2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
73 #include <sys/vnode.h>
74 #include <sys/syslog.h>
75 #include <sys/queue.h>
76 #include <sys/mcache.h>
77 #include <sys/protosw.h>
78 #include <sys/kernel.h>
79 #include <kern/locks.h>
80 #include <kern/zalloc.h>
84 #include <net/route.h>
85 #include <net/ntstat.h>
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/ip6.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/in6_var.h>
95 #include <netinet6/nd6.h>
98 #include <net/if_dl.h>
100 #include <libkern/OSAtomic.h>
101 #include <libkern/OSDebug.h>
103 #include <pexpert/pexpert.h>
106 #include <sys/kauth.h>
110 * Synchronization notes:
112 * Routing entries fall under two locking domains: the global routing table
113 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
114 * resides (statically defined) in the rtentry structure.
116 * The locking domains for routing are defined as follows:
118 * The global routing lock is used to serialize all accesses to the radix
119 * trees defined by rt_tables[], as well as the tree of masks. This includes
120 * lookups, insertions and removals of nodes to/from the respective tree.
121 * It is also used to protect certain fields in the route entry that aren't
122 * often modified and/or require global serialization (more details below.)
124 * The per-route entry lock is used to serialize accesses to several routing
125 * entry fields (more details below.) Acquiring and releasing this lock is
126 * done via RT_LOCK() and RT_UNLOCK() routines.
128 * In cases where both rnh_lock and rt_lock must be held, the former must be
129 * acquired first in order to maintain lock ordering. It is not a requirement
130 * that rnh_lock be acquired first before rt_lock, but in case both must be
131 * acquired in succession, the correct lock ordering must be followed.
133 * The fields of the rtentry structure are protected in the following way:
137 * - Routing table lock (rnh_lock).
139 * rt_parent, rt_mask, rt_llinfo_free, rt_tree_genid
141 * - Set once during creation and never changes; no locks to read.
143 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
145 * - Routing entry lock (rt_lock) for read/write access.
147 * - Some values of rt_flags are either set once at creation time,
148 * or aren't currently used, and thus checking against them can
149 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
150 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
151 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
152 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
154 * rt_key, rt_gateway, rt_ifp, rt_ifa
156 * - Always written/modified with both rnh_lock and rt_lock held.
158 * - May be read freely with rnh_lock held, else must hold rt_lock
159 * for read access; holding both locks for read is also okay.
161 * - In the event rnh_lock is not acquired, or is not possible to be
162 * acquired across the operation, setting RTF_CONDEMNED on a route
163 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
164 * from being modified. This is typically done on a route that
165 * has been chosen for a removal (from the tree) prior to dropping
166 * the rt_lock, so that those values will remain the same until
167 * the route is freed.
169 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
170 * single-threaded, thus exclusive. This flag will also prevent the
171 * route from being looked up via rt_lookup().
175 * - Assumes that 32-bit writes are atomic; no locks.
179 * - Currently unused; no locks.
181 * Operations on a route entry can be described as follows:
183 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
185 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
186 * for duplicates and then adds the entry. rtrequest returns the entry
187 * after bumping up the reference count to 1 (for the caller).
189 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
190 * before returning; it is valid to also bump up the reference count using
191 * RT_ADDREF after the lookup has returned an entry.
193 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
194 * entry but does not decrement the reference count. Removal happens when
195 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
196 * state and it expires. The route is said to be "down" when it is no
197 * longer present in the tree. Freeing the entry will happen on the last
198 * reference release of such a "down" route.
200 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
201 * decrements the reference count, rt_refcnt, atomically on the rtentry.
202 * rt_refcnt is modified only using this routine. The general rule is to
203 * do RT_ADDREF in the function that is passing the entry as an argument,
204 * in order to prevent the entry from being freed by the callee.
207 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
209 extern void kdp_set_gateway_mac(void *gatewaymac
);
211 __private_extern__
struct rtstat rtstat
= { 0, 0, 0, 0, 0 };
212 struct radix_node_head
*rt_tables
[AF_MAX
+1];
214 decl_lck_mtx_data(, rnh_lock_data
); /* global routing tables mutex */
215 lck_mtx_t
*rnh_lock
= &rnh_lock_data
;
216 static lck_attr_t
*rnh_lock_attr
;
217 static lck_grp_t
*rnh_lock_grp
;
218 static lck_grp_attr_t
*rnh_lock_grp_attr
;
220 /* Lock group and attribute for routing entry locks */
221 static lck_attr_t
*rte_mtx_attr
;
222 static lck_grp_t
*rte_mtx_grp
;
223 static lck_grp_attr_t
*rte_mtx_grp_attr
;
225 int rttrash
= 0; /* routes not in table but not freed */
227 unsigned int rte_debug
;
229 /* Possible flags for rte_debug */
230 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
231 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
232 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
234 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
236 static struct zone
*rte_zone
; /* special zone for rtentry */
237 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
238 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
240 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
241 #define RTD_FREED 0xDEADBEEF /* entry is freed */
243 #define MAX_SCOPE_ADDR_STR_LEN (MAX_IPv6_STR_LEN + 6)
246 __private_extern__
unsigned int ctrace_stack_size
= CTRACE_STACK_SIZE
;
247 __private_extern__
unsigned int ctrace_hist_size
= CTRACE_HIST_SIZE
;
250 * Debug variant of rtentry structure.
253 struct rtentry rtd_entry
; /* rtentry */
254 struct rtentry rtd_entry_saved
; /* saved rtentry */
255 uint32_t rtd_inuse
; /* in use pattern */
256 uint16_t rtd_refhold_cnt
; /* # of rtref */
257 uint16_t rtd_refrele_cnt
; /* # of rtunref */
258 uint32_t rtd_lock_cnt
; /* # of locks */
259 uint32_t rtd_unlock_cnt
; /* # of unlocks */
261 * Alloc and free callers.
266 * Circular lists of rtref and rtunref callers.
268 ctrace_t rtd_refhold
[CTRACE_HIST_SIZE
];
269 ctrace_t rtd_refrele
[CTRACE_HIST_SIZE
];
271 * Circular lists of locks and unlocks.
273 ctrace_t rtd_lock
[CTRACE_HIST_SIZE
];
274 ctrace_t rtd_unlock
[CTRACE_HIST_SIZE
];
278 TAILQ_ENTRY(rtentry_dbg
) rtd_trash_link
;
281 /* List of trash route entries protected by rnh_lock */
282 static TAILQ_HEAD(, rtentry_dbg
) rttrash_head
;
284 static void rte_lock_init(struct rtentry
*);
285 static void rte_lock_destroy(struct rtentry
*);
286 static inline struct rtentry
*rte_alloc_debug(void);
287 static inline void rte_free_debug(struct rtentry
*);
288 static inline void rte_lock_debug(struct rtentry_dbg
*);
289 static inline void rte_unlock_debug(struct rtentry_dbg
*);
290 static void rt_maskedcopy(const struct sockaddr
*,
291 struct sockaddr
*, const struct sockaddr
*);
292 static void rtable_init(void **);
293 static inline void rtref_audit(struct rtentry_dbg
*);
294 static inline void rtunref_audit(struct rtentry_dbg
*);
295 static struct rtentry
*rtalloc1_common_locked(struct sockaddr
*, int, uint32_t,
297 static int rtrequest_common_locked(int, struct sockaddr
*,
298 struct sockaddr
*, struct sockaddr
*, int, struct rtentry
**,
300 static struct rtentry
*rtalloc1_locked(struct sockaddr
*, int, uint32_t);
301 static void rtalloc_ign_common_locked(struct route
*, uint32_t, unsigned int);
302 static inline void sin6_set_ifscope(struct sockaddr
*, unsigned int);
303 static inline void sin6_set_embedded_ifscope(struct sockaddr
*, unsigned int);
304 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr
*);
305 static struct sockaddr
*ma_copy(int, struct sockaddr
*,
306 struct sockaddr_storage
*, unsigned int);
307 static struct sockaddr
*sa_trim(struct sockaddr
*, int);
308 static struct radix_node
*node_lookup(struct sockaddr
*, struct sockaddr
*,
310 static struct radix_node
*node_lookup_default(int);
311 static struct rtentry
*rt_lookup_common(boolean_t
, boolean_t
, struct sockaddr
*,
312 struct sockaddr
*, struct radix_node_head
*, unsigned int);
313 static int rn_match_ifscope(struct radix_node
*, void *);
314 static struct ifaddr
*ifa_ifwithroute_common_locked(int,
315 const struct sockaddr
*, const struct sockaddr
*, unsigned int);
316 static struct rtentry
*rte_alloc(void);
317 static void rte_free(struct rtentry
*);
318 static void rtfree_common(struct rtentry
*, boolean_t
);
319 static void rte_if_ref(struct ifnet
*, int);
320 static void rt_set_idleref(struct rtentry
*);
321 static void rt_clear_idleref(struct rtentry
*);
322 static void rt_str4(struct rtentry
*, char *, uint32_t, char *, uint32_t);
324 static void rt_str6(struct rtentry
*, char *, uint32_t, char *, uint32_t);
327 uint32_t route_genid_inet
= 0;
329 uint32_t route_genid_inet6
= 0;
332 #define ASSERT_SINIFSCOPE(sa) { \
333 if ((sa)->sa_family != AF_INET || \
334 (sa)->sa_len < sizeof (struct sockaddr_in)) \
335 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
338 #define ASSERT_SIN6IFSCOPE(sa) { \
339 if ((sa)->sa_family != AF_INET6 || \
340 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
341 panic("%s: bad sockaddr_in6 %p\n", __func__, sa); \
345 * Argument to leaf-matching routine; at present it is scoped routing
346 * specific but can be expanded in future to include other search filters.
348 struct matchleaf_arg
{
349 unsigned int ifscope
; /* interface scope */
353 * For looking up the non-scoped default route (sockaddr instead
354 * of sockaddr_in for convenience).
356 static struct sockaddr sin_def
= {
357 sizeof (struct sockaddr_in
), AF_INET
, { 0, }
360 static struct sockaddr_in6 sin6_def
= {
361 sizeof (struct sockaddr_in6
), AF_INET6
, 0, 0, IN6ADDR_ANY_INIT
, 0
365 * Interface index (scope) of the primary interface; determined at
366 * the time when the default, non-scoped route gets added, changed
367 * or deleted. Protected by rnh_lock.
369 static unsigned int primary_ifscope
= IFSCOPE_NONE
;
370 static unsigned int primary6_ifscope
= IFSCOPE_NONE
;
372 #define INET_DEFAULT(sa) \
373 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
375 #define INET6_DEFAULT(sa) \
376 ((sa)->sa_family == AF_INET6 && \
377 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
379 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
380 #define RT(r) ((struct rtentry *)r)
381 #define RN(r) ((struct radix_node *)r)
382 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
384 unsigned int rt_verbose
= 0;
385 #if (DEVELOPMENT || DEBUG)
386 SYSCTL_DECL(_net_route
);
387 SYSCTL_UINT(_net_route
, OID_AUTO
, verbose
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
389 #endif /* (DEVELOPMENT || DEBUG) */
392 rtable_init(void **table
)
396 domain_proto_mtx_lock_assert_held();
398 TAILQ_FOREACH(dom
, &domains
, dom_entry
) {
399 if (dom
->dom_rtattach
!= NULL
)
400 dom
->dom_rtattach(&table
[dom
->dom_family
],
406 * Called by route_dinit().
414 _CASSERT(offsetof(struct route
, ro_rt
) ==
415 offsetof(struct route_in6
, ro_rt
));
416 _CASSERT(offsetof(struct route
, ro_srcia
) ==
417 offsetof(struct route_in6
, ro_srcia
));
418 _CASSERT(offsetof(struct route
, ro_flags
) ==
419 offsetof(struct route_in6
, ro_flags
));
420 _CASSERT(offsetof(struct route
, ro_dst
) ==
421 offsetof(struct route_in6
, ro_dst
));
424 PE_parse_boot_argn("rte_debug", &rte_debug
, sizeof (rte_debug
));
426 rte_debug
|= RTD_DEBUG
;
428 rnh_lock_grp_attr
= lck_grp_attr_alloc_init();
429 rnh_lock_grp
= lck_grp_alloc_init("route", rnh_lock_grp_attr
);
430 rnh_lock_attr
= lck_attr_alloc_init();
431 lck_mtx_init(rnh_lock
, rnh_lock_grp
, rnh_lock_attr
);
433 rte_mtx_grp_attr
= lck_grp_attr_alloc_init();
434 rte_mtx_grp
= lck_grp_alloc_init(RTE_NAME
, rte_mtx_grp_attr
);
435 rte_mtx_attr
= lck_attr_alloc_init();
437 lck_mtx_lock(rnh_lock
);
438 rn_init(); /* initialize all zeroes, all ones, mask table */
439 lck_mtx_unlock(rnh_lock
);
440 rtable_init((void **)rt_tables
);
442 if (rte_debug
& RTD_DEBUG
)
443 size
= sizeof (struct rtentry_dbg
);
445 size
= sizeof (struct rtentry
);
447 rte_zone
= zinit(size
, RTE_ZONE_MAX
* size
, 0, RTE_ZONE_NAME
);
448 if (rte_zone
== NULL
) {
449 panic("%s: failed allocating rte_zone", __func__
);
452 zone_change(rte_zone
, Z_EXPAND
, TRUE
);
453 zone_change(rte_zone
, Z_CALLERACCT
, FALSE
);
454 zone_change(rte_zone
, Z_NOENCRYPT
, TRUE
);
456 TAILQ_INIT(&rttrash_head
);
460 * Given a route, determine whether or not it is the non-scoped default
461 * route; dst typically comes from rt_key(rt) but may be coming from
462 * a separate place when rt is in the process of being created.
465 rt_primary_default(struct rtentry
*rt
, struct sockaddr
*dst
)
467 return (SA_DEFAULT(dst
) && !(rt
->rt_flags
& RTF_IFSCOPE
));
471 * Set the ifscope of the primary interface; caller holds rnh_lock.
474 set_primary_ifscope(int af
, unsigned int ifscope
)
477 primary_ifscope
= ifscope
;
479 primary6_ifscope
= ifscope
;
483 * Return the ifscope of the primary interface; caller holds rnh_lock.
486 get_primary_ifscope(int af
)
488 return (af
== AF_INET
? primary_ifscope
: primary6_ifscope
);
492 * Set the scope ID of a given a sockaddr_in.
495 sin_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
497 /* Caller must pass in sockaddr_in */
498 ASSERT_SINIFSCOPE(sa
);
500 SINIFSCOPE(sa
)->sin_scope_id
= ifscope
;
504 * Set the scope ID of given a sockaddr_in6.
507 sin6_set_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
509 /* Caller must pass in sockaddr_in6 */
510 ASSERT_SIN6IFSCOPE(sa
);
512 SIN6IFSCOPE(sa
)->sin6_scope_id
= ifscope
;
516 * Given a sockaddr_in, return the scope ID to the caller.
519 sin_get_ifscope(struct sockaddr
*sa
)
521 /* Caller must pass in sockaddr_in */
522 ASSERT_SINIFSCOPE(sa
);
524 return (SINIFSCOPE(sa
)->sin_scope_id
);
528 * Given a sockaddr_in6, return the scope ID to the caller.
531 sin6_get_ifscope(struct sockaddr
*sa
)
533 /* Caller must pass in sockaddr_in6 */
534 ASSERT_SIN6IFSCOPE(sa
);
536 return (SIN6IFSCOPE(sa
)->sin6_scope_id
);
540 sin6_set_embedded_ifscope(struct sockaddr
*sa
, unsigned int ifscope
)
542 /* Caller must pass in sockaddr_in6 */
543 ASSERT_SIN6IFSCOPE(sa
);
544 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa
)->sin6_addr
)));
546 SIN6(sa
)->sin6_addr
.s6_addr16
[1] = htons(ifscope
);
549 static inline unsigned int
550 sin6_get_embedded_ifscope(struct sockaddr
*sa
)
552 /* Caller must pass in sockaddr_in6 */
553 ASSERT_SIN6IFSCOPE(sa
);
555 return (ntohs(SIN6(sa
)->sin6_addr
.s6_addr16
[1]));
559 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
561 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
562 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
563 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
564 * In any case, the effective scope ID value is returned to the caller via
565 * pifscope, if it is non-NULL.
568 sa_copy(struct sockaddr
*src
, struct sockaddr_storage
*dst
,
569 unsigned int *pifscope
)
571 int af
= src
->sa_family
;
572 unsigned int ifscope
= (pifscope
!= NULL
) ? *pifscope
: IFSCOPE_NONE
;
574 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
576 bzero(dst
, sizeof (*dst
));
579 bcopy(src
, dst
, sizeof (struct sockaddr_in
));
580 if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
)
581 sin_set_ifscope(SA(dst
), ifscope
);
583 bcopy(src
, dst
, sizeof (struct sockaddr_in6
));
584 if (pifscope
!= NULL
&&
585 IN6_IS_SCOPE_EMBED(&SIN6(dst
)->sin6_addr
)) {
586 unsigned int eifscope
;
588 * If the address contains the embedded scope ID,
589 * use that as the value for sin6_scope_id as long
590 * the caller doesn't insist on clearing it (by
591 * passing NULL) or setting it.
593 eifscope
= sin6_get_embedded_ifscope(SA(dst
));
594 if (eifscope
!= IFSCOPE_NONE
&& ifscope
== IFSCOPE_NONE
)
596 if (ifscope
!= IFSCOPE_NONE
) {
597 /* Set ifscope from pifscope or eifscope */
598 sin6_set_ifscope(SA(dst
), ifscope
);
600 /* If sin6_scope_id has a value, use that one */
601 ifscope
= sin6_get_ifscope(SA(dst
));
604 * If sin6_scope_id is set but the address doesn't
605 * contain the equivalent embedded value, set it.
607 if (ifscope
!= IFSCOPE_NONE
&& eifscope
!= ifscope
)
608 sin6_set_embedded_ifscope(SA(dst
), ifscope
);
609 } else if (pifscope
== NULL
|| ifscope
!= IFSCOPE_NONE
) {
610 sin6_set_ifscope(SA(dst
), ifscope
);
614 if (pifscope
!= NULL
) {
615 *pifscope
= (af
== AF_INET
) ? sin_get_ifscope(SA(dst
)) :
616 sin6_get_ifscope(SA(dst
));
623 * Copy a mask from src to a dst storage and set scope ID into dst.
625 static struct sockaddr
*
626 ma_copy(int af
, struct sockaddr
*src
, struct sockaddr_storage
*dst
,
627 unsigned int ifscope
)
629 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
631 bzero(dst
, sizeof (*dst
));
632 rt_maskedcopy(src
, SA(dst
), src
);
635 * The length of the mask sockaddr would need to be adjusted
636 * to cover the additional {sin,sin6}_ifscope field; when ifscope
637 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
638 * the destination mask in addition to extending the length
639 * of the sockaddr, as a side effect. This is okay, as any
640 * trailing zeroes would be skipped by rn_addmask prior to
641 * inserting or looking up the mask in the mask tree.
644 SINIFSCOPE(dst
)->sin_scope_id
= ifscope
;
645 SINIFSCOPE(dst
)->sin_len
=
646 offsetof(struct sockaddr_inifscope
, sin_scope_id
) +
647 sizeof (SINIFSCOPE(dst
)->sin_scope_id
);
649 SIN6IFSCOPE(dst
)->sin6_scope_id
= ifscope
;
650 SIN6IFSCOPE(dst
)->sin6_len
=
651 offsetof(struct sockaddr_in6
, sin6_scope_id
) +
652 sizeof (SIN6IFSCOPE(dst
)->sin6_scope_id
);
659 * Trim trailing zeroes on a sockaddr and update its length.
661 static struct sockaddr
*
662 sa_trim(struct sockaddr
*sa
, int skip
)
664 caddr_t cp
, base
= (caddr_t
)sa
+ skip
;
666 if (sa
->sa_len
<= skip
)
669 for (cp
= base
+ (sa
->sa_len
- skip
); cp
> base
&& cp
[-1] == 0; )
672 sa
->sa_len
= (cp
- base
) + skip
;
673 if (sa
->sa_len
< skip
) {
674 /* Must not happen, and if so, panic */
675 panic("%s: broken logic (sa_len %d < skip %d )", __func__
,
678 } else if (sa
->sa_len
== skip
) {
679 /* If we end up with all zeroes, then there's no mask */
687 * Called by rtm_msg{1,2} routines to "scrub" socket address structures of
688 * kernel private information, so that clients of the routing socket will
689 * not be confused by the presence of the information, or the side effect of
690 * the increased length due to that. The source sockaddr is not modified;
691 * instead, the scrubbing happens on the destination sockaddr storage that
692 * is passed in by the caller.
695 * - removing embedded scope identifiers from network mask and destination
696 * IPv4 and IPv6 socket addresses
697 * - optionally removing global scope interface hardware addresses from
698 * link-layer interface addresses when the MAC framework check fails.
701 rtm_scrub(int type
, int idx
, struct sockaddr
*hint
, struct sockaddr
*sa
,
702 void *buf
, uint32_t buflen
, kauth_cred_t
*credp
)
704 struct sockaddr_storage
*ss
= (struct sockaddr_storage
*)buf
;
705 struct sockaddr
*ret
= sa
;
707 VERIFY(buf
!= NULL
&& buflen
>= sizeof (*ss
));
713 * If this is for an AF_INET/AF_INET6 destination address,
714 * call sa_copy() to clear the scope ID field.
716 if (sa
->sa_family
== AF_INET
&&
717 SINIFSCOPE(sa
)->sin_scope_id
!= IFSCOPE_NONE
) {
718 ret
= sa_copy(sa
, ss
, NULL
);
719 } else if (sa
->sa_family
== AF_INET6
&&
720 SIN6IFSCOPE(sa
)->sin6_scope_id
!= IFSCOPE_NONE
) {
721 ret
= sa_copy(sa
, ss
, NULL
);
728 * If this is for a mask, we can't tell whether or not there
729 * is an valid scope ID value, as the span of bytes between
730 * sa_len and the beginning of the mask (offset of sin_addr in
731 * the case of AF_INET, or sin6_addr for AF_INET6) may be
732 * filled with all-ones by rn_addmask(), and hence we cannot
733 * rely on sa_family. Because of this, we use the sa_family
734 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
735 * whether or not the mask is to be treated as one for AF_INET
736 * or AF_INET6. Clearing the scope ID field involves setting
737 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
738 * trailing zeroes from the storage sockaddr, which reverses
739 * what was done earlier by ma_copy() on the source sockaddr.
742 ((af
= hint
->sa_family
) != AF_INET
&& af
!= AF_INET6
))
743 break; /* nothing to do */
745 skip
= (af
== AF_INET
) ?
746 offsetof(struct sockaddr_in
, sin_addr
) :
747 offsetof(struct sockaddr_in6
, sin6_addr
);
749 if (sa
->sa_len
> skip
&& sa
->sa_len
<= sizeof (*ss
)) {
750 bcopy(sa
, ss
, sa
->sa_len
);
752 * Don't use {sin,sin6}_set_ifscope() as sa_family
753 * and sa_len for the netmask might not be set to
754 * the corresponding expected values of the hint.
756 if (hint
->sa_family
== AF_INET
)
757 SINIFSCOPE(ss
)->sin_scope_id
= IFSCOPE_NONE
;
759 SIN6IFSCOPE(ss
)->sin6_scope_id
= IFSCOPE_NONE
;
760 ret
= sa_trim(SA(ss
), skip
);
763 * For AF_INET6 mask, set sa_len appropriately unless
764 * this is requested via systl_dumpentry(), in which
765 * case we return the raw value.
767 if (hint
->sa_family
== AF_INET6
&&
768 type
!= RTM_GET
&& type
!= RTM_GET2
)
769 SA(ret
)->sa_len
= sizeof (struct sockaddr_in6
);
775 * Break if the gateway is not AF_LINK type (indirect routes)
777 * Else, if is, check if it is resolved. If not yet resolved
778 * simply break else scrub the link layer address.
780 if ((sa
->sa_family
!= AF_LINK
) || (SDL(sa
)->sdl_alen
== 0))
785 if (sa
->sa_family
== AF_LINK
&& credp
) {
786 struct sockaddr_dl
*sdl
= SDL(buf
);
790 /* caller should handle worst case: SOCK_MAXADDRLEN */
791 VERIFY(buflen
>= sa
->sa_len
);
793 bcopy(sa
, sdl
, sa
->sa_len
);
794 bytes
= dlil_ifaddr_bytes(sdl
, &size
, credp
);
795 if (bytes
!= CONST_LLADDR(sdl
)) {
796 VERIFY(sdl
->sdl_alen
== size
);
797 bcopy(bytes
, LLADDR(sdl
), size
);
799 ret
= (struct sockaddr
*)sdl
;
811 * Callback leaf-matching routine for rn_matchaddr_args used
812 * for looking up an exact match for a scoped route entry.
815 rn_match_ifscope(struct radix_node
*rn
, void *arg
)
817 struct rtentry
*rt
= (struct rtentry
*)rn
;
818 struct matchleaf_arg
*ma
= arg
;
819 int af
= rt_key(rt
)->sa_family
;
821 if (!(rt
->rt_flags
& RTF_IFSCOPE
) || (af
!= AF_INET
&& af
!= AF_INET6
))
824 return (af
== AF_INET
?
825 (SINIFSCOPE(rt_key(rt
))->sin_scope_id
== ma
->ifscope
) :
826 (SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
== ma
->ifscope
));
830 * Atomically increment route generation counter
833 routegenid_update(void)
835 routegenid_inet_update();
837 routegenid_inet6_update();
842 routegenid_inet_update(void)
844 atomic_add_32(&route_genid_inet
, 1);
849 routegenid_inet6_update(void)
851 atomic_add_32(&route_genid_inet6
, 1);
856 * Packet routing routines.
859 rtalloc(struct route
*ro
)
865 rtalloc_scoped(struct route
*ro
, unsigned int ifscope
)
867 rtalloc_scoped_ign(ro
, 0, ifscope
);
871 rtalloc_ign_common_locked(struct route
*ro
, uint32_t ignore
,
872 unsigned int ifscope
)
876 if ((rt
= ro
->ro_rt
) != NULL
) {
878 if (rt
->rt_ifp
!= NULL
&& !ROUTE_UNUSABLE(ro
)) {
883 ROUTE_RELEASE_LOCKED(ro
); /* rnh_lock already held */
885 ro
->ro_rt
= rtalloc1_common_locked(&ro
->ro_dst
, 1, ignore
, ifscope
);
886 if (ro
->ro_rt
!= NULL
) {
887 RT_GENID_SYNC(ro
->ro_rt
);
888 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
893 rtalloc_ign(struct route
*ro
, uint32_t ignore
)
895 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
896 lck_mtx_lock(rnh_lock
);
897 rtalloc_ign_common_locked(ro
, ignore
, IFSCOPE_NONE
);
898 lck_mtx_unlock(rnh_lock
);
902 rtalloc_scoped_ign(struct route
*ro
, uint32_t ignore
, unsigned int ifscope
)
904 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
905 lck_mtx_lock(rnh_lock
);
906 rtalloc_ign_common_locked(ro
, ignore
, ifscope
);
907 lck_mtx_unlock(rnh_lock
);
910 static struct rtentry
*
911 rtalloc1_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
913 return (rtalloc1_common_locked(dst
, report
, ignflags
, IFSCOPE_NONE
));
917 rtalloc1_scoped_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
918 unsigned int ifscope
)
920 return (rtalloc1_common_locked(dst
, report
, ignflags
, ifscope
));
924 rtalloc1_common_locked(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
925 unsigned int ifscope
)
927 struct radix_node_head
*rnh
= rt_tables
[dst
->sa_family
];
928 struct rtentry
*rt
, *newrt
= NULL
;
929 struct rt_addrinfo info
;
931 int err
= 0, msgtype
= RTM_MISS
;
937 * Find the longest prefix or exact (in the scoped case) address match;
938 * callee adds a reference to entry and checks for root node as well
940 rt
= rt_lookup(FALSE
, dst
, NULL
, rnh
, ifscope
);
946 nflags
= rt
->rt_flags
& ~ignflags
;
948 if (report
&& (nflags
& (RTF_CLONING
| RTF_PRCLONING
))) {
950 * We are apparently adding (report = 0 in delete).
951 * If it requires that it be cloned, do so.
952 * (This implies it wasn't a HOST route.)
954 err
= rtrequest_locked(RTM_RESOLVE
, dst
, NULL
, NULL
, 0, &newrt
);
957 * If the cloning didn't succeed, maybe what we
958 * have from lookup above will do. Return that;
959 * no need to hold another reference since it's
967 * We cloned it; drop the original route found during lookup.
968 * The resulted cloned route (newrt) would now have an extra
969 * reference held during rtrequest.
974 * If the newly created cloned route is a direct host route
975 * then also check if it is to a router or not.
976 * If it is, then set the RTF_ROUTER flag on the host route
979 * XXX It is possible for the default route to be created post
980 * cloned route creation of router's IP.
981 * We can handle that corner case by special handing for RTM_ADD
984 if ((newrt
->rt_flags
& (RTF_HOST
| RTF_LLINFO
)) ==
985 (RTF_HOST
| RTF_LLINFO
)) {
986 struct rtentry
*defrt
= NULL
;
987 struct sockaddr_storage def_key
;
989 bzero(&def_key
, sizeof(def_key
));
990 def_key
.ss_len
= rt_key(newrt
)->sa_len
;
991 def_key
.ss_family
= rt_key(newrt
)->sa_family
;
993 defrt
= rtalloc1_scoped_locked((struct sockaddr
*)&def_key
,
994 0, 0, newrt
->rt_ifp
->if_index
);
997 if (equal(rt_key(newrt
), defrt
->rt_gateway
)) {
998 newrt
->rt_flags
|= RTF_ROUTER
;
1000 rtfree_locked(defrt
);
1004 if ((rt
= newrt
) && (rt
->rt_flags
& RTF_XRESOLVE
)) {
1006 * If the new route specifies it be
1007 * externally resolved, then go do that.
1009 msgtype
= RTM_RESOLVE
;
1017 * Either we hit the root or couldn't find any match,
1018 * Which basically means "cant get there from here"
1020 rtstat
.rts_unreach
++;
1025 * If required, report the failure to the supervising
1027 * For a delete, this is not an error. (report == 0)
1029 bzero((caddr_t
)&info
, sizeof(info
));
1030 info
.rti_info
[RTAX_DST
] = dst
;
1031 rt_missmsg(msgtype
, &info
, 0, err
);
1038 rtalloc1(struct sockaddr
*dst
, int report
, uint32_t ignflags
)
1040 struct rtentry
*entry
;
1041 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1042 lck_mtx_lock(rnh_lock
);
1043 entry
= rtalloc1_locked(dst
, report
, ignflags
);
1044 lck_mtx_unlock(rnh_lock
);
1049 rtalloc1_scoped(struct sockaddr
*dst
, int report
, uint32_t ignflags
,
1050 unsigned int ifscope
)
1052 struct rtentry
*entry
;
1053 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1054 lck_mtx_lock(rnh_lock
);
1055 entry
= rtalloc1_scoped_locked(dst
, report
, ignflags
, ifscope
);
1056 lck_mtx_unlock(rnh_lock
);
1061 * Remove a reference count from an rtentry.
1062 * If the count gets low enough, take it out of the routing table
1065 rtfree_locked(struct rtentry
*rt
)
1067 rtfree_common(rt
, TRUE
);
1071 rtfree_common(struct rtentry
*rt
, boolean_t locked
)
1073 struct radix_node_head
*rnh
;
1075 lck_mtx_assert(rnh_lock
, locked
?
1076 LCK_MTX_ASSERT_OWNED
: LCK_MTX_ASSERT_NOTOWNED
);
1079 * Atomically decrement the reference count and if it reaches 0,
1080 * and there is a close function defined, call the close function.
1083 if (rtunref(rt
) > 0) {
1089 * To avoid violating lock ordering, we must drop rt_lock before
1090 * trying to acquire the global rnh_lock. If we are called with
1091 * rnh_lock held, then we already have exclusive access; otherwise
1092 * we do the lock dance.
1096 * Note that we check it again below after grabbing rnh_lock,
1097 * since it is possible that another thread doing a lookup wins
1098 * the race, grabs the rnh_lock first, and bumps up reference
1099 * count in which case the route should be left alone as it is
1100 * still in use. It's also possible that another thread frees
1101 * the route after we drop rt_lock; to prevent the route from
1102 * being freed, we hold an extra reference.
1104 RT_ADDREF_LOCKED(rt
);
1106 lck_mtx_lock(rnh_lock
);
1108 if (rtunref(rt
) > 0) {
1109 /* We've lost the race, so abort */
1116 * We may be blocked on other lock(s) as part of freeing
1117 * the entry below, so convert from spin to full mutex.
1119 RT_CONVERT_LOCK(rt
);
1121 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1123 /* Negative refcnt must never happen */
1124 if (rt
->rt_refcnt
!= 0) {
1125 panic("rt %p invalid refcnt %d", rt
, rt
->rt_refcnt
);
1128 /* Idle refcnt must have been dropped during rtunref() */
1129 VERIFY(!(rt
->rt_flags
& RTF_IFREF
));
1132 * find the tree for that address family
1133 * Note: in the case of igmp packets, there might not be an rnh
1135 rnh
= rt_tables
[rt_key(rt
)->sa_family
];
1138 * On last reference give the "close method" a chance to cleanup
1139 * private state. This also permits (for IPv4 and IPv6) a chance
1140 * to decide if the routing table entry should be purged immediately
1141 * or at a later time. When an immediate purge is to happen the
1142 * close routine typically issues RTM_DELETE which clears the RTF_UP
1143 * flag on the entry so that the code below reclaims the storage.
1145 if (rnh
!= NULL
&& rnh
->rnh_close
!= NULL
)
1146 rnh
->rnh_close((struct radix_node
*)rt
, rnh
);
1149 * If we are no longer "up" (and ref == 0) then we can free the
1150 * resources associated with the route.
1152 if (!(rt
->rt_flags
& RTF_UP
)) {
1153 struct rtentry
*rt_parent
;
1154 struct ifaddr
*rt_ifa
;
1156 if (rt
->rt_nodes
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1157 panic("rt %p freed while in radix tree\n", rt
);
1161 * the rtentry must have been removed from the routing table
1162 * so it is represented in rttrash; remove that now.
1164 (void) OSDecrementAtomic(&rttrash
);
1165 if (rte_debug
& RTD_DEBUG
) {
1166 TAILQ_REMOVE(&rttrash_head
, (struct rtentry_dbg
*)rt
,
1171 * release references on items we hold them on..
1172 * e.g other routes and ifaddrs.
1174 if ((rt_parent
= rt
->rt_parent
) != NULL
)
1175 rt
->rt_parent
= NULL
;
1177 if ((rt_ifa
= rt
->rt_ifa
) != NULL
)
1181 * Now free any attached link-layer info.
1183 if (rt
->rt_llinfo
!= NULL
) {
1184 if (rt
->rt_llinfo_free
!= NULL
)
1185 (*rt
->rt_llinfo_free
)(rt
->rt_llinfo
);
1187 R_Free(rt
->rt_llinfo
);
1188 rt
->rt_llinfo
= NULL
;
1192 * Route is no longer in the tree and refcnt is 0;
1193 * we have exclusive access, so destroy it.
1197 if (rt_parent
!= NULL
)
1198 rtfree_locked(rt_parent
);
1204 * The key is separately alloc'd so free it (see rt_setgate()).
1205 * This also frees the gateway, as they are always malloc'd
1211 * Free any statistics that may have been allocated
1213 nstat_route_detach(rt
);
1216 * and the rtentry itself of course
1218 rte_lock_destroy(rt
);
1222 * The "close method" has been called, but the route is
1223 * still in the radix tree with zero refcnt, i.e. "up"
1224 * and in the cached state.
1230 lck_mtx_unlock(rnh_lock
);
1234 rtfree(struct rtentry
*rt
)
1236 rtfree_common(rt
, FALSE
);
1240 * Decrements the refcount but does not free the route when
1241 * the refcount reaches zero. Unless you have really good reason,
1242 * use rtfree not rtunref.
1245 rtunref(struct rtentry
*p
)
1247 RT_LOCK_ASSERT_HELD(p
);
1249 if (p
->rt_refcnt
== 0) {
1250 panic("%s(%p) bad refcnt\n", __func__
, p
);
1252 } else if (--p
->rt_refcnt
== 0) {
1254 * Release any idle reference count held on the interface;
1255 * if the route is eligible, still UP and the refcnt becomes
1256 * non-zero at some point in future before it is purged from
1257 * the routing table, rt_set_idleref() will undo this.
1259 rt_clear_idleref(p
);
1262 if (rte_debug
& RTD_DEBUG
)
1263 rtunref_audit((struct rtentry_dbg
*)p
);
1265 /* Return new value */
1266 return (p
->rt_refcnt
);
1270 rtunref_audit(struct rtentry_dbg
*rte
)
1274 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1275 panic("rtunref: on freed rte=%p\n", rte
);
1278 idx
= atomic_add_16_ov(&rte
->rtd_refrele_cnt
, 1) % CTRACE_HIST_SIZE
;
1279 if (rte_debug
& RTD_TRACE
)
1280 ctrace_record(&rte
->rtd_refrele
[idx
]);
1284 * Add a reference count from an rtentry.
1287 rtref(struct rtentry
*p
)
1289 RT_LOCK_ASSERT_HELD(p
);
1291 if (++p
->rt_refcnt
== 0) {
1292 panic("%s(%p) bad refcnt\n", __func__
, p
);
1294 } else if (p
->rt_refcnt
== 1) {
1296 * Hold an idle reference count on the interface,
1297 * if the route is eligible for it.
1302 if (rte_debug
& RTD_DEBUG
)
1303 rtref_audit((struct rtentry_dbg
*)p
);
1307 rtref_audit(struct rtentry_dbg
*rte
)
1311 if (rte
->rtd_inuse
!= RTD_INUSE
) {
1312 panic("rtref_audit: on freed rte=%p\n", rte
);
1315 idx
= atomic_add_16_ov(&rte
->rtd_refhold_cnt
, 1) % CTRACE_HIST_SIZE
;
1316 if (rte_debug
& RTD_TRACE
)
1317 ctrace_record(&rte
->rtd_refhold
[idx
]);
1321 rtsetifa(struct rtentry
*rt
, struct ifaddr
*ifa
)
1323 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1325 RT_LOCK_ASSERT_HELD(rt
);
1327 if (rt
->rt_ifa
== ifa
)
1330 /* Become a regular mutex, just in case */
1331 RT_CONVERT_LOCK(rt
);
1333 /* Release the old ifa */
1335 IFA_REMREF(rt
->rt_ifa
);
1340 /* Take a reference to the ifa */
1342 IFA_ADDREF(rt
->rt_ifa
);
1346 * Force a routing table entry to the specified
1347 * destination to go through the given gateway.
1348 * Normally called as a result of a routing redirect
1349 * message from the network layer.
1352 rtredirect(struct ifnet
*ifp
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1353 struct sockaddr
*netmask
, int flags
, struct sockaddr
*src
,
1354 struct rtentry
**rtp
)
1356 struct rtentry
*rt
= NULL
;
1359 struct rt_addrinfo info
;
1360 struct ifaddr
*ifa
= NULL
;
1361 unsigned int ifscope
= (ifp
!= NULL
) ? ifp
->if_index
: IFSCOPE_NONE
;
1362 struct sockaddr_storage ss
;
1363 int af
= src
->sa_family
;
1365 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
1366 lck_mtx_lock(rnh_lock
);
1369 * Transform src into the internal routing table form for
1370 * comparison against rt_gateway below.
1373 if ((af
== AF_INET
) || (af
== AF_INET6
))
1377 src
= sa_copy(src
, &ss
, &ifscope
);
1380 * Verify the gateway is directly reachable; if scoped routing
1381 * is enabled, verify that it is reachable from the interface
1382 * where the ICMP redirect arrived on.
1384 if ((ifa
= ifa_ifwithnet_scoped(gateway
, ifscope
)) == NULL
) {
1385 error
= ENETUNREACH
;
1389 /* Lookup route to the destination (from the original IP header) */
1390 rt
= rtalloc1_scoped_locked(dst
, 0, RTF_CLONING
|RTF_PRCLONING
, ifscope
);
1395 * If the redirect isn't from our current router for this dst,
1396 * it's either old or wrong. If it redirects us to ourselves,
1397 * we have a routing loop, perhaps as a result of an interface
1398 * going down recently. Holding rnh_lock here prevents the
1399 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1400 * in_ifinit), so okay to access ifa_addr without locking.
1402 if (!(flags
& RTF_DONE
) && rt
!= NULL
&&
1403 (!equal(src
, rt
->rt_gateway
) || !equal(rt
->rt_ifa
->ifa_addr
,
1408 if ((ifa
= ifa_ifwithaddr(gateway
))) {
1411 error
= EHOSTUNREACH
;
1427 * Create a new entry if we just got back a wildcard entry
1428 * or the the lookup failed. This is necessary for hosts
1429 * which use routing redirects generated by smart gateways
1430 * to dynamically build the routing tables.
1432 if ((rt
== NULL
) || (rt_mask(rt
) != NULL
&& rt_mask(rt
)->sa_len
< 2))
1435 * Don't listen to the redirect if it's
1436 * for a route to an interface.
1438 RT_LOCK_ASSERT_HELD(rt
);
1439 if (rt
->rt_flags
& RTF_GATEWAY
) {
1440 if (((rt
->rt_flags
& RTF_HOST
) == 0) && (flags
& RTF_HOST
)) {
1442 * Changing from route to net => route to host.
1443 * Create new route, rather than smashing route
1444 * to net; similar to cloned routes, the newly
1445 * created host route is scoped as well.
1450 flags
|= RTF_GATEWAY
| RTF_DYNAMIC
;
1451 error
= rtrequest_scoped_locked(RTM_ADD
, dst
,
1452 gateway
, netmask
, flags
, NULL
, ifscope
);
1453 stat
= &rtstat
.rts_dynamic
;
1456 * Smash the current notion of the gateway to
1457 * this destination. Should check about netmask!!!
1459 rt
->rt_flags
|= RTF_MODIFIED
;
1460 flags
|= RTF_MODIFIED
;
1461 stat
= &rtstat
.rts_newgateway
;
1463 * add the key and gateway (in one malloc'd chunk).
1465 error
= rt_setgate(rt
, rt_key(rt
), gateway
);
1470 error
= EHOSTUNREACH
;
1474 RT_LOCK_ASSERT_NOTHELD(rt
);
1482 rtstat
.rts_badredirect
++;
1488 routegenid_inet_update();
1490 else if (af
== AF_INET6
)
1491 routegenid_inet6_update();
1494 lck_mtx_unlock(rnh_lock
);
1495 bzero((caddr_t
)&info
, sizeof(info
));
1496 info
.rti_info
[RTAX_DST
] = dst
;
1497 info
.rti_info
[RTAX_GATEWAY
] = gateway
;
1498 info
.rti_info
[RTAX_NETMASK
] = netmask
;
1499 info
.rti_info
[RTAX_AUTHOR
] = src
;
1500 rt_missmsg(RTM_REDIRECT
, &info
, flags
, error
);
1504 * Routing table ioctl interface.
1507 rtioctl(unsigned long req
, caddr_t data
, struct proc
*p
)
1509 #pragma unused(p, req, data)
1516 const struct sockaddr
*dst
,
1517 const struct sockaddr
*gateway
)
1521 lck_mtx_lock(rnh_lock
);
1522 ifa
= ifa_ifwithroute_locked(flags
, dst
, gateway
);
1523 lck_mtx_unlock(rnh_lock
);
1529 ifa_ifwithroute_locked(int flags
, const struct sockaddr
*dst
,
1530 const struct sockaddr
*gateway
)
1532 return (ifa_ifwithroute_common_locked((flags
& ~RTF_IFSCOPE
), dst
,
1533 gateway
, IFSCOPE_NONE
));
1537 ifa_ifwithroute_scoped_locked(int flags
, const struct sockaddr
*dst
,
1538 const struct sockaddr
*gateway
, unsigned int ifscope
)
1540 if (ifscope
!= IFSCOPE_NONE
)
1541 flags
|= RTF_IFSCOPE
;
1543 flags
&= ~RTF_IFSCOPE
;
1545 return (ifa_ifwithroute_common_locked(flags
, dst
, gateway
, ifscope
));
1548 static struct ifaddr
*
1549 ifa_ifwithroute_common_locked(int flags
, const struct sockaddr
*dst
,
1550 const struct sockaddr
*gw
, unsigned int ifscope
)
1552 struct ifaddr
*ifa
= NULL
;
1553 struct rtentry
*rt
= NULL
;
1554 struct sockaddr_storage dst_ss
, gw_ss
;
1556 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1559 * Just in case the sockaddr passed in by the caller
1560 * contains a scope ID, make sure to clear it since
1561 * interface addresses aren't scoped.
1565 ((dst
->sa_family
== AF_INET
) ||
1566 (dst
->sa_family
== AF_INET6
)))
1568 if (dst
!= NULL
&& dst
->sa_family
== AF_INET
)
1570 dst
= sa_copy(SA((uintptr_t)dst
), &dst_ss
, NULL
);
1574 ((gw
->sa_family
== AF_INET
) ||
1575 (gw
->sa_family
== AF_INET6
)))
1577 if (gw
!= NULL
&& gw
->sa_family
== AF_INET
)
1579 gw
= sa_copy(SA((uintptr_t)gw
), &gw_ss
, NULL
);
1581 if (!(flags
& RTF_GATEWAY
)) {
1583 * If we are adding a route to an interface,
1584 * and the interface is a pt to pt link
1585 * we should search for the destination
1586 * as our clue to the interface. Otherwise
1587 * we can use the local address.
1589 if (flags
& RTF_HOST
) {
1590 ifa
= ifa_ifwithdstaddr(dst
);
1593 ifa
= ifa_ifwithaddr_scoped(gw
, ifscope
);
1596 * If we are adding a route to a remote net
1597 * or host, the gateway may still be on the
1598 * other end of a pt to pt link.
1600 ifa
= ifa_ifwithdstaddr(gw
);
1603 ifa
= ifa_ifwithnet_scoped(gw
, ifscope
);
1605 /* Workaround to avoid gcc warning regarding const variable */
1606 rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)dst
,
1612 /* Become a regular mutex */
1613 RT_CONVERT_LOCK(rt
);
1616 RT_REMREF_LOCKED(rt
);
1622 * Holding rnh_lock here prevents the possibility of ifa from
1623 * changing (e.g. in_ifinit), so it is safe to access its
1624 * ifa_addr (here and down below) without locking.
1626 if (ifa
!= NULL
&& ifa
->ifa_addr
->sa_family
!= dst
->sa_family
) {
1627 struct ifaddr
*newifa
;
1628 /* Callee adds reference to newifa upon success */
1629 newifa
= ifaof_ifpforaddr(dst
, ifa
->ifa_ifp
);
1630 if (newifa
!= NULL
) {
1636 * If we are adding a gateway, it is quite possible that the
1637 * routing table has a static entry in place for the gateway,
1638 * that may not agree with info garnered from the interfaces.
1639 * The routing table should carry more precedence than the
1640 * interfaces in this matter. Must be careful not to stomp
1641 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1644 !equal(ifa
->ifa_addr
, (struct sockaddr
*)(size_t)gw
)) &&
1645 (rt
= rtalloc1_scoped_locked((struct sockaddr
*)(size_t)gw
,
1646 0, 0, ifscope
)) != NULL
) {
1652 /* Become a regular mutex */
1653 RT_CONVERT_LOCK(rt
);
1656 RT_REMREF_LOCKED(rt
);
1660 * If an interface scope was specified, the interface index of
1661 * the found ifaddr must be equivalent to that of the scope;
1662 * otherwise there is no match.
1664 if ((flags
& RTF_IFSCOPE
) &&
1665 ifa
!= NULL
&& ifa
->ifa_ifp
->if_index
!= ifscope
) {
1673 static int rt_fixdelete(struct radix_node
*, void *);
1674 static int rt_fixchange(struct radix_node
*, void *);
1677 struct rtentry
*rt0
;
1678 struct radix_node_head
*rnh
;
1682 rtrequest_locked(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
1683 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
1685 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1686 (flags
& ~RTF_IFSCOPE
), ret_nrt
, IFSCOPE_NONE
));
1690 rtrequest_scoped_locked(int req
, struct sockaddr
*dst
,
1691 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1692 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1694 if (ifscope
!= IFSCOPE_NONE
)
1695 flags
|= RTF_IFSCOPE
;
1697 flags
&= ~RTF_IFSCOPE
;
1699 return (rtrequest_common_locked(req
, dst
, gateway
, netmask
,
1700 flags
, ret_nrt
, ifscope
));
1704 * Do appropriate manipulations of a routing tree given all the bits of
1707 * Storing the scope ID in the radix key is an internal job that should be
1708 * left to routines in this module. Callers should specify the scope value
1709 * to the "scoped" variants of route routines instead of manipulating the
1710 * key itself. This is typically done when creating a scoped route, e.g.
1711 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1712 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1713 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1714 * during certain routing socket operations where the search key might be
1715 * derived from the routing message itself, in which case the caller must
1716 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1719 rtrequest_common_locked(int req
, struct sockaddr
*dst0
,
1720 struct sockaddr
*gateway
, struct sockaddr
*netmask
, int flags
,
1721 struct rtentry
**ret_nrt
, unsigned int ifscope
)
1725 struct radix_node
*rn
;
1726 struct radix_node_head
*rnh
;
1727 struct ifaddr
*ifa
= NULL
;
1728 struct sockaddr
*ndst
, *dst
= dst0
;
1729 struct sockaddr_storage ss
, mask
;
1730 struct timeval caltime
;
1731 int af
= dst
->sa_family
;
1732 void (*ifa_rtrequest
)(int, struct rtentry
*, struct sockaddr
*);
1734 #define senderr(x) { error = x; goto bad; }
1736 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
1738 * Find the correct routing tree to use for this Address Family
1740 if ((rnh
= rt_tables
[af
]) == NULL
)
1743 * If we are adding a host route then we don't want to put
1744 * a netmask in the tree
1746 if (flags
& RTF_HOST
)
1750 * If Scoped Routing is enabled, use a local copy of the destination
1751 * address to store the scope ID into. This logic is repeated below
1752 * in the RTM_RESOLVE handler since the caller does not normally
1753 * specify such a flag during a resolve, as well as for the handling
1754 * of IPv4 link-local address; instead, it passes in the route used for
1755 * cloning for which the scope info is derived from. Note also that
1756 * in the case of RTM_DELETE, the address passed in by the caller
1757 * might already contain the scope ID info when it is the key itself,
1758 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1759 * explicitly set is inside route_output() as part of handling a
1760 * routing socket request.
1763 if (req
!= RTM_RESOLVE
&& ((af
== AF_INET
) || (af
== AF_INET6
))) {
1765 if (req
!= RTM_RESOLVE
&& af
== AF_INET
) {
1767 /* Transform dst into the internal routing table form */
1768 dst
= sa_copy(dst
, &ss
, &ifscope
);
1770 /* Transform netmask into the internal routing table form */
1771 if (netmask
!= NULL
)
1772 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1774 if (ifscope
!= IFSCOPE_NONE
)
1775 flags
|= RTF_IFSCOPE
;
1776 } else if ((flags
& RTF_IFSCOPE
) &&
1777 (af
!= AF_INET
&& af
!= AF_INET6
)) {
1781 if (ifscope
== IFSCOPE_NONE
)
1782 flags
&= ~RTF_IFSCOPE
;
1786 struct rtentry
*gwrt
= NULL
;
1788 * Remove the item from the tree and return it.
1789 * Complain if it is not there and do no more processing.
1791 if ((rn
= rnh
->rnh_deladdr(dst
, netmask
, rnh
)) == NULL
)
1793 if (rn
->rn_flags
& (RNF_ACTIVE
| RNF_ROOT
)) {
1794 panic("rtrequest delete");
1797 rt
= (struct rtentry
*)rn
;
1800 rt
->rt_flags
&= ~RTF_UP
;
1802 * Release any idle reference count held on the interface
1803 * as this route is no longer externally visible.
1805 rt_clear_idleref(rt
);
1807 * Take an extra reference to handle the deletion of a route
1808 * entry whose reference count is already 0; e.g. an expiring
1809 * cloned route entry or an entry that was added to the table
1810 * with 0 reference. If the caller is interested in this route,
1811 * we will return it with the reference intact. Otherwise we
1812 * will decrement the reference via rtfree_locked() and then
1813 * possibly deallocate it.
1815 RT_ADDREF_LOCKED(rt
);
1818 * For consistency, in case the caller didn't set the flag.
1820 rt
->rt_flags
|= RTF_CONDEMNED
;
1823 * Clear RTF_ROUTER if it's set.
1825 if (rt
->rt_flags
& RTF_ROUTER
) {
1826 VERIFY(rt
->rt_flags
& RTF_HOST
);
1827 rt
->rt_flags
&= ~RTF_ROUTER
;
1831 * Now search what's left of the subtree for any cloned
1832 * routes which might have been formed from this node.
1834 if ((rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) &&
1837 rnh
->rnh_walktree_from(rnh
, dst
, rt_mask(rt
),
1843 * Remove any external references we may have.
1845 if ((gwrt
= rt
->rt_gwroute
) != NULL
)
1846 rt
->rt_gwroute
= NULL
;
1849 * give the protocol a chance to keep things in sync.
1851 if ((ifa
= rt
->rt_ifa
) != NULL
) {
1853 ifa_rtrequest
= ifa
->ifa_rtrequest
;
1855 if (ifa_rtrequest
!= NULL
)
1856 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
1857 /* keep reference on rt_ifa */
1862 * one more rtentry floating around that is not
1863 * linked to the routing table.
1865 (void) OSIncrementAtomic(&rttrash
);
1866 if (rte_debug
& RTD_DEBUG
) {
1867 TAILQ_INSERT_TAIL(&rttrash_head
,
1868 (struct rtentry_dbg
*)rt
, rtd_trash_link
);
1872 * If this is the (non-scoped) default route, clear
1873 * the interface index used for the primary ifscope.
1875 if (rt_primary_default(rt
, rt_key(rt
))) {
1876 set_primary_ifscope(rt_key(rt
)->sa_family
,
1883 * This might result in another rtentry being freed if
1884 * we held its last reference. Do this after the rtentry
1885 * lock is dropped above, as it could lead to the same
1886 * lock being acquired if gwrt is a clone of rt.
1889 rtfree_locked(gwrt
);
1892 * If the caller wants it, then it can have it,
1893 * but it's up to it to free the rtentry as we won't be
1896 if (ret_nrt
!= NULL
) {
1897 /* Return the route to caller with reference intact */
1900 /* Dereference or deallocate the route */
1904 routegenid_inet_update();
1906 else if (af
== AF_INET6
)
1907 routegenid_inet6_update();
1912 if (ret_nrt
== NULL
|| (rt
= *ret_nrt
) == NULL
)
1915 * According to the UNIX conformance tests, we need to return
1916 * ENETUNREACH when the parent route is RTF_REJECT.
1917 * However, there isn't any point in cloning RTF_REJECT
1918 * routes, so we immediately return an error.
1920 if (rt
->rt_flags
& RTF_REJECT
) {
1921 if (rt
->rt_flags
& RTF_HOST
) {
1922 senderr(EHOSTUNREACH
);
1924 senderr(ENETUNREACH
);
1928 * If cloning, we have the parent route given by the caller
1929 * and will use its rt_gateway, rt_rmx as part of the cloning
1930 * process below. Since rnh_lock is held at this point, the
1931 * parent's rt_ifa and rt_gateway will not change, and its
1932 * relevant rt_flags will not change as well. The only thing
1933 * that could change are the metrics, and thus we hold the
1934 * parent route's rt_lock later on during the actual copying
1939 flags
= rt
->rt_flags
&
1940 ~(RTF_CLONING
| RTF_PRCLONING
| RTF_STATIC
);
1941 flags
|= RTF_WASCLONED
;
1942 gateway
= rt
->rt_gateway
;
1943 if ((netmask
= rt
->rt_genmask
) == NULL
)
1947 if (af
!= AF_INET
&& af
!= AF_INET6
)
1954 * When scoped routing is enabled, cloned entries are
1955 * always scoped according to the interface portion of
1956 * the parent route. The exception to this are IPv4
1957 * link local addresses, or those routes that are cloned
1958 * from a RTF_PROXY route. For the latter, the clone
1959 * gets to keep the RTF_PROXY flag.
1961 if ((af
== AF_INET
&&
1962 IN_LINKLOCAL(ntohl(SIN(dst
)->sin_addr
.s_addr
))) ||
1963 (rt
->rt_flags
& RTF_PROXY
)) {
1964 ifscope
= IFSCOPE_NONE
;
1965 flags
&= ~RTF_IFSCOPE
;
1967 * These types of cloned routes aren't currently
1968 * eligible for idle interface reference counting.
1970 flags
|= RTF_NOIFREF
;
1972 if (flags
& RTF_IFSCOPE
) {
1973 ifscope
= (af
== AF_INET
) ?
1974 sin_get_ifscope(rt_key(rt
)) :
1975 sin6_get_ifscope(rt_key(rt
));
1977 ifscope
= rt
->rt_ifp
->if_index
;
1978 flags
|= RTF_IFSCOPE
;
1980 VERIFY(ifscope
!= IFSCOPE_NONE
);
1984 * Transform dst into the internal routing table form,
1985 * clearing out the scope ID field if ifscope isn't set.
1987 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ?
1990 /* Transform netmask into the internal routing table form */
1991 if (netmask
!= NULL
)
1992 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
1997 if ((flags
& RTF_GATEWAY
) && !gateway
) {
1998 panic("rtrequest: RTF_GATEWAY but no gateway");
2001 if (flags
& RTF_IFSCOPE
) {
2002 ifa
= ifa_ifwithroute_scoped_locked(flags
, dst0
,
2005 ifa
= ifa_ifwithroute_locked(flags
, dst0
, gateway
);
2008 senderr(ENETUNREACH
);
2010 if ((rt
= rte_alloc()) == NULL
)
2012 Bzero(rt
, sizeof(*rt
));
2014 getmicrotime(&caltime
);
2015 rt
->base_calendartime
= caltime
.tv_sec
;
2016 rt
->base_uptime
= net_uptime();
2018 rt
->rt_flags
= RTF_UP
| flags
;
2021 * Point the generation ID to the tree's.
2025 rt
->rt_tree_genid
= &route_genid_inet
;
2029 rt
->rt_tree_genid
= &route_genid_inet6
;
2037 * Add the gateway. Possibly re-malloc-ing the storage for it
2038 * also add the rt_gwroute if possible.
2040 if ((error
= rt_setgate(rt
, dst
, gateway
)) != 0) {
2043 nstat_route_detach(rt
);
2044 rte_lock_destroy(rt
);
2050 * point to the (possibly newly malloc'd) dest address.
2055 * make sure it contains the value we want (masked if needed).
2058 rt_maskedcopy(dst
, ndst
, netmask
);
2060 Bcopy(dst
, ndst
, dst
->sa_len
);
2063 * Note that we now have a reference to the ifa.
2064 * This moved from below so that rnh->rnh_addaddr() can
2065 * examine the ifa and ifa->ifa_ifp if it so desires.
2068 rt
->rt_ifp
= rt
->rt_ifa
->ifa_ifp
;
2070 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
2072 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
, (caddr_t
)netmask
,
2075 struct rtentry
*rt2
;
2077 * Uh-oh, we already have one of these in the tree.
2078 * We do a special hack: if the route that's already
2079 * there was generated by the protocol-cloning
2080 * mechanism, then we just blow it away and retry
2081 * the insertion of the new one.
2083 if (flags
& RTF_IFSCOPE
) {
2084 rt2
= rtalloc1_scoped_locked(dst0
, 0,
2085 RTF_CLONING
| RTF_PRCLONING
, ifscope
);
2087 rt2
= rtalloc1_locked(dst
, 0,
2088 RTF_CLONING
| RTF_PRCLONING
);
2090 if (rt2
&& rt2
->rt_parent
) {
2092 * rnh_lock is held here, so rt_key and
2093 * rt_gateway of rt2 will not change.
2095 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt2
),
2096 rt2
->rt_gateway
, rt_mask(rt2
),
2099 rn
= rnh
->rnh_addaddr((caddr_t
)ndst
,
2100 (caddr_t
)netmask
, rnh
, rt
->rt_nodes
);
2102 /* undo the extra ref we got */
2108 * If it still failed to go into the tree,
2109 * then un-make it (this should be a function)
2112 /* Clear gateway route */
2113 rt_set_gwroute(rt
, rt_key(rt
), NULL
);
2115 IFA_REMREF(rt
->rt_ifa
);
2120 nstat_route_detach(rt
);
2121 rte_lock_destroy(rt
);
2126 rt
->rt_parent
= NULL
;
2129 * If we got here from RESOLVE, then we are cloning so clone
2130 * the rest, and note that we are a clone (and increment the
2131 * parent's references). rnh_lock is still held, which prevents
2132 * a lookup from returning the newly-created route. Hence
2133 * holding and releasing the parent's rt_lock while still
2134 * holding the route's rt_lock is safe since the new route
2135 * is not yet externally visible.
2137 if (req
== RTM_RESOLVE
) {
2138 RT_LOCK_SPIN(*ret_nrt
);
2139 VERIFY((*ret_nrt
)->rt_expire
== 0 ||
2140 (*ret_nrt
)->rt_rmx
.rmx_expire
!= 0);
2141 VERIFY((*ret_nrt
)->rt_expire
!= 0 ||
2142 (*ret_nrt
)->rt_rmx
.rmx_expire
== 0);
2143 rt
->rt_rmx
= (*ret_nrt
)->rt_rmx
;
2144 rt_setexpire(rt
, (*ret_nrt
)->rt_expire
);
2145 if ((*ret_nrt
)->rt_flags
&
2146 (RTF_CLONING
| RTF_PRCLONING
)) {
2147 rt
->rt_parent
= (*ret_nrt
);
2148 RT_ADDREF_LOCKED(*ret_nrt
);
2150 RT_UNLOCK(*ret_nrt
);
2154 * if this protocol has something to add to this then
2155 * allow it to do that as well.
2158 ifa_rtrequest
= ifa
->ifa_rtrequest
;
2160 if (ifa_rtrequest
!= NULL
)
2161 ifa_rtrequest(req
, rt
, SA(ret_nrt
? *ret_nrt
: NULL
));
2166 * If this is the (non-scoped) default route, record
2167 * the interface index used for the primary ifscope.
2169 if (rt_primary_default(rt
, rt_key(rt
))) {
2170 set_primary_ifscope(rt_key(rt
)->sa_family
,
2171 rt
->rt_ifp
->if_index
);
2175 * actually return a resultant rtentry and
2176 * give the caller a single reference.
2180 RT_ADDREF_LOCKED(rt
);
2184 routegenid_inet_update();
2186 else if (af
== AF_INET6
)
2187 routegenid_inet6_update();
2193 * We repeat the same procedures from rt_setgate() here
2194 * because they weren't completed when we called it earlier,
2195 * since the node was embryonic.
2197 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
)
2198 rt_set_gwroute(rt
, rt_key(rt
), rt
->rt_gwroute
);
2200 if (req
== RTM_ADD
&&
2201 !(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != NULL
) {
2202 struct rtfc_arg arg
;
2206 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2207 rt_fixchange
, &arg
);
2212 nstat_route_new_entry(rt
);
2223 rtrequest(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2224 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
)
2227 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2228 lck_mtx_lock(rnh_lock
);
2229 error
= rtrequest_locked(req
, dst
, gateway
, netmask
, flags
, ret_nrt
);
2230 lck_mtx_unlock(rnh_lock
);
2235 rtrequest_scoped(int req
, struct sockaddr
*dst
, struct sockaddr
*gateway
,
2236 struct sockaddr
*netmask
, int flags
, struct rtentry
**ret_nrt
,
2237 unsigned int ifscope
)
2240 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
2241 lck_mtx_lock(rnh_lock
);
2242 error
= rtrequest_scoped_locked(req
, dst
, gateway
, netmask
, flags
,
2244 lck_mtx_unlock(rnh_lock
);
2249 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2250 * (i.e., the routes related to it by the operation of cloning). This
2251 * routine is iterated over all potential former-child-routes by way of
2252 * rnh->rnh_walktree_from() above, and those that actually are children of
2253 * the late parent (passed in as VP here) are themselves deleted.
2256 rt_fixdelete(struct radix_node
*rn
, void *vp
)
2258 struct rtentry
*rt
= (struct rtentry
*)rn
;
2259 struct rtentry
*rt0
= vp
;
2261 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2264 if (rt
->rt_parent
== rt0
&&
2265 !(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2267 * Safe to drop rt_lock and use rt_key, since holding
2268 * rnh_lock here prevents another thread from calling
2269 * rt_setgate() on this route.
2272 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2273 rt_mask(rt
), rt
->rt_flags
, NULL
));
2280 * This routine is called from rt_setgate() to do the analogous thing for
2281 * adds and changes. There is the added complication in this case of a
2282 * middle insert; i.e., insertion of a new network route between an older
2283 * network route and (cloned) host routes. For this reason, a simple check
2284 * of rt->rt_parent is insufficient; each candidate route must be tested
2285 * against the (mask, value) of the new route (passed as before in vp)
2286 * to see if the new route matches it.
2288 * XXX - it may be possible to do fixdelete() for changes and reserve this
2289 * routine just for adds. I'm not sure why I thought it was necessary to do
2293 rt_fixchange(struct radix_node
*rn
, void *vp
)
2295 struct rtentry
*rt
= (struct rtentry
*)rn
;
2296 struct rtfc_arg
*ap
= vp
;
2297 struct rtentry
*rt0
= ap
->rt0
;
2298 struct radix_node_head
*rnh
= ap
->rnh
;
2299 u_char
*xk1
, *xm1
, *xk2
, *xmp
;
2302 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2306 if (!rt
->rt_parent
||
2307 (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
))) {
2312 if (rt
->rt_parent
== rt0
)
2316 * There probably is a function somewhere which does this...
2317 * if not, there should be.
2319 len
= imin(rt_key(rt0
)->sa_len
, rt_key(rt
)->sa_len
);
2321 xk1
= (u_char
*)rt_key(rt0
);
2322 xm1
= (u_char
*)rt_mask(rt0
);
2323 xk2
= (u_char
*)rt_key(rt
);
2326 * Avoid applying a less specific route; do this only if the parent
2327 * route (rt->rt_parent) is a network route, since otherwise its mask
2328 * will be NULL if it is a cloning host route.
2330 if ((xmp
= (u_char
*)rt_mask(rt
->rt_parent
)) != NULL
) {
2331 int mlen
= rt_mask(rt
->rt_parent
)->sa_len
;
2332 if (mlen
> rt_mask(rt0
)->sa_len
) {
2337 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< mlen
; i
++) {
2338 if ((xmp
[i
] & ~(xmp
[i
] ^ xm1
[i
])) != xmp
[i
]) {
2345 for (i
= rnh
->rnh_treetop
->rn_offset
; i
< len
; i
++) {
2346 if ((xk2
[i
] & xm1
[i
]) != xk1
[i
]) {
2353 * OK, this node is a clone, and matches the node currently being
2354 * changed/added under the node's mask. So, get rid of it.
2358 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2359 * prevents another thread from calling rt_setgate() on this route.
2362 return (rtrequest_locked(RTM_DELETE
, rt_key(rt
), NULL
,
2363 rt_mask(rt
), rt
->rt_flags
, NULL
));
2367 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2368 * or even eliminate the need to re-allocate the chunk of memory used
2369 * for rt_key and rt_gateway in the event the gateway portion changes.
2370 * Certain code paths (e.g. IPSec) are notorious for caching the address
2371 * of rt_gateway; this rounding-up would help ensure that the gateway
2372 * portion never gets deallocated (though it may change contents) and
2373 * thus greatly simplifies things.
2375 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2378 * Sets the gateway and/or gateway route portion of a route; may be
2379 * called on an existing route to modify the gateway portion. Both
2380 * rt_key and rt_gateway are allocated out of the same memory chunk.
2381 * Route entry lock must be held by caller; this routine will return
2382 * with the lock held.
2385 rt_setgate(struct rtentry
*rt
, struct sockaddr
*dst
, struct sockaddr
*gate
)
2387 int dlen
= SA_SIZE(dst
->sa_len
), glen
= SA_SIZE(gate
->sa_len
);
2388 struct radix_node_head
*rnh
= NULL
;
2389 boolean_t loop
= FALSE
;
2391 if (dst
->sa_family
!= AF_INET
&& dst
->sa_family
!= AF_INET6
) {
2395 rnh
= rt_tables
[dst
->sa_family
];
2396 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2397 RT_LOCK_ASSERT_HELD(rt
);
2400 * If this is for a route that is on its way of being removed,
2401 * or is temporarily frozen, reject the modification request.
2403 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2407 /* Add an extra ref for ourselves */
2408 RT_ADDREF_LOCKED(rt
);
2410 if (rt
->rt_flags
& RTF_GATEWAY
) {
2411 if ((dst
->sa_len
== gate
->sa_len
) &&
2412 (dst
->sa_family
== AF_INET
|| dst
->sa_family
== AF_INET6
)) {
2413 struct sockaddr_storage dst_ss
, gate_ss
;
2415 (void) sa_copy(dst
, &dst_ss
, NULL
);
2416 (void) sa_copy(gate
, &gate_ss
, NULL
);
2418 loop
= equal(SA(&dst_ss
), SA(&gate_ss
));
2420 loop
= (dst
->sa_len
== gate
->sa_len
&&
2426 * A (cloning) network route with the destination equal to the gateway
2427 * will create an endless loop (see notes below), so disallow it.
2429 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2430 RTF_GATEWAY
) && loop
) {
2431 /* Release extra ref */
2432 RT_REMREF_LOCKED(rt
);
2433 return (EADDRNOTAVAIL
);
2437 * A host route with the destination equal to the gateway
2438 * will interfere with keeping LLINFO in the routing
2439 * table, so disallow it.
2441 if (((rt
->rt_flags
& (RTF_HOST
|RTF_GATEWAY
|RTF_LLINFO
)) ==
2442 (RTF_HOST
|RTF_GATEWAY
)) && loop
) {
2444 * The route might already exist if this is an RTM_CHANGE
2445 * or a routing redirect, so try to delete it.
2447 if (rt_key(rt
) != NULL
) {
2449 * Safe to drop rt_lock and use rt_key, rt_gateway,
2450 * since holding rnh_lock here prevents another thread
2451 * from calling rt_setgate() on this route.
2454 (void) rtrequest_locked(RTM_DELETE
, rt_key(rt
),
2455 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
2458 /* Release extra ref */
2459 RT_REMREF_LOCKED(rt
);
2460 return (EADDRNOTAVAIL
);
2464 * The destination is not directly reachable. Get a route
2465 * to the next-hop gateway and store it in rt_gwroute.
2467 if (rt
->rt_flags
& RTF_GATEWAY
) {
2468 struct rtentry
*gwrt
;
2469 unsigned int ifscope
;
2471 if (dst
->sa_family
== AF_INET
)
2472 ifscope
= sin_get_ifscope(dst
);
2473 else if (dst
->sa_family
== AF_INET6
)
2474 ifscope
= sin6_get_ifscope(dst
);
2476 ifscope
= IFSCOPE_NONE
;
2480 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2481 * points to a clone rather than a cloning route; see above
2482 * check for cloning loop avoidance (dst == gate).
2484 gwrt
= rtalloc1_scoped_locked(gate
, 1, RTF_PRCLONING
, ifscope
);
2486 RT_LOCK_ASSERT_NOTHELD(gwrt
);
2490 * Cloning loop avoidance:
2492 * In the presence of protocol-cloning and bad configuration,
2493 * it is possible to get stuck in bottomless mutual recursion
2494 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2495 * allowing protocol-cloning to operate for gateways (which
2496 * is probably the correct choice anyway), and avoid the
2497 * resulting reference loops by disallowing any route to run
2498 * through itself as a gateway. This is obviously mandatory
2499 * when we get rt->rt_output(). It implies that a route to
2500 * the gateway must already be present in the system in order
2501 * for the gateway to be referred to by another route.
2504 RT_REMREF_LOCKED(gwrt
);
2505 /* Release extra ref */
2506 RT_REMREF_LOCKED(rt
);
2507 return (EADDRINUSE
); /* failure */
2511 * If scoped, the gateway route must use the same interface;
2512 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2513 * should not change and are freely accessible.
2515 if (ifscope
!= IFSCOPE_NONE
&& (rt
->rt_flags
& RTF_IFSCOPE
) &&
2516 gwrt
!= NULL
&& gwrt
->rt_ifp
!= NULL
&&
2517 gwrt
->rt_ifp
->if_index
!= ifscope
) {
2518 rtfree_locked(gwrt
); /* rt != gwrt, no deadlock */
2519 /* Release extra ref */
2520 RT_REMREF_LOCKED(rt
);
2521 return ((rt
->rt_flags
& RTF_HOST
) ?
2522 EHOSTUNREACH
: ENETUNREACH
);
2525 /* Check again since we dropped the lock above */
2526 if (rt
->rt_flags
& RTF_CONDEMNED
) {
2528 rtfree_locked(gwrt
);
2529 /* Release extra ref */
2530 RT_REMREF_LOCKED(rt
);
2534 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2535 rt_set_gwroute(rt
, dst
, gwrt
);
2538 * In case the (non-scoped) default route gets modified via
2539 * an ICMP redirect, record the interface index used for the
2540 * primary ifscope. Also done in rt_setif() to take care
2541 * of the non-redirect cases.
2543 if (rt_primary_default(rt
, dst
) && rt
->rt_ifp
!= NULL
) {
2544 set_primary_ifscope(dst
->sa_family
,
2545 rt
->rt_ifp
->if_index
);
2549 * Tell the kernel debugger about the new default gateway
2550 * if the gateway route uses the primary interface, or
2551 * if we are in a transient state before the non-scoped
2552 * default gateway is installed (similar to how the system
2553 * was behaving in the past). In future, it would be good
2554 * to do all this only when KDP is enabled.
2556 if ((dst
->sa_family
== AF_INET
) &&
2557 gwrt
!= NULL
&& gwrt
->rt_gateway
->sa_family
== AF_LINK
&&
2558 (gwrt
->rt_ifp
->if_index
== get_primary_ifscope(AF_INET
) ||
2559 get_primary_ifscope(AF_INET
) == IFSCOPE_NONE
)) {
2560 kdp_set_gateway_mac(SDL((void *)gwrt
->rt_gateway
)->
2564 /* Release extra ref from rtalloc1() */
2570 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2571 * are stored one after the other in the same malloc'd chunk. If we
2572 * have room, reuse the old buffer since rt_gateway already points
2573 * to the right place. Otherwise, malloc a new block and update
2574 * the 'dst' address and point rt_gateway to the right place.
2576 if (rt
->rt_gateway
== NULL
|| glen
> SA_SIZE(rt
->rt_gateway
->sa_len
)) {
2579 /* The underlying allocation is done with M_WAITOK set */
2580 R_Malloc(new, caddr_t
, dlen
+ glen
);
2582 /* Clear gateway route */
2583 rt_set_gwroute(rt
, dst
, NULL
);
2584 /* Release extra ref */
2585 RT_REMREF_LOCKED(rt
);
2590 * Copy from 'dst' and not rt_key(rt) because we can get
2591 * here to initialize a newly allocated route entry, in
2592 * which case rt_key(rt) is NULL (and so does rt_gateway).
2594 bzero(new, dlen
+ glen
);
2595 Bcopy(dst
, new, dst
->sa_len
);
2596 R_Free(rt_key(rt
)); /* free old block; NULL is okay */
2597 rt
->rt_nodes
->rn_key
= new;
2598 rt
->rt_gateway
= (struct sockaddr
*)(new + dlen
);
2602 * Copy the new gateway value into the memory chunk.
2604 Bcopy(gate
, rt
->rt_gateway
, gate
->sa_len
);
2607 * For consistency between rt_gateway and rt_key(gwrt).
2609 if ((rt
->rt_flags
& RTF_GATEWAY
) && rt
->rt_gwroute
!= NULL
&&
2610 (rt
->rt_gwroute
->rt_flags
& RTF_IFSCOPE
)) {
2611 if (rt
->rt_gateway
->sa_family
== AF_INET
&&
2612 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET
) {
2613 sin_set_ifscope(rt
->rt_gateway
,
2614 sin_get_ifscope(rt_key(rt
->rt_gwroute
)));
2615 } else if (rt
->rt_gateway
->sa_family
== AF_INET6
&&
2616 rt_key(rt
->rt_gwroute
)->sa_family
== AF_INET6
) {
2617 sin6_set_ifscope(rt
->rt_gateway
,
2618 sin6_get_ifscope(rt_key(rt
->rt_gwroute
)));
2623 * This isn't going to do anything useful for host routes, so
2624 * don't bother. Also make sure we have a reasonable mask
2625 * (we don't yet have one during adds).
2627 if (!(rt
->rt_flags
& RTF_HOST
) && rt_mask(rt
) != 0) {
2628 struct rtfc_arg arg
;
2632 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
2633 rt_fixchange
, &arg
);
2637 /* Release extra ref */
2638 RT_REMREF_LOCKED(rt
);
2645 rt_set_gwroute(struct rtentry
*rt
, struct sockaddr
*dst
, struct rtentry
*gwrt
)
2647 boolean_t gwrt_isrouter
;
2649 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2650 RT_LOCK_ASSERT_HELD(rt
);
2653 RT_ADDREF(gwrt
); /* for this routine */
2656 * Get rid of existing gateway route; if rt_gwroute is already
2657 * set to gwrt, this is slightly redundant (though safe since
2658 * we held an extra ref above) but makes the code simpler.
2660 if (rt
->rt_gwroute
!= NULL
) {
2661 struct rtentry
*ogwrt
= rt
->rt_gwroute
;
2663 VERIFY(rt
!= ogwrt
); /* sanity check */
2664 rt
->rt_gwroute
= NULL
;
2666 rtfree_locked(ogwrt
);
2668 VERIFY(rt
->rt_gwroute
== NULL
);
2672 * And associate the new gateway route.
2674 if ((rt
->rt_gwroute
= gwrt
) != NULL
) {
2675 RT_ADDREF(gwrt
); /* for rt */
2677 if (rt
->rt_flags
& RTF_WASCLONED
) {
2678 /* rt_parent might be NULL if rt is embryonic */
2679 gwrt_isrouter
= (rt
->rt_parent
!= NULL
&&
2680 SA_DEFAULT(rt_key(rt
->rt_parent
)) &&
2681 !RT_HOST(rt
->rt_parent
));
2683 gwrt_isrouter
= (SA_DEFAULT(dst
) && !RT_HOST(rt
));
2686 /* If gwrt points to a default router, mark it accordingly */
2687 if (gwrt_isrouter
&& RT_HOST(gwrt
) &&
2688 !(gwrt
->rt_flags
& RTF_ROUTER
)) {
2690 gwrt
->rt_flags
|= RTF_ROUTER
;
2694 RT_REMREF(gwrt
); /* for this routine */
2699 rt_maskedcopy(const struct sockaddr
*src
, struct sockaddr
*dst
,
2700 const struct sockaddr
*netmask
)
2702 const char *netmaskp
= &netmask
->sa_data
[0];
2703 const char *srcp
= &src
->sa_data
[0];
2704 char *dstp
= &dst
->sa_data
[0];
2705 const char *maskend
= (char *)dst
2706 + MIN(netmask
->sa_len
, src
->sa_len
);
2707 const char *srcend
= (char *)dst
+ src
->sa_len
;
2709 dst
->sa_len
= src
->sa_len
;
2710 dst
->sa_family
= src
->sa_family
;
2712 while (dstp
< maskend
)
2713 *dstp
++ = *srcp
++ & *netmaskp
++;
2715 memset(dstp
, 0, (size_t)(srcend
- dstp
));
2719 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2720 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2722 static struct radix_node
*
2723 node_lookup(struct sockaddr
*dst
, struct sockaddr
*netmask
,
2724 unsigned int ifscope
)
2726 struct radix_node_head
*rnh
;
2727 struct radix_node
*rn
;
2728 struct sockaddr_storage ss
, mask
;
2729 int af
= dst
->sa_family
;
2730 struct matchleaf_arg ma
= { ifscope
};
2731 rn_matchf_t
*f
= rn_match_ifscope
;
2734 if (af
!= AF_INET
&& af
!= AF_INET6
)
2737 rnh
= rt_tables
[af
];
2740 * Transform dst into the internal routing table form,
2741 * clearing out the scope ID field if ifscope isn't set.
2743 dst
= sa_copy(dst
, &ss
, (ifscope
== IFSCOPE_NONE
) ? NULL
: &ifscope
);
2745 /* Transform netmask into the internal routing table form */
2746 if (netmask
!= NULL
)
2747 netmask
= ma_copy(af
, netmask
, &mask
, ifscope
);
2749 if (ifscope
== IFSCOPE_NONE
)
2752 rn
= rnh
->rnh_lookup_args(dst
, netmask
, rnh
, f
, w
);
2753 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2760 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2762 static struct radix_node
*
2763 node_lookup_default(int af
)
2765 struct radix_node_head
*rnh
;
2767 VERIFY(af
== AF_INET
|| af
== AF_INET6
);
2768 rnh
= rt_tables
[af
];
2770 return (af
== AF_INET
? rnh
->rnh_lookup(&sin_def
, NULL
, rnh
) :
2771 rnh
->rnh_lookup(&sin6_def
, NULL
, rnh
));
2775 rt_ifa_is_dst(struct sockaddr
*dst
, struct ifaddr
*ifa
)
2777 boolean_t result
= FALSE
;
2779 if (ifa
== NULL
|| ifa
->ifa_addr
== NULL
)
2784 if (dst
->sa_family
== ifa
->ifa_addr
->sa_family
&&
2785 ((dst
->sa_family
== AF_INET
&&
2786 SIN(dst
)->sin_addr
.s_addr
==
2787 SIN(ifa
->ifa_addr
)->sin_addr
.s_addr
) ||
2788 (dst
->sa_family
== AF_INET6
&&
2789 SA6_ARE_ADDR_EQUAL(SIN6(dst
), SIN6(ifa
->ifa_addr
)))))
2798 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2799 * callback which could be address family-specific. The main difference
2800 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2801 * not alter the expiring state of a route, whereas a match would unexpire
2802 * or revalidate the route.
2804 * The optional scope or interface index property of a route allows for a
2805 * per-interface route instance. This permits multiple route entries having
2806 * the same destination (but not necessarily the same gateway) to exist in
2807 * the routing table; each of these entries is specific to the corresponding
2808 * interface. This is made possible by storing the scope ID value into the
2809 * radix key, thus making each route entry unique. These scoped entries
2810 * exist along with the regular, non-scoped entries in the same radix tree
2811 * for a given address family (AF_INET/AF_INET6); the scope logically
2812 * partitions it into multiple per-interface sub-trees.
2814 * When a scoped route lookup is performed, the routing table is searched for
2815 * the best match that would result in a route using the same interface as the
2816 * one associated with the scope (the exception to this are routes that point
2817 * to the loopback interface). The search rule follows the longest matching
2818 * prefix with the additional interface constraint.
2820 static struct rtentry
*
2821 rt_lookup_common(boolean_t lookup_only
, boolean_t coarse
, struct sockaddr
*dst
,
2822 struct sockaddr
*netmask
, struct radix_node_head
*rnh
, unsigned int ifscope
)
2824 struct radix_node
*rn0
, *rn
= NULL
;
2825 int af
= dst
->sa_family
;
2826 struct sockaddr_storage dst_ss
;
2827 struct sockaddr_storage mask_ss
;
2829 #if (DEVELOPMENT || DEBUG)
2830 char dbuf
[MAX_SCOPE_ADDR_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
2831 char s_dst
[MAX_IPv6_STR_LEN
], s_netmask
[MAX_IPv6_STR_LEN
];
2833 VERIFY(!coarse
|| ifscope
== IFSCOPE_NONE
);
2835 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
2838 * While we have rnh_lock held, see if we need to schedule the timer.
2840 if (nd6_sched_timeout_want
)
2841 nd6_sched_timeout(NULL
, NULL
);
2848 * Non-scoped route lookup.
2851 if (af
!= AF_INET
&& af
!= AF_INET6
) {
2853 if (af
!= AF_INET
) {
2855 rn
= rnh
->rnh_matchaddr(dst
, rnh
);
2858 * Don't return a root node; also, rnh_matchaddr callback
2859 * would have done the necessary work to clear RTPRF_OURS
2860 * for certain protocol families.
2862 if (rn
!= NULL
&& (rn
->rn_flags
& RNF_ROOT
))
2865 RT_LOCK_SPIN(RT(rn
));
2866 if (!(RT(rn
)->rt_flags
& RTF_CONDEMNED
)) {
2867 RT_ADDREF_LOCKED(RT(rn
));
2877 /* Transform dst/netmask into the internal routing table form */
2878 dst
= sa_copy(dst
, &dst_ss
, &ifscope
);
2879 if (netmask
!= NULL
)
2880 netmask
= ma_copy(af
, netmask
, &mask_ss
, ifscope
);
2881 dontcare
= (ifscope
== IFSCOPE_NONE
);
2883 #if (DEVELOPMENT || DEBUG)
2886 (void) inet_ntop(af
, &SIN(dst
)->sin_addr
.s_addr
,
2887 s_dst
, sizeof (s_dst
));
2889 (void) inet_ntop(af
, &SIN6(dst
)->sin6_addr
,
2890 s_dst
, sizeof (s_dst
));
2892 if (netmask
!= NULL
&& af
== AF_INET
)
2893 (void) inet_ntop(af
, &SIN(netmask
)->sin_addr
.s_addr
,
2894 s_netmask
, sizeof (s_netmask
));
2895 if (netmask
!= NULL
&& af
== AF_INET6
)
2896 (void) inet_ntop(af
, &SIN6(netmask
)->sin6_addr
,
2897 s_netmask
, sizeof (s_netmask
));
2900 printf("%s (%d, %d, %s, %s, %u)\n",
2901 __func__
, lookup_only
, coarse
, s_dst
, s_netmask
, ifscope
);
2906 * Scoped route lookup:
2908 * We first perform a non-scoped lookup for the original result.
2909 * Afterwards, depending on whether or not the caller has specified
2910 * a scope, we perform a more specific scoped search and fallback
2911 * to this original result upon failure.
2913 rn0
= rn
= node_lookup(dst
, netmask
, IFSCOPE_NONE
);
2916 * If the caller did not specify a scope, use the primary scope
2917 * derived from the system's non-scoped default route. If, for
2918 * any reason, there is no primary interface, ifscope will be
2919 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2920 * we'll do a more-specific search below, scoped to the interface
2924 ifscope
= get_primary_ifscope(af
);
2927 * Keep the original result if either of the following is true:
2929 * 1) The interface portion of the route has the same interface
2930 * index as the scope value and it is marked with RTF_IFSCOPE.
2931 * 2) The route uses the loopback interface, in which case the
2932 * destination (host/net) is local/loopback.
2934 * Otherwise, do a more specified search using the scope;
2935 * we're holding rnh_lock now, so rt_ifp should not change.
2938 struct rtentry
*rt
= RT(rn
);
2939 #if (DEVELOPMENT || DEBUG)
2941 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
2942 printf("%s unscoped search %p to %s->%s->%s ifa_ifp %s\n",
2945 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
2946 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
2947 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
2950 if (!(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
) ||
2951 (rt
->rt_flags
& RTF_GATEWAY
)) {
2952 if (rt
->rt_ifp
->if_index
!= ifscope
) {
2954 * Wrong interface; keep the original result
2955 * only if the caller did not specify a scope,
2956 * and do a more specific scoped search using
2957 * the scope of the found route. Otherwise,
2958 * start again from scratch.
2960 * For loopback scope we keep the unscoped
2961 * route for local addresses
2965 ifscope
= rt
->rt_ifp
->if_index
;
2966 else if (ifscope
!= lo_ifp
->if_index
||
2967 rt_ifa_is_dst(dst
, rt
->rt_ifa
) == FALSE
)
2969 } else if (!(rt
->rt_flags
& RTF_IFSCOPE
)) {
2971 * Right interface, except that this route
2972 * isn't marked with RTF_IFSCOPE. Do a more
2973 * specific scoped search. Keep the original
2974 * result and return it it in case the scoped
2983 * Scoped search. Find the most specific entry having the same
2984 * interface scope as the one requested. The following will result
2985 * in searching for the longest prefix scoped match.
2988 rn
= node_lookup(dst
, netmask
, ifscope
);
2989 #if (DEVELOPMENT || DEBUG)
2990 if (rt_verbose
&& rn
!= NULL
) {
2991 struct rtentry
*rt
= RT(rn
);
2993 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
2994 printf("%s scoped search %p to %s->%s->%s ifa %s\n",
2997 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
2998 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
2999 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3004 * Use the original result if either of the following is true:
3006 * 1) The scoped search did not yield any result.
3007 * 2) The caller insists on performing a coarse-grained lookup.
3008 * 3) The result from the scoped search is a scoped default route,
3009 * and the original (non-scoped) result is not a default route,
3010 * i.e. the original result is a more specific host/net route.
3011 * 4) The scoped search yielded a net route but the original
3012 * result is a host route, i.e. the original result is treated
3013 * as a more specific route.
3015 if (rn
== NULL
|| coarse
|| (rn0
!= NULL
&&
3016 ((SA_DEFAULT(rt_key(RT(rn
))) && !SA_DEFAULT(rt_key(RT(rn0
)))) ||
3017 (!RT_HOST(rn
) && RT_HOST(rn0
)))))
3021 * If we still don't have a route, use the non-scoped default
3022 * route as long as the interface portion satistifes the scope.
3024 if (rn
== NULL
&& (rn
= node_lookup_default(af
)) != NULL
&&
3025 RT(rn
)->rt_ifp
->if_index
!= ifscope
) {
3031 * Manually clear RTPRF_OURS using rt_validate() and
3032 * bump up the reference count after, and not before;
3033 * we only get here for AF_INET/AF_INET6. node_lookup()
3034 * has done the check against RNF_ROOT, so we can be sure
3035 * that we're not returning a root node here.
3037 RT_LOCK_SPIN(RT(rn
));
3038 if (rt_validate(RT(rn
))) {
3039 RT_ADDREF_LOCKED(RT(rn
));
3046 #if (DEVELOPMENT || DEBUG)
3049 printf("%s %u return NULL\n", __func__
, ifscope
);
3051 struct rtentry
*rt
= RT(rn
);
3053 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3055 printf("%s %u return %p to %s->%s->%s ifa_ifp %s\n",
3056 __func__
, ifscope
, rt
,
3058 (rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: "",
3059 (rt
->rt_ifa
->ifa_ifp
!= NULL
) ?
3060 rt
->rt_ifa
->ifa_ifp
->if_xname
: "");
3068 rt_lookup(boolean_t lookup_only
, struct sockaddr
*dst
, struct sockaddr
*netmask
,
3069 struct radix_node_head
*rnh
, unsigned int ifscope
)
3071 return (rt_lookup_common(lookup_only
, FALSE
, dst
, netmask
,
3076 rt_lookup_coarse(boolean_t lookup_only
, struct sockaddr
*dst
,
3077 struct sockaddr
*netmask
, struct radix_node_head
*rnh
)
3079 return (rt_lookup_common(lookup_only
, TRUE
, dst
, netmask
,
3080 rnh
, IFSCOPE_NONE
));
3084 rt_validate(struct rtentry
*rt
)
3086 RT_LOCK_ASSERT_HELD(rt
);
3088 if ((rt
->rt_flags
& (RTF_UP
| RTF_CONDEMNED
)) == RTF_UP
) {
3089 int af
= rt_key(rt
)->sa_family
;
3092 (void) in_validate(RN(rt
));
3093 else if (af
== AF_INET6
)
3094 (void) in6_validate(RN(rt
));
3099 return (rt
!= NULL
);
3103 * Set up a routing table entry, normally
3107 rtinit(struct ifaddr
*ifa
, int cmd
, int flags
)
3111 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_NOTOWNED
);
3113 lck_mtx_lock(rnh_lock
);
3114 error
= rtinit_locked(ifa
, cmd
, flags
);
3115 lck_mtx_unlock(rnh_lock
);
3121 rtinit_locked(struct ifaddr
*ifa
, int cmd
, int flags
)
3123 struct radix_node_head
*rnh
;
3124 uint8_t nbuf
[128]; /* long enough for IPv6 */
3125 #if (DEVELOPMENT || DEBUG)
3126 char dbuf
[MAX_IPv6_STR_LEN
], gbuf
[MAX_IPv6_STR_LEN
];
3127 char abuf
[MAX_IPv6_STR_LEN
];
3129 struct rtentry
*rt
= NULL
;
3130 struct sockaddr
*dst
;
3131 struct sockaddr
*netmask
;
3135 * Holding rnh_lock here prevents the possibility of ifa from
3136 * changing (e.g. in_ifinit), so it is safe to access its
3137 * ifa_{dst}addr (here and down below) without locking.
3139 lck_mtx_assert(rnh_lock
, LCK_MTX_ASSERT_OWNED
);
3141 if (flags
& RTF_HOST
) {
3142 dst
= ifa
->ifa_dstaddr
;
3145 dst
= ifa
->ifa_addr
;
3146 netmask
= ifa
->ifa_netmask
;
3149 if (dst
->sa_len
== 0) {
3150 log(LOG_ERR
, "%s: %s failed, invalid dst sa_len %d\n",
3151 __func__
, rtm2str(cmd
), dst
->sa_len
);
3155 if (netmask
!= NULL
&& netmask
->sa_len
> sizeof (nbuf
)) {
3156 log(LOG_ERR
, "%s: %s failed, mask sa_len %d too large\n",
3157 __func__
, rtm2str(cmd
), dst
->sa_len
);
3162 #if (DEVELOPMENT || DEBUG)
3163 if (dst
->sa_family
== AF_INET
) {
3164 (void) inet_ntop(AF_INET
, &SIN(dst
)->sin_addr
.s_addr
,
3165 abuf
, sizeof (abuf
));
3168 else if (dst
->sa_family
== AF_INET6
) {
3169 (void) inet_ntop(AF_INET6
, &SIN6(dst
)->sin6_addr
,
3170 abuf
, sizeof (abuf
));
3173 #endif /* (DEVELOPMENT || DEBUG) */
3175 if ((rnh
= rt_tables
[dst
->sa_family
]) == NULL
) {
3181 * If it's a delete, check that if it exists, it's on the correct
3182 * interface or we might scrub a route to another ifa which would
3183 * be confusing at best and possibly worse.
3185 if (cmd
== RTM_DELETE
) {
3187 * It's a delete, so it should already exist..
3188 * If it's a net, mask off the host bits
3189 * (Assuming we have a mask)
3191 if (netmask
!= NULL
) {
3192 rt_maskedcopy(dst
, SA(nbuf
), netmask
);
3196 * Get an rtentry that is in the routing tree and contains
3197 * the correct info. Note that we perform a coarse-grained
3198 * lookup here, in case there is a scoped variant of the
3199 * subnet/prefix route which we should ignore, as we never
3200 * add a scoped subnet/prefix route as part of adding an
3201 * interface address.
3203 rt
= rt_lookup_coarse(TRUE
, dst
, NULL
, rnh
);
3205 #if (DEVELOPMENT || DEBUG)
3206 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3209 * Ok so we found the rtentry. it has an extra reference
3210 * for us at this stage. we won't need that so
3214 if (rt
->rt_ifa
!= ifa
) {
3216 * If the interface address in the rtentry
3217 * doesn't match the interface we are using,
3218 * then we don't want to delete it, so return
3219 * an error. This seems to be the only point
3220 * of this whole RTM_DELETE clause.
3222 #if (DEVELOPMENT || DEBUG)
3224 log(LOG_DEBUG
, "%s: not removing "
3225 "route to %s->%s->%s, flags %b, "
3226 "ifaddr %s, rt_ifa 0x%llx != "
3227 "ifa 0x%llx\n", __func__
, dbuf
,
3228 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3229 rt
->rt_ifp
->if_xname
: ""),
3230 rt
->rt_flags
, RTF_BITS
, abuf
,
3231 (uint64_t)VM_KERNEL_ADDRPERM(
3233 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3235 #endif /* (DEVELOPMENT || DEBUG) */
3236 RT_REMREF_LOCKED(rt
);
3239 error
= ((flags
& RTF_HOST
) ?
3240 EHOSTUNREACH
: ENETUNREACH
);
3242 } else if (rt
->rt_flags
& RTF_STATIC
) {
3244 * Don't remove the subnet/prefix route if
3245 * this was manually added from above.
3247 #if (DEVELOPMENT || DEBUG)
3249 log(LOG_DEBUG
, "%s: not removing "
3250 "static route to %s->%s->%s, "
3251 "flags %b, ifaddr %s\n", __func__
,
3252 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3253 rt
->rt_ifp
->if_xname
: ""),
3254 rt
->rt_flags
, RTF_BITS
, abuf
);
3256 #endif /* (DEVELOPMENT || DEBUG) */
3257 RT_REMREF_LOCKED(rt
);
3263 #if (DEVELOPMENT || DEBUG)
3265 log(LOG_DEBUG
, "%s: removing route to "
3266 "%s->%s->%s, flags %b, ifaddr %s\n",
3267 __func__
, dbuf
, gbuf
,
3268 ((rt
->rt_ifp
!= NULL
) ?
3269 rt
->rt_ifp
->if_xname
: ""),
3270 rt
->rt_flags
, RTF_BITS
, abuf
);
3272 #endif /* (DEVELOPMENT || DEBUG) */
3273 RT_REMREF_LOCKED(rt
);
3279 * Do the actual request
3281 if ((error
= rtrequest_locked(cmd
, dst
, ifa
->ifa_addr
, netmask
,
3282 flags
| ifa
->ifa_flags
, &rt
)) != 0)
3286 #if (DEVELOPMENT || DEBUG)
3287 rt_str(rt
, dbuf
, sizeof (dbuf
), gbuf
, sizeof (gbuf
));
3288 #endif /* (DEVELOPMENT || DEBUG) */
3292 * If we are deleting, and we found an entry, then it's
3293 * been removed from the tree. Notify any listening
3294 * routing agents of the change and throw it away.
3297 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3299 #if (DEVELOPMENT || DEBUG)
3301 log(LOG_DEBUG
, "%s: removed route to %s->%s->%s, "
3302 "flags %b, ifaddr %s\n", __func__
, dbuf
, gbuf
,
3303 ((rt
->rt_ifp
!= NULL
) ? rt
->rt_ifp
->if_xname
: ""),
3304 rt
->rt_flags
, RTF_BITS
, abuf
);
3306 #endif /* (DEVELOPMENT || DEBUG) */
3312 * We are adding, and we have a returned routing entry.
3313 * We need to sanity check the result. If it came back
3314 * with an unexpected interface, then it must have already
3315 * existed or something.
3318 if (rt
->rt_ifa
!= ifa
) {
3319 void (*ifa_rtrequest
)
3320 (int, struct rtentry
*, struct sockaddr
*);
3321 #if (DEVELOPMENT || DEBUG)
3323 if (!(rt
->rt_ifa
->ifa_ifp
->if_flags
&
3324 (IFF_POINTOPOINT
|IFF_LOOPBACK
))) {
3325 log(LOG_ERR
, "%s: %s route to %s->%s->%s, "
3326 "flags %b, ifaddr %s, rt_ifa 0x%llx != "
3327 "ifa 0x%llx\n", __func__
, rtm2str(cmd
),
3328 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3329 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3331 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3332 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3335 log(LOG_DEBUG
, "%s: %s route to %s->%s->%s, "
3336 "flags %b, ifaddr %s, rt_ifa was 0x%llx "
3337 "now 0x%llx\n", __func__
, rtm2str(cmd
),
3338 dbuf
, gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3339 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3341 (uint64_t)VM_KERNEL_ADDRPERM(rt
->rt_ifa
),
3342 (uint64_t)VM_KERNEL_ADDRPERM(ifa
));
3344 #endif /* (DEVELOPMENT || DEBUG) */
3347 * Ask that the protocol in question
3348 * remove anything it has associated with
3349 * this route and ifaddr.
3351 ifa_rtrequest
= rt
->rt_ifa
->ifa_rtrequest
;
3352 if (ifa_rtrequest
!= NULL
)
3353 ifa_rtrequest(RTM_DELETE
, rt
, NULL
);
3355 * Set the route's ifa.
3359 if (rt
->rt_ifp
!= ifa
->ifa_ifp
) {
3361 * Purge any link-layer info caching.
3363 if (rt
->rt_llinfo_purge
!= NULL
)
3364 rt
->rt_llinfo_purge(rt
);
3366 * Adjust route ref count for the interfaces.
3368 if (rt
->rt_if_ref_fn
!= NULL
) {
3369 rt
->rt_if_ref_fn(ifa
->ifa_ifp
, 1);
3370 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3375 * And substitute in references to the ifaddr
3378 rt
->rt_ifp
= ifa
->ifa_ifp
;
3380 * If rmx_mtu is not locked, update it
3381 * to the MTU used by the new interface.
3383 if (!(rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
3384 rt
->rt_rmx
.rmx_mtu
= rt
->rt_ifp
->if_mtu
;
3387 * Now ask the protocol to check if it needs
3388 * any special processing in its new form.
3390 ifa_rtrequest
= ifa
->ifa_rtrequest
;
3391 if (ifa_rtrequest
!= NULL
)
3392 ifa_rtrequest(RTM_ADD
, rt
, NULL
);
3394 #if (DEVELOPMENT || DEBUG)
3396 log(LOG_DEBUG
, "%s: added route to %s->%s->%s, "
3397 "flags %b, ifaddr %s\n", __func__
, dbuf
,
3398 gbuf
, ((rt
->rt_ifp
!= NULL
) ?
3399 rt
->rt_ifp
->if_xname
: ""), rt
->rt_flags
,
3402 #endif /* (DEVELOPMENT || DEBUG) */
3405 * notify any listenning routing agents of the change
3407 rt_newaddrmsg(cmd
, ifa
, error
, rt
);
3409 * We just wanted to add it; we don't actually need a
3410 * reference. This will result in a route that's added
3411 * to the routing table without a reference count. The
3412 * RTM_DELETE code will do the necessary step to adjust
3413 * the reference count at deletion time.
3415 RT_REMREF_LOCKED(rt
);
3428 rt_set_idleref(struct rtentry
*rt
)
3430 RT_LOCK_ASSERT_HELD(rt
);
3433 * We currently keep idle refcnt only on unicast cloned routes
3434 * that aren't marked with RTF_NOIFREF.
3436 if (rt
->rt_parent
!= NULL
&& !(rt
->rt_flags
&
3437 (RTF_NOIFREF
|RTF_BROADCAST
| RTF_MULTICAST
)) &&
3438 (rt
->rt_flags
& (RTF_UP
|RTF_WASCLONED
|RTF_IFREF
)) ==
3439 (RTF_UP
|RTF_WASCLONED
)) {
3440 rt_clear_idleref(rt
); /* drop existing refcnt if any */
3441 rt
->rt_if_ref_fn
= rte_if_ref
;
3442 /* Become a regular mutex, just in case */
3443 RT_CONVERT_LOCK(rt
);
3444 rt
->rt_if_ref_fn(rt
->rt_ifp
, 1);
3445 rt
->rt_flags
|= RTF_IFREF
;
3450 rt_clear_idleref(struct rtentry
*rt
)
3452 RT_LOCK_ASSERT_HELD(rt
);
3454 if (rt
->rt_if_ref_fn
!= NULL
) {
3455 VERIFY((rt
->rt_flags
& (RTF_NOIFREF
| RTF_IFREF
)) == RTF_IFREF
);
3456 /* Become a regular mutex, just in case */
3457 RT_CONVERT_LOCK(rt
);
3458 rt
->rt_if_ref_fn(rt
->rt_ifp
, -1);
3459 rt
->rt_flags
&= ~RTF_IFREF
;
3460 rt
->rt_if_ref_fn
= NULL
;
3465 rt_set_proxy(struct rtentry
*rt
, boolean_t set
)
3467 lck_mtx_lock(rnh_lock
);
3470 * Search for any cloned routes which might have
3471 * been formed from this node, and delete them.
3473 if (rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
)) {
3474 struct radix_node_head
*rnh
= rt_tables
[rt_key(rt
)->sa_family
];
3477 rt
->rt_flags
|= RTF_PROXY
;
3479 rt
->rt_flags
&= ~RTF_PROXY
;
3482 if (rnh
!= NULL
&& rt_mask(rt
)) {
3483 rnh
->rnh_walktree_from(rnh
, rt_key(rt
), rt_mask(rt
),
3489 lck_mtx_unlock(rnh_lock
);
3493 rte_lock_init(struct rtentry
*rt
)
3495 lck_mtx_init(&rt
->rt_lock
, rte_mtx_grp
, rte_mtx_attr
);
3499 rte_lock_destroy(struct rtentry
*rt
)
3501 RT_LOCK_ASSERT_NOTHELD(rt
);
3502 lck_mtx_destroy(&rt
->rt_lock
, rte_mtx_grp
);
3506 rt_lock(struct rtentry
*rt
, boolean_t spin
)
3508 RT_LOCK_ASSERT_NOTHELD(rt
);
3510 lck_mtx_lock_spin(&rt
->rt_lock
);
3512 lck_mtx_lock(&rt
->rt_lock
);
3513 if (rte_debug
& RTD_DEBUG
)
3514 rte_lock_debug((struct rtentry_dbg
*)rt
);
3518 rt_unlock(struct rtentry
*rt
)
3520 if (rte_debug
& RTD_DEBUG
)
3521 rte_unlock_debug((struct rtentry_dbg
*)rt
);
3522 lck_mtx_unlock(&rt
->rt_lock
);
3527 rte_lock_debug(struct rtentry_dbg
*rte
)
3531 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3532 idx
= atomic_add_32_ov(&rte
->rtd_lock_cnt
, 1) % CTRACE_HIST_SIZE
;
3533 if (rte_debug
& RTD_TRACE
)
3534 ctrace_record(&rte
->rtd_lock
[idx
]);
3538 rte_unlock_debug(struct rtentry_dbg
*rte
)
3542 RT_LOCK_ASSERT_HELD((struct rtentry
*)rte
);
3543 idx
= atomic_add_32_ov(&rte
->rtd_unlock_cnt
, 1) % CTRACE_HIST_SIZE
;
3544 if (rte_debug
& RTD_TRACE
)
3545 ctrace_record(&rte
->rtd_unlock
[idx
]);
3548 static struct rtentry
*
3551 if (rte_debug
& RTD_DEBUG
)
3552 return (rte_alloc_debug());
3554 return ((struct rtentry
*)zalloc(rte_zone
));
3558 rte_free(struct rtentry
*p
)
3560 if (rte_debug
& RTD_DEBUG
) {
3565 if (p
->rt_refcnt
!= 0) {
3566 panic("rte_free: rte=%p refcnt=%d non-zero\n", p
, p
->rt_refcnt
);
3574 rte_if_ref(struct ifnet
*ifp
, int cnt
)
3576 struct kev_msg ev_msg
;
3577 struct net_event_data ev_data
;
3580 /* Force cnt to 1 increment/decrement */
3581 if (cnt
< -1 || cnt
> 1) {
3582 panic("%s: invalid count argument (%d)", __func__
, cnt
);
3585 old
= atomic_add_32_ov(&ifp
->if_route_refcnt
, cnt
);
3586 if (cnt
< 0 && old
== 0) {
3587 panic("%s: ifp=%p negative route refcnt!", __func__
, ifp
);
3591 * The following is done without first holding the ifnet lock,
3592 * for performance reasons. The relevant ifnet fields, with
3593 * the exception of the if_idle_flags, are never changed
3594 * during the lifetime of the ifnet. The if_idle_flags
3595 * may possibly be modified, so in the event that the value
3596 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3597 * sending the event anyway. This is harmless as it is just
3598 * a notification to the monitoring agent in user space, and
3599 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3601 if ((ifp
->if_idle_flags
& IFRF_IDLE_NOTIFY
) && cnt
< 0 && old
== 1) {
3602 bzero(&ev_msg
, sizeof (ev_msg
));
3603 bzero(&ev_data
, sizeof (ev_data
));
3605 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3606 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
3607 ev_msg
.kev_subclass
= KEV_DL_SUBCLASS
;
3608 ev_msg
.event_code
= KEV_DL_IF_IDLE_ROUTE_REFCNT
;
3610 strlcpy(&ev_data
.if_name
[0], ifp
->if_name
, IFNAMSIZ
);
3612 ev_data
.if_family
= ifp
->if_family
;
3613 ev_data
.if_unit
= ifp
->if_unit
;
3614 ev_msg
.dv
[0].data_length
= sizeof (struct net_event_data
);
3615 ev_msg
.dv
[0].data_ptr
= &ev_data
;
3617 dlil_post_complete_msg(NULL
, &ev_msg
);
3621 static inline struct rtentry
*
3622 rte_alloc_debug(void)
3624 struct rtentry_dbg
*rte
;
3626 rte
= ((struct rtentry_dbg
*)zalloc(rte_zone
));
3628 bzero(rte
, sizeof (*rte
));
3629 if (rte_debug
& RTD_TRACE
)
3630 ctrace_record(&rte
->rtd_alloc
);
3631 rte
->rtd_inuse
= RTD_INUSE
;
3633 return ((struct rtentry
*)rte
);
3637 rte_free_debug(struct rtentry
*p
)
3639 struct rtentry_dbg
*rte
= (struct rtentry_dbg
*)p
;
3641 if (p
->rt_refcnt
!= 0) {
3642 panic("rte_free: rte=%p refcnt=%d\n", p
, p
->rt_refcnt
);
3645 if (rte
->rtd_inuse
== RTD_FREED
) {
3646 panic("rte_free: double free rte=%p\n", rte
);
3648 } else if (rte
->rtd_inuse
!= RTD_INUSE
) {
3649 panic("rte_free: corrupted rte=%p\n", rte
);
3652 bcopy((caddr_t
)p
, (caddr_t
)&rte
->rtd_entry_saved
, sizeof (*p
));
3653 /* Preserve rt_lock to help catch use-after-free cases */
3654 bzero((caddr_t
)p
, offsetof(struct rtentry
, rt_lock
));
3656 rte
->rtd_inuse
= RTD_FREED
;
3658 if (rte_debug
& RTD_TRACE
)
3659 ctrace_record(&rte
->rtd_free
);
3661 if (!(rte_debug
& RTD_NO_FREE
))
3666 ctrace_record(ctrace_t
*tr
)
3668 tr
->th
= current_thread();
3669 bzero(tr
->pc
, sizeof (tr
->pc
));
3670 (void) OSBacktrace(tr
->pc
, CTRACE_STACK_SIZE
);
3674 route_copyout(struct route
*dst
, const struct route
*src
, size_t length
)
3676 /* Copy everything (rt, srcif, flags, dst) from src */
3677 bcopy(src
, dst
, length
);
3679 /* Hold one reference for the local copy of struct route */
3680 if (dst
->ro_rt
!= NULL
)
3681 RT_ADDREF(dst
->ro_rt
);
3683 /* Hold one reference for the local copy of struct ifaddr */
3684 if (dst
->ro_srcia
!= NULL
)
3685 IFA_ADDREF(dst
->ro_srcia
);
3689 route_copyin(struct route
*src
, struct route
*dst
, size_t length
)
3691 /* No cached route at the destination? */
3692 if (dst
->ro_rt
== NULL
) {
3694 * Ditch the address in the cached copy (dst) since
3695 * we're about to take everything there is in src.
3697 if (dst
->ro_srcia
!= NULL
)
3698 IFA_REMREF(dst
->ro_srcia
);
3700 * Copy everything (rt, srcia, flags, dst) from src; the
3701 * references to rt and/or srcia were held at the time
3702 * of storage and are kept intact.
3704 bcopy(src
, dst
, length
);
3705 } else if (src
->ro_rt
!= NULL
) {
3707 * If the same, update srcia and flags, and ditch the route
3708 * in the local copy. Else ditch the one that is currently
3709 * cached, and cache the new route.
3711 if (dst
->ro_rt
== src
->ro_rt
) {
3712 dst
->ro_flags
= src
->ro_flags
;
3713 if (dst
->ro_srcia
!= src
->ro_srcia
) {
3714 if (dst
->ro_srcia
!= NULL
)
3715 IFA_REMREF(dst
->ro_srcia
);
3716 dst
->ro_srcia
= src
->ro_srcia
;
3717 } else if (src
->ro_srcia
!= NULL
) {
3718 IFA_REMREF(src
->ro_srcia
);
3723 if (dst
->ro_srcia
!= NULL
)
3724 IFA_REMREF(dst
->ro_srcia
);
3725 bcopy(src
, dst
, length
);
3727 } else if (src
->ro_srcia
!= NULL
) {
3729 * Ditch src address in the local copy (src) since we're
3730 * not caching the route entry anyway (ro_rt is NULL).
3732 IFA_REMREF(src
->ro_srcia
);
3735 /* This function consumes the references on src */
3737 src
->ro_srcia
= NULL
;
3741 * route_to_gwroute will find the gateway route for a given route.
3743 * If the route is down, look the route up again.
3744 * If the route goes through a gateway, get the route to the gateway.
3745 * If the gateway route is down, look it up again.
3746 * If the route is set to reject, verify it hasn't expired.
3748 * If the returned route is non-NULL, the caller is responsible for
3749 * releasing the reference and unlocking the route.
3751 #define senderr(e) { error = (e); goto bad; }
3753 route_to_gwroute(const struct sockaddr
*net_dest
, struct rtentry
*hint0
,
3754 struct rtentry
**out_route
)
3757 struct rtentry
*rt
= hint0
, *hint
= hint0
;
3759 unsigned int ifindex
;
3768 * Next hop determination. Because we may involve the gateway route
3769 * in addition to the original route, locking is rather complicated.
3770 * The general concept is that regardless of whether the route points
3771 * to the original route or to the gateway route, this routine takes
3772 * an extra reference on such a route. This extra reference will be
3773 * released at the end.
3775 * Care must be taken to ensure that the "hint0" route never gets freed
3776 * via rtfree(), since the caller may have stored it inside a struct
3777 * route with a reference held for that placeholder.
3780 ifindex
= rt
->rt_ifp
->if_index
;
3781 RT_ADDREF_LOCKED(rt
);
3782 if (!(rt
->rt_flags
& RTF_UP
)) {
3783 RT_REMREF_LOCKED(rt
);
3785 /* route is down, find a new one */
3786 hint
= rt
= rtalloc1_scoped((struct sockaddr
*)
3787 (size_t)net_dest
, 1, 0, ifindex
);
3790 ifindex
= rt
->rt_ifp
->if_index
;
3792 senderr(EHOSTUNREACH
);
3797 * We have a reference to "rt" by now; it will either
3798 * be released or freed at the end of this routine.
3800 RT_LOCK_ASSERT_HELD(rt
);
3801 if ((gwroute
= (rt
->rt_flags
& RTF_GATEWAY
))) {
3802 struct rtentry
*gwrt
= rt
->rt_gwroute
;
3803 struct sockaddr_storage ss
;
3804 struct sockaddr
*gw
= (struct sockaddr
*)&ss
;
3807 RT_ADDREF_LOCKED(hint
);
3809 /* If there's no gateway rt, look it up */
3811 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3812 rt
->rt_gateway
->sa_len
));
3816 /* Become a regular mutex */
3817 RT_CONVERT_LOCK(rt
);
3820 * Take gwrt's lock while holding route's lock;
3821 * this is okay since gwrt never points back
3822 * to "rt", so no lock ordering issues.
3825 if (!(gwrt
->rt_flags
& RTF_UP
)) {
3826 rt
->rt_gwroute
= NULL
;
3828 bcopy(rt
->rt_gateway
, gw
, MIN(sizeof (ss
),
3829 rt
->rt_gateway
->sa_len
));
3833 lck_mtx_lock(rnh_lock
);
3834 gwrt
= rtalloc1_scoped_locked(gw
, 1, 0, ifindex
);
3838 * Bail out if the route is down, no route
3839 * to gateway, circular route, or if the
3840 * gateway portion of "rt" has changed.
3842 if (!(rt
->rt_flags
& RTF_UP
) || gwrt
== NULL
||
3843 gwrt
== rt
|| !equal(gw
, rt
->rt_gateway
)) {
3845 RT_REMREF_LOCKED(gwrt
);
3849 RT_REMREF_LOCKED(hint
);
3853 rtfree_locked(gwrt
);
3854 lck_mtx_unlock(rnh_lock
);
3855 senderr(EHOSTUNREACH
);
3857 VERIFY(gwrt
!= NULL
);
3859 * Set gateway route; callee adds ref to gwrt;
3860 * gwrt has an extra ref from rtalloc1() for
3863 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
3865 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
3867 lck_mtx_unlock(rnh_lock
);
3870 RT_ADDREF_LOCKED(gwrt
);
3873 RT_REMREF_LOCKED(rt
); /* hint still holds a refcnt */
3877 VERIFY(rt
== gwrt
&& rt
!= hint
);
3880 * This is an opportunity to revalidate the parent route's
3881 * rt_gwroute, in case it now points to a dead route entry.
3882 * Parent route won't go away since the clone (hint) holds
3883 * a reference to it. rt == gwrt.
3886 if ((hint
->rt_flags
& (RTF_WASCLONED
| RTF_UP
)) ==
3887 (RTF_WASCLONED
| RTF_UP
)) {
3888 struct rtentry
*prt
= hint
->rt_parent
;
3889 VERIFY(prt
!= NULL
);
3891 RT_CONVERT_LOCK(hint
);
3894 rt_revalidate_gwroute(prt
, rt
);
3900 /* Clean up "hint" now; see notes above regarding hint0 */
3907 /* rt == gwrt; if it is now down, give up */
3909 if (!(rt
->rt_flags
& RTF_UP
)) {
3911 senderr(EHOSTUNREACH
);
3915 if (rt
->rt_flags
& RTF_REJECT
) {
3916 VERIFY(rt
->rt_expire
== 0 || rt
->rt_rmx
.rmx_expire
!= 0);
3917 VERIFY(rt
->rt_expire
!= 0 || rt
->rt_rmx
.rmx_expire
== 0);
3918 timenow
= net_uptime();
3919 if (rt
->rt_expire
== 0 || timenow
< rt
->rt_expire
) {
3921 senderr(!gwroute
? EHOSTDOWN
: EHOSTUNREACH
);
3925 /* Become a regular mutex */
3926 RT_CONVERT_LOCK(rt
);
3928 /* Caller is responsible for cleaning up "rt" */
3933 /* Clean up route (either it is "rt" or "gwrt") */
3937 RT_REMREF_LOCKED(rt
);
3949 rt_revalidate_gwroute(struct rtentry
*rt
, struct rtentry
*gwrt
)
3951 VERIFY(gwrt
!= NULL
);
3954 if ((rt
->rt_flags
& (RTF_GATEWAY
| RTF_UP
)) == (RTF_GATEWAY
| RTF_UP
) &&
3955 rt
->rt_ifp
== gwrt
->rt_ifp
&& rt
->rt_gateway
->sa_family
==
3956 rt_key(gwrt
)->sa_family
&& (rt
->rt_gwroute
== NULL
||
3957 !(rt
->rt_gwroute
->rt_flags
& RTF_UP
))) {
3959 VERIFY(rt
->rt_flags
& (RTF_CLONING
| RTF_PRCLONING
));
3961 if (rt
->rt_gateway
->sa_family
== AF_INET
||
3962 rt
->rt_gateway
->sa_family
== AF_INET6
) {
3963 struct sockaddr_storage key_ss
, gw_ss
;
3965 * We need to compare rt_key and rt_gateway; create
3966 * local copies to get rid of any ifscope association.
3968 (void) sa_copy(rt_key(gwrt
), &key_ss
, NULL
);
3969 (void) sa_copy(rt
->rt_gateway
, &gw_ss
, NULL
);
3971 isequal
= equal(SA(&key_ss
), SA(&gw_ss
));
3973 isequal
= equal(rt_key(gwrt
), rt
->rt_gateway
);
3976 /* If they are the same, update gwrt */
3979 lck_mtx_lock(rnh_lock
);
3981 rt_set_gwroute(rt
, rt_key(rt
), gwrt
);
3983 lck_mtx_unlock(rnh_lock
);
3993 rt_str4(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
3995 VERIFY(rt_key(rt
)->sa_family
== AF_INET
);
3998 (void) inet_ntop(AF_INET
,
3999 &SIN(rt_key(rt
))->sin_addr
.s_addr
, ds
, dslen
);
4000 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4001 SINIFSCOPE(rt_key(rt
))->sin_scope_id
!= IFSCOPE_NONE
) {
4004 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4005 SINIFSCOPE(rt_key(rt
))->sin_scope_id
);
4007 strlcat(ds
, scpstr
, dslen
);
4012 if (rt
->rt_flags
& RTF_GATEWAY
) {
4013 (void) inet_ntop(AF_INET
,
4014 &SIN(rt
->rt_gateway
)->sin_addr
.s_addr
, gs
, gslen
);
4015 } else if (rt
->rt_ifp
!= NULL
) {
4016 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4018 snprintf(gs
, gslen
, "%s", "link");
4025 rt_str6(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4027 VERIFY(rt_key(rt
)->sa_family
== AF_INET6
);
4030 (void) inet_ntop(AF_INET6
,
4031 &SIN6(rt_key(rt
))->sin6_addr
, ds
, dslen
);
4032 if (dslen
>= MAX_SCOPE_ADDR_STR_LEN
&&
4033 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
!= IFSCOPE_NONE
) {
4036 snprintf(scpstr
, sizeof(scpstr
), "@%u",
4037 SIN6IFSCOPE(rt_key(rt
))->sin6_scope_id
);
4039 strlcat(ds
, scpstr
, dslen
);
4044 if (rt
->rt_flags
& RTF_GATEWAY
) {
4045 (void) inet_ntop(AF_INET6
,
4046 &SIN6(rt
->rt_gateway
)->sin6_addr
, gs
, gslen
);
4047 } else if (rt
->rt_ifp
!= NULL
) {
4048 snprintf(gs
, gslen
, "link#%u", rt
->rt_ifp
->if_unit
);
4050 snprintf(gs
, gslen
, "%s", "link");
4058 rt_str(struct rtentry
*rt
, char *ds
, uint32_t dslen
, char *gs
, uint32_t gslen
)
4060 switch (rt_key(rt
)->sa_family
) {
4062 rt_str4(rt
, ds
, dslen
, gs
, gslen
);
4066 rt_str6(rt
, ds
, dslen
, gs
, gslen
);