]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kperf/pet.c
xnu-4570.20.62.tar.gz
[apple/xnu.git] / osfmk / kperf / pet.c
1 /*
2 * Copyright (c) 2011-2016 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 /* all thread states code */
30 #include <mach/mach_types.h>
31 #include <sys/errno.h>
32
33 #include <kperf/kperf.h>
34 #include <kperf/buffer.h>
35 #include <kperf/sample.h>
36 #include <kperf/context.h>
37 #include <kperf/action.h>
38 #include <kperf/pet.h>
39 #include <kperf/kperf_timer.h>
40
41 #include <kern/task.h>
42 #include <kern/kalloc.h>
43
44 /* action ID to call for each sample
45 *
46 * Address is used as the sync point for waiting.
47 */
48 static unsigned int pet_action_id = 0;
49
50 static lck_mtx_t *pet_lock;
51 static boolean_t pet_initted = FALSE;
52 static boolean_t pet_running = FALSE;
53
54 /* number of callstack samples to skip for idle threads */
55 static uint32_t pet_idle_rate = KPERF_PET_DEFAULT_IDLE_RATE;
56
57 /*
58 * Lightweight PET mode samples the system less-intrusively than normal PET
59 * mode. Instead of iterating tasks and threads on each sample, it increments
60 * a global generation count, kperf_pet_gen, which is checked as threads are
61 * context switched on-core. If the thread's local generation count is older
62 * than the global generation, the thread samples itself.
63 *
64 * | |
65 * thread A +--+---------|
66 * | |
67 * thread B |--+---------------|
68 * | |
69 * thread C | | |-------------------------------------
70 * | | |
71 * thread D | | | |-------------------------------
72 * | | | |
73 * +--+---------+-----+--------------------------------> time
74 * | │ |
75 * | +-----+--- threads sampled when they come on-core in
76 * | kperf_pet_switch_context
77 * |
78 * +--- PET timer fire, sample on-core threads A and B,
79 * increment kperf_pet_gen
80 */
81 static boolean_t lightweight_pet = FALSE;
82
83 /*
84 * Whether or not lightweight PET and sampling is active.
85 */
86 boolean_t kperf_lightweight_pet_active = FALSE;
87
88 uint32_t kperf_pet_gen = 0;
89
90 static struct kperf_sample *pet_sample;
91
92 /* thread lifecycle */
93
94 static kern_return_t pet_init(void);
95 static void pet_start(void);
96 static void pet_stop(void);
97
98 /* PET thread-only */
99
100 static void pet_thread_loop(void *param, wait_result_t wr);
101 static void pet_thread_idle(void);
102 static void pet_thread_work_unit(void);
103
104 /* listing things to sample */
105
106 static task_array_t pet_tasks = NULL;
107 static vm_size_t pet_tasks_size = 0;
108 static vm_size_t pet_tasks_count = 0;
109
110 static thread_array_t pet_threads = NULL;
111 static vm_size_t pet_threads_size = 0;
112 static vm_size_t pet_threads_count = 0;
113
114 static kern_return_t pet_tasks_prepare(void);
115 static kern_return_t pet_tasks_prepare_internal(void);
116
117 static kern_return_t pet_threads_prepare(task_t task);
118
119 /* sampling */
120
121 static void pet_sample_all_tasks(uint32_t idle_rate);
122 static void pet_sample_task(task_t task, uint32_t idle_rate);
123 static void pet_sample_thread(int pid, thread_t thread, uint32_t idle_rate);
124
125 /* functions called by other areas of kperf */
126
127 void
128 kperf_pet_fire_before(void)
129 {
130 if (!pet_initted || !pet_running) {
131 return;
132 }
133
134 if (lightweight_pet) {
135 BUF_INFO(PERF_PET_SAMPLE);
136 OSIncrementAtomic(&kperf_pet_gen);
137 }
138 }
139
140 void
141 kperf_pet_fire_after(void)
142 {
143 if (!pet_initted || !pet_running) {
144 return;
145 }
146
147 if (lightweight_pet) {
148 kperf_timer_pet_rearm(0);
149 } else {
150 thread_wakeup(&pet_action_id);
151 }
152 }
153
154 void
155 kperf_pet_on_cpu(thread_t thread, thread_continue_t continuation,
156 uintptr_t *starting_fp)
157 {
158 assert(thread != NULL);
159 assert(ml_get_interrupts_enabled() == FALSE);
160
161 if (thread->kperf_pet_gen != kperf_pet_gen) {
162 BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START, kperf_pet_gen, thread->kperf_pet_gen);
163
164 struct kperf_context ctx = {
165 .cur_thread = thread,
166 .cur_pid = task_pid(get_threadtask(thread)),
167 .starting_fp = starting_fp,
168 };
169 /*
170 * Use a per-CPU interrupt buffer, since this is only called
171 * while interrupts are disabled, from the scheduler.
172 */
173 struct kperf_sample *sample = kperf_intr_sample_buffer();
174 if (!sample) {
175 BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END, 1);
176 return;
177 }
178
179 unsigned int flags = SAMPLE_FLAG_NON_INTERRUPT | SAMPLE_FLAG_PEND_USER;
180 if (continuation != NULL) {
181 flags |= SAMPLE_FLAG_CONTINUATION;
182 }
183 kperf_sample(sample, &ctx, pet_action_id, flags);
184
185 BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END);
186 } else {
187 BUF_VERB(PERF_PET_SAMPLE_THREAD, kperf_pet_gen, thread->kperf_pet_gen);
188 }
189 }
190
191 void
192 kperf_pet_config(unsigned int action_id)
193 {
194 kern_return_t kr = pet_init();
195 if (kr != KERN_SUCCESS) {
196 return;
197 }
198
199 lck_mtx_lock(pet_lock);
200
201 BUF_INFO(PERF_PET_THREAD, 3, action_id);
202
203 if (action_id == 0) {
204 pet_stop();
205 } else {
206 pet_start();
207 }
208
209 pet_action_id = action_id;
210
211 lck_mtx_unlock(pet_lock);
212 }
213
214 /* handle resource allocation */
215
216 void
217 pet_start(void)
218 {
219 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
220
221 if (pet_running) {
222 return;
223 }
224
225 pet_sample = kalloc(sizeof(struct kperf_sample));
226 if (!pet_sample) {
227 return;
228 }
229
230 pet_running = TRUE;
231 }
232
233 void
234 pet_stop(void)
235 {
236 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
237
238 if (!pet_initted) {
239 return;
240 }
241
242 if (pet_tasks != NULL) {
243 assert(pet_tasks_size != 0);
244 kfree(pet_tasks, pet_tasks_size);
245
246 pet_tasks = NULL;
247 pet_tasks_size = 0;
248 pet_tasks_count = 0;
249 }
250
251 if (pet_threads != NULL) {
252 assert(pet_threads_size != 0);
253 kfree(pet_threads, pet_threads_size);
254
255 pet_threads = NULL;
256 pet_threads_size = 0;
257 pet_threads_count = 0;
258 }
259
260 if (pet_sample != NULL) {
261 kfree(pet_sample, sizeof(struct kperf_sample));
262 pet_sample = NULL;
263 }
264
265 pet_running = FALSE;
266 }
267
268 /*
269 * Lazily initialize PET. The PET thread never exits once PET has been used
270 * once.
271 */
272 static kern_return_t
273 pet_init(void)
274 {
275 if (pet_initted) {
276 return KERN_SUCCESS;
277 }
278
279 /* make the sync point */
280 pet_lock = lck_mtx_alloc_init(&kperf_lck_grp, NULL);
281 assert(pet_lock);
282
283 /* create the thread */
284
285 BUF_INFO(PERF_PET_THREAD, 0);
286 thread_t t;
287 kern_return_t kr = kernel_thread_start(pet_thread_loop, NULL, &t);
288 if (kr != KERN_SUCCESS) {
289 lck_mtx_free(pet_lock, &kperf_lck_grp);
290 return kr;
291 }
292
293 thread_set_thread_name(t, "kperf sampling");
294 /* let the thread hold the only reference */
295 thread_deallocate(t);
296
297 pet_initted = TRUE;
298
299 return KERN_SUCCESS;
300 }
301
302 /* called by PET thread only */
303
304 static void
305 pet_thread_work_unit(void)
306 {
307 pet_sample_all_tasks(pet_idle_rate);
308 }
309
310 static void
311 pet_thread_idle(void)
312 {
313 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
314
315 (void)lck_mtx_sleep(pet_lock, LCK_SLEEP_DEFAULT, &pet_action_id,
316 THREAD_UNINT);
317 }
318
319 __attribute__((noreturn))
320 static void
321 pet_thread_loop(void *param, wait_result_t wr)
322 {
323 #pragma unused(param, wr)
324 uint64_t work_unit_ticks;
325
326 BUF_INFO(PERF_PET_THREAD, 1);
327
328 lck_mtx_lock(pet_lock);
329 for (;;) {
330 BUF_INFO(PERF_PET_IDLE);
331 pet_thread_idle();
332
333 BUF_INFO(PERF_PET_RUN);
334
335 /* measure how long the work unit takes */
336 work_unit_ticks = mach_absolute_time();
337 pet_thread_work_unit();
338 work_unit_ticks = mach_absolute_time() - work_unit_ticks;
339
340 /* re-program the timer */
341 kperf_timer_pet_rearm(work_unit_ticks);
342 }
343 }
344
345 /* sampling */
346
347 static void
348 pet_sample_thread(int pid, thread_t thread, uint32_t idle_rate)
349 {
350 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
351
352 uint32_t sample_flags = SAMPLE_FLAG_IDLE_THREADS;
353
354 BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_START);
355
356 /* work out the context */
357 struct kperf_context ctx = {
358 .cur_thread = thread,
359 .cur_pid = pid,
360 };
361
362 boolean_t thread_dirty = kperf_thread_get_dirty(thread);
363
364 /*
365 * Clean a dirty thread and skip callstack sample if the thread was not
366 * dirty and thread has skipped less than pet_idle_rate samples.
367 */
368 if (thread_dirty) {
369 kperf_thread_set_dirty(thread, FALSE);
370 } else if ((thread->kperf_pet_cnt % idle_rate) != 0) {
371 sample_flags |= SAMPLE_FLAG_EMPTY_CALLSTACK;
372 }
373 thread->kperf_pet_cnt++;
374
375 kperf_sample(pet_sample, &ctx, pet_action_id, sample_flags);
376
377 BUF_VERB(PERF_PET_SAMPLE_THREAD | DBG_FUNC_END);
378 }
379
380 static kern_return_t
381 pet_threads_prepare(task_t task)
382 {
383 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
384
385 vm_size_t threads_size_needed;
386
387 if (task == TASK_NULL) {
388 return KERN_INVALID_ARGUMENT;
389 }
390
391 for (;;) {
392 task_lock(task);
393
394 if (!task->active) {
395 task_unlock(task);
396
397 return KERN_FAILURE;
398 }
399
400 /* do we have the memory we need? */
401 threads_size_needed = task->thread_count * sizeof(thread_t);
402 if (threads_size_needed <= pet_threads_size) {
403 break;
404 }
405
406 /* not enough memory, unlock the task and increase allocation */
407 task_unlock(task);
408
409 if (pet_threads_size != 0) {
410 kfree(pet_threads, pet_threads_size);
411 }
412
413 assert(threads_size_needed > 0);
414 pet_threads_size = threads_size_needed;
415
416 pet_threads = kalloc(pet_threads_size);
417 if (pet_threads == NULL) {
418 pet_threads_size = 0;
419 return KERN_RESOURCE_SHORTAGE;
420 }
421 }
422
423 /* have memory and the task is locked and active */
424 thread_t thread;
425 pet_threads_count = 0;
426 queue_iterate(&(task->threads), thread, thread_t, task_threads) {
427 thread_reference_internal(thread);
428 pet_threads[pet_threads_count++] = thread;
429 }
430
431 /* can unlock task now that threads are referenced */
432 task_unlock(task);
433
434 return (pet_threads_count == 0) ? KERN_FAILURE : KERN_SUCCESS;
435 }
436
437 static void
438 pet_sample_task(task_t task, uint32_t idle_rate)
439 {
440 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
441
442 BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_START);
443
444 kern_return_t kr = pet_threads_prepare(task);
445 if (kr != KERN_SUCCESS) {
446 BUF_INFO(PERF_PET_ERROR, ERR_THREAD, kr);
447 BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, 1);
448 return;
449 }
450
451 int pid = task_pid(task);
452
453 for (unsigned int i = 0; i < pet_threads_count; i++) {
454 thread_t thread = pet_threads[i];
455 int cpu;
456 assert(thread);
457
458 /* do not sample the thread if it was on a CPU during the IPI. */
459 for (cpu = 0; cpu < machine_info.logical_cpu_max; cpu++) {
460 if (kperf_tid_on_cpus[cpu] == thread_tid(thread)) {
461 break;
462 }
463 }
464
465 /* the thread was not on a CPU */
466 if (cpu == machine_info.logical_cpu_max) {
467 pet_sample_thread(pid, thread, idle_rate);
468 }
469
470 thread_deallocate(pet_threads[i]);
471 }
472
473 BUF_VERB(PERF_PET_SAMPLE_TASK | DBG_FUNC_END, pet_threads_count);
474 }
475
476 static kern_return_t
477 pet_tasks_prepare_internal(void)
478 {
479 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
480
481 vm_size_t tasks_size_needed = 0;
482
483 for (;;) {
484 lck_mtx_lock(&tasks_threads_lock);
485
486 /* do we have the memory we need? */
487 tasks_size_needed = tasks_count * sizeof(task_t);
488 if (tasks_size_needed <= pet_tasks_size) {
489 break;
490 }
491
492 /* unlock and allocate more memory */
493 lck_mtx_unlock(&tasks_threads_lock);
494
495 /* grow task array */
496 if (tasks_size_needed > pet_tasks_size) {
497 if (pet_tasks_size != 0) {
498 kfree(pet_tasks, pet_tasks_size);
499 }
500
501 assert(tasks_size_needed > 0);
502 pet_tasks_size = tasks_size_needed;
503
504 pet_tasks = (task_array_t)kalloc(pet_tasks_size);
505 if (pet_tasks == NULL) {
506 pet_tasks_size = 0;
507 return KERN_RESOURCE_SHORTAGE;
508 }
509 }
510 }
511
512 return KERN_SUCCESS;
513 }
514
515 static kern_return_t
516 pet_tasks_prepare(void)
517 {
518 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
519
520 /* allocate space and take the tasks_threads_lock */
521 kern_return_t kr = pet_tasks_prepare_internal();
522 if (KERN_SUCCESS != kr) {
523 return kr;
524 }
525 lck_mtx_assert(&tasks_threads_lock, LCK_MTX_ASSERT_OWNED);
526
527 /* make sure the tasks are not deallocated after dropping the lock */
528 task_t task;
529 pet_tasks_count = 0;
530 queue_iterate(&tasks, task, task_t, tasks) {
531 if (task != kernel_task) {
532 task_reference_internal(task);
533 pet_tasks[pet_tasks_count++] = task;
534 }
535 }
536
537 lck_mtx_unlock(&tasks_threads_lock);
538
539 return KERN_SUCCESS;
540 }
541
542 static void
543 pet_sample_all_tasks(uint32_t idle_rate)
544 {
545 lck_mtx_assert(pet_lock, LCK_MTX_ASSERT_OWNED);
546
547 BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_START);
548
549 kern_return_t kr = pet_tasks_prepare();
550 if (kr != KERN_SUCCESS) {
551 BUF_INFO(PERF_PET_ERROR, ERR_TASK, kr);
552 BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END, 0);
553 return;
554 }
555
556 for (unsigned int i = 0; i < pet_tasks_count; i++) {
557 task_t task = pet_tasks[i];
558
559 if (task != kernel_task) {
560 kr = task_suspend_internal(task);
561 if (kr != KERN_SUCCESS) {
562 continue;
563 }
564 }
565
566 pet_sample_task(task, idle_rate);
567
568 if (task != kernel_task) {
569 task_resume_internal(task);
570 }
571 }
572
573 for(unsigned int i = 0; i < pet_tasks_count; i++) {
574 task_deallocate(pet_tasks[i]);
575 }
576
577 BUF_INFO(PERF_PET_SAMPLE | DBG_FUNC_END, pet_tasks_count);
578 }
579
580 /* support sysctls */
581
582 int
583 kperf_get_pet_idle_rate(void)
584 {
585 return pet_idle_rate;
586 }
587
588 int
589 kperf_set_pet_idle_rate(int val)
590 {
591 pet_idle_rate = val;
592
593 return 0;
594 }
595
596 int
597 kperf_get_lightweight_pet(void)
598 {
599 return lightweight_pet;
600 }
601
602 int
603 kperf_set_lightweight_pet(int val)
604 {
605 if (kperf_sampling_status() == KPERF_SAMPLING_ON) {
606 return EBUSY;
607 }
608
609 lightweight_pet = (val == 1);
610 kperf_lightweight_pet_active_update();
611
612 return 0;
613 }
614
615 void
616 kperf_lightweight_pet_active_update(void)
617 {
618 kperf_lightweight_pet_active = (kperf_sampling_status() && lightweight_pet);
619 kperf_on_cpu_update();
620 }