule.cmd_len = 1;
2592 default_rule.set = RESVD_SET;
2593
2594 default_rule.cmd[0].len = 1;
2595 default_rule.cmd[0].opcode =
2596 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
2597 (1) ? O_ACCEPT :
2598 #endif
2599 O_DENY;
2600 #endif
2601 }