]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_fork.c
xnu-517.9.4.tar.gz
[apple/xnu.git] / bsd / kern / kern_fork.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
23 /*
24 * Copyright (c) 1982, 1986, 1989, 1991, 1993
25 * The Regents of the University of California. All rights reserved.
26 * (c) UNIX System Laboratories, Inc.
27 * All or some portions of this file are derived from material licensed
28 * to the University of California by American Telephone and Telegraph
29 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
30 * the permission of UNIX System Laboratories, Inc.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
61 */
62
63 #include <kern/assert.h>
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/filedesc.h>
67 #include <sys/kernel.h>
68 #include <sys/malloc.h>
69 #include <sys/proc.h>
70 #include <sys/user.h>
71 #include <sys/resourcevar.h>
72 #include <sys/vnode.h>
73 #include <sys/file.h>
74 #include <sys/acct.h>
75 #include <sys/wait.h>
76
77 #include <bsm/audit_kernel.h>
78
79 #if KTRACE
80 #include <sys/ktrace.h>
81 #include <sys/ubc.h>
82 #endif
83
84 #include <mach/mach_types.h>
85 #include <kern/mach_param.h>
86
87 #include <machine/spl.h>
88
89 thread_act_t cloneproc(struct proc *, int);
90 struct proc * forkproc(struct proc *, int);
91 thread_act_t procdup();
92
93 #define DOFORK 0x1 /* fork() system call */
94 #define DOVFORK 0x2 /* vfork() system call */
95 static int fork1(struct proc *, long, register_t *);
96
97 /*
98 * fork system call.
99 */
100 int
101 fork(p, uap, retval)
102 struct proc *p;
103 void *uap;
104 register_t *retval;
105 {
106 return (fork1(p, (long)DOFORK, retval));
107 }
108
109 /*
110 * vfork system call
111 */
112 int
113 vfork(p, uap, retval)
114 struct proc *p;
115 void *uap;
116 register_t *retval;
117 {
118 register struct proc * newproc;
119 register uid_t uid;
120 thread_act_t cur_act = (thread_act_t)current_act();
121 int count;
122 task_t t;
123 uthread_t ut;
124
125 /*
126 * Although process entries are dynamically created, we still keep
127 * a global limit on the maximum number we will create. Don't allow
128 * a nonprivileged user to use the last process; don't let root
129 * exceed the limit. The variable nprocs is the current number of
130 * processes, maxproc is the limit.
131 */
132 uid = p->p_cred->p_ruid;
133 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
134 tablefull("proc");
135 retval[1] = 0;
136 return (EAGAIN);
137 }
138
139 /*
140 * Increment the count of procs running with this uid. Don't allow
141 * a nonprivileged user to exceed their current limit.
142 */
143 count = chgproccnt(uid, 1);
144 if (uid != 0 && count > p->p_rlimit[RLIMIT_NPROC].rlim_cur) {
145 (void)chgproccnt(uid, -1);
146 return (EAGAIN);
147 }
148
149 ut = (struct uthread *)get_bsdthread_info(cur_act);
150 if (ut->uu_flag & P_VFORK) {
151 printf("vfork called recursively by %s\n", p->p_comm);
152 (void)chgproccnt(uid, -1);
153 return (EINVAL);
154 }
155 p->p_flag |= P_VFORK;
156 p->p_vforkcnt++;
157
158 /* The newly created process comes with signal lock held */
159 newproc = (struct proc *)forkproc(p,1);
160
161 AUDIT_ARG(pid, newproc->p_pid);
162
163 LIST_INSERT_AFTER(p, newproc, p_pglist);
164 newproc->p_pptr = p;
165 newproc->task = p->task;
166 LIST_INSERT_HEAD(&p->p_children, newproc, p_sibling);
167 LIST_INIT(&newproc->p_children);
168 LIST_INSERT_HEAD(&allproc, newproc, p_list);
169 LIST_INSERT_HEAD(PIDHASH(newproc->p_pid), newproc, p_hash);
170 TAILQ_INIT(& newproc->p_evlist);
171 newproc->p_stat = SRUN;
172 newproc->p_flag |= P_INVFORK;
173 newproc->p_vforkact = cur_act;
174
175 ut->uu_flag |= P_VFORK;
176 ut->uu_proc = newproc;
177 ut->uu_userstate = (void *)act_thread_csave();
178 ut->uu_vforkmask = ut->uu_sigmask;
179
180 thread_set_child(cur_act, newproc->p_pid);
181
182 newproc->p_stats->p_start = time;
183 newproc->p_acflag = AFORK;
184
185 /*
186 * Preserve synchronization semantics of vfork. If waiting for
187 * child to exec or exit, set P_PPWAIT on child, and sleep on our
188 * proc (in case of exit).
189 */
190 newproc->p_flag |= P_PPWAIT;
191
192 /* drop the signal lock on the child */
193 signal_unlock(newproc);
194
195 retval[0] = newproc->p_pid;
196 retval[1] = 1; /* mark child */
197
198 return (0);
199 }
200
201 /*
202 * Return to parent vfork ehread()
203 */
204 void
205 vfork_return(th_act, p, p2, retval)
206 thread_act_t th_act;
207 struct proc * p;
208 struct proc *p2;
209 register_t *retval;
210 {
211 long flags;
212 register uid_t uid;
213 int s, count;
214 task_t t;
215 uthread_t ut;
216
217 ut = (struct uthread *)get_bsdthread_info(th_act);
218
219 act_thread_catt(ut->uu_userstate);
220
221 /* Make sure only one at this time */
222 if (p) {
223 p->p_vforkcnt--;
224 if (p->p_vforkcnt <0)
225 panic("vfork cnt is -ve");
226 if (p->p_vforkcnt <=0)
227 p->p_flag &= ~P_VFORK;
228 }
229 ut->uu_userstate = 0;
230 ut->uu_flag &= ~P_VFORK;
231 ut->uu_proc = 0;
232 ut->uu_sigmask = ut->uu_vforkmask;
233 p2->p_flag &= ~P_INVFORK;
234 p2->p_vforkact = (void *)0;
235
236 thread_set_parent(th_act, p2->p_pid);
237
238 if (retval) {
239 retval[0] = p2->p_pid;
240 retval[1] = 0; /* mark parent */
241 }
242
243 return;
244 }
245
246 thread_act_t
247 procdup(
248 struct proc *child,
249 struct proc *parent)
250 {
251 thread_act_t thread;
252 task_t task;
253 kern_return_t result;
254 pmap_t pmap;
255 extern task_t kernel_task;
256
257 if (parent->task == kernel_task)
258 result = task_create_internal(TASK_NULL, FALSE, &task);
259 else
260 result = task_create_internal(parent->task, TRUE, &task);
261 if (result != KERN_SUCCESS)
262 printf("fork/procdup: task_create failed. Code: 0x%x\n", result);
263 child->task = task;
264 /* task->proc = child; */
265 set_bsdtask_info(task, child);
266 if (child->p_nice != 0)
267 resetpriority(child);
268
269 result = thread_create(task, &thread);
270 if (result != KERN_SUCCESS)
271 printf("fork/procdup: thread_create failed. Code: 0x%x\n", result);
272
273 return(thread);
274 }
275
276
277 static int
278 fork1(p1, flags, retval)
279 struct proc *p1;
280 long flags;
281 register_t *retval;
282 {
283 register struct proc *p2;
284 register uid_t uid;
285 thread_act_t newth;
286 int s, count;
287 task_t t;
288
289 /*
290 * Although process entries are dynamically created, we still keep
291 * a global limit on the maximum number we will create. Don't allow
292 * a nonprivileged user to use the last process; don't let root
293 * exceed the limit. The variable nprocs is the current number of
294 * processes, maxproc is the limit.
295 */
296 uid = p1->p_cred->p_ruid;
297 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
298 tablefull("proc");
299 retval[1] = 0;
300 return (EAGAIN);
301 }
302
303 /*
304 * Increment the count of procs running with this uid. Don't allow
305 * a nonprivileged user to exceed their current limit.
306 */
307 count = chgproccnt(uid, 1);
308 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
309 (void)chgproccnt(uid, -1);
310 return (EAGAIN);
311 }
312
313 /* The newly created process comes with signal lock held */
314 newth = cloneproc(p1, 1);
315 thread_dup(newth);
316 /* p2 = newth->task->proc; */
317 p2 = (struct proc *)(get_bsdtask_info(get_threadtask(newth)));
318
319 AUDIT_ARG(pid, p2->p_pid);
320
321 thread_set_child(newth, p2->p_pid);
322
323 s = splhigh();
324 p2->p_stats->p_start = time;
325 splx(s);
326 p2->p_acflag = AFORK;
327
328 /*
329 * Preserve synchronization semantics of vfork. If waiting for
330 * child to exec or exit, set P_PPWAIT on child, and sleep on our
331 * proc (in case of exit).
332 */
333 if (flags == DOVFORK)
334 p2->p_flag |= P_PPWAIT;
335 /* drop the signal lock on the child */
336 signal_unlock(p2);
337
338 (void) thread_resume(newth);
339
340 /* drop the extra references we got during the creation */
341 if (t = (task_t)get_threadtask(newth)) {
342 task_deallocate(t);
343 }
344 act_deallocate(newth);
345
346 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
347
348 while (p2->p_flag & P_PPWAIT)
349 tsleep(p1, PWAIT, "ppwait", 0);
350
351 retval[0] = p2->p_pid;
352 retval[1] = 0; /* mark parent */
353
354 return (0);
355 }
356
357 /*
358 * cloneproc()
359 *
360 * Create a new process from a specified process.
361 * On return newly created child process has signal
362 * lock held to block delivery of signal to it if called with
363 * lock set. fork() code needs to explicity remove this lock
364 * before signals can be delivered
365 */
366 thread_act_t
367 cloneproc(p1, lock)
368 register struct proc *p1;
369 register int lock;
370 {
371 register struct proc *p2;
372 thread_act_t th;
373
374 p2 = (struct proc *)forkproc(p1,lock);
375
376
377 th = procdup(p2, p1); /* child, parent */
378
379 LIST_INSERT_AFTER(p1, p2, p_pglist);
380 p2->p_pptr = p1;
381 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
382 LIST_INIT(&p2->p_children);
383 LIST_INSERT_HEAD(&allproc, p2, p_list);
384 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
385 TAILQ_INIT(&p2->p_evlist);
386 /*
387 * Make child runnable, set start time.
388 */
389 p2->p_stat = SRUN;
390
391 return(th);
392 }
393
394 struct proc *
395 forkproc(p1, lock)
396 register struct proc *p1;
397 register int lock;
398 {
399 register struct proc *p2, *newproc;
400 static int nextpid = 0, pidchecked = 0;
401 thread_t th;
402
403 /* Allocate new proc. */
404 MALLOC_ZONE(newproc, struct proc *,
405 sizeof *newproc, M_PROC, M_WAITOK);
406 MALLOC_ZONE(newproc->p_cred, struct pcred *,
407 sizeof *newproc->p_cred, M_SUBPROC, M_WAITOK);
408 MALLOC_ZONE(newproc->p_stats, struct pstats *,
409 sizeof *newproc->p_stats, M_SUBPROC, M_WAITOK);
410 MALLOC_ZONE(newproc->p_sigacts, struct sigacts *,
411 sizeof *newproc->p_sigacts, M_SUBPROC, M_WAITOK);
412
413 /*
414 * Find an unused process ID. We remember a range of unused IDs
415 * ready to use (from nextpid+1 through pidchecked-1).
416 */
417 nextpid++;
418 retry:
419 /*
420 * If the process ID prototype has wrapped around,
421 * restart somewhat above 0, as the low-numbered procs
422 * tend to include daemons that don't exit.
423 */
424 if (nextpid >= PID_MAX) {
425 nextpid = 100;
426 pidchecked = 0;
427 }
428 if (nextpid >= pidchecked) {
429 int doingzomb = 0;
430
431 pidchecked = PID_MAX;
432 /*
433 * Scan the active and zombie procs to check whether this pid
434 * is in use. Remember the lowest pid that's greater
435 * than nextpid, so we can avoid checking for a while.
436 */
437 p2 = allproc.lh_first;
438 again:
439 for (; p2 != 0; p2 = p2->p_list.le_next) {
440 while (p2->p_pid == nextpid ||
441 p2->p_pgrp->pg_id == nextpid ||
442 p2->p_session->s_sid == nextpid) {
443 nextpid++;
444 if (nextpid >= pidchecked)
445 goto retry;
446 }
447 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
448 pidchecked = p2->p_pid;
449 if (p2->p_pgrp && p2->p_pgrp->pg_id > nextpid &&
450 pidchecked > p2->p_pgrp->pg_id)
451 pidchecked = p2->p_pgrp->pg_id;
452 if (p2->p_session->s_sid > nextpid &&
453 pidchecked > p2->p_session->s_sid)
454 pidchecked = p2->p_session->s_sid;
455 }
456 if (!doingzomb) {
457 doingzomb = 1;
458 p2 = zombproc.lh_first;
459 goto again;
460 }
461 }
462
463 nprocs++;
464 p2 = newproc;
465 p2->p_stat = SIDL;
466 p2->p_pid = nextpid;
467
468 p2->p_shutdownstate = 0;
469 /*
470 * Make a proc table entry for the new process.
471 * Start by zeroing the section of proc that is zero-initialized,
472 * then copy the section that is copied directly from the parent.
473 */
474 bzero(&p2->p_startzero,
475 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
476 bcopy(&p1->p_startcopy, &p2->p_startcopy,
477 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
478 p2->vm_shm = (void *)NULL; /* Make sure it is zero */
479
480 /*
481 * Copy the audit info.
482 */
483 audit_proc_fork(p1, p2);
484
485 /*
486 * Duplicate sub-structures as needed.
487 * Increase reference counts on shared objects.
488 * The p_stats and p_sigacts substructs are set in vm_fork.
489 */
490 p2->p_flag = P_INMEM;
491 p2->p_flag |= (p1->p_flag & P_CLASSIC); // copy from parent
492 p2->p_flag |= (p1->p_flag & P_AFFINITY); // copy from parent
493 if (p1->p_flag & P_PROFIL)
494 startprofclock(p2);
495 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
496 p2->p_cred->p_refcnt = 1;
497 crhold(p1->p_ucred);
498 lockinit(&p2->p_cred->pc_lock, PLOCK, "proc cred", 0, 0);
499 klist_init(&p2->p_klist);
500
501 /* bump references to the text vnode */
502 p2->p_textvp = p1->p_textvp;
503 if (p2->p_textvp)
504 VREF(p2->p_textvp);
505
506 p2->p_fd = fdcopy(p1);
507 if (p1->vm_shm) {
508 shmfork(p1,p2);
509 }
510 /*
511 * If p_limit is still copy-on-write, bump refcnt,
512 * otherwise get a copy that won't be modified.
513 * (If PL_SHAREMOD is clear, the structure is shared
514 * copy-on-write.)
515 */
516 if (p1->p_limit->p_lflags & PL_SHAREMOD)
517 p2->p_limit = limcopy(p1->p_limit);
518 else {
519 p2->p_limit = p1->p_limit;
520 p2->p_limit->p_refcnt++;
521 }
522
523 bzero(&p2->p_stats->pstat_startzero,
524 (unsigned) ((caddr_t)&p2->p_stats->pstat_endzero -
525 (caddr_t)&p2->p_stats->pstat_startzero));
526 bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
527 ((caddr_t)&p2->p_stats->pstat_endcopy -
528 (caddr_t)&p2->p_stats->pstat_startcopy));
529
530 if (p1->p_sigacts != NULL)
531 (void)memcpy(p2->p_sigacts,
532 p1->p_sigacts, sizeof *p2->p_sigacts);
533 else
534 (void)memset(p2->p_sigacts, 0, sizeof *p2->p_sigacts);
535
536 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
537 p2->p_flag |= P_CONTROLT;
538
539 p2->p_argslen = p1->p_argslen;
540 p2->p_argc = p1->p_argc;
541 p2->p_xstat = 0;
542 p2->p_ru = NULL;
543
544 p2->p_debugger = 0; /* don't inherit */
545 lockinit(&p2->signal_lock, PVM, "signal", 0, 0);
546 /* block all signals to reach the process */
547 if (lock)
548 signal_lock(p2);
549 p2->sigwait = FALSE;
550 p2->sigwait_thread = NULL;
551 p2->exit_thread = NULL;
552 p2->user_stack = p1->user_stack;
553 p2->p_vforkcnt = 0;
554 p2->p_vforkact = 0;
555 TAILQ_INIT(&p2->p_uthlist);
556 TAILQ_INIT(&p2->aio_activeq);
557 TAILQ_INIT(&p2->aio_doneq);
558 p2->aio_active_count = 0;
559 p2->aio_done_count = 0;
560
561 #if KTRACE
562 /*
563 * Copy traceflag and tracefile if enabled.
564 * If not inherited, these were zeroed above.
565 */
566 if (p1->p_traceflag&KTRFAC_INHERIT) {
567 p2->p_traceflag = p1->p_traceflag;
568 if ((p2->p_tracep = p1->p_tracep) != NULL) {
569 if (UBCINFOEXISTS(p2->p_tracep))
570 ubc_hold(p2->p_tracep);
571 VREF(p2->p_tracep);
572 }
573 }
574 #endif
575 return(p2);
576
577 }
578
579 #include <kern/zalloc.h>
580
581 struct zone *uthread_zone;
582 int uthread_zone_inited = 0;
583
584 void
585 uthread_zone_init()
586 {
587 if (!uthread_zone_inited) {
588 uthread_zone = zinit(sizeof(struct uthread),
589 THREAD_MAX * sizeof(struct uthread),
590 THREAD_CHUNK * sizeof(struct uthread),
591 "uthreads");
592 uthread_zone_inited = 1;
593 }
594 }
595
596 void *
597 uthread_alloc(task_t task, thread_act_t thr_act )
598 {
599 struct proc *p;
600 struct uthread *uth, *uth_parent;
601 void *ut;
602 extern task_t kernel_task;
603 boolean_t funnel_state;
604
605 if (!uthread_zone_inited)
606 uthread_zone_init();
607
608 ut = (void *)zalloc(uthread_zone);
609 bzero(ut, sizeof(struct uthread));
610
611 if (task != kernel_task) {
612 uth = (struct uthread *)ut;
613 p = (struct proc *) get_bsdtask_info(task);
614
615 funnel_state = thread_funnel_set(kernel_flock, TRUE);
616 uth_parent = (struct uthread *)get_bsdthread_info(current_act());
617 if (uth_parent) {
618 if (uth_parent->uu_flag & USAS_OLDMASK)
619 uth->uu_sigmask = uth_parent->uu_oldmask;
620 else
621 uth->uu_sigmask = uth_parent->uu_sigmask;
622 }
623 uth->uu_act = thr_act;
624 //signal_lock(p);
625 if (p)
626 TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
627 //signal_unlock(p);
628 (void)thread_funnel_set(kernel_flock, funnel_state);
629 }
630
631 return (ut);
632 }
633
634
635 void
636 uthread_free(task_t task, thread_t act, void *uthread, void * bsd_info)
637 {
638 struct _select *sel;
639 struct uthread *uth = (struct uthread *)uthread;
640 struct proc * p = (struct proc *)bsd_info;
641 extern task_t kernel_task;
642 int size;
643 boolean_t funnel_state;
644 struct nlminfo *nlmp;
645 struct proc * vproc;
646
647 /*
648 * Per-thread audit state should never last beyond system
649 * call return. Since we don't audit the thread creation/
650 * removal, the thread state pointer should never be
651 * non-NULL when we get here.
652 */
653 assert(uth->uu_ar == NULL);
654
655 sel = &uth->uu_state.ss_select;
656 /* cleanup the select bit space */
657 if (sel->nbytes) {
658 FREE(sel->ibits, M_TEMP);
659 FREE(sel->obits, M_TEMP);
660 }
661
662 if (sel->allocsize && uth->uu_wqsub){
663 kfree(uth->uu_wqsub, sel->allocsize);
664 sel->count = sel->nfcount = 0;
665 sel->allocsize = 0;
666 uth->uu_wqsub = 0;
667 sel->wql = 0;
668 }
669
670 if ((nlmp = uth->uu_nlminfo)) {
671 uth->uu_nlminfo = 0;
672 FREE(nlmp, M_LOCKF);
673 }
674
675 if ((task != kernel_task) ) {
676 int vfork_exit(struct proc *, int);
677
678 funnel_state = thread_funnel_set(kernel_flock, TRUE);
679 if (p)
680 TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
681 if ((uth->uu_flag & P_VFORK) && (vproc = uth->uu_proc)
682 && (vproc->p_flag & P_INVFORK)) {
683 if (!vfork_exit(vproc, W_EXITCODE(0, SIGKILL)))
684 vfork_return(act, p, vproc, NULL);
685
686 }
687 (void)thread_funnel_set(kernel_flock, funnel_state);
688 }
689 /* and free the uthread itself */
690 zfree(uthread_zone, (vm_offset_t)uthread);
691 }