2 * Copyright (c) 1998-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
65 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
66 * support for mandatory and extensible security protections. This notice
67 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/domain.h>
74 #include <sys/kernel.h>
75 #include <sys/proc_internal.h>
76 #include <sys/kauth.h>
77 #include <sys/malloc.h>
79 #include <sys/protosw.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
86 #include <kern/locks.h>
87 #include <net/route.h>
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <sys/kdebug.h>
91 #include <libkern/OSAtomic.h>
94 #include <security/mac_framework.h>
97 /* TODO: this should be in a header file somewhere */
98 extern void postevent(struct socket
*, struct sockbuf
*, int);
100 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
101 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
103 static inline void sbcompress(struct sockbuf
*, struct mbuf
*, struct mbuf
*);
104 static struct socket
*sonewconn_internal(struct socket
*, int);
105 static int sbappendaddr_internal(struct sockbuf
*, struct sockaddr
*,
106 struct mbuf
*, struct mbuf
*);
107 static int sbappendcontrol_internal(struct sockbuf
*, struct mbuf
*,
111 * Primitive routines for operating on sockets and socket buffers
113 static int soqlimitcompat
= 1;
114 static int soqlencomp
= 0;
116 u_long sb_max
= SB_MAX
; /* XXX should be static */
118 static u_long sb_efficiency
= 8; /* parameter for sbreserve() */
119 __private_extern__
unsigned int total_mb_cnt
= 0;
120 __private_extern__
unsigned int total_cl_cnt
= 0;
121 __private_extern__
int sbspace_factor
= 8;
124 * Procedures to manipulate state flags of socket
125 * and do appropriate wakeups. Normal sequence from the
126 * active (originating) side is that soisconnecting() is
127 * called during processing of connect() call,
128 * resulting in an eventual call to soisconnected() if/when the
129 * connection is established. When the connection is torn down
130 * soisdisconnecting() is called during processing of disconnect() call,
131 * and soisdisconnected() is called when the connection to the peer
132 * is totally severed. The semantics of these routines are such that
133 * connectionless protocols can call soisconnected() and soisdisconnected()
134 * only, bypassing the in-progress calls when setting up a ``connection''
137 * From the passive side, a socket is created with
138 * two queues of sockets: so_incomp for connections in progress
139 * and so_comp for connections already made and awaiting user acceptance.
140 * As a protocol is preparing incoming connections, it creates a socket
141 * structure queued on so_incomp by calling sonewconn(). When the connection
142 * is established, soisconnected() is called, and transfers the
143 * socket structure to so_comp, making it available to accept().
145 * If a socket is closed with sockets on either
146 * so_incomp or so_comp, these sockets are dropped.
148 * If higher level protocols are implemented in
149 * the kernel, the wakeups done here will sometimes
150 * cause software-interrupt process scheduling.
153 soisconnecting(struct socket
*so
)
156 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
157 so
->so_state
|= SS_ISCONNECTING
;
159 sflt_notify(so
, sock_evt_connecting
, NULL
);
163 soisconnected(struct socket
*so
)
165 struct socket
*head
= so
->so_head
;
167 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
168 so
->so_state
|= SS_ISCONNECTED
;
170 sflt_notify(so
, sock_evt_connected
, NULL
);
172 if (head
&& (so
->so_state
& SS_INCOMP
)) {
173 so
->so_state
&= ~SS_INCOMP
;
174 so
->so_state
|= SS_COMP
;
175 if (head
->so_proto
->pr_getlock
!= NULL
) {
176 socket_unlock(so
, 0);
177 socket_lock(head
, 1);
179 postevent(head
, 0, EV_RCONN
);
180 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
182 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
184 wakeup_one((caddr_t
)&head
->so_timeo
);
185 if (head
->so_proto
->pr_getlock
!= NULL
) {
186 socket_unlock(head
, 1);
190 postevent(so
, 0, EV_WCONN
);
191 wakeup((caddr_t
)&so
->so_timeo
);
198 soisdisconnecting(struct socket
*so
)
200 so
->so_state
&= ~SS_ISCONNECTING
;
201 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
202 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
203 wakeup((caddr_t
)&so
->so_timeo
);
209 soisdisconnected(struct socket
*so
)
211 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
212 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
213 sflt_notify(so
, sock_evt_disconnected
, NULL
);
214 wakeup((caddr_t
)&so
->so_timeo
);
220 * When an attempt at a new connection is noted on a socket
221 * which accepts connections, sonewconn is called. If the
222 * connection is possible (subject to space constraints, etc.)
223 * then we allocate a new structure, propoerly linked into the
224 * data structure of the original socket, and return this.
225 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
227 static struct socket
*
228 sonewconn_internal(struct socket
*head
, int connstatus
)
230 int so_qlen
, error
= 0;
232 lck_mtx_t
*mutex_held
;
234 if (head
->so_proto
->pr_getlock
!= NULL
)
235 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
237 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
238 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
242 * This is the default case; so_qlen represents the
243 * sum of both incomplete and completed queues.
245 so_qlen
= head
->so_qlen
;
248 * When kern.ipc.soqlencomp is set to 1, so_qlen
249 * represents only the completed queue. Since we
250 * cannot let the incomplete queue goes unbounded
251 * (in case of SYN flood), we cap the incomplete
252 * queue length to at most somaxconn, and use that
253 * as so_qlen so that we fail immediately below.
255 so_qlen
= head
->so_qlen
- head
->so_incqlen
;
256 if (head
->so_incqlen
> somaxconn
)
261 (soqlimitcompat
? head
->so_qlimit
: (3 * head
->so_qlimit
/ 2)))
262 return ((struct socket
*)0);
263 so
= soalloc(M_NOWAIT
, head
->so_proto
->pr_domain
->dom_family
,
266 return ((struct socket
*)0);
267 /* check if head was closed during the soalloc */
268 if (head
->so_proto
== NULL
) {
270 return ((struct socket
*)0);
274 so
->so_type
= head
->so_type
;
275 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
276 so
->so_linger
= head
->so_linger
;
277 so
->so_state
= head
->so_state
| SS_NOFDREF
;
278 so
->so_proto
= head
->so_proto
;
279 so
->so_timeo
= head
->so_timeo
;
280 so
->so_pgid
= head
->so_pgid
;
281 so
->so_uid
= head
->so_uid
;
282 so
->so_flags
= head
->so_flags
& (SOF_REUSESHAREUID
|SOF_NOTIFYCONFLICT
); /* inherit SO_REUSESHAREUID and SO_NOTIFYCONFLICT ocket options */
284 so
->next_lock_lr
= 0;
285 so
->next_unlock_lr
= 0;
288 so
->so_rcv
.sb_flags
|= SB_RECV
; /* XXX */
289 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
290 TAILQ_INIT(&so
->so_evlist
);
293 #if CONFIG_MACF_SOCKET
294 mac_socket_label_associate_accept(head
, so
);
297 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
300 return ((struct socket
*)0);
304 * Must be done with head unlocked to avoid deadlock
305 * for protocol with per socket mutexes.
307 if (head
->so_proto
->pr_unlock
)
308 socket_unlock(head
, 0);
309 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) ||
313 if (head
->so_proto
->pr_unlock
)
314 socket_lock(head
, 0);
315 return ((struct socket
*)0);
317 if (head
->so_proto
->pr_unlock
)
318 socket_lock(head
, 0);
320 so
->so_proto
->pr_domain
->dom_refs
++;
324 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
325 so
->so_state
|= SS_COMP
;
327 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
328 so
->so_state
|= SS_INCOMP
;
334 /* Attach socket filters for this protocol */
339 so
->so_state
|= connstatus
;
341 wakeup((caddr_t
)&head
->so_timeo
);
348 sonewconn(struct socket
*head
, int connstatus
, const struct sockaddr
*from
)
351 struct socket_filter_entry
*filter
;
354 for (filter
= head
->so_filt
; filter
&& (error
== 0);
355 filter
= filter
->sfe_next_onsocket
) {
356 if (filter
->sfe_filter
->sf_filter
.sf_connect_in
) {
360 socket_unlock(head
, 0);
362 error
= filter
->sfe_filter
->sf_filter
.
363 sf_connect_in(filter
->sfe_cookie
, head
, from
);
367 socket_lock(head
, 0);
375 return (sonewconn_internal(head
, connstatus
));
379 * Socantsendmore indicates that no more data will be sent on the
380 * socket; it would normally be applied to a socket when the user
381 * informs the system that no more data is to be sent, by the protocol
382 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
383 * will be received, and will normally be applied to the socket by a
384 * protocol when it detects that the peer will send no more data.
385 * Data queued for reading in the socket may yet be read.
389 socantsendmore(struct socket
*so
)
391 so
->so_state
|= SS_CANTSENDMORE
;
392 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
397 socantrcvmore(struct socket
*so
)
399 so
->so_state
|= SS_CANTRCVMORE
;
400 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
405 * Wait for data to arrive at/drain from a socket buffer.
412 sbwait(struct sockbuf
*sb
)
414 int error
= 0, lr_saved
;
415 struct socket
*so
= sb
->sb_so
;
416 lck_mtx_t
*mutex_held
;
419 lr_saved
= (unsigned int) __builtin_return_address(0);
421 if (so
->so_proto
->pr_getlock
!= NULL
)
422 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
424 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
426 sb
->sb_flags
|= SB_WAIT
;
428 if (so
->so_usecount
< 1)
429 panic("sbwait: so=%p refcount=%d\n", so
, so
->so_usecount
);
430 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
431 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
432 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
433 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
, "sbwait", &ts
);
435 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
437 if (so
->so_usecount
< 1)
438 panic("sbwait: so=%p refcount=%d\n", so
, so
->so_usecount
);
440 if ((so
->so_state
& SS_DRAINING
)) {
448 * Lock a sockbuf already known to be locked;
449 * return any error returned from sleep (EINTR).
455 sb_lock(struct sockbuf
*sb
)
457 struct socket
*so
= sb
->sb_so
;
458 lck_mtx_t
*mutex_held
;
462 panic("sb_lock: null so back pointer sb=%p\n", sb
);
464 while (sb
->sb_flags
& SB_LOCK
) {
465 sb
->sb_flags
|= SB_WANT
;
466 if (so
->so_proto
->pr_getlock
!= NULL
)
467 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
469 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
470 if (so
->so_usecount
< 1)
471 panic("sb_lock: so=%p refcount=%d\n", so
,
474 error
= msleep((caddr_t
)&sb
->sb_flags
, mutex_held
,
475 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
,
477 if (so
->so_usecount
< 1)
478 panic("sb_lock: 2 so=%p refcount=%d\n", so
,
483 sb
->sb_flags
|= SB_LOCK
;
488 * Wakeup processes waiting on a socket buffer.
489 * Do asynchronous notification via SIGIO
490 * if the socket has the SS_ASYNC flag set.
493 sowakeup(struct socket
*so
, struct sockbuf
*sb
)
495 sb
->sb_flags
&= ~SB_SEL
;
496 selwakeup(&sb
->sb_sel
);
497 if (sb
->sb_flags
& SB_WAIT
) {
498 sb
->sb_flags
&= ~SB_WAIT
;
499 wakeup((caddr_t
)&sb
->sb_cc
);
501 if (so
->so_state
& SS_ASYNC
) {
503 gsignal(-so
->so_pgid
, SIGIO
);
504 else if (so
->so_pgid
> 0)
505 proc_signal(so
->so_pgid
, SIGIO
);
507 if (sb
->sb_flags
& SB_KNOTE
) {
508 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
510 if (sb
->sb_flags
& SB_UPCALL
) {
511 void (*so_upcall
)(struct socket
*, caddr_t
, int);
512 caddr_t so_upcallarg
;
514 so_upcall
= so
->so_upcall
;
515 so_upcallarg
= so
->so_upcallarg
;
516 /* Let close know that we're about to do an upcall */
517 so
->so_flags
|= SOF_UPCALLINUSE
;
519 socket_unlock(so
, 0);
520 (*so_upcall
)(so
, so_upcallarg
, M_DONTWAIT
);
523 so
->so_flags
&= ~SOF_UPCALLINUSE
;
524 /* Tell close that it's safe to proceed */
525 if (so
->so_flags
& SOF_CLOSEWAIT
)
526 wakeup((caddr_t
)&so
->so_upcall
);
531 * Socket buffer (struct sockbuf) utility routines.
533 * Each socket contains two socket buffers: one for sending data and
534 * one for receiving data. Each buffer contains a queue of mbufs,
535 * information about the number of mbufs and amount of data in the
536 * queue, and other fields allowing select() statements and notification
537 * on data availability to be implemented.
539 * Data stored in a socket buffer is maintained as a list of records.
540 * Each record is a list of mbufs chained together with the m_next
541 * field. Records are chained together with the m_nextpkt field. The upper
542 * level routine soreceive() expects the following conventions to be
543 * observed when placing information in the receive buffer:
545 * 1. If the protocol requires each message be preceded by the sender's
546 * name, then a record containing that name must be present before
547 * any associated data (mbuf's must be of type MT_SONAME).
548 * 2. If the protocol supports the exchange of ``access rights'' (really
549 * just additional data associated with the message), and there are
550 * ``rights'' to be received, then a record containing this data
551 * should be present (mbuf's must be of type MT_RIGHTS).
552 * 3. If a name or rights record exists, then it must be followed by
553 * a data record, perhaps of zero length.
555 * Before using a new socket structure it is first necessary to reserve
556 * buffer space to the socket, by calling sbreserve(). This should commit
557 * some of the available buffer space in the system buffer pool for the
558 * socket (currently, it does nothing but enforce limits). The space
559 * should be released by calling sbrelease() when the socket is destroyed.
567 soreserve(struct socket
*so
, u_long sndcc
, u_long rcvcc
)
570 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
572 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
574 if (so
->so_rcv
.sb_lowat
== 0)
575 so
->so_rcv
.sb_lowat
= 1;
576 if (so
->so_snd
.sb_lowat
== 0)
577 so
->so_snd
.sb_lowat
= MCLBYTES
;
578 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
579 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
583 selthreadclear(&so
->so_snd
.sb_sel
);
585 sbrelease(&so
->so_snd
);
591 * Allot mbufs to a sockbuf.
592 * Attempt to scale mbmax so that mbcnt doesn't become limiting
593 * if buffering efficiency is near the normal case.
596 sbreserve(struct sockbuf
*sb
, u_long cc
)
598 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
601 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
602 if (sb
->sb_lowat
> sb
->sb_hiwat
)
603 sb
->sb_lowat
= sb
->sb_hiwat
;
608 * Free mbufs held by a socket, and reserved mbuf space.
610 /* WARNING needs to do selthreadclear() before calling this */
612 sbrelease(struct sockbuf
*sb
)
620 * Routines to add and remove
621 * data from an mbuf queue.
623 * The routines sbappend() or sbappendrecord() are normally called to
624 * append new mbufs to a socket buffer, after checking that adequate
625 * space is available, comparing the function sbspace() with the amount
626 * of data to be added. sbappendrecord() differs from sbappend() in
627 * that data supplied is treated as the beginning of a new record.
628 * To place a sender's address, optional access rights, and data in a
629 * socket receive buffer, sbappendaddr() should be used. To place
630 * access rights and data in a socket receive buffer, sbappendrights()
631 * should be used. In either case, the new data begins a new record.
632 * Note that unlike sbappend() and sbappendrecord(), these routines check
633 * for the caller that there will be enough space to store the data.
634 * Each fails if there is not enough space, or if it cannot find mbufs
635 * to store additional information in.
637 * Reliable protocols may use the socket send buffer to hold data
638 * awaiting acknowledgement. Data is normally copied from a socket
639 * send buffer in a protocol with m_copy for output to a peer,
640 * and then removing the data from the socket buffer with sbdrop()
641 * or sbdroprecord() when the data is acknowledged by the peer.
645 * Append mbuf chain m to the last record in the
646 * socket buffer sb. The additional space associated
647 * the mbuf chain is recorded in sb. Empty mbufs are
648 * discarded and mbufs are compacted where possible.
651 sbappend(struct sockbuf
*sb
, struct mbuf
*m
)
653 struct socket
*so
= sb
->sb_so
;
655 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
661 SBLASTRECORDCHK(sb
, "sbappend 1");
663 if (sb
->sb_lastrecord
!= NULL
&& (sb
->sb_mbtail
->m_flags
& M_EOR
))
664 return (sbappendrecord(sb
, m
));
666 if (sb
->sb_flags
& SB_RECV
) {
667 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0, NULL
);
668 SBLASTRECORDCHK(sb
, "sbappend 2");
670 if (error
!= EJUSTRETURN
)
676 /* If this is the first record, it's also the last record */
677 if (sb
->sb_lastrecord
== NULL
)
678 sb
->sb_lastrecord
= m
;
680 sbcompress(sb
, m
, sb
->sb_mbtail
);
681 SBLASTRECORDCHK(sb
, "sbappend 3");
686 * Similar to sbappend, except that this is optimized for stream sockets.
689 sbappendstream(struct sockbuf
*sb
, struct mbuf
*m
)
691 struct socket
*so
= sb
->sb_so
;
693 if (m
->m_nextpkt
!= NULL
|| (sb
->sb_mb
!= sb
->sb_lastrecord
))
694 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
695 m
->m_nextpkt
, sb
->sb_mb
, sb
->sb_lastrecord
);
697 SBLASTMBUFCHK(sb
, __func__
);
699 if (m
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
705 if (sb
->sb_flags
& SB_RECV
) {
706 int error
= sflt_data_in(so
, NULL
, &m
, NULL
, 0, NULL
);
707 SBLASTRECORDCHK(sb
, "sbappendstream 1");
709 if (error
!= EJUSTRETURN
)
715 sbcompress(sb
, m
, sb
->sb_mbtail
);
716 sb
->sb_lastrecord
= sb
->sb_mb
;
717 SBLASTRECORDCHK(sb
, "sbappendstream 2");
723 sbcheck(struct sockbuf
*sb
)
727 u_long len
= 0, mbcnt
= 0;
728 lck_mtx_t
*mutex_held
;
730 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
731 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
733 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
735 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
740 for (m
= sb
->sb_mb
; m
; m
= n
) {
742 for (; m
; m
= m
->m_next
) {
745 /* XXX pretty sure this is bogus */
746 if (m
->m_flags
& M_EXT
)
747 mbcnt
+= m
->m_ext
.ext_size
;
750 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
751 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
752 mbcnt
, sb
->sb_mbcnt
);
758 sblastrecordchk(struct sockbuf
*sb
, const char *where
)
760 struct mbuf
*m
= sb
->sb_mb
;
762 while (m
&& m
->m_nextpkt
)
765 if (m
!= sb
->sb_lastrecord
) {
766 printf("sblastrecordchk: mb %p lastrecord %p last %p\n",
767 sb
->sb_mb
, sb
->sb_lastrecord
, m
);
768 printf("packet chain:\n");
769 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
)
771 panic("sblastrecordchk from %s", where
);
776 sblastmbufchk(struct sockbuf
*sb
, const char *where
)
778 struct mbuf
*m
= sb
->sb_mb
;
781 while (m
&& m
->m_nextpkt
)
784 while (m
&& m
->m_next
)
787 if (m
!= sb
->sb_mbtail
) {
788 printf("sblastmbufchk: mb %p mbtail %p last %p\n",
789 sb
->sb_mb
, sb
->sb_mbtail
, m
);
790 printf("packet tree:\n");
791 for (m
= sb
->sb_mb
; m
!= NULL
; m
= m
->m_nextpkt
) {
793 for (n
= m
; n
!= NULL
; n
= n
->m_next
)
797 panic("sblastmbufchk from %s", where
);
802 * Similar to sbappend, except the mbuf chain begins a new record.
805 sbappendrecord(struct sockbuf
*sb
, struct mbuf
*m0
)
810 if (m0
== NULL
|| (sb
->sb_flags
& SB_DROP
)) {
816 for (m
= m0
; m
!= NULL
; m
= m
->m_next
)
819 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
)) {
824 if (sb
->sb_flags
& SB_RECV
) {
825 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
826 sock_data_filt_flag_record
, NULL
);
828 SBLASTRECORDCHK(sb
, "sbappendrecord 1");
829 if (error
!= EJUSTRETURN
)
836 * Note this permits zero length records.
839 SBLASTRECORDCHK(sb
, "sbappendrecord 2");
840 if (sb
->sb_lastrecord
!= NULL
) {
841 sb
->sb_lastrecord
->m_nextpkt
= m0
;
845 sb
->sb_lastrecord
= m0
;
850 if (m
&& (m0
->m_flags
& M_EOR
)) {
851 m0
->m_flags
&= ~M_EOR
;
854 sbcompress(sb
, m
, m0
);
855 SBLASTRECORDCHK(sb
, "sbappendrecord 3");
860 * As above except that OOB data
861 * is inserted at the beginning of the sockbuf,
862 * but after any other OOB data.
865 sbinsertoob(struct sockbuf
*sb
, struct mbuf
*m0
)
873 SBLASTRECORDCHK(sb
, "sbinsertoob 1");
875 if ((sb
->sb_flags
& SB_RECV
) != 0) {
876 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
877 sock_data_filt_flag_oob
, NULL
);
879 SBLASTRECORDCHK(sb
, "sbinsertoob 2");
881 if (error
!= EJUSTRETURN
) {
888 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
894 continue; /* WANT next train */
899 goto again
; /* inspect THIS train further */
904 * Put the first mbuf on the queue.
905 * Note this permits zero length records.
910 /* m0 is actually the new tail */
911 sb
->sb_lastrecord
= m0
;
916 if (m
&& (m0
->m_flags
& M_EOR
)) {
917 m0
->m_flags
&= ~M_EOR
;
920 sbcompress(sb
, m
, m0
);
921 SBLASTRECORDCHK(sb
, "sbinsertoob 3");
926 * Append address and data, and optionally, control (ancillary) data
927 * to the receive queue of a socket. If present,
928 * m0 must include a packet header with total length.
929 * Returns 0 if no space in sockbuf or insufficient mbufs.
931 * Returns: 0 No space/out of mbufs
935 sbappendaddr_internal(struct sockbuf
*sb
, struct sockaddr
*asa
,
936 struct mbuf
*m0
, struct mbuf
*control
)
938 struct mbuf
*m
, *n
, *nlast
;
939 int space
= asa
->sa_len
;
941 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
942 panic("sbappendaddr");
945 space
+= m0
->m_pkthdr
.len
;
946 for (n
= control
; n
; n
= n
->m_next
) {
948 if (n
->m_next
== 0) /* keep pointer to last control buf */
951 if (space
> sbspace(sb
))
953 if (asa
->sa_len
> MLEN
)
955 MGET(m
, M_DONTWAIT
, MT_SONAME
);
958 m
->m_len
= asa
->sa_len
;
959 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
961 n
->m_next
= m0
; /* concatenate data to control */
966 SBLASTRECORDCHK(sb
, "sbappendadddr 1");
968 for (n
= m
; n
->m_next
!= NULL
; n
= n
->m_next
)
973 if (sb
->sb_lastrecord
!= NULL
) {
974 sb
->sb_lastrecord
->m_nextpkt
= m
;
978 sb
->sb_lastrecord
= m
;
979 sb
->sb_mbtail
= nlast
;
981 SBLASTMBUFCHK(sb
, __func__
);
982 SBLASTRECORDCHK(sb
, "sbappendadddr 2");
984 postevent(0, sb
, EV_RWBYTES
);
989 * Returns: 0 Error: No space/out of mbufs/etc.
992 * Imputed: (*error_out) errno for error
994 * sflt_data_in:??? [whatever a filter author chooses]
997 sbappendaddr(struct sockbuf
*sb
, struct sockaddr
*asa
, struct mbuf
*m0
,
998 struct mbuf
*control
, int *error_out
)
1001 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1006 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
1007 panic("sbappendaddrorfree");
1009 if (sb
->sb_flags
& SB_DROP
) {
1012 if (control
!= NULL
&& !sb_unix
)
1014 if (error_out
!= NULL
)
1015 *error_out
= EINVAL
;
1019 /* Call socket data in filters */
1020 if ((sb
->sb_flags
& SB_RECV
) != 0) {
1022 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0, NULL
);
1023 SBLASTRECORDCHK(sb
, __func__
);
1025 if (error
!= EJUSTRETURN
) {
1028 if (control
!= NULL
&& !sb_unix
)
1037 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
1041 if (control
!= NULL
&& !sb_unix
)
1044 *error_out
= ENOBUFS
;
1051 sbappendcontrol_internal(struct sockbuf
*sb
, struct mbuf
*m0
,
1052 struct mbuf
*control
)
1054 struct mbuf
*m
, *mlast
, *n
;
1058 panic("sbappendcontrol");
1060 for (m
= control
; ; m
= m
->m_next
) {
1065 n
= m
; /* save pointer to last control buffer */
1066 for (m
= m0
; m
; m
= m
->m_next
)
1068 if (space
> sbspace(sb
) && !(sb
->sb_flags
& SB_UNIX
))
1070 n
->m_next
= m0
; /* concatenate data to control */
1072 SBLASTRECORDCHK(sb
, "sbappendcontrol 1");
1074 for (m
= control
; m
->m_next
!= NULL
; m
= m
->m_next
)
1079 if (sb
->sb_lastrecord
!= NULL
) {
1080 sb
->sb_lastrecord
->m_nextpkt
= control
;
1082 sb
->sb_mb
= control
;
1084 sb
->sb_lastrecord
= control
;
1085 sb
->sb_mbtail
= mlast
;
1087 SBLASTMBUFCHK(sb
, __func__
);
1088 SBLASTRECORDCHK(sb
, "sbappendcontrol 2");
1090 postevent(0, sb
, EV_RWBYTES
);
1095 sbappendcontrol(struct sockbuf
*sb
, struct mbuf
*m0
, struct mbuf
*control
,
1099 boolean_t sb_unix
= (sb
->sb_flags
& SB_UNIX
);
1104 if (sb
->sb_flags
& SB_DROP
) {
1107 if (control
!= NULL
&& !sb_unix
)
1109 if (error_out
!= NULL
)
1110 *error_out
= EINVAL
;
1114 if (sb
->sb_flags
& SB_RECV
) {
1117 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0, NULL
);
1118 SBLASTRECORDCHK(sb
, __func__
);
1120 if (error
!= EJUSTRETURN
) {
1123 if (control
!= NULL
&& !sb_unix
)
1132 result
= sbappendcontrol_internal(sb
, m0
, control
);
1136 if (control
!= NULL
&& !sb_unix
)
1139 *error_out
= ENOBUFS
;
1146 * Compress mbuf chain m into the socket
1147 * buffer sb following mbuf n. If n
1148 * is null, the buffer is presumed empty.
1151 sbcompress(struct sockbuf
*sb
, struct mbuf
*m
, struct mbuf
*n
)
1157 /* There is nothing to compress; just update the tail */
1158 for (; n
->m_next
!= NULL
; n
= n
->m_next
)
1165 eor
|= m
->m_flags
& M_EOR
;
1166 if (m
->m_len
== 0 && (eor
== 0 ||
1167 (((o
= m
->m_next
) || (o
= n
)) && o
->m_type
== m
->m_type
))) {
1168 if (sb
->sb_lastrecord
== m
)
1169 sb
->sb_lastrecord
= m
->m_next
;
1173 if (n
&& (n
->m_flags
& M_EOR
) == 0 &&
1177 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1178 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1179 n
->m_type
== m
->m_type
) {
1180 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1181 (unsigned)m
->m_len
);
1182 n
->m_len
+= m
->m_len
;
1183 sb
->sb_cc
+= m
->m_len
;
1184 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1185 m
->m_type
!= MT_OOBDATA
)
1186 /* XXX: Probably don't need.*/
1187 sb
->sb_ctl
+= m
->m_len
;
1198 m
->m_flags
&= ~M_EOR
;
1206 printf("semi-panic: sbcompress\n");
1209 SBLASTMBUFCHK(sb
, __func__
);
1210 postevent(0, sb
, EV_RWBYTES
);
1214 sb_empty_assert(struct sockbuf
*sb
, const char *where
)
1216 if (!(sb
->sb_cc
== 0 && sb
->sb_mb
== NULL
&& sb
->sb_mbcnt
== 0 &&
1217 sb
->sb_mbtail
== NULL
&& sb
->sb_lastrecord
== NULL
)) {
1218 panic("%s: sb %p so %p cc %ld mbcnt %ld mb %p mbtail %p "
1219 "lastrecord %p\n", where
, sb
, sb
->sb_so
, sb
->sb_cc
,
1220 sb
->sb_mbcnt
, sb
->sb_mb
, sb
->sb_mbtail
, sb
->sb_lastrecord
);
1226 * Free all mbufs in a sockbuf.
1227 * Check that all resources are reclaimed.
1230 sbflush(struct sockbuf
*sb
)
1232 if (sb
->sb_so
== NULL
)
1233 panic("sbflush sb->sb_so already null sb=%p\n", sb
);
1234 (void) sblock(sb
, M_WAIT
);
1235 while (sb
->sb_mbcnt
) {
1237 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1238 * we would loop forever. Panic instead.
1240 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1242 sbdrop(sb
, (int)sb
->sb_cc
);
1244 sb_empty_assert(sb
, __func__
);
1245 postevent(0, sb
, EV_RWBYTES
);
1246 sbunlock(sb
, 1); /* keep socket locked */
1251 * Drop data from (the front of) a sockbuf.
1252 * use m_freem_list to free the mbuf structures
1253 * under a single lock... this is done by pruning
1254 * the top of the tree from the body by keeping track
1255 * of where we get to in the tree and then zeroing the
1256 * two pertinent pointers m_nextpkt and m_next
1257 * the socket buffer is then updated to point at the new
1258 * top of the tree and the pruned area is released via
1262 sbdrop(struct sockbuf
*sb
, int len
)
1264 struct mbuf
*m
, *free_list
, *ml
;
1265 struct mbuf
*next
, *last
;
1267 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1269 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1270 free_list
= last
= m
;
1271 ml
= (struct mbuf
*)0;
1277 * temporarily replacing this panic with printf
1278 * because it occurs occasionally when closing
1279 * a socket when there is no harm in ignoring
1280 * it. This problem will be investigated
1283 /* panic("sbdrop"); */
1284 printf("sbdrop - count not zero\n");
1287 * zero the counts. if we have no mbufs,
1288 * we have no data (PR-2986815)
1295 next
= m
->m_nextpkt
;
1298 if (m
->m_len
> len
) {
1302 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1303 m
->m_type
!= MT_OOBDATA
)
1313 while (m
&& m
->m_len
== 0) {
1320 ml
->m_next
= (struct mbuf
*)0;
1321 last
->m_nextpkt
= (struct mbuf
*)0;
1322 m_freem_list(free_list
);
1326 m
->m_nextpkt
= next
;
1332 * First part is an inline SB_EMPTY_FIXUP(). Second part
1333 * makes sure sb_lastrecord is up-to-date if we dropped
1334 * part of the last record.
1338 sb
->sb_mbtail
= NULL
;
1339 sb
->sb_lastrecord
= NULL
;
1340 } else if (m
->m_nextpkt
== NULL
) {
1341 sb
->sb_lastrecord
= m
;
1344 postevent(0, sb
, EV_RWBYTES
);
1346 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1350 * Drop a record off the front of a sockbuf
1351 * and move the next record to the front.
1354 sbdroprecord(struct sockbuf
*sb
)
1356 struct mbuf
*m
, *mn
;
1360 sb
->sb_mb
= m
->m_nextpkt
;
1368 postevent(0, sb
, EV_RWBYTES
);
1372 * Create a "control" mbuf containing the specified data
1373 * with the specified type for presentation on a socket buffer.
1376 sbcreatecontrol(caddr_t p
, int size
, int type
, int level
)
1381 if (CMSG_SPACE((u_int
)size
) > MLEN
)
1382 return ((struct mbuf
*)NULL
);
1383 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
1384 return ((struct mbuf
*)NULL
);
1385 cp
= mtod(m
, struct cmsghdr
*);
1386 /* XXX check size? */
1387 (void) memcpy(CMSG_DATA(cp
), p
, size
);
1388 m
->m_len
= CMSG_SPACE(size
);
1389 cp
->cmsg_len
= CMSG_LEN(size
);
1390 cp
->cmsg_level
= level
;
1391 cp
->cmsg_type
= type
;
1396 * Some routines that return EOPNOTSUPP for entry points that are not
1397 * supported by a protocol. Fill in as needed.
1400 pru_abort_notsupp(__unused
struct socket
*so
)
1402 return (EOPNOTSUPP
);
1406 pru_accept_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1408 return (EOPNOTSUPP
);
1412 pru_attach_notsupp(__unused
struct socket
*so
, __unused
int proto
,
1413 __unused
struct proc
*p
)
1415 return (EOPNOTSUPP
);
1419 pru_bind_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*nam
,
1420 __unused
struct proc
*p
)
1422 return (EOPNOTSUPP
);
1426 pru_connect_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*nam
,
1427 __unused
struct proc
*p
)
1429 return (EOPNOTSUPP
);
1433 pru_connect2_notsupp(__unused
struct socket
*so1
, __unused
struct socket
*so2
)
1435 return (EOPNOTSUPP
);
1439 pru_control_notsupp(__unused
struct socket
*so
, __unused u_long cmd
,
1440 __unused caddr_t data
, __unused
struct ifnet
*ifp
, __unused
struct proc
*p
)
1442 return (EOPNOTSUPP
);
1446 pru_detach_notsupp(__unused
struct socket
*so
)
1448 return (EOPNOTSUPP
);
1452 pru_disconnect_notsupp(__unused
struct socket
*so
)
1454 return (EOPNOTSUPP
);
1458 pru_listen_notsupp(__unused
struct socket
*so
, __unused
struct proc
*p
)
1460 return (EOPNOTSUPP
);
1464 pru_peeraddr_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1466 return (EOPNOTSUPP
);
1470 pru_rcvd_notsupp(__unused
struct socket
*so
, __unused
int flags
)
1472 return (EOPNOTSUPP
);
1476 pru_rcvoob_notsupp(__unused
struct socket
*so
, __unused
struct mbuf
*m
,
1479 return (EOPNOTSUPP
);
1483 pru_send_notsupp(__unused
struct socket
*so
, __unused
int flags
,
1484 __unused
struct mbuf
*m
, __unused
struct sockaddr
*addr
,
1485 __unused
struct mbuf
*control
, __unused
struct proc
*p
)
1488 return (EOPNOTSUPP
);
1493 * This isn't really a ``null'' operation, but it's the default one
1494 * and doesn't do anything destructive.
1497 pru_sense_null(struct socket
*so
, void *ub
, int isstat64
)
1499 if (isstat64
!= 0) {
1500 struct stat64
*sb64
;
1502 sb64
= (struct stat64
*)ub
;
1503 sb64
->st_blksize
= so
->so_snd
.sb_hiwat
;
1507 sb
= (struct stat
*)ub
;
1508 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
1516 pru_sosend_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
*addr
,
1517 __unused
struct uio
*uio
, __unused
struct mbuf
*top
,
1518 __unused
struct mbuf
*control
, __unused
int flags
)
1521 return (EOPNOTSUPP
);
1525 pru_soreceive_notsupp(__unused
struct socket
*so
,
1526 __unused
struct sockaddr
**paddr
,
1527 __unused
struct uio
*uio
, __unused
struct mbuf
**mp0
,
1528 __unused
struct mbuf
**controlp
, __unused
int *flagsp
)
1530 return (EOPNOTSUPP
);
1534 pru_shutdown_notsupp(__unused
struct socket
*so
)
1536 return (EOPNOTSUPP
);
1540 pru_sockaddr_notsupp(__unused
struct socket
*so
, __unused
struct sockaddr
**nam
)
1542 return (EOPNOTSUPP
);
1546 pru_sopoll_notsupp(__unused
struct socket
*so
, __unused
int events
,
1547 __unused kauth_cred_t cred
, __unused
void *wql
)
1549 return (EOPNOTSUPP
);
1555 * The following are macros on BSD and functions on Darwin
1559 * Do we need to notify the other side when I/O is possible?
1563 sb_notify(struct sockbuf
*sb
)
1565 return ((sb
->sb_flags
&
1566 (SB_WAIT
|SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)) != 0);
1570 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1571 * This is problematical if the fields are unsigned, as the space might
1572 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1573 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1576 sbspace(struct sockbuf
*sb
)
1578 return ((long)imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
1579 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
)));
1582 /* do we have to send all at once on a socket? */
1584 sosendallatonce(struct socket
*so
)
1586 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
1589 /* can we read something from so? */
1591 soreadable(struct socket
*so
)
1593 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
1594 (so
->so_state
& SS_CANTRCVMORE
) ||
1595 so
->so_comp
.tqh_first
|| so
->so_error
);
1598 /* can we write something to so? */
1601 sowriteable(struct socket
*so
)
1603 return ((sbspace(&(so
)->so_snd
) >= (long)(so
)->so_snd
.sb_lowat
&&
1604 ((so
->so_state
&SS_ISCONNECTED
) ||
1605 (so
->so_proto
->pr_flags
&PR_CONNREQUIRED
) == 0)) ||
1606 (so
->so_state
& SS_CANTSENDMORE
) ||
1610 /* adjust counters in sb reflecting allocation of m */
1613 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
1616 sb
->sb_cc
+= m
->m_len
;
1617 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1618 m
->m_type
!= MT_OOBDATA
)
1619 sb
->sb_ctl
+= m
->m_len
;
1620 sb
->sb_mbcnt
+= MSIZE
;
1622 if (m
->m_flags
& M_EXT
) {
1623 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
1624 cnt
+= m
->m_ext
.ext_size
/ MSIZE
;
1626 OSAddAtomic(cnt
, (SInt32
*)&total_mb_cnt
);
1629 /* adjust counters in sb reflecting freeing of m */
1631 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
1634 sb
->sb_cc
-= m
->m_len
;
1635 if (m
->m_type
!= MT_DATA
&& m
->m_type
!= MT_HEADER
&&
1636 m
->m_type
!= MT_OOBDATA
)
1637 sb
->sb_ctl
-= m
->m_len
;
1638 sb
->sb_mbcnt
-= MSIZE
;
1639 if (m
->m_flags
& M_EXT
) {
1640 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
1641 cnt
-= m
->m_ext
.ext_size
/ MSIZE
;
1643 OSAddAtomic(cnt
, (SInt32
*)&total_mb_cnt
);
1647 * Set lock on sockbuf sb; sleep if lock is already held.
1648 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1649 * Returns error without lock if sleep is interrupted.
1651 * Returns: 0 Success
1656 sblock(struct sockbuf
*sb
, int wf
)
1660 if (sb
->sb_flags
& SB_LOCK
)
1661 error
= (wf
== M_WAIT
) ? sb_lock(sb
) : EWOULDBLOCK
;
1663 sb
->sb_flags
|= SB_LOCK
;
1668 /* release lock on sockbuf sb */
1670 sbunlock(struct sockbuf
*sb
, int keeplocked
)
1672 struct socket
*so
= sb
->sb_so
;
1674 lck_mtx_t
*mutex_held
;
1676 lr_saved
= (unsigned int) __builtin_return_address(0);
1678 sb
->sb_flags
&= ~SB_LOCK
;
1680 if (sb
->sb_flags
& SB_WANT
) {
1681 sb
->sb_flags
&= ~SB_WANT
;
1682 if (so
->so_usecount
< 0)
1683 panic("sbunlock: b4 wakeup so=%p ref=%d lr=%x "
1684 "sb_flags=%x\n", sb
->sb_so
, so
->so_usecount
,
1685 lr_saved
, sb
->sb_flags
);
1687 wakeup((caddr_t
)&(sb
)->sb_flags
);
1689 if (keeplocked
== 0) { /* unlock on exit */
1690 if (so
->so_proto
->pr_getlock
!= NULL
)
1691 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
1693 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1695 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1698 if (so
->so_usecount
< 0)
1699 panic("sbunlock: unlock on exit so=%p ref=%d lr=%x "
1700 "sb_flags=%x\n", so
, so
->so_usecount
, lr_saved
,
1702 so
->unlock_lr
[so
->next_unlock_lr
] = (u_int32_t
)lr_saved
;
1703 so
->next_unlock_lr
= (so
->next_unlock_lr
+1) % SO_LCKDBG_MAX
;
1704 lck_mtx_unlock(mutex_held
);
1709 sorwakeup(struct socket
*so
)
1711 if (sb_notify(&so
->so_rcv
))
1712 sowakeup(so
, &so
->so_rcv
);
1716 sowwakeup(struct socket
*so
)
1718 if (sb_notify(&so
->so_snd
))
1719 sowakeup(so
, &so
->so_snd
);
1721 #endif /* __APPLE__ */
1724 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1727 dup_sockaddr(struct sockaddr
*sa
, int canwait
)
1729 struct sockaddr
*sa2
;
1731 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
1732 canwait
? M_WAITOK
: M_NOWAIT
);
1734 bcopy(sa
, sa2
, sa
->sa_len
);
1739 * Create an external-format (``xsocket'') structure using the information
1740 * in the kernel-format socket structure pointed to by so. This is done
1741 * to reduce the spew of irrelevant information over this interface,
1742 * to isolate user code from changes in the kernel structure, and
1743 * potentially to provide information-hiding if we decide that
1744 * some of this information should be hidden from users.
1747 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
1749 xso
->xso_len
= sizeof (*xso
);
1751 xso
->so_type
= so
->so_type
;
1752 xso
->so_options
= so
->so_options
;
1753 xso
->so_linger
= so
->so_linger
;
1754 xso
->so_state
= so
->so_state
;
1755 xso
->so_pcb
= so
->so_pcb
;
1757 xso
->xso_protocol
= so
->so_proto
->pr_protocol
;
1758 xso
->xso_family
= so
->so_proto
->pr_domain
->dom_family
;
1760 xso
->xso_protocol
= xso
->xso_family
= 0;
1762 xso
->so_qlen
= so
->so_qlen
;
1763 xso
->so_incqlen
= so
->so_incqlen
;
1764 xso
->so_qlimit
= so
->so_qlimit
;
1765 xso
->so_timeo
= so
->so_timeo
;
1766 xso
->so_error
= so
->so_error
;
1767 xso
->so_pgid
= so
->so_pgid
;
1768 xso
->so_oobmark
= so
->so_oobmark
;
1769 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
1770 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
1771 xso
->so_uid
= so
->so_uid
;
1775 * This does the same for sockbufs. Note that the xsockbuf structure,
1776 * since it is always embedded in a socket, does not include a self
1777 * pointer nor a length. We make this entry point public in case
1778 * some other mechanism needs it.
1781 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
1783 xsb
->sb_cc
= sb
->sb_cc
;
1784 xsb
->sb_hiwat
= sb
->sb_hiwat
;
1785 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
1786 xsb
->sb_mbmax
= sb
->sb_mbmax
;
1787 xsb
->sb_lowat
= sb
->sb_lowat
;
1788 xsb
->sb_flags
= sb
->sb_flags
;
1789 xsb
->sb_timeo
= (u_long
)
1790 (sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
1791 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
1796 * Here is the definition of some of the basic objects in the kern.ipc
1797 * branch of the MIB.
1799 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IPC");
1801 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1803 SYSCTL_INT(_kern
, KERN_DUMMY
, dummy
, CTLFLAG_RW
, &dummy
, 0, "");
1805 SYSCTL_INT(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
, CTLFLAG_RW
,
1806 &sb_max
, 0, "Maximum socket buffer size");
1807 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxsockets
, CTLFLAG_RD
,
1808 &maxsockets
, 0, "Maximum number of sockets avaliable");
1809 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
, CTLFLAG_RW
,
1810 &sb_efficiency
, 0, "");
1811 SYSCTL_INT(_kern_ipc
, OID_AUTO
, sbspace_factor
, CTLFLAG_RW
,
1812 &sbspace_factor
, 0, "Ratio of mbuf/cluster use for socket layers");
1813 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
, CTLFLAG_RD
,
1814 &nmbclusters
, 0, "");
1815 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njcl
, CTLFLAG_RD
, &njcl
, 0, "");
1816 SYSCTL_INT(_kern_ipc
, OID_AUTO
, njclbytes
, CTLFLAG_RD
, &njclbytes
, 0, "");
1817 SYSCTL_INT(_kern_ipc
, KIPC_SOQLIMITCOMPAT
, soqlimitcompat
, CTLFLAG_RW
,
1818 &soqlimitcompat
, 1, "Enable socket queue limit compatibility");
1819 SYSCTL_INT(_kern_ipc
, OID_AUTO
, soqlencomp
, CTLFLAG_RW
,
1820 &soqlencomp
, 0, "Listen backlog represents only complete queue");