2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
23 * Copyright (c) 1982, 1986, 1988, 1993
24 * The Regents of the University of California. All rights reserved.
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
55 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.25 2001/08/29 21:41:37 jesper Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
63 #include <sys/malloc.h>
64 #include <sys/domain.h>
65 #include <sys/protosw.h>
66 #include <sys/socket.h>
68 #include <sys/kernel.h>
69 #include <sys/syslog.h>
70 #include <sys/sysctl.h>
72 #include <kern/queue.h>
75 #include <net/if_var.h>
76 #include <net/if_dl.h>
77 #include <net/route.h>
78 #include <net/netisr.h>
80 #include <netinet/in.h>
81 #include <netinet/in_systm.h>
82 #include <netinet/in_var.h>
83 #include <netinet/ip.h>
84 #include <netinet/in_pcb.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip_icmp.h>
87 #include <sys/socketvar.h>
89 #include <netinet/ip_fw.h>
91 /* needed for AUTOCONFIGURING: */
92 #include <netinet/udp.h>
93 #include <netinet/udp_var.h>
94 #include <netinet/bootp.h>
96 #include <sys/kdebug.h>
98 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 0)
99 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 2)
100 #define DBG_FNC_IP_INPUT NETDBG_CODE(DBG_NETIP, (2 << 8))
104 #include <netinet6/ipsec.h>
105 #include <netkey/key.h>
109 #if defined(NFAITH) && NFAITH > 0
110 #include <net/if_types.h>
114 #include <netinet/ip_dummynet.h>
118 extern int ipsec_bypass
;
122 static int ip_rsvp_on
;
123 struct socket
*ip_rsvpd
;
125 int ipforwarding
= 0;
126 SYSCTL_INT(_net_inet_ip
, IPCTL_FORWARDING
, forwarding
, CTLFLAG_RW
,
127 &ipforwarding
, 0, "Enable IP forwarding between interfaces");
129 static int ipsendredirects
= 1; /* XXX */
130 SYSCTL_INT(_net_inet_ip
, IPCTL_SENDREDIRECTS
, redirect
, CTLFLAG_RW
,
131 &ipsendredirects
, 0, "Enable sending IP redirects");
133 int ip_defttl
= IPDEFTTL
;
134 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFTTL
, ttl
, CTLFLAG_RW
,
135 &ip_defttl
, 0, "Maximum TTL on IP packets");
137 static int ip_dosourceroute
= 0;
138 SYSCTL_INT(_net_inet_ip
, IPCTL_SOURCEROUTE
, sourceroute
, CTLFLAG_RW
,
139 &ip_dosourceroute
, 0, "Enable forwarding source routed IP packets");
141 static int ip_acceptsourceroute
= 0;
142 SYSCTL_INT(_net_inet_ip
, IPCTL_ACCEPTSOURCEROUTE
, accept_sourceroute
,
143 CTLFLAG_RW
, &ip_acceptsourceroute
, 0,
144 "Enable accepting source routed IP packets");
146 static int ip_keepfaith
= 0;
147 SYSCTL_INT(_net_inet_ip
, IPCTL_KEEPFAITH
, keepfaith
, CTLFLAG_RW
,
149 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
151 static int ip_nfragpackets
= 0;
152 static int ip_maxfragpackets
; /* initialized in ip_init() */
153 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxfragpackets
, CTLFLAG_RW
,
154 &ip_maxfragpackets
, 0,
155 "Maximum number of IPv4 fragment reassembly queue entries");
158 * XXX - Setting ip_checkinterface mostly implements the receive side of
159 * the Strong ES model described in RFC 1122, but since the routing table
160 * and transmit implementation do not implement the Strong ES model,
161 * setting this to 1 results in an odd hybrid.
163 * XXX - ip_checkinterface currently must be disabled if you use ipnat
164 * to translate the destination address to another local interface.
166 * XXX - ip_checkinterface must be disabled if you add IP aliases
167 * to the loopback interface instead of the interface where the
168 * packets for those addresses are received.
170 static int ip_checkinterface
= 0;
171 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, check_interface
, CTLFLAG_RW
,
172 &ip_checkinterface
, 0, "Verify packet arrives on correct interface");
175 static int ipprintfs
= 0;
178 extern struct domain inetdomain
;
179 extern struct protosw inetsw
[];
180 struct protosw
*ip_protox
[IPPROTO_MAX
];
181 static int ipqmaxlen
= IFQ_MAXLEN
;
182 struct in_ifaddrhead in_ifaddrhead
; /* first inet address */
183 struct ifqueue ipintrq
;
184 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQMAXLEN
, intr_queue_maxlen
, CTLFLAG_RW
,
185 &ipintrq
.ifq_maxlen
, 0, "Maximum size of the IP input queue");
186 SYSCTL_INT(_net_inet_ip
, IPCTL_INTRQDROPS
, intr_queue_drops
, CTLFLAG_RD
,
187 &ipintrq
.ifq_drops
, 0, "Number of packets dropped from the IP input queue");
189 struct ipstat ipstat
;
190 SYSCTL_STRUCT(_net_inet_ip
, IPCTL_STATS
, stats
, CTLFLAG_RD
,
191 &ipstat
, ipstat
, "IP statistics (struct ipstat, netinet/ip_var.h)");
193 /* Packet reassembly stuff */
194 #define IPREASS_NHASH_LOG2 6
195 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
196 #define IPREASS_HMASK (IPREASS_NHASH - 1)
197 #define IPREASS_HASH(x,y) \
198 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
200 static struct ipq ipq
[IPREASS_NHASH
];
201 static int nipq
= 0; /* total # of reass queues */
203 const int ipintrq_present
= 1;
206 SYSCTL_INT(_net_inet_ip
, IPCTL_DEFMTU
, mtu
, CTLFLAG_RW
,
207 &ip_mtu
, 0, "Default MTU");
211 static int ipstealth
= 0;
212 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, stealth
, CTLFLAG_RW
,
218 ip_fw_chk_t
*ip_fw_chk_ptr
;
219 ip_fw_ctl_t
*ip_fw_ctl_ptr
;
223 ip_dn_ctl_t
*ip_dn_ctl_ptr
;
226 int (*fr_checkp
) __P((struct ip
*, int, struct ifnet
*, int, struct mbuf
**)) = NULL
;
228 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, linklocal
, CTLFLAG_RW
, 0, "link local");
230 struct ip_linklocal_stat ip_linklocal_stat
;
231 SYSCTL_STRUCT(_net_inet_ip_linklocal
, OID_AUTO
, stat
, CTLFLAG_RD
,
232 &ip_linklocal_stat
, ip_linklocal_stat
,
233 "Number of link local packets with TTL less than 255");
235 SYSCTL_NODE(_net_inet_ip_linklocal
, OID_AUTO
, in
, CTLFLAG_RW
, 0, "link local input");
237 int ip_linklocal_in_allowbadttl
= 0;
238 SYSCTL_INT(_net_inet_ip_linklocal_in
, OID_AUTO
, allowbadttl
, CTLFLAG_RW
,
239 &ip_linklocal_in_allowbadttl
, 0,
240 "Allow incoming link local packets with TTL less than 255");
244 * We need to save the IP options in case a protocol wants to respond
245 * to an incoming packet over the same route if the packet got here
246 * using IP source routing. This allows connection establishment and
247 * maintenance when the remote end is on a network that is not known
250 static int ip_nhops
= 0;
251 static struct ip_srcrt
{
252 struct in_addr dst
; /* final destination */
253 char nop
; /* one NOP to align */
254 char srcopt
[IPOPT_OFFSET
+ 1]; /* OPTVAL, OLEN and OFFSET */
255 struct in_addr route
[MAX_IPOPTLEN
/sizeof(struct in_addr
)];
258 struct sockaddr_in
*ip_fw_fwd_addr
;
261 extern struct mbuf
* m_dup(register struct mbuf
*m
, int how
);
264 static void save_rte
__P((u_char
*, struct in_addr
));
265 static int ip_dooptions
__P((struct mbuf
*));
266 static void ip_forward
__P((struct mbuf
*, int));
267 static void ip_freef
__P((struct ipq
*));
270 static struct mbuf
*ip_reass
__P((struct mbuf
*,
271 struct ipq
*, struct ipq
*, u_int32_t
*, u_int16_t
*));
273 static struct mbuf
*ip_reass
__P((struct mbuf
*,
274 struct ipq
*, struct ipq
*, u_int16_t
*, u_int16_t
*));
277 static struct mbuf
*ip_reass
__P((struct mbuf
*, struct ipq
*, struct ipq
*));
279 static struct in_ifaddr
*ip_rtaddr
__P((struct in_addr
));
280 void ipintr
__P((void));
283 extern u_short ip_id
;
287 * IP initialization: fill in IP protocol switch table.
288 * All protocols not implemented in kernel go to raw IP protocol handler.
293 register struct protosw
*pr
;
295 static ip_initialized
= 0;
299 TAILQ_INIT(&in_ifaddrhead
);
300 pr
= pffindproto(PF_INET
, IPPROTO_RAW
, SOCK_RAW
);
303 for (i
= 0; i
< IPPROTO_MAX
; i
++)
305 for (pr
= inetdomain
.dom_protosw
; pr
; pr
= pr
->pr_next
)
306 { if(!((unsigned int)pr
->pr_domain
)) continue; /* If uninitialized, skip */
307 if (pr
->pr_domain
->dom_family
== PF_INET
&&
308 pr
->pr_protocol
&& pr
->pr_protocol
!= IPPROTO_RAW
)
309 ip_protox
[pr
->pr_protocol
] = pr
;
311 for (i
= 0; i
< IPREASS_NHASH
; i
++)
312 ipq
[i
].next
= ipq
[i
].prev
= &ipq
[i
];
314 maxnipq
= nmbclusters
/ 4;
315 ip_maxfragpackets
= nmbclusters
/ 4;
318 ip_id
= time_second
& 0xffff;
320 ipintrq
.ifq_maxlen
= ipqmaxlen
;
325 /* Initialize the PF_INET domain, and add in the pre-defined protos */
329 register struct protosw
*pr
;
330 register struct domain
*dp
;
331 static inetdomain_initted
= 0;
332 extern int in_proto_count
;
334 if (!inetdomain_initted
)
336 kprintf("Initing %d protosw entries\n", in_proto_count
);
339 for (i
=0, pr
= &inetsw
[0]; i
<in_proto_count
; i
++, pr
++)
340 net_add_proto(pr
, dp
);
341 inetdomain_initted
= 1;
345 static struct sockaddr_in ipaddr
= { sizeof(ipaddr
), AF_INET
};
346 static struct route ipforward_rt
;
349 * Ip input routine. Checksum and byte swap header. If fragmented
350 * try to reassemble. Process options. Pass to next level.
353 ip_input(struct mbuf
*m
)
357 struct in_ifaddr
*ia
= NULL
;
358 int i
, hlen
, mff
, checkif
;
360 u_int16_t divert_cookie
; /* firewall cookie */
361 struct in_addr pkt_dst
;
363 u_int32_t divert_info
= 0; /* packet divert/tee info */
365 struct ip_fw_chain
*rule
= NULL
;
368 /* Get and reset firewall cookie */
369 divert_cookie
= ip_divert_cookie
;
370 ip_divert_cookie
= 0;
375 #if IPFIREWALL && DUMMYNET
377 * dummynet packet are prepended a vestigial mbuf with
378 * m_type = MT_DUMMYNET and m_data pointing to the matching
381 if (m
->m_type
== MT_DUMMYNET
) {
382 rule
= (struct ip_fw_chain
*)(m
->m_data
) ;
384 ip
= mtod(m
, struct ip
*);
385 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
392 if (m
== NULL
|| (m
->m_flags
& M_PKTHDR
) == 0)
393 panic("ip_input no HDR");
397 if (m
->m_pkthdr
.len
< sizeof(struct ip
))
400 if (m
->m_len
< sizeof (struct ip
) &&
401 (m
= m_pullup(m
, sizeof (struct ip
))) == 0) {
402 ipstat
.ips_toosmall
++;
405 ip
= mtod(m
, struct ip
*);
407 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
,
408 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
410 if (IP_VHL_V(ip
->ip_vhl
) != IPVERSION
) {
411 ipstat
.ips_badvers
++;
415 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
416 if (hlen
< sizeof(struct ip
)) { /* minimum header length */
417 ipstat
.ips_badhlen
++;
420 if (hlen
> m
->m_len
) {
421 if ((m
= m_pullup(m
, hlen
)) == 0) {
422 ipstat
.ips_badhlen
++;
425 ip
= mtod(m
, struct ip
*);
428 /* 127/8 must not appear on wire - RFC1122 */
429 if ((ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
430 (ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
) {
431 if ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) {
433 ipstat
.ips_badaddr
++;
439 /* IPv4 Link-Local Addresses as defined in <draft-ietf-zeroconf-ipv4-linklocal-05.txt> */
440 if ((IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
)) ||
441 IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)))) {
442 ip_linklocal_stat
.iplls_in_total
++;
443 if (ip
->ip_ttl
!= MAXTTL
) {
444 ip_linklocal_stat
.iplls_in_badttl
++;
445 /* Silently drop link local traffic with bad TTL */
446 if (ip_linklocal_in_allowbadttl
!= 0)
450 if (m
->m_pkthdr
.rcvif
->if_hwassist
== 0)
451 m
->m_pkthdr
.csum_flags
= 0;
453 if ((m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
) && ip
->ip_p
!= IPPROTO_TCP
)
454 m
->m_pkthdr
.csum_flags
= 0;
456 if (m
->m_pkthdr
.csum_flags
& CSUM_IP_CHECKED
) {
457 sum
= !(m
->m_pkthdr
.csum_flags
& CSUM_IP_VALID
);
459 sum
= in_cksum(m
, hlen
);
467 * Convert fields to host representation.
470 if (ip
->ip_len
< hlen
) {
477 * Check that the amount of data in the buffers
478 * is as at least much as the IP header would have us expect.
479 * Trim mbufs if longer than we expect.
480 * Drop packet if shorter than we expect.
482 if (m
->m_pkthdr
.len
< ip
->ip_len
) {
484 ipstat
.ips_tooshort
++;
487 if (m
->m_pkthdr
.len
> ip
->ip_len
) {
488 /* Invalidate hwcksuming */
489 m
->m_pkthdr
.csum_flags
= 0;
490 m
->m_pkthdr
.csum_data
= 0;
492 if (m
->m_len
== m
->m_pkthdr
.len
) {
493 m
->m_len
= ip
->ip_len
;
494 m
->m_pkthdr
.len
= ip
->ip_len
;
496 m_adj(m
, ip
->ip_len
- m
->m_pkthdr
.len
);
500 if (ipsec_bypass
== 0 && ipsec_gethist(m
, NULL
))
506 * Right now when no processing on packet has done
507 * and it is still fresh out of network we do our black
509 * - Firewall: deny/allow/divert
510 * - Xlate: translate packet's addr/port (NAT).
511 * - Pipe: pass pkt through dummynet.
512 * - Wrap: fake packet's addr/port <unimpl.>
513 * - Encapsulate: put it in another IP and send out. <unimp.>
516 #if defined(IPFIREWALL) && defined(DUMMYNET)
520 * Check if we want to allow this packet to be processed.
521 * Consider it to be bad if not.
526 if ((*fr_checkp
)(ip
, hlen
, m
->m_pkthdr
.rcvif
, 0, &m1
) || !m1
)
528 ip
= mtod(m
= m1
, struct ip
*);
530 if (fw_enable
&& ip_fw_chk_ptr
) {
531 #if IPFIREWALL_FORWARD
533 * If we've been forwarded from the output side, then
534 * skip the firewall a second time
538 #endif /* IPFIREWALL_FORWARD */
540 * See the comment in ip_output for the return values
541 * produced by the firewall.
543 i
= (*ip_fw_chk_ptr
)(&ip
,
544 hlen
, NULL
, &divert_cookie
, &m
, &rule
, &ip_fw_fwd_addr
);
545 if ( (i
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) { /* drop */
550 ip
= mtod(m
, struct ip
*); /* just in case m changed */
551 if (i
== 0 && ip_fw_fwd_addr
== NULL
) /* common case */
554 if ((i
& IP_FW_PORT_DYNT_FLAG
) != 0) {
555 /* send packet to the appropriate pipe */
556 dummynet_io(i
&0xffff,DN_TO_IP_IN
,m
,NULL
,NULL
,0, rule
);
561 if (i
!= 0 && (i
& IP_FW_PORT_DYNT_FLAG
) == 0) {
562 /* Divert or tee packet */
567 #if IPFIREWALL_FORWARD
568 if (i
== 0 && ip_fw_fwd_addr
!= NULL
)
572 * if we get here, the packet must be dropped
580 * Process options and, if not destined for us,
581 * ship it on. ip_dooptions returns 1 when an
582 * error was detected (causing an icmp message
583 * to be sent and the original packet to be freed).
585 ip_nhops
= 0; /* for source routed packets */
586 if (hlen
> sizeof (struct ip
) && ip_dooptions(m
)) {
587 #if IPFIREWALL_FORWARD
588 ip_fw_fwd_addr
= NULL
;
593 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
594 * matter if it is destined to another node, or whether it is
595 * a multicast one, RSVP wants it! and prevents it from being forwarded
596 * anywhere else. Also checks if the rsvp daemon is running before
597 * grabbing the packet.
599 if (rsvp_on
&& ip
->ip_p
==IPPROTO_RSVP
)
603 * Check our list of addresses, to see if the packet is for us.
604 * If we don't have any addresses, assume any unicast packet
605 * we receive might be for us (and let the upper layers deal
608 if (TAILQ_EMPTY(&in_ifaddrhead
) &&
609 (m
->m_flags
& (M_MCAST
|M_BCAST
)) == 0)
613 * Cache the destination address of the packet; this may be
614 * changed by use of 'ipfw fwd'.
616 pkt_dst
= ip_fw_fwd_addr
== NULL
?
617 ip
->ip_dst
: ip_fw_fwd_addr
->sin_addr
;
620 * Enable a consistency check between the destination address
621 * and the arrival interface for a unicast packet (the RFC 1122
622 * strong ES model) if IP forwarding is disabled and the packet
623 * is not locally generated and the packet is not subject to
626 * XXX - Checking also should be disabled if the destination
627 * address is ipnat'ed to a different interface.
629 * XXX - Checking is incompatible with IP aliases added
630 * to the loopback interface instead of the interface where
631 * the packets are received.
633 checkif
= ip_checkinterface
&& (ipforwarding
== 0) &&
634 ((m
->m_pkthdr
.rcvif
->if_flags
& IFF_LOOPBACK
) == 0) &&
635 (ip_fw_fwd_addr
== NULL
);
637 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
638 #define satosin(sa) ((struct sockaddr_in *)(sa))
640 if (IA_SIN(ia
)->sin_addr
.s_addr
== INADDR_ANY
)
644 * If the address matches, verify that the packet
645 * arrived via the correct interface if checking is
648 if (IA_SIN(ia
)->sin_addr
.s_addr
== pkt_dst
.s_addr
&&
649 (!checkif
|| ia
->ia_ifp
== m
->m_pkthdr
.rcvif
))
652 * Only accept broadcast packets that arrive via the
653 * matching interface. Reception of forwarded directed
654 * broadcasts would be handled via ip_forward() and
655 * ether_output() with the loopback into the stack for
656 * SIMPLEX interfaces handled by ether_output().
658 if (ia
->ia_ifp
== m
->m_pkthdr
.rcvif
&&
659 ia
->ia_ifp
&& ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
660 if (satosin(&ia
->ia_broadaddr
)->sin_addr
.s_addr
==
663 if (ia
->ia_netbroadcast
.s_addr
== pkt_dst
.s_addr
)
667 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
))) {
668 struct in_multi
*inm
;
671 * If we are acting as a multicast router, all
672 * incoming multicast packets are passed to the
673 * kernel-level multicast forwarding function.
674 * The packet is returned (relatively) intact; if
675 * ip_mforward() returns a non-zero value, the packet
676 * must be discarded, else it may be accepted below.
678 if (ip_mforward(ip
, m
->m_pkthdr
.rcvif
, m
, 0) != 0) {
679 ipstat
.ips_cantforward
++;
685 * The process-level routing demon needs to receive
686 * all multicast IGMP packets, whether or not this
687 * host belongs to their destination groups.
689 if (ip
->ip_p
== IPPROTO_IGMP
)
691 ipstat
.ips_forward
++;
694 * See if we belong to the destination multicast group on the
697 IN_LOOKUP_MULTI(ip
->ip_dst
, m
->m_pkthdr
.rcvif
, inm
);
699 ipstat
.ips_notmember
++;
705 if (ip
->ip_dst
.s_addr
== (u_long
)INADDR_BROADCAST
)
707 if (ip
->ip_dst
.s_addr
== INADDR_ANY
)
710 /* Allow DHCP/BootP responses through */
711 if (m
->m_pkthdr
.rcvif
!= NULL
712 && (m
->m_pkthdr
.rcvif
->if_eflags
& IFEF_AUTOCONFIGURING
)
713 && hlen
== sizeof(struct ip
)
714 && ip
->ip_p
== IPPROTO_UDP
) {
716 if (m
->m_len
< sizeof(struct udpiphdr
)
717 && (m
= m_pullup(m
, sizeof(struct udpiphdr
))) == 0) {
718 udpstat
.udps_hdrops
++;
721 ui
= mtod(m
, struct udpiphdr
*);
722 if (ntohs(ui
->ui_dport
) == IPPORT_BOOTPC
) {
725 ip
= mtod(m
, struct ip
*); /* in case it changed */
728 #if defined(NFAITH) && 0 < NFAITH
730 * FAITH(Firewall Aided Internet Translator)
732 if (m
->m_pkthdr
.rcvif
&& m
->m_pkthdr
.rcvif
->if_type
== IFT_FAITH
) {
734 if (ip
->ip_p
== IPPROTO_TCP
|| ip
->ip_p
== IPPROTO_ICMP
)
742 * Not for us; forward if possible and desirable.
744 if (ipforwarding
== 0) {
745 ipstat
.ips_cantforward
++;
749 #if IPFIREWALL_FORWARD
750 ip_fw_fwd_addr
= NULL
;
756 /* Darwin does not have an if_data in ifaddr */
757 /* Count the packet in the ip address stats */
759 ia
->ia_ifa
.if_ipackets
++;
760 ia
->ia_ifa
.if_ibytes
+= m
->m_pkthdr
.len
;
765 * If offset or IP_MF are set, must reassemble.
766 * Otherwise, nothing need be done.
767 * (We could look in the reassembly queue to see
768 * if the packet was previously fragmented,
769 * but it's not worth the time; just let them time out.)
771 if (ip
->ip_off
& (IP_MF
| IP_OFFMASK
| IP_RF
)) {
774 * Reassembly should be able to treat a mbuf cluster, for later
775 * operation of contiguous protocol headers on the cluster. (KAME)
777 if (m
->m_flags
& M_EXT
) { /* XXX */
778 if ((m
= m_pullup(m
, hlen
)) == 0) {
779 ipstat
.ips_toosmall
++;
780 #if IPFIREWALL_FORWARD
781 ip_fw_fwd_addr
= NULL
;
785 ip
= mtod(m
, struct ip
*);
788 sum
= IPREASS_HASH(ip
->ip_src
.s_addr
, ip
->ip_id
);
790 * Look for queue of fragments
793 for (fp
= ipq
[sum
].next
; fp
!= &ipq
[sum
]; fp
= fp
->next
)
794 if (ip
->ip_id
== fp
->ipq_id
&&
795 ip
->ip_src
.s_addr
== fp
->ipq_src
.s_addr
&&
796 ip
->ip_dst
.s_addr
== fp
->ipq_dst
.s_addr
&&
797 ip
->ip_p
== fp
->ipq_p
)
802 /* check if there's a place for the new queue */
803 if (nipq
> maxnipq
) {
805 * drop something from the tail of the current queue
806 * before proceeding further
808 if (ipq
[sum
].prev
== &ipq
[sum
]) { /* gak */
809 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
810 if (ipq
[i
].prev
!= &ipq
[i
]) {
811 ip_freef(ipq
[i
].prev
);
816 ip_freef(ipq
[sum
].prev
);
820 * Adjust ip_len to not reflect header,
821 * set ip_mff if more fragments are expected,
822 * convert offset of this to bytes.
825 mff
= (ip
->ip_off
& IP_MF
) != 0;
828 * Make sure that fragments have a data length
829 * that's a non-zero multiple of 8 bytes.
831 if (ip
->ip_len
== 0 || (ip
->ip_len
& 0x7) != 0) {
832 ipstat
.ips_toosmall
++; /* XXX */
835 m
->m_flags
|= M_FRAG
;
840 * If datagram marked as having more fragments
841 * or if this is not the first fragment,
842 * attempt reassembly; if it succeeds, proceed.
844 if (mff
|| ip
->ip_off
) {
845 ipstat
.ips_fragments
++;
846 m
->m_pkthdr
.header
= ip
;
849 fp
, &ipq
[sum
], &divert_info
, &divert_cookie
);
851 m
= ip_reass(m
, fp
, &ipq
[sum
]);
854 #if IPFIREWALL_FORWARD
855 ip_fw_fwd_addr
= NULL
;
859 ipstat
.ips_reassembled
++;
860 ip
= mtod(m
, struct ip
*);
861 /* Get the header length of the reassembled packet */
862 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
864 /* Restore original checksum before diverting packet */
865 if (divert_info
!= 0) {
870 ip
->ip_sum
= in_cksum(m
, hlen
);
884 * Divert or tee packet to the divert protocol if required.
886 * If divert_info is zero then cookie should be too, so we shouldn't
887 * need to clear them here. Assume divert_packet() does so also.
889 if (divert_info
!= 0) {
890 struct mbuf
*clone
= NULL
;
892 /* Clone packet if we're doing a 'tee' */
893 if ((divert_info
& IP_FW_PORT_TEE_FLAG
) != 0)
894 clone
= m_dup(m
, M_DONTWAIT
);
896 /* Restore packet header fields to original values */
901 /* Deliver packet to divert input routine */
902 ip_divert_cookie
= divert_cookie
;
903 divert_packet(m
, 1, divert_info
& 0xffff);
904 ipstat
.ips_delivered
++;
906 /* If 'tee', continue with original packet */
910 ip
= mtod(m
, struct ip
*);
916 * enforce IPsec policy checking if we are seeing last header.
917 * note that we do not visit this with protocols with pcb layer
918 * code - like udp/tcp/raw ip.
920 if (ipsec_bypass
== 0 && (ip_protox
[ip
->ip_p
]->pr_flags
& PR_LASTHDR
) != 0 &&
921 ipsec4_in_reject(m
, NULL
)) {
922 ipsecstat
.in_polvio
++;
928 * Switch out to protocol's input routine.
930 ipstat
.ips_delivered
++;
932 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
933 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
935 (*ip_protox
[ip
->ip_p
]->pr_input
)(m
, hlen
);
936 #if IPFIREWALL_FORWARD
937 ip_fw_fwd_addr
= NULL
; /* tcp needed it */
942 #if IPFIREWALL_FORWARD
943 ip_fw_fwd_addr
= NULL
;
945 KERNEL_DEBUG(DBG_LAYER_END
, 0,0,0,0,0);
950 * IP software interrupt routine - to go away sometime soon
958 KERNEL_DEBUG(DBG_FNC_IP_INPUT
| DBG_FUNC_START
, 0,0,0,0,0);
962 IF_DEQUEUE(&ipintrq
, m
);
965 KERNEL_DEBUG(DBG_FNC_IP_INPUT
| DBG_FUNC_END
, 0,0,0,0,0);
973 NETISR_SET(NETISR_IP
, ipintr
);
976 * Take incoming datagram fragment and try to reassemble it into
977 * whole datagram. If a chain for reassembly of this datagram already
978 * exists, then it is given as fp; otherwise have to make a chain.
980 * When IPDIVERT enabled, keep additional state with each packet that
981 * tells us if we need to divert or tee the packet we're building.
986 ip_reass(m
, fp
, where
, divinfo
, divcookie
)
988 ip_reass(m
, fp
, where
)
990 register struct mbuf
*m
;
991 register struct ipq
*fp
;
999 u_int16_t
*divcookie
;
1002 struct ip
*ip
= mtod(m
, struct ip
*);
1003 register struct mbuf
*p
= 0, *q
, *nq
;
1005 int hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1009 * Presence of header sizes in mbufs
1010 * would confuse code below.
1015 if (m
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1016 m
->m_pkthdr
.csum_flags
= 0;
1018 * If first fragment to arrive, create a reassembly queue.
1022 * Enforce upper bound on number of fragmented packets
1023 * for which we attempt reassembly;
1024 * If maxfrag is 0, never accept fragments.
1025 * If maxfrag is -1, accept all fragments without limitation.
1027 if ((ip_maxfragpackets
>= 0) && (ip_nfragpackets
>= ip_maxfragpackets
))
1030 if ((t
= m_get(M_DONTWAIT
, MT_FTABLE
)) == NULL
)
1032 fp
= mtod(t
, struct ipq
*);
1033 insque((void*)fp
, (void*)where
);
1035 fp
->ipq_ttl
= IPFRAGTTL
;
1036 fp
->ipq_p
= ip
->ip_p
;
1037 fp
->ipq_id
= ip
->ip_id
;
1038 fp
->ipq_src
= ip
->ip_src
;
1039 fp
->ipq_dst
= ip
->ip_dst
;
1041 m
->m_nextpkt
= NULL
;
1044 fp
->ipq_div_info
= 0;
1048 fp
->ipq_div_cookie
= 0;
1053 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1056 * Find a segment which begins after this one does.
1058 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
)
1059 if (GETIP(q
)->ip_off
> ip
->ip_off
)
1063 * If there is a preceding segment, it may provide some of
1064 * our data already. If so, drop the data from the incoming
1065 * segment. If it provides all of our data, drop us, otherwise
1066 * stick new segment in the proper place.
1068 * If some of the data is dropped from the the preceding
1069 * segment, then it's checksum is invalidated.
1072 i
= GETIP(p
)->ip_off
+ GETIP(p
)->ip_len
- ip
->ip_off
;
1074 if (i
>= ip
->ip_len
)
1077 m
->m_pkthdr
.csum_flags
= 0;
1081 m
->m_nextpkt
= p
->m_nextpkt
;
1084 m
->m_nextpkt
= fp
->ipq_frags
;
1089 * While we overlap succeeding segments trim them or,
1090 * if they are completely covered, dequeue them.
1092 for (; q
!= NULL
&& ip
->ip_off
+ ip
->ip_len
> GETIP(q
)->ip_off
;
1094 i
= (ip
->ip_off
+ ip
->ip_len
) -
1096 if (i
< GETIP(q
)->ip_len
) {
1097 GETIP(q
)->ip_len
-= i
;
1098 GETIP(q
)->ip_off
+= i
;
1100 q
->m_pkthdr
.csum_flags
= 0;
1112 * Transfer firewall instructions to the fragment structure.
1113 * Any fragment diverting causes the whole packet to divert.
1116 fp
->ipq_div_info
= *divinfo
;
1118 fp
->ipq_divert
= *divinfo
;
1120 fp
->ipq_div_cookie
= *divcookie
;
1126 * Check for complete reassembly.
1129 for (p
= NULL
, q
= fp
->ipq_frags
; q
; p
= q
, q
= q
->m_nextpkt
) {
1130 if (GETIP(q
)->ip_off
!= next
)
1132 next
+= GETIP(q
)->ip_len
;
1134 /* Make sure the last packet didn't have the IP_MF flag */
1135 if (p
->m_flags
& M_FRAG
)
1139 * Reassembly is complete. Make sure the packet is a sane size.
1143 if (next
+ (IP_VHL_HL(ip
->ip_vhl
) << 2) > IP_MAXPACKET
) {
1144 ipstat
.ips_toolong
++;
1150 * Concatenate fragments.
1158 for (q
= nq
; q
!= NULL
; q
= nq
) {
1160 q
->m_nextpkt
= NULL
;
1161 if (q
->m_pkthdr
.csum_flags
& CSUM_TCP_SUM16
)
1162 m
->m_pkthdr
.csum_flags
= 0;
1164 m
->m_pkthdr
.csum_flags
&= q
->m_pkthdr
.csum_flags
;
1165 m
->m_pkthdr
.csum_data
+= q
->m_pkthdr
.csum_data
;
1172 * Extract firewall instructions from the fragment structure.
1175 *divinfo
= fp
->ipq_div_info
;
1177 *divinfo
= fp
->ipq_divert
;
1179 *divcookie
= fp
->ipq_div_cookie
;
1183 * Create header for new ip packet by
1184 * modifying header of first packet;
1185 * dequeue and discard fragment reassembly header.
1186 * Make header visible.
1189 ip
->ip_src
= fp
->ipq_src
;
1190 ip
->ip_dst
= fp
->ipq_dst
;
1193 (void) m_free(dtom(fp
));
1195 m
->m_len
+= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1196 m
->m_data
-= (IP_VHL_HL(ip
->ip_vhl
) << 2);
1197 /* some debugging cruft by sklower, below, will go away soon */
1198 if (m
->m_flags
& M_PKTHDR
) { /* XXX this should be done elsewhere */
1199 register int plen
= 0;
1200 for (t
= m
; t
; t
= t
->m_next
)
1202 m
->m_pkthdr
.len
= plen
;
1211 ipstat
.ips_fragdropped
++;
1219 * Free a fragment reassembly header and all
1220 * associated datagrams.
1226 register struct mbuf
*q
;
1228 while (fp
->ipq_frags
) {
1230 fp
->ipq_frags
= q
->m_nextpkt
;
1234 (void) m_free(dtom(fp
));
1240 * IP timer processing;
1241 * if a timer expires on a reassembly
1242 * queue, discard it.
1247 register struct ipq
*fp
;
1251 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1255 while (fp
!= &ipq
[i
]) {
1258 if (fp
->prev
->ipq_ttl
== 0) {
1259 ipstat
.ips_fragtimeout
++;
1265 * If we are over the maximum number of fragments
1266 * (due to the limit being lowered), drain off
1267 * enough to get down to the new limit.
1269 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1270 if (ip_maxfragpackets
>= 0) {
1271 while ((ip_nfragpackets
> ip_maxfragpackets
) &&
1272 (ipq
[i
].next
!= &ipq
[i
])) {
1273 ipstat
.ips_fragdropped
++;
1274 ip_freef(ipq
[i
].next
);
1283 * Drain off all datagram fragments.
1290 for (i
= 0; i
< IPREASS_NHASH
; i
++) {
1291 while (ipq
[i
].next
!= &ipq
[i
]) {
1292 ipstat
.ips_fragdropped
++;
1293 ip_freef(ipq
[i
].next
);
1300 * Do option processing on a datagram,
1301 * possibly discarding it if bad options are encountered,
1302 * or forwarding it if source-routed.
1303 * Returns 1 if packet has been forwarded/freed,
1304 * 0 if the packet should be processed further.
1310 register struct ip
*ip
= mtod(m
, struct ip
*);
1311 register u_char
*cp
;
1312 register struct ip_timestamp
*ipt
;
1313 register struct in_ifaddr
*ia
;
1314 int opt
, optlen
, cnt
, off
, code
, type
= ICMP_PARAMPROB
, forward
= 0;
1315 struct in_addr
*sin
, dst
;
1319 cp
= (u_char
*)(ip
+ 1);
1320 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1321 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
1322 opt
= cp
[IPOPT_OPTVAL
];
1323 if (opt
== IPOPT_EOL
)
1325 if (opt
== IPOPT_NOP
)
1328 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
1329 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1332 optlen
= cp
[IPOPT_OLEN
];
1333 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
1334 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1344 * Source routing with record.
1345 * Find interface with current destination address.
1346 * If none on this machine then drop if strictly routed,
1347 * or do nothing if loosely routed.
1348 * Record interface address and bring up next address
1349 * component. If strictly routed make sure next
1350 * address is on directly accessible net.
1354 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1355 code
= &cp
[IPOPT_OLEN
] - (u_char
*)ip
;
1358 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1359 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1362 ipaddr
.sin_addr
= ip
->ip_dst
;
1363 ia
= (struct in_ifaddr
*)
1364 ifa_ifwithaddr((struct sockaddr
*)&ipaddr
);
1366 if (opt
== IPOPT_SSRR
) {
1367 type
= ICMP_UNREACH
;
1368 code
= ICMP_UNREACH_SRCFAIL
;
1371 if (!ip_dosourceroute
)
1372 goto nosourcerouting
;
1374 * Loose routing, and not at next destination
1375 * yet; nothing to do except forward.
1379 off
--; /* 0 origin */
1380 if (off
> optlen
- (int)sizeof(struct in_addr
)) {
1382 * End of source route. Should be for us.
1384 if (!ip_acceptsourceroute
)
1385 goto nosourcerouting
;
1386 save_rte(cp
, ip
->ip_src
);
1390 if (!ip_dosourceroute
) {
1392 char buf
[16]; /* aaa.bbb.ccc.ddd\0 */
1394 * Acting as a router, so generate ICMP
1397 strcpy(buf
, inet_ntoa(ip
->ip_dst
));
1399 "attempted source route from %s to %s\n",
1400 inet_ntoa(ip
->ip_src
), buf
);
1401 type
= ICMP_UNREACH
;
1402 code
= ICMP_UNREACH_SRCFAIL
;
1406 * Not acting as a router, so silently drop.
1408 ipstat
.ips_cantforward
++;
1415 * locate outgoing interface
1417 (void)memcpy(&ipaddr
.sin_addr
, cp
+ off
,
1418 sizeof(ipaddr
.sin_addr
));
1420 if (opt
== IPOPT_SSRR
) {
1421 #define INA struct in_ifaddr *
1422 #define SA struct sockaddr *
1423 if ((ia
= (INA
)ifa_ifwithdstaddr((SA
)&ipaddr
)) == 0)
1424 ia
= (INA
)ifa_ifwithnet((SA
)&ipaddr
);
1426 ia
= ip_rtaddr(ipaddr
.sin_addr
);
1428 type
= ICMP_UNREACH
;
1429 code
= ICMP_UNREACH_SRCFAIL
;
1432 ip
->ip_dst
= ipaddr
.sin_addr
;
1433 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1434 sizeof(struct in_addr
));
1435 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1437 * Let ip_intr's mcast routing check handle mcast pkts
1439 forward
= !IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
));
1443 if (optlen
< IPOPT_OFFSET
+ sizeof(*cp
)) {
1444 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1447 if ((off
= cp
[IPOPT_OFFSET
]) < IPOPT_MINOFF
) {
1448 code
= &cp
[IPOPT_OFFSET
] - (u_char
*)ip
;
1452 * If no space remains, ignore.
1454 off
--; /* 0 origin */
1455 if (off
> optlen
- (int)sizeof(struct in_addr
))
1457 (void)memcpy(&ipaddr
.sin_addr
, &ip
->ip_dst
,
1458 sizeof(ipaddr
.sin_addr
));
1460 * locate outgoing interface; if we're the destination,
1461 * use the incoming interface (should be same).
1463 if ((ia
= (INA
)ifa_ifwithaddr((SA
)&ipaddr
)) == 0 &&
1464 (ia
= ip_rtaddr(ipaddr
.sin_addr
)) == 0) {
1465 type
= ICMP_UNREACH
;
1466 code
= ICMP_UNREACH_HOST
;
1469 (void)memcpy(cp
+ off
, &(IA_SIN(ia
)->sin_addr
),
1470 sizeof(struct in_addr
));
1471 cp
[IPOPT_OFFSET
] += sizeof(struct in_addr
);
1475 code
= cp
- (u_char
*)ip
;
1476 ipt
= (struct ip_timestamp
*)cp
;
1477 if (ipt
->ipt_len
< 4 || ipt
->ipt_len
> 40) {
1478 code
= (u_char
*)&ipt
->ipt_len
- (u_char
*)ip
;
1481 if (ipt
->ipt_ptr
< 5) {
1482 code
= (u_char
*)&ipt
->ipt_ptr
- (u_char
*)ip
;
1486 ipt
->ipt_len
- (int)sizeof(int32_t)) {
1487 if (++ipt
->ipt_oflw
== 0) {
1488 code
= (u_char
*)&ipt
->ipt_ptr
-
1494 sin
= (struct in_addr
*)(cp
+ ipt
->ipt_ptr
- 1);
1495 switch (ipt
->ipt_flg
) {
1497 case IPOPT_TS_TSONLY
:
1500 case IPOPT_TS_TSANDADDR
:
1501 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1502 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1503 code
= (u_char
*)&ipt
->ipt_ptr
-
1507 ipaddr
.sin_addr
= dst
;
1508 ia
= (INA
)ifaof_ifpforaddr((SA
)&ipaddr
,
1512 (void)memcpy(sin
, &IA_SIN(ia
)->sin_addr
,
1513 sizeof(struct in_addr
));
1514 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1517 case IPOPT_TS_PRESPEC
:
1518 if (ipt
->ipt_ptr
- 1 + sizeof(n_time
) +
1519 sizeof(struct in_addr
) > ipt
->ipt_len
) {
1520 code
= (u_char
*)&ipt
->ipt_ptr
-
1524 (void)memcpy(&ipaddr
.sin_addr
, sin
,
1525 sizeof(struct in_addr
));
1526 if (ifa_ifwithaddr((SA
)&ipaddr
) == 0)
1528 ipt
->ipt_ptr
+= sizeof(struct in_addr
);
1532 /* XXX can't take &ipt->ipt_flg */
1533 code
= (u_char
*)&ipt
->ipt_ptr
-
1538 (void)memcpy(cp
+ ipt
->ipt_ptr
- 1, &ntime
,
1540 ipt
->ipt_ptr
+= sizeof(n_time
);
1543 if (forward
&& ipforwarding
) {
1549 ip
->ip_len
-= IP_VHL_HL(ip
->ip_vhl
) << 2; /* XXX icmp_error adds in hdr length */
1550 icmp_error(m
, type
, code
, 0, 0);
1551 ipstat
.ips_badoptions
++;
1556 * Given address of next destination (final or next hop),
1557 * return internet address info of interface to be used to get there.
1559 static struct in_ifaddr
*
1563 register struct sockaddr_in
*sin
;
1565 sin
= (struct sockaddr_in
*) &ipforward_rt
.ro_dst
;
1567 if (ipforward_rt
.ro_rt
== 0 || dst
.s_addr
!= sin
->sin_addr
.s_addr
) {
1568 if (ipforward_rt
.ro_rt
) {
1569 rtfree(ipforward_rt
.ro_rt
);
1570 ipforward_rt
.ro_rt
= 0;
1572 sin
->sin_family
= AF_INET
;
1573 sin
->sin_len
= sizeof(*sin
);
1574 sin
->sin_addr
= dst
;
1576 rtalloc_ign(&ipforward_rt
, RTF_PRCLONING
);
1578 if (ipforward_rt
.ro_rt
== 0)
1579 return ((struct in_ifaddr
*)0);
1580 return ((struct in_ifaddr
*) ipforward_rt
.ro_rt
->rt_ifa
);
1584 * Save incoming source route for use in replies,
1585 * to be picked up later by ip_srcroute if the receiver is interested.
1588 save_rte(option
, dst
)
1594 olen
= option
[IPOPT_OLEN
];
1597 printf("save_rte: olen %d\n", olen
);
1599 if (olen
> sizeof(ip_srcrt
) - (1 + sizeof(dst
)))
1601 bcopy(option
, ip_srcrt
.srcopt
, olen
);
1602 ip_nhops
= (olen
- IPOPT_OFFSET
- 1) / sizeof(struct in_addr
);
1607 * Retrieve incoming source route for use in replies,
1608 * in the same form used by setsockopt.
1609 * The first hop is placed before the options, will be removed later.
1614 register struct in_addr
*p
, *q
;
1615 register struct mbuf
*m
;
1618 return ((struct mbuf
*)0);
1619 m
= m_get(M_DONTWAIT
, MT_HEADER
);
1621 return ((struct mbuf
*)0);
1623 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1625 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1626 m
->m_len
= ip_nhops
* sizeof(struct in_addr
) + sizeof(struct in_addr
) +
1630 printf("ip_srcroute: nhops %d mlen %d", ip_nhops
, m
->m_len
);
1634 * First save first hop for return route
1636 p
= &ip_srcrt
.route
[ip_nhops
- 1];
1637 *(mtod(m
, struct in_addr
*)) = *p
--;
1640 printf(" hops %lx", (u_long
)ntohl(mtod(m
, struct in_addr
*)->s_addr
));
1644 * Copy option fields and padding (nop) to mbuf.
1646 ip_srcrt
.nop
= IPOPT_NOP
;
1647 ip_srcrt
.srcopt
[IPOPT_OFFSET
] = IPOPT_MINOFF
;
1648 (void)memcpy(mtod(m
, caddr_t
) + sizeof(struct in_addr
),
1649 &ip_srcrt
.nop
, OPTSIZ
);
1650 q
= (struct in_addr
*)(mtod(m
, caddr_t
) +
1651 sizeof(struct in_addr
) + OPTSIZ
);
1654 * Record return path as an IP source route,
1655 * reversing the path (pointers are now aligned).
1657 while (p
>= ip_srcrt
.route
) {
1660 printf(" %lx", (u_long
)ntohl(q
->s_addr
));
1665 * Last hop goes to final destination.
1670 printf(" %lx\n", (u_long
)ntohl(q
->s_addr
));
1676 * Strip out IP options, at higher
1677 * level protocol in the kernel.
1678 * Second argument is buffer to which options
1679 * will be moved, and return value is their length.
1680 * XXX should be deleted; last arg currently ignored.
1683 ip_stripoptions(m
, mopt
)
1684 register struct mbuf
*m
;
1688 struct ip
*ip
= mtod(m
, struct ip
*);
1689 register caddr_t opts
;
1692 olen
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
1693 opts
= (caddr_t
)(ip
+ 1);
1694 i
= m
->m_len
- (sizeof (struct ip
) + olen
);
1695 bcopy(opts
+ olen
, opts
, (unsigned)i
);
1697 if (m
->m_flags
& M_PKTHDR
)
1698 m
->m_pkthdr
.len
-= olen
;
1699 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, sizeof(struct ip
) >> 2);
1702 u_char inetctlerrmap
[PRC_NCMDS
] = {
1704 0, EMSGSIZE
, EHOSTDOWN
, EHOSTUNREACH
,
1705 EHOSTUNREACH
, EHOSTUNREACH
, ECONNREFUSED
, ECONNREFUSED
,
1706 EMSGSIZE
, EHOSTUNREACH
, 0, 0,
1708 ENOPROTOOPT
, ECONNREFUSED
1712 * Forward a packet. If some error occurs return the sender
1713 * an icmp packet. Note we can't always generate a meaningful
1714 * icmp message because icmp doesn't have a large enough repertoire
1715 * of codes and types.
1717 * If not forwarding, just drop the packet. This could be confusing
1718 * if ipforwarding was zero but some routing protocol was advancing
1719 * us as a gateway to somewhere. However, we must let the routing
1720 * protocol deal with that.
1722 * The srcrt parameter indicates whether the packet is being forwarded
1723 * via a source route.
1726 ip_forward(m
, srcrt
)
1730 register struct ip
*ip
= mtod(m
, struct ip
*);
1731 register struct sockaddr_in
*sin
;
1732 register struct rtentry
*rt
;
1733 int error
, type
= 0, code
= 0;
1736 struct ifnet
*destifp
;
1738 struct ifnet dummyifp
;
1744 printf("forward: src %lx dst %lx ttl %x\n",
1745 (u_long
)ip
->ip_src
.s_addr
, (u_long
)ip
->ip_dst
.s_addr
,
1750 if (m
->m_flags
& (M_BCAST
|M_MCAST
) || in_canforward(ip
->ip_dst
) == 0) {
1751 ipstat
.ips_cantforward
++;
1758 if (ip
->ip_ttl
<= IPTTLDEC
) {
1759 icmp_error(m
, ICMP_TIMXCEED
, ICMP_TIMXCEED_INTRANS
,
1767 sin
= (struct sockaddr_in
*)&ipforward_rt
.ro_dst
;
1768 if ((rt
= ipforward_rt
.ro_rt
) == 0 ||
1769 ip
->ip_dst
.s_addr
!= sin
->sin_addr
.s_addr
) {
1770 if (ipforward_rt
.ro_rt
) {
1771 rtfree(ipforward_rt
.ro_rt
);
1772 ipforward_rt
.ro_rt
= 0;
1774 sin
->sin_family
= AF_INET
;
1775 sin
->sin_len
= sizeof(*sin
);
1776 sin
->sin_addr
= ip
->ip_dst
;
1778 rtalloc_ign(&ipforward_rt
, RTF_PRCLONING
);
1779 if (ipforward_rt
.ro_rt
== 0) {
1780 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_HOST
, dest
, 0);
1783 rt
= ipforward_rt
.ro_rt
;
1787 * Save the IP header and at most 8 bytes of the payload,
1788 * in case we need to generate an ICMP message to the src.
1790 * We don't use m_copy() because it might return a reference
1791 * to a shared cluster. Both this function and ip_output()
1792 * assume exclusive access to the IP header in `m', so any
1793 * data in a cluster may change before we reach icmp_error().
1795 MGET(mcopy
, M_DONTWAIT
, m
->m_type
);
1796 if (mcopy
!= NULL
) {
1797 M_COPY_PKTHDR(mcopy
, m
);
1798 mcopy
->m_len
= imin((IP_VHL_HL(ip
->ip_vhl
) << 2) + 8,
1800 m_copydata(m
, 0, mcopy
->m_len
, mtod(mcopy
, caddr_t
));
1806 ip
->ip_ttl
-= IPTTLDEC
;
1812 * If forwarding packet using same interface that it came in on,
1813 * perhaps should send a redirect to sender to shortcut a hop.
1814 * Only send redirect if source is sending directly to us,
1815 * and if packet was not source routed (or has any options).
1816 * Also, don't send redirect if forwarding using a default route
1817 * or a route modified by a redirect.
1819 #define satosin(sa) ((struct sockaddr_in *)(sa))
1820 if (rt
->rt_ifp
== m
->m_pkthdr
.rcvif
&&
1821 (rt
->rt_flags
& (RTF_DYNAMIC
|RTF_MODIFIED
)) == 0 &&
1822 satosin(rt_key(rt
))->sin_addr
.s_addr
!= 0 &&
1823 ipsendredirects
&& !srcrt
) {
1824 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1825 u_long src
= ntohl(ip
->ip_src
.s_addr
);
1828 (src
& RTA(rt
)->ia_subnetmask
) == RTA(rt
)->ia_subnet
) {
1829 if (rt
->rt_flags
& RTF_GATEWAY
)
1830 dest
= satosin(rt
->rt_gateway
)->sin_addr
.s_addr
;
1832 dest
= ip
->ip_dst
.s_addr
;
1833 /* Router requirements says to only send host redirects */
1834 type
= ICMP_REDIRECT
;
1835 code
= ICMP_REDIRECT_HOST
;
1838 printf("redirect (%d) to %lx\n", code
, (u_long
)dest
);
1843 error
= ip_output(m
, (struct mbuf
*)0, &ipforward_rt
,
1846 ipstat
.ips_cantforward
++;
1848 ipstat
.ips_forward
++;
1850 ipstat
.ips_redirectsent
++;
1853 ipflow_create(&ipforward_rt
, mcopy
);
1865 case 0: /* forwarded, but need redirect */
1866 /* type, code set above */
1869 case ENETUNREACH
: /* shouldn't happen, checked above */
1874 type
= ICMP_UNREACH
;
1875 code
= ICMP_UNREACH_HOST
;
1879 type
= ICMP_UNREACH
;
1880 code
= ICMP_UNREACH_NEEDFRAG
;
1882 if (ipforward_rt
.ro_rt
)
1883 destifp
= ipforward_rt
.ro_rt
->rt_ifp
;
1886 * If the packet is routed over IPsec tunnel, tell the
1887 * originator the tunnel MTU.
1888 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
1891 if (ipforward_rt
.ro_rt
) {
1892 struct secpolicy
*sp
= NULL
;
1898 destifp
= ipforward_rt
.ro_rt
->rt_ifp
;
1899 ipstat
.ips_cantfrag
++;
1903 sp
= ipsec4_getpolicybyaddr(mcopy
,
1909 destifp
= ipforward_rt
.ro_rt
->rt_ifp
;
1911 /* count IPsec header size */
1912 ipsechdr
= ipsec4_hdrsiz(mcopy
,
1917 * find the correct route for outer IPv4
1918 * header, compute tunnel MTU.
1921 * The "dummyifp" code relies upon the fact
1922 * that icmp_error() touches only ifp->if_mtu.
1927 && sp
->req
->sav
!= NULL
1928 && sp
->req
->sav
->sah
!= NULL
) {
1929 ro
= &sp
->req
->sav
->sah
->sa_route
;
1930 if (ro
->ro_rt
&& ro
->ro_rt
->rt_ifp
) {
1932 ro
->ro_rt
->rt_ifp
->if_mtu
;
1933 dummyifp
.if_mtu
-= ipsechdr
;
1934 destifp
= &dummyifp
;
1942 ipstat
.ips_cantfrag
++;
1946 type
= ICMP_SOURCEQUENCH
;
1950 case EACCES
: /* ipfw denied packet */
1954 icmp_error(mcopy
, type
, code
, dest
, destifp
);
1958 ip_savecontrol(inp
, mp
, ip
, m
)
1959 register struct inpcb
*inp
;
1960 register struct mbuf
**mp
;
1961 register struct ip
*ip
;
1962 register struct mbuf
*m
;
1964 if (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) {
1968 *mp
= sbcreatecontrol((caddr_t
) &tv
, sizeof(tv
),
1969 SCM_TIMESTAMP
, SOL_SOCKET
);
1971 mp
= &(*mp
)->m_next
;
1973 if (inp
->inp_flags
& INP_RECVDSTADDR
) {
1974 *mp
= sbcreatecontrol((caddr_t
) &ip
->ip_dst
,
1975 sizeof(struct in_addr
), IP_RECVDSTADDR
, IPPROTO_IP
);
1977 mp
= &(*mp
)->m_next
;
1981 * Moving these out of udp_input() made them even more broken
1982 * than they already were.
1984 /* options were tossed already */
1985 if (inp
->inp_flags
& INP_RECVOPTS
) {
1986 *mp
= sbcreatecontrol((caddr_t
) opts_deleted_above
,
1987 sizeof(struct in_addr
), IP_RECVOPTS
, IPPROTO_IP
);
1989 mp
= &(*mp
)->m_next
;
1991 /* ip_srcroute doesn't do what we want here, need to fix */
1992 if (inp
->inp_flags
& INP_RECVRETOPTS
) {
1993 *mp
= sbcreatecontrol((caddr_t
) ip_srcroute(),
1994 sizeof(struct in_addr
), IP_RECVRETOPTS
, IPPROTO_IP
);
1996 mp
= &(*mp
)->m_next
;
1999 if (inp
->inp_flags
& INP_RECVIF
) {
2002 struct sockaddr_dl sdl
;
2005 struct sockaddr_dl
*sdp
;
2006 struct sockaddr_dl
*sdl2
= &sdlbuf
.sdl
;
2008 if (((ifp
= m
->m_pkthdr
.rcvif
))
2009 && ( ifp
->if_index
&& (ifp
->if_index
<= if_index
))) {
2010 sdp
= (struct sockaddr_dl
*)(ifnet_addrs
2011 [ifp
->if_index
- 1]->ifa_addr
);
2013 * Change our mind and don't try copy.
2015 if ((sdp
->sdl_family
!= AF_LINK
)
2016 || (sdp
->sdl_len
> sizeof(sdlbuf
))) {
2019 bcopy(sdp
, sdl2
, sdp
->sdl_len
);
2023 = offsetof(struct sockaddr_dl
, sdl_data
[0]);
2024 sdl2
->sdl_family
= AF_LINK
;
2025 sdl2
->sdl_index
= 0;
2026 sdl2
->sdl_nlen
= sdl2
->sdl_alen
= sdl2
->sdl_slen
= 0;
2028 *mp
= sbcreatecontrol((caddr_t
) sdl2
, sdl2
->sdl_len
,
2029 IP_RECVIF
, IPPROTO_IP
);
2031 mp
= &(*mp
)->m_next
;
2036 ip_rsvp_init(struct socket
*so
)
2038 if (so
->so_type
!= SOCK_RAW
||
2039 so
->so_proto
->pr_protocol
!= IPPROTO_RSVP
)
2042 if (ip_rsvpd
!= NULL
)
2047 * This may seem silly, but we need to be sure we don't over-increment
2048 * the RSVP counter, in case something slips up.
2063 * This may seem silly, but we need to be sure we don't over-decrement
2064 * the RSVP counter, in case something slips up.