]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/kern_stackshot.c
xnu-4570.20.62.tar.gz
[apple/xnu.git] / osfmk / kern / kern_stackshot.c
1 /*
2 * Copyright (c) 2013-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <mach/mach_types.h>
30 #include <mach/vm_param.h>
31 #include <mach/mach_vm.h>
32 #include <mach/clock_types.h>
33 #include <sys/errno.h>
34 #include <sys/stackshot.h>
35 #ifdef IMPORTANCE_INHERITANCE
36 #include <ipc/ipc_importance.h>
37 #endif
38 #include <sys/appleapiopts.h>
39 #include <kern/debug.h>
40 #include <kern/block_hint.h>
41 #include <uuid/uuid.h>
42
43 #include <kdp/kdp_dyld.h>
44 #include <kdp/kdp_en_debugger.h>
45
46 #include <libsa/types.h>
47 #include <libkern/version.h>
48
49 #include <string.h> /* bcopy */
50
51 #include <kern/coalition.h>
52 #include <kern/processor.h>
53 #include <kern/thread.h>
54 #include <kern/thread_group.h>
55 #include <kern/task.h>
56 #include <kern/telemetry.h>
57 #include <kern/clock.h>
58 #include <kern/policy_internal.h>
59 #include <vm/vm_map.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_pageout.h>
62 #include <vm/vm_fault.h>
63 #include <vm/vm_shared_region.h>
64 #include <libkern/OSKextLibPrivate.h>
65
66 #if CONFIG_EMBEDDED
67 #include <pexpert/pexpert.h> /* For gPanicBase/gPanicBase */
68 #endif
69
70 #if MONOTONIC
71 #include <kern/monotonic.h>
72 #endif /* MONOTONIC */
73
74 #include <san/kasan.h>
75
76 extern unsigned int not_in_kdp;
77
78 #if CONFIG_EMBEDDED
79 uuid_t kernelcache_uuid;
80 #endif
81
82 /* indicate to the compiler that some accesses are unaligned */
83 typedef uint64_t unaligned_u64 __attribute__((aligned(1)));
84
85 extern addr64_t kdp_vtophys(pmap_t pmap, addr64_t va);
86 extern void * proc_get_uthread_uu_threadlist(void * uthread_v);
87
88 int kdp_snapshot = 0;
89 static kern_return_t stack_snapshot_ret = 0;
90 static uint32_t stack_snapshot_bytes_traced = 0;
91
92 static kcdata_descriptor_t stackshot_kcdata_p = NULL;
93 static void *stack_snapshot_buf;
94 static uint32_t stack_snapshot_bufsize;
95 int stack_snapshot_pid;
96 static uint32_t stack_snapshot_flags;
97 static uint64_t stack_snapshot_delta_since_timestamp;
98 static boolean_t panic_stackshot;
99
100 static boolean_t stack_enable_faulting = FALSE;
101 static struct stackshot_fault_stats fault_stats;
102
103 static unaligned_u64 * stackshot_duration_outer;
104 static uint64_t stackshot_microsecs;
105
106 void * kernel_stackshot_buf = NULL; /* Pointer to buffer for stackshots triggered from the kernel and retrieved later */
107 int kernel_stackshot_buf_size = 0;
108
109 void * stackshot_snapbuf = NULL; /* Used by stack_snapshot2 (to be removed) */
110
111 __private_extern__ void stackshot_init( void );
112 static boolean_t memory_iszero(void *addr, size_t size);
113 #if CONFIG_TELEMETRY
114 kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval);
115 #endif
116 uint32_t get_stackshot_estsize(uint32_t prev_size_hint);
117 kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config,
118 size_t stackshot_config_size, boolean_t stackshot_from_user);
119 kern_return_t do_stackshot(void *);
120 void kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags, kcdata_descriptor_t data_p, uint64_t since_timestamp);
121 boolean_t stackshot_thread_is_idle_worker_unsafe(thread_t thread);
122 static int kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t *pBytesTraced);
123 uint32_t kdp_stack_snapshot_bytes_traced(void);
124 static void kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap);
125 static boolean_t kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_result);
126 static boolean_t kdp_copyin_word(task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results);
127 static uint64_t proc_was_throttled_from_task(task_t task);
128 static void stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_t * waitinfo);
129 static int stackshot_thread_has_valid_waitinfo(thread_t thread);
130
131 #if CONFIG_COALITIONS
132 static void stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal);
133 static void stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal);
134 #endif /* CONFIG_COALITIONS */
135
136
137 extern uint32_t workqueue_get_pwq_state_kdp(void *proc);
138
139 extern int proc_pid(void *p);
140 extern uint64_t proc_uniqueid(void *p);
141 extern uint64_t proc_was_throttled(void *p);
142 extern uint64_t proc_did_throttle(void *p);
143 static uint64_t proc_did_throttle_from_task(task_t task);
144 extern void proc_name_kdp(task_t task, char * buf, int size);
145 extern int proc_threadname_kdp(void * uth, char * buf, size_t size);
146 extern void proc_starttime_kdp(void * p, uint64_t * tv_sec, uint64_t * tv_usec, uint64_t * abstime);
147 extern int memorystatus_get_pressure_status_kdp(void);
148 extern boolean_t memorystatus_proc_is_dirty_unsafe(void * v);
149
150 extern int count_busy_buffers(void); /* must track with declaration in bsd/sys/buf_internal.h */
151 extern void bcopy_phys(addr64_t, addr64_t, vm_size_t);
152
153 #if CONFIG_TELEMETRY
154 extern kern_return_t stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval);
155 #endif /* CONFIG_TELEMETRY */
156
157 extern kern_return_t kern_stack_snapshot_with_reason(char* reason);
158 extern kern_return_t kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user);
159
160 /*
161 * Validates that the given address is both a valid page and has
162 * default caching attributes for the current map. Returns
163 * 0 if the address is invalid, and a kernel virtual address for
164 * the given address if it is valid.
165 */
166 vm_offset_t machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags);
167
168 #define KDP_FAULT_RESULT_PAGED_OUT 0x1 /* some data was unable to be retrieved */
169 #define KDP_FAULT_RESULT_TRIED_FAULT 0x2 /* tried to fault in data */
170 #define KDP_FAULT_RESULT_FAULTED_IN 0x4 /* successfully faulted in data */
171
172 /*
173 * Looks up the physical translation for the given address in the target map, attempting
174 * to fault data in if requested and it is not resident. Populates thread_trace_flags if requested
175 * as well.
176 */
177 vm_offset_t kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results);
178
179 static size_t stackshot_strlcpy(char *dst, const char *src, size_t maxlen);
180 static void stackshot_memcpy(void *dst, const void *src, size_t len);
181
182 /* Clears caching information used by the above validation routine
183 * (in case the current map has been changed or cleared).
184 */
185 void machine_trace_thread_clear_validation_cache(void);
186
187 #define MAX_FRAMES 1000
188 #define MAX_LOADINFOS 500
189 #define TASK_IMP_WALK_LIMIT 20
190
191 typedef struct thread_snapshot *thread_snapshot_t;
192 typedef struct task_snapshot *task_snapshot_t;
193
194 #if CONFIG_KDP_INTERACTIVE_DEBUGGING
195 extern kdp_send_t kdp_en_send_pkt;
196 #endif
197
198 /*
199 * Globals to support machine_trace_thread_get_kva.
200 */
201 static vm_offset_t prev_target_page = 0;
202 static vm_offset_t prev_target_kva = 0;
203 static boolean_t validate_next_addr = TRUE;
204
205 /*
206 * Stackshot locking and other defines.
207 */
208 static lck_grp_t *stackshot_subsys_lck_grp;
209 static lck_grp_attr_t *stackshot_subsys_lck_grp_attr;
210 static lck_attr_t *stackshot_subsys_lck_attr;
211 static lck_mtx_t stackshot_subsys_mutex;
212
213 #define STACKSHOT_SUBSYS_LOCK() lck_mtx_lock(&stackshot_subsys_mutex)
214 #define STACKSHOT_SUBSYS_TRY_LOCK() lck_mtx_try_lock(&stackshot_subsys_mutex)
215 #define STACKSHOT_SUBSYS_UNLOCK() lck_mtx_unlock(&stackshot_subsys_mutex)
216
217 #define SANE_BOOTPROFILE_TRACEBUF_SIZE (64 * 1024 * 1024)
218 #define SANE_TRACEBUF_SIZE (8 * 1024 * 1024)
219
220 /*
221 * We currently set a ceiling of 3 milliseconds spent in the kdp fault path
222 * for non-panic stackshots where faulting is requested.
223 */
224 #define KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS (3 * NSEC_PER_MSEC)
225
226 #define STACKSHOT_SUPP_SIZE (16 * 1024) /* Minimum stackshot size */
227 #define TASK_UUID_AVG_SIZE (16 * sizeof(uuid_t)) /* Average space consumed by UUIDs/task */
228
229 /*
230 * Initialize the mutex governing access to the stack snapshot subsystem
231 * and other stackshot related bits.
232 */
233 __private_extern__ void
234 stackshot_init( void )
235 {
236 mach_timebase_info_data_t timebase;
237
238 stackshot_subsys_lck_grp_attr = lck_grp_attr_alloc_init();
239
240 stackshot_subsys_lck_grp = lck_grp_alloc_init("stackshot_subsys_lock", stackshot_subsys_lck_grp_attr);
241
242 stackshot_subsys_lck_attr = lck_attr_alloc_init();
243
244 lck_mtx_init(&stackshot_subsys_mutex, stackshot_subsys_lck_grp, stackshot_subsys_lck_attr);
245
246 clock_timebase_info(&timebase);
247 fault_stats.sfs_system_max_fault_time = ((KDP_FAULT_PATH_MAX_TIME_PER_STACKSHOT_NSECS * timebase.denom)/ timebase.numer);
248 }
249
250 /*
251 * Method for grabbing timer values safely, in the sense that no infinite loop will occur
252 * Certain flavors of the timer_grab function, which would seem to be the thing to use,
253 * can loop infinitely if called while the timer is in the process of being updated.
254 * Unfortunately, it is (rarely) possible to get inconsistent top and bottom halves of
255 * the timer using this method. This seems insoluble, since stackshot runs in a context
256 * where the timer might be half-updated, and has no way of yielding control just long
257 * enough to finish the update.
258 */
259
260 static uint64_t safe_grab_timer_value(struct timer *t)
261 {
262 #if defined(__LP64__)
263 return t->all_bits;
264 #else
265 uint64_t time = t->high_bits; /* endian independent grab */
266 time = (time << 32) | t->low_bits;
267 return time;
268 #endif
269 }
270
271 /*
272 * Called with interrupts disabled after stackshot context has been
273 * initialized. Updates stack_snapshot_ret.
274 */
275 static kern_return_t
276 stackshot_trap()
277 {
278 return DebuggerTrapWithState(DBOP_STACKSHOT, NULL, NULL, NULL, 0, FALSE, 0);
279 }
280
281
282 kern_return_t
283 stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, uint64_t delta_since_timestamp, unsigned *bytes_traced)
284 {
285 kern_return_t error = KERN_SUCCESS;
286 boolean_t istate;
287
288 #if DEVELOPMENT || DEBUG
289 if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) {
290 error = KERN_NOT_SUPPORTED;
291 goto out;
292 }
293 #endif
294 if ((buf == NULL) || (size <= 0) || (bytes_traced == NULL)) {
295 return KERN_INVALID_ARGUMENT;
296 }
297
298 /* cap in individual stackshot to SANE_TRACEBUF_SIZE */
299 if (size > SANE_TRACEBUF_SIZE) {
300 size = SANE_TRACEBUF_SIZE;
301 }
302
303 /* Serialize tracing */
304 if (flags & STACKSHOT_TRYLOCK) {
305 if (!STACKSHOT_SUBSYS_TRY_LOCK()) {
306 return KERN_LOCK_OWNED;
307 }
308 } else {
309 STACKSHOT_SUBSYS_LOCK();
310 }
311
312 struct kcdata_descriptor kcdata;
313 uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ?
314 KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT;
315
316 error = kcdata_memory_static_init(&kcdata, (mach_vm_address_t)buf, hdr_tag, size,
317 KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER);
318 if (error) {
319 goto out;
320 }
321
322 istate = ml_set_interrupts_enabled(FALSE);
323
324 /* Preload trace parameters*/
325 kdp_snapshot_preflight(pid, buf, size, flags, &kcdata, delta_since_timestamp);
326
327 /*
328 * Trap to the debugger to obtain a coherent stack snapshot; this populates
329 * the trace buffer
330 */
331 error = stackshot_trap();
332
333 ml_set_interrupts_enabled(istate);
334
335 *bytes_traced = kdp_stack_snapshot_bytes_traced();
336
337 out:
338 stackshot_kcdata_p = NULL;
339 STACKSHOT_SUBSYS_UNLOCK();
340 return error;
341 }
342
343 #if CONFIG_TELEMETRY
344 kern_return_t
345 stack_microstackshot(user_addr_t tracebuf, uint32_t tracebuf_size, uint32_t flags, int32_t *retval)
346 {
347 int error = KERN_SUCCESS;
348 uint32_t bytes_traced = 0;
349
350 *retval = -1;
351
352 /*
353 * Control related operations
354 */
355 if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_ENABLE) {
356 telemetry_global_ctl(1);
357 *retval = 0;
358 goto exit;
359 } else if (flags & STACKSHOT_GLOBAL_MICROSTACKSHOT_DISABLE) {
360 telemetry_global_ctl(0);
361 *retval = 0;
362 goto exit;
363 }
364
365 /*
366 * Data related operations
367 */
368 *retval = -1;
369
370 if ((((void*)tracebuf) == NULL) || (tracebuf_size == 0)) {
371 error = KERN_INVALID_ARGUMENT;
372 goto exit;
373 }
374
375 STACKSHOT_SUBSYS_LOCK();
376
377 if (flags & STACKSHOT_GET_MICROSTACKSHOT) {
378 if (tracebuf_size > SANE_TRACEBUF_SIZE) {
379 error = KERN_INVALID_ARGUMENT;
380 goto unlock_exit;
381 }
382
383 bytes_traced = tracebuf_size;
384 error = telemetry_gather(tracebuf, &bytes_traced,
385 (flags & STACKSHOT_SET_MICROSTACKSHOT_MARK) ? TRUE : FALSE);
386 *retval = (int)bytes_traced;
387 goto unlock_exit;
388 }
389
390 if (flags & STACKSHOT_GET_BOOT_PROFILE) {
391
392 if (tracebuf_size > SANE_BOOTPROFILE_TRACEBUF_SIZE) {
393 error = KERN_INVALID_ARGUMENT;
394 goto unlock_exit;
395 }
396
397 bytes_traced = tracebuf_size;
398 error = bootprofile_gather(tracebuf, &bytes_traced);
399 *retval = (int)bytes_traced;
400 }
401
402 unlock_exit:
403 STACKSHOT_SUBSYS_UNLOCK();
404 exit:
405 return error;
406 }
407 #endif /* CONFIG_TELEMETRY */
408
409 /*
410 * Return the estimated size of a stackshot based on the
411 * number of currently running threads and tasks.
412 */
413 uint32_t
414 get_stackshot_estsize(uint32_t prev_size_hint)
415 {
416 vm_size_t thread_total;
417 vm_size_t task_total;
418 uint32_t estimated_size;
419
420 thread_total = (threads_count * sizeof(struct thread_snapshot));
421 task_total = (tasks_count * (sizeof(struct task_snapshot) + TASK_UUID_AVG_SIZE));
422
423 estimated_size = (uint32_t) VM_MAP_ROUND_PAGE((thread_total + task_total + STACKSHOT_SUPP_SIZE), PAGE_MASK);
424 if (estimated_size < prev_size_hint) {
425 estimated_size = (uint32_t) VM_MAP_ROUND_PAGE(prev_size_hint, PAGE_MASK);
426 }
427
428 return estimated_size;
429 }
430
431 /*
432 * stackshot_remap_buffer: Utility function to remap bytes_traced bytes starting at stackshotbuf
433 * into the current task's user space and subsequently copy out the address
434 * at which the buffer has been mapped in user space to out_buffer_addr.
435 *
436 * Inputs: stackshotbuf - pointer to the original buffer in the kernel's address space
437 * bytes_traced - length of the buffer to remap starting from stackshotbuf
438 * out_buffer_addr - pointer to placeholder where newly mapped buffer will be mapped.
439 * out_size_addr - pointer to be filled in with the size of the buffer
440 *
441 * Outputs: ENOSPC if there is not enough free space in the task's address space to remap the buffer
442 * EINVAL for all other errors returned by task_remap_buffer/mach_vm_remap
443 * an error from copyout
444 */
445 static kern_return_t
446 stackshot_remap_buffer(void *stackshotbuf, uint32_t bytes_traced, uint64_t out_buffer_addr, uint64_t out_size_addr)
447 {
448 int error = 0;
449 mach_vm_offset_t stackshotbuf_user_addr = (mach_vm_offset_t)NULL;
450 vm_prot_t cur_prot, max_prot;
451
452 error = mach_vm_remap_kernel(get_task_map(current_task()), &stackshotbuf_user_addr, bytes_traced, 0,
453 VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_NONE, kernel_map, (mach_vm_offset_t)stackshotbuf, FALSE, &cur_prot, &max_prot, VM_INHERIT_DEFAULT);
454 /*
455 * If the call to mach_vm_remap fails, we return the appropriate converted error
456 */
457 if (error == KERN_SUCCESS) {
458 /*
459 * If we fail to copy out the address or size of the new buffer, we remove the buffer mapping that
460 * we just made in the task's user space.
461 */
462 error = copyout(CAST_DOWN(void *, &stackshotbuf_user_addr), (user_addr_t)out_buffer_addr, sizeof(stackshotbuf_user_addr));
463 if (error != KERN_SUCCESS) {
464 mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced);
465 return error;
466 }
467 error = copyout(&bytes_traced, (user_addr_t)out_size_addr, sizeof(bytes_traced));
468 if (error != KERN_SUCCESS) {
469 mach_vm_deallocate(get_task_map(current_task()), stackshotbuf_user_addr, (mach_vm_size_t)bytes_traced);
470 return error;
471 }
472 }
473 return error;
474 }
475
476 kern_return_t
477 kern_stack_snapshot_internal(int stackshot_config_version, void *stackshot_config, size_t stackshot_config_size, boolean_t stackshot_from_user)
478 {
479 int error = 0;
480 boolean_t prev_interrupt_state;
481 uint32_t bytes_traced = 0;
482 uint32_t stackshotbuf_size = 0;
483 void * stackshotbuf = NULL;
484 kcdata_descriptor_t kcdata_p = NULL;
485
486 void * buf_to_free = NULL;
487 int size_to_free = 0;
488
489 /* Parsed arguments */
490 uint64_t out_buffer_addr;
491 uint64_t out_size_addr;
492 int pid = -1;
493 uint32_t flags;
494 uint64_t since_timestamp;
495 uint32_t size_hint = 0;
496
497 if(stackshot_config == NULL) {
498 return KERN_INVALID_ARGUMENT;
499 }
500 #if DEVELOPMENT || DEBUG
501 /* TBD: ask stackshot clients to avoid issuing stackshots in this
502 * configuration in lieu of the kernel feature override.
503 */
504 if (kern_feature_override(KF_STACKSHOT_OVRD) == TRUE) {
505 return KERN_NOT_SUPPORTED;
506 }
507 #endif
508
509 switch (stackshot_config_version) {
510 case STACKSHOT_CONFIG_TYPE:
511 if (stackshot_config_size != sizeof(stackshot_config_t)) {
512 return KERN_INVALID_ARGUMENT;
513 }
514 stackshot_config_t *config = (stackshot_config_t *) stackshot_config;
515 out_buffer_addr = config->sc_out_buffer_addr;
516 out_size_addr = config->sc_out_size_addr;
517 pid = config->sc_pid;
518 flags = config->sc_flags;
519 since_timestamp = config->sc_delta_timestamp;
520 if (config->sc_size <= SANE_TRACEBUF_SIZE) {
521 size_hint = config->sc_size;
522 }
523 break;
524 default:
525 return KERN_NOT_SUPPORTED;
526 }
527
528 /*
529 * Currently saving a kernel buffer and trylock are only supported from the
530 * internal/KEXT API.
531 */
532 if (stackshot_from_user) {
533 if (flags & (STACKSHOT_TRYLOCK | STACKSHOT_SAVE_IN_KERNEL_BUFFER | STACKSHOT_FROM_PANIC)) {
534 return KERN_NO_ACCESS;
535 }
536 } else {
537 if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) {
538 return KERN_NOT_SUPPORTED;
539 }
540 }
541
542 if (!((flags & STACKSHOT_KCDATA_FORMAT) || (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER))) {
543 return KERN_NOT_SUPPORTED;
544 }
545
546 /*
547 * If we're not saving the buffer in the kernel pointer, we need a place to copy into.
548 */
549 if ((!out_buffer_addr || !out_size_addr) && !(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) {
550 return KERN_INVALID_ARGUMENT;
551 }
552
553 if (since_timestamp != 0 && ((flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) == 0)) {
554 return KERN_INVALID_ARGUMENT;
555 }
556
557 #if MONOTONIC
558 if (!mt_core_supported) {
559 flags &= ~STACKSHOT_INSTRS_CYCLES;
560 }
561 #else /* MONOTONIC */
562 flags &= ~STACKSHOT_INSTRS_CYCLES;
563 #endif /* !MONOTONIC */
564
565 STACKSHOT_SUBSYS_LOCK();
566
567 if (flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER) {
568 /*
569 * Don't overwrite an existing stackshot
570 */
571 if (kernel_stackshot_buf != NULL) {
572 error = KERN_MEMORY_PRESENT;
573 goto error_exit;
574 }
575 } else if (flags & STACKSHOT_RETRIEVE_EXISTING_BUFFER) {
576 if ((kernel_stackshot_buf == NULL) || (kernel_stackshot_buf_size <= 0)) {
577 error = KERN_NOT_IN_SET;
578 goto error_exit;
579 }
580 error = stackshot_remap_buffer(kernel_stackshot_buf, kernel_stackshot_buf_size,
581 out_buffer_addr, out_size_addr);
582 /*
583 * If we successfully remapped the buffer into the user's address space, we
584 * set buf_to_free and size_to_free so the prior kernel mapping will be removed
585 * and then clear the kernel stackshot pointer and associated size.
586 */
587 if (error == KERN_SUCCESS) {
588 buf_to_free = kernel_stackshot_buf;
589 size_to_free = (int) VM_MAP_ROUND_PAGE(kernel_stackshot_buf_size, PAGE_MASK);
590 kernel_stackshot_buf = NULL;
591 kernel_stackshot_buf_size = 0;
592 }
593
594 goto error_exit;
595 }
596
597 if (flags & STACKSHOT_GET_BOOT_PROFILE) {
598 void *bootprofile = NULL;
599 uint32_t len = 0;
600 #if CONFIG_TELEMETRY
601 bootprofile_get(&bootprofile, &len);
602 #endif
603 if (!bootprofile || !len) {
604 error = KERN_NOT_IN_SET;
605 goto error_exit;
606 }
607 error = stackshot_remap_buffer(bootprofile, len, out_buffer_addr, out_size_addr);
608 goto error_exit;
609 }
610
611 stackshotbuf_size = get_stackshot_estsize(size_hint);
612
613 for (; stackshotbuf_size <= SANE_TRACEBUF_SIZE; stackshotbuf_size <<= 1) {
614 if (kmem_alloc(kernel_map, (vm_offset_t *)&stackshotbuf, stackshotbuf_size, VM_KERN_MEMORY_DIAG) != KERN_SUCCESS) {
615 error = KERN_RESOURCE_SHORTAGE;
616 goto error_exit;
617 }
618
619
620 uint32_t hdr_tag = (flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) ? KCDATA_BUFFER_BEGIN_DELTA_STACKSHOT : KCDATA_BUFFER_BEGIN_STACKSHOT;
621 kcdata_p = kcdata_memory_alloc_init((mach_vm_address_t)stackshotbuf, hdr_tag, stackshotbuf_size,
622 KCFLAG_USE_MEMCOPY | KCFLAG_NO_AUTO_ENDBUFFER);
623
624 stackshot_duration_outer = NULL;
625 uint64_t time_start = mach_absolute_time();
626
627 /*
628 * Disable interrupts and save the current interrupt state.
629 */
630 prev_interrupt_state = ml_set_interrupts_enabled(FALSE);
631
632 /*
633 * Load stackshot parameters.
634 */
635 kdp_snapshot_preflight(pid, stackshotbuf, stackshotbuf_size, flags, kcdata_p, since_timestamp);
636
637 error = stackshot_trap();
638
639 ml_set_interrupts_enabled(prev_interrupt_state);
640
641 /* record the duration that interupts were disabled */
642
643 uint64_t time_end = mach_absolute_time();
644 if (stackshot_duration_outer) {
645 *stackshot_duration_outer = time_end - time_start;
646 }
647
648 if (error != KERN_SUCCESS) {
649 if (kcdata_p != NULL) {
650 kcdata_memory_destroy(kcdata_p);
651 kcdata_p = NULL;
652 stackshot_kcdata_p = NULL;
653 }
654 kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size);
655 stackshotbuf = NULL;
656 if (error == KERN_INSUFFICIENT_BUFFER_SIZE) {
657 /*
658 * If we didn't allocate a big enough buffer, deallocate and try again.
659 */
660 continue;
661 } else {
662 goto error_exit;
663 }
664 }
665
666 bytes_traced = kdp_stack_snapshot_bytes_traced();
667
668 if (bytes_traced <= 0) {
669 error = KERN_ABORTED;
670 goto error_exit;
671 }
672
673 assert(bytes_traced <= stackshotbuf_size);
674 if (!(flags & STACKSHOT_SAVE_IN_KERNEL_BUFFER)) {
675 error = stackshot_remap_buffer(stackshotbuf, bytes_traced, out_buffer_addr, out_size_addr);
676 goto error_exit;
677 }
678
679 /*
680 * Save the stackshot in the kernel buffer.
681 */
682 kernel_stackshot_buf = stackshotbuf;
683 kernel_stackshot_buf_size = bytes_traced;
684 /*
685 * Figure out if we didn't use all the pages in the buffer. If so, we set buf_to_free to the beginning of
686 * the next page after the end of the stackshot in the buffer so that the kmem_free clips the buffer and
687 * update size_to_free for kmem_free accordingly.
688 */
689 size_to_free = stackshotbuf_size - (int) VM_MAP_ROUND_PAGE(bytes_traced, PAGE_MASK);
690
691 assert(size_to_free >= 0);
692
693 if (size_to_free != 0) {
694 buf_to_free = (void *)((uint64_t)stackshotbuf + stackshotbuf_size - size_to_free);
695 }
696
697 stackshotbuf = NULL;
698 stackshotbuf_size = 0;
699 goto error_exit;
700 }
701
702 if (stackshotbuf_size > SANE_TRACEBUF_SIZE) {
703 error = KERN_RESOURCE_SHORTAGE;
704 }
705
706 error_exit:
707 if (kcdata_p != NULL) {
708 kcdata_memory_destroy(kcdata_p);
709 kcdata_p = NULL;
710 stackshot_kcdata_p = NULL;
711 }
712
713 if (stackshotbuf != NULL) {
714 kmem_free(kernel_map, (vm_offset_t)stackshotbuf, stackshotbuf_size);
715 }
716 if (buf_to_free != NULL) {
717 kmem_free(kernel_map, (vm_offset_t)buf_to_free, size_to_free);
718 }
719 STACKSHOT_SUBSYS_UNLOCK();
720 return error;
721 }
722
723 /*
724 * Cache stack snapshot parameters in preparation for a trace.
725 */
726 void
727 kdp_snapshot_preflight(int pid, void * tracebuf, uint32_t tracebuf_size, uint32_t flags,
728 kcdata_descriptor_t data_p, uint64_t since_timestamp)
729 {
730 uint64_t microsecs = 0, secs = 0;
731 clock_get_calendar_microtime((clock_sec_t *)&secs, (clock_usec_t *)&microsecs);
732
733 stackshot_microsecs = microsecs + (secs * USEC_PER_SEC);
734 stack_snapshot_pid = pid;
735 stack_snapshot_buf = tracebuf;
736 stack_snapshot_bufsize = tracebuf_size;
737 stack_snapshot_flags = flags;
738 stack_snapshot_delta_since_timestamp = since_timestamp;
739
740 panic_stackshot = ((flags & STACKSHOT_FROM_PANIC) != 0);
741
742 assert(data_p != NULL);
743 assert(stackshot_kcdata_p == NULL);
744 stackshot_kcdata_p = data_p;
745
746 stack_snapshot_bytes_traced = 0;
747 }
748
749 void
750 panic_stackshot_reset_state()
751 {
752 stackshot_kcdata_p = NULL;
753 }
754
755 boolean_t
756 stackshot_active()
757 {
758 return (stackshot_kcdata_p != NULL);
759 }
760
761 uint32_t
762 kdp_stack_snapshot_bytes_traced(void)
763 {
764 return stack_snapshot_bytes_traced;
765 }
766
767 static boolean_t memory_iszero(void *addr, size_t size)
768 {
769 char *data = (char *)addr;
770 for (size_t i = 0; i < size; i++){
771 if (data[i] != 0)
772 return FALSE;
773 }
774 return TRUE;
775 }
776
777 #define kcd_end_address(kcd) ((void *)((uint64_t)((kcd)->kcd_addr_begin) + kcdata_memory_get_used_bytes((kcd))))
778 #define kcd_max_address(kcd) ((void *)((kcd)->kcd_addr_begin + (kcd)->kcd_length))
779 /*
780 * Use of the kcd_exit_on_error(action) macro requires a local
781 * 'kern_return_t error' variable and 'error_exit' label.
782 */
783 #define kcd_exit_on_error(action) \
784 do { \
785 if (KERN_SUCCESS != (error = (action))) { \
786 if (error == KERN_RESOURCE_SHORTAGE) { \
787 error = KERN_INSUFFICIENT_BUFFER_SIZE; \
788 } \
789 goto error_exit; \
790 } \
791 } while (0); /* end kcd_exit_on_error */
792
793 static uint64_t
794 kcdata_get_task_ss_flags(task_t task)
795 {
796 uint64_t ss_flags = 0;
797 boolean_t task64 = task_has_64BitAddr(task);
798
799 if (task64)
800 ss_flags |= kUser64_p;
801 if (!task->active || task_is_a_corpse(task))
802 ss_flags |= kTerminatedSnapshot;
803 if (task->pidsuspended)
804 ss_flags |= kPidSuspended;
805 if (task->frozen)
806 ss_flags |= kFrozen;
807 if (task->effective_policy.tep_darwinbg == 1)
808 ss_flags |= kTaskDarwinBG;
809 if (task->requested_policy.trp_role == TASK_FOREGROUND_APPLICATION)
810 ss_flags |= kTaskIsForeground;
811 if (task->requested_policy.trp_boosted == 1)
812 ss_flags |= kTaskIsBoosted;
813 if (task->effective_policy.tep_sup_active == 1)
814 ss_flags |= kTaskIsSuppressed;
815 #if CONFIG_MEMORYSTATUS
816 if (memorystatus_proc_is_dirty_unsafe(task->bsd_info))
817 ss_flags |= kTaskIsDirty;
818 #endif
819
820 ss_flags |= (0x7 & workqueue_get_pwq_state_kdp(task->bsd_info)) << 17;
821
822 #if IMPORTANCE_INHERITANCE
823 if (task->task_imp_base) {
824 if (task->task_imp_base->iit_donor)
825 ss_flags |= kTaskIsImpDonor;
826 if (task->task_imp_base->iit_live_donor)
827 ss_flags |= kTaskIsLiveImpDonor;
828 }
829 #endif
830
831 return ss_flags;
832 }
833
834 static kern_return_t
835 kcdata_record_shared_cache_info(kcdata_descriptor_t kcd, task_t task, struct dyld_uuid_info_64_v2 *sys_shared_cache_loadinfo, unaligned_u64 *task_snap_ss_flags)
836 {
837 kern_return_t error = KERN_SUCCESS;
838 mach_vm_address_t out_addr = 0;
839
840 uint64_t shared_cache_slide = 0;
841 uint64_t shared_cache_base_address = 0;
842 int task_pid = pid_from_task(task);
843 uint32_t kdp_fault_results = 0;
844
845 assert(task_snap_ss_flags != NULL);
846
847 if (task->shared_region && ml_validate_nofault((vm_offset_t)task->shared_region, sizeof(struct vm_shared_region))) {
848 struct vm_shared_region *sr = task->shared_region;
849 shared_cache_base_address = sr->sr_base_address + sr->sr_first_mapping;
850 } else {
851 *task_snap_ss_flags |= kTaskSharedRegionInfoUnavailable;
852 goto error_exit;
853 }
854
855 /* We haven't copied in the shared region UUID yet as part of setup */
856 if (!shared_cache_base_address || !task->shared_region->sr_uuid_copied) {
857 goto error_exit;
858 }
859
860 /*
861 * No refcounting here, but we are in debugger
862 * context, so that should be safe.
863 */
864 shared_cache_slide = task->shared_region->sr_slide_info.slide;
865
866 if (sys_shared_cache_loadinfo) {
867 if (task_pid == 1) {
868 /* save launchd's shared cache info as system level */
869 stackshot_memcpy(sys_shared_cache_loadinfo->imageUUID, &task->shared_region->sr_uuid, sizeof(task->shared_region->sr_uuid));
870 sys_shared_cache_loadinfo->imageLoadAddress = shared_cache_slide;
871 sys_shared_cache_loadinfo->imageSlidBaseAddress = shared_cache_slide + task->shared_region->sr_base_address;
872
873 goto error_exit;
874 } else {
875 if (shared_cache_slide == sys_shared_cache_loadinfo->imageLoadAddress &&
876 0 == memcmp(&task->shared_region->sr_uuid, sys_shared_cache_loadinfo->imageUUID,
877 sizeof(task->shared_region->sr_uuid))) {
878 /* skip adding shared cache info. its same as system level one */
879 goto error_exit;
880 }
881 }
882 }
883
884 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64_v2), &out_addr));
885 struct dyld_uuid_info_64_v2 *shared_cache_data = (struct dyld_uuid_info_64_v2 *)out_addr;
886 shared_cache_data->imageLoadAddress = shared_cache_slide;
887 stackshot_memcpy(shared_cache_data->imageUUID, task->shared_region->sr_uuid, sizeof(task->shared_region->sr_uuid));
888 shared_cache_data->imageSlidBaseAddress = shared_cache_base_address;
889
890 error_exit:
891 if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) {
892 *task_snap_ss_flags |= kTaskUUIDInfoMissing;
893 }
894
895 if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) {
896 *task_snap_ss_flags |= kTaskUUIDInfoTriedFault;
897 }
898
899 if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) {
900 *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn;
901 }
902
903 return error;
904 }
905
906 static kern_return_t
907 kcdata_record_uuid_info(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, unaligned_u64 *task_snap_ss_flags)
908 {
909 boolean_t save_loadinfo_p = ((trace_flags & STACKSHOT_SAVE_LOADINFO) != 0);
910 boolean_t save_kextloadinfo_p = ((trace_flags & STACKSHOT_SAVE_KEXT_LOADINFO) != 0);
911 boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0);
912 boolean_t minimize_uuids = collect_delta_stackshot && ((trace_flags & STACKSHOT_TAILSPIN) != 0);
913 boolean_t should_fault = (trace_flags & STACKSHOT_ENABLE_UUID_FAULTING);
914
915 kern_return_t error = KERN_SUCCESS;
916 mach_vm_address_t out_addr = 0;
917
918 uint32_t uuid_info_count = 0;
919 mach_vm_address_t uuid_info_addr = 0;
920 uint64_t uuid_info_timestamp = 0;
921 uint32_t kdp_fault_results = 0;
922
923 assert(task_snap_ss_flags != NULL);
924
925 int task_pid = pid_from_task(task);
926 boolean_t task64 = task_has_64BitAddr(task);
927
928 if (save_loadinfo_p && have_pmap && task->active && task_pid > 0) {
929 /* Read the dyld_all_image_infos struct from the task memory to get UUID array count and location */
930 if (task64) {
931 struct user64_dyld_all_image_infos task_image_infos;
932 if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos,
933 sizeof(struct user64_dyld_all_image_infos), should_fault, &kdp_fault_results)) {
934 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
935 uuid_info_addr = task_image_infos.uuidArray;
936 if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) {
937 uuid_info_timestamp = task_image_infos.timestamp;
938 }
939 }
940 } else {
941 struct user32_dyld_all_image_infos task_image_infos;
942 if (kdp_copyin(task->map, task->all_image_info_addr, &task_image_infos,
943 sizeof(struct user32_dyld_all_image_infos), should_fault, &kdp_fault_results)) {
944 uuid_info_count = task_image_infos.uuidArrayCount;
945 uuid_info_addr = task_image_infos.uuidArray;
946 if (task_image_infos.version >= DYLD_ALL_IMAGE_INFOS_TIMESTAMP_MINIMUM_VERSION) {
947 uuid_info_timestamp = task_image_infos.timestamp;
948 }
949 }
950 }
951
952 /*
953 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
954 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
955 * for this task.
956 */
957 if (!uuid_info_addr) {
958 uuid_info_count = 0;
959 }
960 }
961
962 if (have_pmap && task_pid == 0) {
963 if (save_kextloadinfo_p && ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader))) {
964 uuid_info_count = gLoadedKextSummaries->numSummaries + 1; /* include main kernel UUID */
965 } else {
966 uuid_info_count = 1; /* include kernelcache UUID (embedded) or kernel UUID (desktop) */
967 }
968 }
969
970 if (task_pid > 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) {
971 if (minimize_uuids && uuid_info_timestamp != 0 && uuid_info_timestamp < stack_snapshot_delta_since_timestamp)
972 goto error_exit;
973
974 uint32_t uuid_info_size = (uint32_t)(task64 ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
975 uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
976
977 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, (task64 ? KCDATA_TYPE_LIBRARY_LOADINFO64 : KCDATA_TYPE_LIBRARY_LOADINFO),
978 uuid_info_size, uuid_info_count, &out_addr));
979
980 /* Copy in the UUID info array
981 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task_snap
982 */
983 if (have_pmap && !kdp_copyin(task->map, uuid_info_addr, (void *)out_addr, uuid_info_array_size, should_fault, &kdp_fault_results)) {
984 bzero((void *)out_addr, uuid_info_array_size);
985 }
986
987 } else if (task_pid == 0 && uuid_info_count > 0 && uuid_info_count < MAX_LOADINFOS) {
988 if (minimize_uuids && gLoadedKextSummaries != 0 && gLoadedKextSummariesTimestamp < stack_snapshot_delta_since_timestamp)
989 goto error_exit;
990
991 uintptr_t image_load_address;
992
993 do {
994
995 #if CONFIG_EMBEDDED
996 if (!save_kextloadinfo_p) {
997 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_KERNELCACHE_LOADINFO, sizeof(struct dyld_uuid_info_64), &out_addr));
998 struct dyld_uuid_info_64 *kc_uuid = (struct dyld_uuid_info_64 *)out_addr;
999 kc_uuid->imageLoadAddress = VM_MIN_KERNEL_AND_KEXT_ADDRESS;
1000 stackshot_memcpy(&kc_uuid->imageUUID, &kernelcache_uuid, sizeof(uuid_t));
1001 break;
1002 }
1003 #endif /* CONFIG_EMBEDDED */
1004
1005 if (!kernel_uuid || !ml_validate_nofault((vm_offset_t)kernel_uuid, sizeof(uuid_t))) {
1006 /* Kernel UUID not found or inaccessible */
1007 break;
1008 }
1009
1010 kcd_exit_on_error(kcdata_get_memory_addr_for_array(
1011 kcd, (sizeof(kernel_uuid_info) == sizeof(struct user64_dyld_uuid_info)) ? KCDATA_TYPE_LIBRARY_LOADINFO64
1012 : KCDATA_TYPE_LIBRARY_LOADINFO,
1013 sizeof(kernel_uuid_info), uuid_info_count, &out_addr));
1014 kernel_uuid_info *uuid_info_array = (kernel_uuid_info *)out_addr;
1015 image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(vm_kernel_stext);
1016 uuid_info_array[0].imageLoadAddress = image_load_address;
1017 stackshot_memcpy(&uuid_info_array[0].imageUUID, kernel_uuid, sizeof(uuid_t));
1018
1019 if (save_kextloadinfo_p &&
1020 ml_validate_nofault((vm_offset_t)(gLoadedKextSummaries), sizeof(OSKextLoadedKextSummaryHeader)) &&
1021 ml_validate_nofault((vm_offset_t)(&gLoadedKextSummaries->summaries[0]),
1022 gLoadedKextSummaries->entry_size * gLoadedKextSummaries->numSummaries)) {
1023 uint32_t kexti;
1024 for (kexti=0 ; kexti < gLoadedKextSummaries->numSummaries; kexti++) {
1025 image_load_address = (uintptr_t)VM_KERNEL_UNSLIDE(gLoadedKextSummaries->summaries[kexti].address);
1026 uuid_info_array[kexti + 1].imageLoadAddress = image_load_address;
1027 stackshot_memcpy(&uuid_info_array[kexti + 1].imageUUID, &gLoadedKextSummaries->summaries[kexti].uuid, sizeof(uuid_t));
1028 }
1029 }
1030 } while(0);
1031 }
1032
1033 error_exit:
1034 if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) {
1035 *task_snap_ss_flags |= kTaskUUIDInfoMissing;
1036 }
1037
1038 if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) {
1039 *task_snap_ss_flags |= kTaskUUIDInfoTriedFault;
1040 }
1041
1042 if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) {
1043 *task_snap_ss_flags |= kTaskUUIDInfoFaultedIn;
1044 }
1045
1046 return error;
1047 }
1048
1049 static kern_return_t
1050 kcdata_record_task_iostats(kcdata_descriptor_t kcd, task_t task)
1051 {
1052 kern_return_t error = KERN_SUCCESS;
1053 mach_vm_address_t out_addr = 0;
1054
1055 /* I/O Statistics if any counters are non zero */
1056 assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES);
1057 if (task->task_io_stats && !memory_iszero(task->task_io_stats, sizeof(struct io_stat_info))) {
1058 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr));
1059 struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr;
1060 _iostat->ss_disk_reads_count = task->task_io_stats->disk_reads.count;
1061 _iostat->ss_disk_reads_size = task->task_io_stats->disk_reads.size;
1062 _iostat->ss_disk_writes_count = (task->task_io_stats->total_io.count - task->task_io_stats->disk_reads.count);
1063 _iostat->ss_disk_writes_size = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size);
1064 _iostat->ss_paging_count = task->task_io_stats->paging.count;
1065 _iostat->ss_paging_size = task->task_io_stats->paging.size;
1066 _iostat->ss_non_paging_count = (task->task_io_stats->total_io.count - task->task_io_stats->paging.count);
1067 _iostat->ss_non_paging_size = (task->task_io_stats->total_io.size - task->task_io_stats->paging.size);
1068 _iostat->ss_metadata_count = task->task_io_stats->metadata.count;
1069 _iostat->ss_metadata_size = task->task_io_stats->metadata.size;
1070 _iostat->ss_data_count = (task->task_io_stats->total_io.count - task->task_io_stats->metadata.count);
1071 _iostat->ss_data_size = (task->task_io_stats->total_io.size - task->task_io_stats->metadata.size);
1072 for(int i = 0; i < IO_NUM_PRIORITIES; i++) {
1073 _iostat->ss_io_priority_count[i] = task->task_io_stats->io_priority[i].count;
1074 _iostat->ss_io_priority_size[i] = task->task_io_stats->io_priority[i].size;
1075 }
1076 }
1077
1078 error_exit:
1079 return error;
1080 }
1081
1082 static kern_return_t
1083 kcdata_record_task_snapshot(kcdata_descriptor_t kcd, task_t task, uint32_t trace_flags, boolean_t have_pmap, unaligned_u64 **task_snap_ss_flags)
1084 {
1085 boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0);
1086 boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_TAILSPIN) && !(trace_flags & STACKSHOT_NO_IO_STATS);
1087 #if MONOTONIC
1088 boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0);
1089 #endif /* MONOTONIC */
1090
1091 kern_return_t error = KERN_SUCCESS;
1092 mach_vm_address_t out_addr = 0;
1093 struct task_snapshot_v2 * cur_tsnap = NULL;
1094
1095 assert(task_snap_ss_flags != NULL);
1096
1097 int task_pid = pid_from_task(task);
1098 uint64_t task_uniqueid = get_task_uniqueid(task);
1099 uint64_t proc_starttime_secs = 0;
1100
1101 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_SNAPSHOT, sizeof(struct task_snapshot_v2), &out_addr));
1102
1103 cur_tsnap = (struct task_snapshot_v2 *)out_addr;
1104
1105 cur_tsnap->ts_unique_pid = task_uniqueid;
1106 cur_tsnap->ts_ss_flags = kcdata_get_task_ss_flags(task);
1107 *task_snap_ss_flags = (unaligned_u64 *)&cur_tsnap->ts_ss_flags;
1108 cur_tsnap->ts_user_time_in_terminated_threads = task->total_user_time;
1109 cur_tsnap->ts_system_time_in_terminated_threads = task->total_system_time;
1110
1111 proc_starttime_kdp(task->bsd_info, &proc_starttime_secs, NULL, NULL);
1112 cur_tsnap->ts_p_start_sec = proc_starttime_secs;
1113
1114 #if CONFIG_EMBEDDED
1115 cur_tsnap->ts_task_size = have_pmap ? get_task_phys_footprint(task) : 0;
1116 #else
1117 cur_tsnap->ts_task_size = have_pmap ? (pmap_resident_count(task->map->pmap) * PAGE_SIZE) : 0;
1118 #endif
1119 cur_tsnap->ts_max_resident_size = get_task_resident_max(task);
1120 cur_tsnap->ts_suspend_count = task->suspend_count;
1121 cur_tsnap->ts_faults = task->faults;
1122 cur_tsnap->ts_pageins = task->pageins;
1123 cur_tsnap->ts_cow_faults = task->cow_faults;
1124 cur_tsnap->ts_was_throttled = (uint32_t) proc_was_throttled_from_task(task);
1125 cur_tsnap->ts_did_throttle = (uint32_t) proc_did_throttle_from_task(task);
1126 cur_tsnap->ts_latency_qos = (task->effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED) ?
1127 LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | task->effective_policy.tep_latency_qos);
1128 cur_tsnap->ts_pid = task_pid;
1129
1130 /* Add the BSD process identifiers */
1131 if (task_pid != -1 && task->bsd_info != NULL) {
1132 proc_name_kdp(task, cur_tsnap->ts_p_comm, sizeof(cur_tsnap->ts_p_comm));
1133 #if CONFIG_COALITIONS
1134 if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) {
1135 uint64_t jetsam_coal_id = coalition_id(task->coalition[COALITION_TYPE_JETSAM]);
1136 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_JETSAM_COALITION, sizeof(jetsam_coal_id), &out_addr));
1137 stackshot_memcpy((void*)out_addr, &jetsam_coal_id, sizeof(jetsam_coal_id));
1138 }
1139 #endif /* CONFIG_COALITIONS */
1140 }
1141 else {
1142 cur_tsnap->ts_p_comm[0] = '\0';
1143 #if IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG)
1144 if (task->task_imp_base != NULL) {
1145 stackshot_strlcpy(cur_tsnap->ts_p_comm, &task->task_imp_base->iit_procname[0],
1146 MIN((int)sizeof(task->task_imp_base->iit_procname), (int)sizeof(cur_tsnap->ts_p_comm)));
1147 }
1148 #endif /* IMPORTANCE_INHERITANCE && (DEVELOPMENT || DEBUG) */
1149 }
1150
1151 if (collect_iostats) {
1152 kcd_exit_on_error(kcdata_record_task_iostats(kcd, task));
1153 }
1154
1155 #if MONOTONIC
1156 if (collect_instrs_cycles) {
1157 uint64_t instrs = 0, cycles = 0;
1158 mt_stackshot_task(task, &instrs, &cycles);
1159
1160 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(struct instrs_cycles_snapshot), &out_addr));
1161 struct instrs_cycles_snapshot *instrs_cycles = (struct instrs_cycles_snapshot *)out_addr;
1162 instrs_cycles->ics_instructions = instrs;
1163 instrs_cycles->ics_cycles = cycles;
1164 }
1165 #endif /* MONOTONIC */
1166
1167 error_exit:
1168 return error;
1169 }
1170
1171 static kern_return_t
1172 kcdata_record_task_delta_snapshot(kcdata_descriptor_t kcd, task_t task, boolean_t have_pmap, unaligned_u64 **task_snap_ss_flags)
1173 {
1174 kern_return_t error = KERN_SUCCESS;
1175 struct task_delta_snapshot_v2 * cur_tsnap = NULL;
1176 mach_vm_address_t out_addr = 0;
1177
1178 uint64_t task_uniqueid = get_task_uniqueid(task);
1179 assert(task_snap_ss_flags != NULL);
1180
1181 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_TASK_DELTA_SNAPSHOT, sizeof(struct task_delta_snapshot_v2), &out_addr));
1182
1183 cur_tsnap = (struct task_delta_snapshot_v2 *)out_addr;
1184
1185 cur_tsnap->tds_unique_pid = task_uniqueid;
1186 cur_tsnap->tds_ss_flags = kcdata_get_task_ss_flags(task);
1187 *task_snap_ss_flags = (unaligned_u64 *)&cur_tsnap->tds_ss_flags;
1188
1189 cur_tsnap->tds_user_time_in_terminated_threads = task->total_user_time;
1190 cur_tsnap->tds_system_time_in_terminated_threads = task->total_system_time;
1191
1192 #if CONFIG_EMBEDDED
1193 cur_tsnap->tds_task_size = have_pmap ? get_task_phys_footprint(task) : 0;
1194 #else
1195 cur_tsnap->tds_task_size = have_pmap ? (pmap_resident_count(task->map->pmap) * PAGE_SIZE) : 0;
1196 #endif
1197
1198 cur_tsnap->tds_max_resident_size = get_task_resident_max(task);
1199 cur_tsnap->tds_suspend_count = task->suspend_count;
1200 cur_tsnap->tds_faults = task->faults;
1201 cur_tsnap->tds_pageins = task->pageins;
1202 cur_tsnap->tds_cow_faults = task->cow_faults;
1203 cur_tsnap->tds_was_throttled = (uint32_t)proc_was_throttled_from_task(task);
1204 cur_tsnap->tds_did_throttle = (uint32_t)proc_did_throttle_from_task(task);
1205 cur_tsnap->tds_latency_qos = (task-> effective_policy.tep_latency_qos == LATENCY_QOS_TIER_UNSPECIFIED)
1206 ? LATENCY_QOS_TIER_UNSPECIFIED
1207 : ((0xFF << 16) | task-> effective_policy.tep_latency_qos);
1208
1209 error_exit:
1210 return error;
1211 }
1212
1213 static kern_return_t
1214 kcdata_record_thread_iostats(kcdata_descriptor_t kcd, thread_t thread)
1215 {
1216 kern_return_t error = KERN_SUCCESS;
1217 mach_vm_address_t out_addr = 0;
1218
1219 /* I/O Statistics */
1220 assert(IO_NUM_PRIORITIES == STACKSHOT_IO_NUM_PRIORITIES);
1221 if (thread->thread_io_stats && !memory_iszero(thread->thread_io_stats, sizeof(struct io_stat_info))) {
1222 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_IOSTATS, sizeof(struct io_stats_snapshot), &out_addr));
1223 struct io_stats_snapshot *_iostat = (struct io_stats_snapshot *)out_addr;
1224 _iostat->ss_disk_reads_count = thread->thread_io_stats->disk_reads.count;
1225 _iostat->ss_disk_reads_size = thread->thread_io_stats->disk_reads.size;
1226 _iostat->ss_disk_writes_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->disk_reads.count);
1227 _iostat->ss_disk_writes_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->disk_reads.size);
1228 _iostat->ss_paging_count = thread->thread_io_stats->paging.count;
1229 _iostat->ss_paging_size = thread->thread_io_stats->paging.size;
1230 _iostat->ss_non_paging_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->paging.count);
1231 _iostat->ss_non_paging_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->paging.size);
1232 _iostat->ss_metadata_count = thread->thread_io_stats->metadata.count;
1233 _iostat->ss_metadata_size = thread->thread_io_stats->metadata.size;
1234 _iostat->ss_data_count = (thread->thread_io_stats->total_io.count - thread->thread_io_stats->metadata.count);
1235 _iostat->ss_data_size = (thread->thread_io_stats->total_io.size - thread->thread_io_stats->metadata.size);
1236 for(int i = 0; i < IO_NUM_PRIORITIES; i++) {
1237 _iostat->ss_io_priority_count[i] = thread->thread_io_stats->io_priority[i].count;
1238 _iostat->ss_io_priority_size[i] = thread->thread_io_stats->io_priority[i].size;
1239 }
1240 }
1241
1242 error_exit:
1243 return error;
1244 }
1245
1246 static kern_return_t
1247 kcdata_record_thread_snapshot(
1248 kcdata_descriptor_t kcd, thread_t thread, task_t task, uint32_t trace_flags, boolean_t have_pmap, boolean_t thread_on_core)
1249 {
1250 boolean_t dispatch_p = ((trace_flags & STACKSHOT_GET_DQ) != 0);
1251 boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0);
1252 boolean_t trace_fp_p = false;
1253 boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0);
1254 boolean_t collect_iostats = !collect_delta_stackshot && !(trace_flags & STACKSHOT_TAILSPIN) && !(trace_flags & STACKSHOT_NO_IO_STATS);
1255 #if MONOTONIC
1256 boolean_t collect_instrs_cycles = ((trace_flags & STACKSHOT_INSTRS_CYCLES) != 0);
1257 #endif /* MONOTONIC */
1258
1259 kern_return_t error = KERN_SUCCESS;
1260 mach_vm_address_t out_addr = 0;
1261 int saved_count = 0;
1262
1263 struct thread_snapshot_v4 * cur_thread_snap = NULL;
1264 char cur_thread_name[STACKSHOT_MAX_THREAD_NAME_SIZE];
1265 uint64_t tval = 0;
1266 boolean_t task64 = task_has_64BitAddr(task);
1267
1268 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_SNAPSHOT, sizeof(struct thread_snapshot_v4), &out_addr));
1269 cur_thread_snap = (struct thread_snapshot_v4 *)out_addr;
1270
1271 /* Populate the thread snapshot header */
1272 cur_thread_snap->ths_thread_id = thread_tid(thread);
1273 cur_thread_snap->ths_wait_event = VM_KERNEL_UNSLIDE_OR_PERM(thread->wait_event);
1274 cur_thread_snap->ths_continuation = VM_KERNEL_UNSLIDE(thread->continuation);
1275 cur_thread_snap->ths_total_syscalls = thread->syscalls_mach + thread->syscalls_unix;
1276
1277 if (IPC_VOUCHER_NULL != thread->ith_voucher)
1278 cur_thread_snap->ths_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher);
1279 else
1280 cur_thread_snap->ths_voucher_identifier = 0;
1281
1282 cur_thread_snap->ths_dqserialnum = 0;
1283 if (dispatch_p && (task != kernel_task) && (task->active) && have_pmap) {
1284 uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
1285 if (dqkeyaddr != 0) {
1286 uint64_t dqaddr = 0;
1287 boolean_t copyin_ok = kdp_copyin_word(task, dqkeyaddr, &dqaddr, FALSE, NULL);
1288 if (copyin_ok && dqaddr != 0) {
1289 uint64_t dqserialnumaddr = dqaddr + get_task_dispatchqueue_serialno_offset(task);
1290 uint64_t dqserialnum = 0;
1291 copyin_ok = kdp_copyin_word(task, dqserialnumaddr, &dqserialnum, FALSE, NULL);
1292 if (copyin_ok) {
1293 cur_thread_snap->ths_ss_flags |= kHasDispatchSerial;
1294 cur_thread_snap->ths_dqserialnum = dqserialnum;
1295 }
1296 }
1297 }
1298 }
1299
1300 tval = safe_grab_timer_value(&thread->user_timer);
1301 cur_thread_snap->ths_user_time = tval;
1302 tval = safe_grab_timer_value(&thread->system_timer);
1303
1304 if (thread->precise_user_kernel_time) {
1305 cur_thread_snap->ths_sys_time = tval;
1306 } else {
1307 cur_thread_snap->ths_user_time += tval;
1308 cur_thread_snap->ths_sys_time = 0;
1309 }
1310
1311 cur_thread_snap->ths_ss_flags = 0;
1312 if (thread->thread_tag & THREAD_TAG_MAINTHREAD)
1313 cur_thread_snap->ths_ss_flags |= kThreadMain;
1314 if (thread->effective_policy.thep_darwinbg)
1315 cur_thread_snap->ths_ss_flags |= kThreadDarwinBG;
1316 if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO))
1317 cur_thread_snap->ths_ss_flags |= kThreadIOPassive;
1318 if (thread->suspend_count > 0)
1319 cur_thread_snap->ths_ss_flags |= kThreadSuspended;
1320 if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE)
1321 cur_thread_snap->ths_ss_flags |= kGlobalForcedIdle;
1322 if (thread_on_core)
1323 cur_thread_snap->ths_ss_flags |= kThreadOnCore;
1324 if (stackshot_thread_is_idle_worker_unsafe(thread))
1325 cur_thread_snap->ths_ss_flags |= kThreadIdleWorker;
1326
1327 /* make sure state flags defined in kcdata.h still match internal flags */
1328 static_assert(SS_TH_WAIT == TH_WAIT);
1329 static_assert(SS_TH_SUSP == TH_SUSP);
1330 static_assert(SS_TH_RUN == TH_RUN);
1331 static_assert(SS_TH_UNINT == TH_UNINT);
1332 static_assert(SS_TH_TERMINATE == TH_TERMINATE);
1333 static_assert(SS_TH_TERMINATE2 == TH_TERMINATE2);
1334 static_assert(SS_TH_IDLE == TH_IDLE);
1335
1336 cur_thread_snap->ths_last_run_time = thread->last_run_time;
1337 cur_thread_snap->ths_last_made_runnable_time = thread->last_made_runnable_time;
1338 cur_thread_snap->ths_state = thread->state;
1339 cur_thread_snap->ths_sched_flags = thread->sched_flags;
1340 cur_thread_snap->ths_base_priority = thread->base_pri;
1341 cur_thread_snap->ths_sched_priority = thread->sched_pri;
1342 cur_thread_snap->ths_eqos = thread->effective_policy.thep_qos;
1343 cur_thread_snap->ths_rqos = thread->requested_policy.thrp_qos;
1344 cur_thread_snap->ths_rqos_override = thread->requested_policy.thrp_qos_override;
1345 cur_thread_snap->ths_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO);
1346 cur_thread_snap->ths_thread_t = VM_KERNEL_UNSLIDE_OR_PERM(thread);
1347
1348 static_assert(sizeof(thread->effective_policy) == sizeof(uint64_t));
1349 static_assert(sizeof(thread->requested_policy) == sizeof(uint64_t));
1350 cur_thread_snap->ths_requested_policy = *(unaligned_u64 *) &thread->requested_policy;
1351 cur_thread_snap->ths_effective_policy = *(unaligned_u64 *) &thread->effective_policy;
1352
1353 /* if there is thread name then add to buffer */
1354 cur_thread_name[0] = '\0';
1355 proc_threadname_kdp(thread->uthread, cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE);
1356 if (strnlen(cur_thread_name, STACKSHOT_MAX_THREAD_NAME_SIZE) > 0) {
1357 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_THREAD_NAME, sizeof(cur_thread_name), &out_addr));
1358 stackshot_memcpy((void *)out_addr, (void *)cur_thread_name, sizeof(cur_thread_name));
1359 }
1360
1361 /* record system and user cpu times */
1362 time_value_t user_time;
1363 time_value_t system_time;
1364 thread_read_times(thread, &user_time, &system_time);
1365 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_CPU_TIMES, sizeof(struct stackshot_cpu_times), &out_addr));
1366 struct stackshot_cpu_times * stackshot_cpu_times = (struct stackshot_cpu_times *)out_addr;
1367 stackshot_cpu_times->user_usec = ((uint64_t)user_time.seconds) * USEC_PER_SEC + user_time.microseconds;
1368 stackshot_cpu_times->system_usec = ((uint64_t)system_time.seconds) * USEC_PER_SEC + system_time.microseconds;
1369
1370 /* Trace user stack, if any */
1371 if (!active_kthreads_only_p && task->active && thread->task->map != kernel_map) {
1372 uint32_t thread_snapshot_flags = 0;
1373 /* 64-bit task? */
1374 if (task64) {
1375 out_addr = (mach_vm_address_t)kcd_end_address(kcd);
1376 saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE,
1377 trace_fp_p, &thread_snapshot_flags);
1378 if (saved_count > 0) {
1379 int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t);
1380 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME64
1381 : STACKSHOT_KCTYPE_USER_STACKLR64,
1382 frame_size, saved_count / frame_size, &out_addr));
1383 cur_thread_snap->ths_ss_flags |= kUser64_p;
1384 }
1385 } else {
1386 out_addr = (mach_vm_address_t)kcd_end_address(kcd);
1387 saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, TRUE, trace_fp_p,
1388 &thread_snapshot_flags);
1389 if (saved_count > 0) {
1390 int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t);
1391 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_USER_STACKFRAME
1392 : STACKSHOT_KCTYPE_USER_STACKLR,
1393 frame_size, saved_count / frame_size, &out_addr));
1394 }
1395 }
1396
1397 if (thread_snapshot_flags != 0) {
1398 cur_thread_snap->ths_ss_flags |= thread_snapshot_flags;
1399 }
1400 }
1401
1402 /* Call through to the machine specific trace routines
1403 * Frames are added past the snapshot header.
1404 */
1405 if (thread->kernel_stack != 0) {
1406 uint32_t thread_snapshot_flags = 0;
1407 #if defined(__LP64__)
1408 out_addr = (mach_vm_address_t)kcd_end_address(kcd);
1409 saved_count = machine_trace_thread64(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p,
1410 &thread_snapshot_flags);
1411 if (saved_count > 0) {
1412 int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame64) : sizeof(uint64_t);
1413 cur_thread_snap->ths_ss_flags |= kKernel64_p;
1414 kcd_exit_on_error(kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME64
1415 : STACKSHOT_KCTYPE_KERN_STACKLR64,
1416 frame_size, saved_count / frame_size, &out_addr));
1417 }
1418 #else
1419 out_addr = (mach_vm_address_t)kcd_end_address(kcd);
1420 saved_count = machine_trace_thread(thread, (char *)out_addr, (char *)kcd_max_address(kcd), MAX_FRAMES, FALSE, trace_fp_p,
1421 &thread_snapshot_flags);
1422 if (saved_count > 0) {
1423 int frame_size = trace_fp_p ? sizeof(struct stack_snapshot_frame32) : sizeof(uint32_t);
1424 kcd_exit_on_error(
1425 kcdata_get_memory_addr_for_array(kcd, trace_fp_p ? STACKSHOT_KCTYPE_KERN_STACKFRAME : STACKSHOT_KCTYPE_KERN_STACKLR,
1426 frame_size, saved_count / frame_size, &out_addr));
1427 }
1428 #endif
1429 if (thread_snapshot_flags != 0) {
1430 cur_thread_snap->ths_ss_flags |= thread_snapshot_flags;
1431 }
1432 }
1433
1434
1435 if (collect_iostats) {
1436 kcd_exit_on_error(kcdata_record_thread_iostats(kcd, thread));
1437 }
1438
1439 #if MONOTONIC
1440 if (collect_instrs_cycles) {
1441 uint64_t instrs = 0, cycles = 0;
1442 mt_stackshot_thread(thread, &instrs, &cycles);
1443
1444 kcd_exit_on_error(kcdata_get_memory_addr(kcd, STACKSHOT_KCTYPE_INSTRS_CYCLES, sizeof(struct instrs_cycles_snapshot), &out_addr));
1445 struct instrs_cycles_snapshot *instrs_cycles = (struct instrs_cycles_snapshot *)out_addr;
1446 instrs_cycles->ics_instructions = instrs;
1447 instrs_cycles->ics_cycles = cycles;
1448 }
1449 #endif /* MONOTONIC */
1450
1451 error_exit:
1452 return error;
1453 }
1454
1455 static int
1456 kcdata_record_thread_delta_snapshot(struct thread_delta_snapshot_v2 * cur_thread_snap, thread_t thread, boolean_t thread_on_core)
1457 {
1458 cur_thread_snap->tds_thread_id = thread_tid(thread);
1459 if (IPC_VOUCHER_NULL != thread->ith_voucher)
1460 cur_thread_snap->tds_voucher_identifier = VM_KERNEL_ADDRPERM(thread->ith_voucher);
1461 else
1462 cur_thread_snap->tds_voucher_identifier = 0;
1463
1464 cur_thread_snap->tds_ss_flags = 0;
1465 if (thread->effective_policy.thep_darwinbg)
1466 cur_thread_snap->tds_ss_flags |= kThreadDarwinBG;
1467 if (proc_get_effective_thread_policy(thread, TASK_POLICY_PASSIVE_IO))
1468 cur_thread_snap->tds_ss_flags |= kThreadIOPassive;
1469 if (thread->suspend_count > 0)
1470 cur_thread_snap->tds_ss_flags |= kThreadSuspended;
1471 if (thread->options & TH_OPT_GLOBAL_FORCED_IDLE)
1472 cur_thread_snap->tds_ss_flags |= kGlobalForcedIdle;
1473 if (thread_on_core)
1474 cur_thread_snap->tds_ss_flags |= kThreadOnCore;
1475 if (stackshot_thread_is_idle_worker_unsafe(thread))
1476 cur_thread_snap->tds_ss_flags |= kThreadIdleWorker;
1477
1478 cur_thread_snap->tds_last_made_runnable_time = thread->last_made_runnable_time;
1479 cur_thread_snap->tds_state = thread->state;
1480 cur_thread_snap->tds_sched_flags = thread->sched_flags;
1481 cur_thread_snap->tds_base_priority = thread->base_pri;
1482 cur_thread_snap->tds_sched_priority = thread->sched_pri;
1483 cur_thread_snap->tds_eqos = thread->effective_policy.thep_qos;
1484 cur_thread_snap->tds_rqos = thread->requested_policy.thrp_qos;
1485 cur_thread_snap->tds_rqos_override = thread->requested_policy.thrp_qos_override;
1486 cur_thread_snap->tds_io_tier = proc_get_effective_thread_policy(thread, TASK_POLICY_IO);
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * Why 12? 12 strikes a decent balance between allocating a large array on
1493 * the stack and having large kcdata item overheads for recording nonrunable
1494 * tasks.
1495 */
1496 #define UNIQUEIDSPERFLUSH 12
1497
1498 struct saved_uniqueids {
1499 uint64_t ids[UNIQUEIDSPERFLUSH];
1500 unsigned count;
1501 };
1502
1503 static kern_return_t
1504 flush_nonrunnable_tasks(struct saved_uniqueids * ids)
1505 {
1506 if (ids->count == 0)
1507 return KERN_SUCCESS;
1508 mach_vm_address_t out_addr = 0;
1509 kern_return_t ret = kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_NONRUNNABLE_TASKS, sizeof(uint64_t),
1510 ids->count, &out_addr);
1511 if (ret != KERN_SUCCESS) {
1512 return ret;
1513 }
1514 stackshot_memcpy((void *)out_addr, ids->ids, sizeof(uint64_t) * ids->count);
1515 ids->count = 0;
1516 return ret;
1517 }
1518
1519 static kern_return_t
1520 handle_nonrunnable_task(struct saved_uniqueids * ids, uint64_t pid)
1521 {
1522 kern_return_t ret = KERN_SUCCESS;
1523 ids->ids[ids->count] = pid;
1524 ids->count++;
1525 assert(ids->count <= UNIQUEIDSPERFLUSH);
1526 if (ids->count == UNIQUEIDSPERFLUSH)
1527 ret = flush_nonrunnable_tasks(ids);
1528 return ret;
1529 }
1530
1531 enum thread_classification {
1532 tc_full_snapshot, /* take a full snapshot */
1533 tc_delta_snapshot, /* take a delta snapshot */
1534 tc_nonrunnable, /* only report id */
1535 };
1536
1537 static enum thread_classification
1538 classify_thread(thread_t thread, boolean_t * thread_on_core_p, uint32_t trace_flags)
1539 {
1540 boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0);
1541 boolean_t minimize_nonrunnables = ((trace_flags & STACKSHOT_TAILSPIN) != 0);
1542
1543 processor_t last_processor = thread->last_processor;
1544
1545 boolean_t thread_on_core =
1546 (last_processor != PROCESSOR_NULL && last_processor->state == PROCESSOR_RUNNING && last_processor->active_thread == thread);
1547
1548 *thread_on_core_p = thread_on_core;
1549
1550 /* Capture the full thread snapshot if this is not a delta stackshot or if the thread has run subsequent to the
1551 * previous full stackshot */
1552 if (!collect_delta_stackshot || thread_on_core || (thread->last_run_time > stack_snapshot_delta_since_timestamp)) {
1553 return tc_full_snapshot;
1554 } else {
1555 if (minimize_nonrunnables && !(thread->state & TH_RUN)) {
1556 return tc_nonrunnable;
1557 } else {
1558 return tc_delta_snapshot;
1559 }
1560 }
1561 }
1562
1563 static kern_return_t
1564 kdp_stackshot_kcdata_format(int pid, uint32_t trace_flags, uint32_t * pBytesTraced)
1565 {
1566 kern_return_t error = KERN_SUCCESS;
1567 mach_vm_address_t out_addr = 0;
1568 uint64_t abs_time = 0, abs_time_end = 0;
1569 uint64_t *abs_time_addr = NULL;
1570 uint64_t system_state_flags = 0;
1571 int saved_count = 0;
1572 task_t task = TASK_NULL;
1573 thread_t thread = THREAD_NULL;
1574 mach_timebase_info_data_t timebase = {0, 0};
1575 uint32_t length_to_copy = 0, tmp32 = 0;
1576
1577 abs_time = mach_absolute_time();
1578
1579 /* process the flags */
1580 boolean_t active_kthreads_only_p = ((trace_flags & STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY) != 0);
1581 boolean_t save_donating_pids_p = ((trace_flags & STACKSHOT_SAVE_IMP_DONATION_PIDS) != 0);
1582 boolean_t collect_delta_stackshot = ((trace_flags & STACKSHOT_COLLECT_DELTA_SNAPSHOT) != 0);
1583 boolean_t minimize_nonrunnables = ((trace_flags & STACKSHOT_TAILSPIN) != 0);
1584 boolean_t use_fault_path = ((trace_flags & (STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_ENABLE_BT_FAULTING)) != 0);
1585 boolean_t save_owner_info = ((trace_flags & STACKSHOT_THREAD_WAITINFO) != 0);
1586 stack_enable_faulting = (trace_flags & (STACKSHOT_ENABLE_BT_FAULTING));
1587
1588 #if CONFIG_EMBEDDED
1589 /* KEXTs can't be described by just a base address on embedded */
1590 trace_flags &= ~(STACKSHOT_SAVE_KEXT_LOADINFO);
1591 #endif
1592
1593 struct saved_uniqueids saved_uniqueids = {.count = 0};
1594
1595 if (use_fault_path) {
1596 fault_stats.sfs_pages_faulted_in = 0;
1597 fault_stats.sfs_time_spent_faulting = 0;
1598 fault_stats.sfs_stopped_faulting = (uint8_t) FALSE;
1599 }
1600
1601 if (sizeof(void *) == 8)
1602 system_state_flags |= kKernel64_p;
1603
1604 if (stackshot_kcdata_p == NULL || pBytesTraced == NULL) {
1605 error = KERN_INVALID_ARGUMENT;
1606 goto error_exit;
1607 }
1608
1609 /* setup mach_absolute_time and timebase info -- copy out in some cases and needed to convert since_timestamp to seconds for proc start time */
1610 clock_timebase_info(&timebase);
1611
1612 /* begin saving data into the buffer */
1613 *pBytesTraced = 0;
1614 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, trace_flags, "stackshot_in_flags"));
1615 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, (uint32_t)pid, "stackshot_in_pid"));
1616 kcd_exit_on_error(kcdata_add_uint64_with_description(stackshot_kcdata_p, system_state_flags, "system_state_flags"));
1617
1618 #if CONFIG_JETSAM
1619 tmp32 = memorystatus_get_pressure_status_kdp();
1620 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_LEVEL, sizeof(uint32_t), &out_addr));
1621 stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32));
1622 #endif
1623
1624 if (!collect_delta_stackshot) {
1625 tmp32 = THREAD_POLICY_INTERNAL_STRUCT_VERSION;
1626 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_POLICY_VERSION, sizeof(uint32_t), &out_addr));
1627 stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32));
1628
1629 tmp32 = PAGE_SIZE;
1630 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_KERN_PAGE_SIZE, sizeof(uint32_t), &out_addr));
1631 stackshot_memcpy((void *)out_addr, &tmp32, sizeof(tmp32));
1632
1633 /* save boot-args and osversion string */
1634 length_to_copy = MIN((uint32_t)(strlen(version) + 1), OSVERSIZE);
1635 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_OSVERSION, length_to_copy, &out_addr));
1636 stackshot_strlcpy((char*)out_addr, &version[0], length_to_copy);
1637
1638 length_to_copy = MIN((uint32_t)(strlen(PE_boot_args()) + 1), OSVERSIZE);
1639 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_BOOTARGS, length_to_copy, &out_addr));
1640 stackshot_strlcpy((char*)out_addr, PE_boot_args(), length_to_copy);
1641
1642 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_TIMEBASE, sizeof(timebase), &out_addr));
1643 stackshot_memcpy((void *)out_addr, &timebase, sizeof(timebase));
1644 } else {
1645 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_DELTA_SINCE_TIMESTAMP, sizeof(uint64_t), &out_addr));
1646 stackshot_memcpy((void*)out_addr, &stack_snapshot_delta_since_timestamp, sizeof(stack_snapshot_delta_since_timestamp));
1647 }
1648
1649 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_MACH_ABSOLUTE_TIME, sizeof(uint64_t), &out_addr));
1650 abs_time_addr = (uint64_t *)out_addr;
1651 stackshot_memcpy((void *)abs_time_addr, &abs_time, sizeof(uint64_t));
1652
1653 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, KCDATA_TYPE_USECS_SINCE_EPOCH, sizeof(uint64_t), &out_addr));
1654 stackshot_memcpy((void *)out_addr, &stackshot_microsecs, sizeof(uint64_t));
1655
1656 /* reserve space of system level shared cache load info */
1657 struct dyld_uuid_info_64_v2 * sys_shared_cache_loadinfo = NULL;
1658 if (!collect_delta_stackshot) {
1659 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_SHAREDCACHE_LOADINFO,
1660 sizeof(struct dyld_uuid_info_64_v2), &out_addr));
1661 sys_shared_cache_loadinfo = (struct dyld_uuid_info_64_v2 *)out_addr;
1662 bzero((void *)sys_shared_cache_loadinfo, sizeof(struct dyld_uuid_info_64_v2));
1663 }
1664
1665 /* Add requested information first */
1666 if (trace_flags & STACKSHOT_GET_GLOBAL_MEM_STATS) {
1667 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_GLOBAL_MEM_STATS, sizeof(struct mem_and_io_snapshot), &out_addr));
1668 kdp_mem_and_io_snapshot((struct mem_and_io_snapshot *)out_addr);
1669 }
1670
1671 #if CONFIG_COALITIONS
1672 int num_coalitions = 0;
1673 struct jetsam_coalition_snapshot *coalitions = NULL;
1674 /* Iterate over coalitions */
1675 if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) {
1676 if (coalition_iterate_stackshot(stackshot_coalition_jetsam_count, &num_coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) {
1677 trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS);
1678 }
1679 }
1680 if (trace_flags & STACKSHOT_SAVE_JETSAM_COALITIONS) {
1681 if (num_coalitions > 0) {
1682 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_JETSAM_COALITION_SNAPSHOT, sizeof(struct jetsam_coalition_snapshot), num_coalitions, &out_addr));
1683 coalitions = (struct jetsam_coalition_snapshot*)out_addr;
1684 }
1685
1686 if (coalition_iterate_stackshot(stackshot_coalition_jetsam_snapshot, coalitions, COALITION_TYPE_JETSAM) != KERN_SUCCESS) {
1687 error = KERN_FAILURE;
1688 goto error_exit;
1689 }
1690
1691 }
1692 #else
1693 trace_flags &= ~(STACKSHOT_SAVE_JETSAM_COALITIONS);
1694 #endif /* CONFIG_COALITIONS */
1695
1696 trace_flags &= ~(STACKSHOT_THREAD_GROUP);
1697
1698 /* Iterate over tasks */
1699 queue_head_t *task_list = &tasks;
1700 queue_iterate(task_list, task, task_t, tasks) {
1701 int task_pid = 0;
1702 uint64_t task_uniqueid = 0;
1703 int num_delta_thread_snapshots = 0;
1704 int num_nonrunnable_threads = 0;
1705 int num_waitinfo_threads = 0;
1706
1707 uint64_t task_start_abstime = 0;
1708 boolean_t task_delta_stackshot = FALSE;
1709 boolean_t task64 = FALSE, have_map = FALSE, have_pmap = FALSE;
1710 boolean_t some_thread_ran = FALSE;
1711 unaligned_u64 *task_snap_ss_flags = NULL;
1712
1713 if ((task == NULL) || !ml_validate_nofault((vm_offset_t)task, sizeof(struct task))) {
1714 error = KERN_FAILURE;
1715 goto error_exit;
1716 }
1717
1718 have_map = (task->map != NULL) && (ml_validate_nofault((vm_offset_t)(task->map), sizeof(struct _vm_map)));
1719 have_pmap = have_map && (task->map->pmap != NULL) && (ml_validate_nofault((vm_offset_t)(task->map->pmap), sizeof(struct pmap)));
1720
1721 task_pid = pid_from_task(task);
1722 task_uniqueid = get_task_uniqueid(task);
1723 task64 = task_has_64BitAddr(task);
1724
1725 if (!task->active || task_is_a_corpse(task)) {
1726 /*
1727 * Not interested in terminated tasks without threads, and
1728 * at the moment, stackshot can't handle a task without a name.
1729 */
1730 if (queue_empty(&task->threads) || task_pid == -1) {
1731 continue;
1732 }
1733 }
1734
1735 if (collect_delta_stackshot) {
1736 proc_starttime_kdp(task->bsd_info, NULL, NULL, &task_start_abstime);
1737 }
1738
1739 /* Trace everything, unless a process was specified */
1740 if ((pid == -1) || (pid == task_pid)) {
1741 #if DEBUG || DEVELOPMENT
1742 /* we might want to call kcdata_undo_add_container_begin(), which is
1743 * only safe if we call it after kcdata_add_container_marker() but
1744 * before adding any other kcdata items. In development kernels,
1745 * we'll remember where the buffer end was and confirm after calling
1746 * kcdata_undo_add_container_begin() that it's in exactly the same
1747 * place.*/
1748 mach_vm_address_t revert_addr = stackshot_kcdata_p->kcd_addr_end;
1749 #endif
1750
1751 /* add task snapshot marker */
1752 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN,
1753 STACKSHOT_KCCONTAINER_TASK, task_uniqueid));
1754
1755 if (!collect_delta_stackshot || (task_start_abstime == 0) ||
1756 (task_start_abstime > stack_snapshot_delta_since_timestamp)) {
1757 kcd_exit_on_error(kcdata_record_task_snapshot(stackshot_kcdata_p, task, trace_flags, have_pmap, &task_snap_ss_flags));
1758 } else {
1759 task_delta_stackshot = TRUE;
1760 if (minimize_nonrunnables) {
1761 // delay taking the task snapshot. If there are no runnable threads we'll skip it.
1762 } else {
1763 kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, have_pmap, &task_snap_ss_flags));
1764 }
1765 }
1766
1767 /* Iterate over task threads */
1768 queue_iterate(&task->threads, thread, thread_t, task_threads)
1769 {
1770 uint64_t thread_uniqueid;
1771
1772 if ((thread == NULL) || !ml_validate_nofault((vm_offset_t)thread, sizeof(struct thread))) {
1773 error = KERN_FAILURE;
1774 goto error_exit;
1775 }
1776
1777 if (active_kthreads_only_p && thread->kernel_stack == 0)
1778 continue;
1779
1780 thread_uniqueid = thread_tid(thread);
1781
1782 boolean_t thread_on_core;
1783 enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, trace_flags);
1784
1785 switch (thread_classification) {
1786 case tc_full_snapshot:
1787 /* add thread marker */
1788 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_BEGIN,
1789 STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid));
1790 kcd_exit_on_error(
1791 kcdata_record_thread_snapshot(stackshot_kcdata_p, thread, task, trace_flags, have_pmap, thread_on_core));
1792
1793 /* mark end of thread snapshot data */
1794 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END,
1795 STACKSHOT_KCCONTAINER_THREAD, thread_uniqueid));
1796
1797 some_thread_ran = TRUE;
1798 break;
1799
1800 case tc_delta_snapshot:
1801 num_delta_thread_snapshots++;
1802 break;
1803
1804 case tc_nonrunnable:
1805 num_nonrunnable_threads++;
1806 break;
1807 }
1808
1809 /* We want to report owner information regardless of whether a thread
1810 * has changed since the last delta, whether it's a normal stackshot,
1811 * or whether it's nonrunnable */
1812 if (save_owner_info && stackshot_thread_has_valid_waitinfo(thread))
1813 num_waitinfo_threads++;
1814 }
1815
1816 if (task_delta_stackshot && minimize_nonrunnables) {
1817 if (some_thread_ran || num_delta_thread_snapshots > 0) {
1818 kcd_exit_on_error(kcdata_record_task_delta_snapshot(stackshot_kcdata_p, task, have_pmap, &task_snap_ss_flags));
1819 } else {
1820 kcd_exit_on_error(kcdata_undo_add_container_begin(stackshot_kcdata_p));
1821
1822 #if DEBUG || DEVELOPMENT
1823 mach_vm_address_t undo_addr = stackshot_kcdata_p->kcd_addr_end;
1824 if (revert_addr != undo_addr) {
1825 panic("tried to revert a container begin but we already moved past it. revert=%p undo=%p",
1826 (void *)revert_addr, (void *)undo_addr);
1827 }
1828 #endif
1829 kcd_exit_on_error(handle_nonrunnable_task(&saved_uniqueids, task_uniqueid));
1830 continue;
1831 }
1832 }
1833
1834 struct thread_delta_snapshot_v2 * delta_snapshots = NULL;
1835 int current_delta_snapshot_index = 0;
1836
1837 if (num_delta_thread_snapshots > 0) {
1838 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_DELTA_SNAPSHOT,
1839 sizeof(struct thread_delta_snapshot_v2),
1840 num_delta_thread_snapshots, &out_addr));
1841 delta_snapshots = (struct thread_delta_snapshot_v2 *)out_addr;
1842 }
1843
1844 uint64_t * nonrunnable_tids = NULL;
1845 int current_nonrunnable_index = 0;
1846
1847 if (num_nonrunnable_threads > 0) {
1848 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_NONRUNNABLE_TIDS,
1849 sizeof(uint64_t), num_nonrunnable_threads, &out_addr));
1850 nonrunnable_tids = (uint64_t *)out_addr;
1851 }
1852
1853 thread_waitinfo_t *thread_waitinfo = NULL;
1854 int current_waitinfo_index = 0;
1855
1856 if (num_waitinfo_threads > 0) {
1857 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_THREAD_WAITINFO,
1858 sizeof(thread_waitinfo_t), num_waitinfo_threads, &out_addr));
1859 thread_waitinfo = (thread_waitinfo_t *)out_addr;
1860 }
1861
1862 if (num_delta_thread_snapshots > 0 || num_nonrunnable_threads > 0 || num_waitinfo_threads > 0) {
1863 queue_iterate(&task->threads, thread, thread_t, task_threads)
1864 {
1865 if (active_kthreads_only_p && thread->kernel_stack == 0)
1866 continue;
1867
1868 /* If we want owner info, we should capture it regardless of its classification */
1869 if (save_owner_info && stackshot_thread_has_valid_waitinfo(thread)) {
1870 stackshot_thread_wait_owner_info(
1871 thread,
1872 &thread_waitinfo[current_waitinfo_index++]);
1873 }
1874
1875 boolean_t thread_on_core;
1876 enum thread_classification thread_classification = classify_thread(thread, &thread_on_core, trace_flags);
1877
1878 switch (thread_classification) {
1879 case tc_full_snapshot:
1880 /* full thread snapshot captured above */
1881 continue;
1882
1883 case tc_delta_snapshot:
1884 kcd_exit_on_error(kcdata_record_thread_delta_snapshot(&delta_snapshots[current_delta_snapshot_index++],
1885 thread, thread_on_core));
1886 break;
1887
1888 case tc_nonrunnable:
1889 nonrunnable_tids[current_nonrunnable_index++] = thread_tid(thread);
1890 continue;
1891 }
1892 }
1893
1894 #if DEBUG || DEVELOPMENT
1895 if (current_delta_snapshot_index != num_delta_thread_snapshots) {
1896 panic("delta thread snapshot count mismatch while capturing snapshots for task %p. expected %d, found %d", task,
1897 num_delta_thread_snapshots, current_delta_snapshot_index);
1898 }
1899 if (current_nonrunnable_index != num_nonrunnable_threads) {
1900 panic("nonrunnable thread count mismatch while capturing snapshots for task %p. expected %d, found %d", task,
1901 num_nonrunnable_threads, current_nonrunnable_index);
1902 }
1903 if (current_waitinfo_index != num_waitinfo_threads) {
1904 panic("thread wait info count mismatch while capturing snapshots for task %p. expected %d, found %d", task,
1905 num_waitinfo_threads, current_waitinfo_index);
1906 }
1907 #endif
1908 }
1909
1910 #if IMPORTANCE_INHERITANCE
1911 if (save_donating_pids_p) {
1912 kcd_exit_on_error(
1913 ((((mach_vm_address_t)kcd_end_address(stackshot_kcdata_p) + (TASK_IMP_WALK_LIMIT * sizeof(int32_t))) <
1914 (mach_vm_address_t)kcd_max_address(stackshot_kcdata_p))
1915 ? KERN_SUCCESS
1916 : KERN_RESOURCE_SHORTAGE));
1917 saved_count = task_importance_list_pids(task, TASK_IMP_LIST_DONATING_PIDS,
1918 (void *)kcd_end_address(stackshot_kcdata_p), TASK_IMP_WALK_LIMIT);
1919 if (saved_count > 0)
1920 kcd_exit_on_error(kcdata_get_memory_addr_for_array(stackshot_kcdata_p, STACKSHOT_KCTYPE_DONATING_PIDS,
1921 sizeof(int32_t), saved_count, &out_addr));
1922 }
1923 #endif
1924
1925 if (!collect_delta_stackshot || (num_delta_thread_snapshots != task->thread_count) || !task_delta_stackshot) {
1926 /*
1927 * Collect shared cache info and UUID info in these scenarios
1928 * 1) a full stackshot
1929 * 2) a delta stackshot where the task started after the previous full stackshot OR
1930 * any thread from the task has run since the previous full stackshot
1931 */
1932
1933 kcd_exit_on_error(kcdata_record_shared_cache_info(stackshot_kcdata_p, task, sys_shared_cache_loadinfo, task_snap_ss_flags));
1934 kcd_exit_on_error(kcdata_record_uuid_info(stackshot_kcdata_p, task, trace_flags, have_pmap, task_snap_ss_flags));
1935 }
1936 /* mark end of task snapshot data */
1937 kcd_exit_on_error(kcdata_add_container_marker(stackshot_kcdata_p, KCDATA_TYPE_CONTAINER_END, STACKSHOT_KCCONTAINER_TASK,
1938 task_uniqueid));
1939 }
1940 }
1941
1942 if (minimize_nonrunnables) {
1943 flush_nonrunnable_tasks(&saved_uniqueids);
1944 }
1945
1946 if (use_fault_path) {
1947 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_FAULT_STATS,
1948 sizeof(struct stackshot_fault_stats), &out_addr));
1949 stackshot_memcpy((void*)out_addr, &fault_stats, sizeof(struct stackshot_fault_stats));
1950 }
1951
1952 /* update timestamp of the stackshot */
1953 abs_time_end = mach_absolute_time();
1954 #if DEVELOPMENT || DEBUG
1955 kcd_exit_on_error(kcdata_get_memory_addr(stackshot_kcdata_p, STACKSHOT_KCTYPE_STACKSHOT_DURATION,
1956 sizeof(struct stackshot_duration), &out_addr));
1957 struct stackshot_duration * stackshot_duration = (struct stackshot_duration *)out_addr;
1958 stackshot_duration->stackshot_duration = (abs_time_end - abs_time);
1959 stackshot_duration->stackshot_duration_outer = 0;
1960 stackshot_duration_outer = (unaligned_u64 *)&stackshot_duration->stackshot_duration_outer;
1961 #endif
1962 stackshot_memcpy((void *)abs_time_addr, &abs_time_end, sizeof(uint64_t));
1963
1964 kcd_exit_on_error(kcdata_add_uint32_with_description(stackshot_kcdata_p, trace_flags, "stackshot_out_flags"));
1965
1966 kcd_exit_on_error(kcdata_write_buffer_end(stackshot_kcdata_p));
1967
1968 /* === END of populating stackshot data === */
1969
1970 *pBytesTraced = (uint32_t) kcdata_memory_get_used_bytes(stackshot_kcdata_p);
1971 error_exit:
1972
1973 #if INTERRUPT_MASKED_DEBUG
1974 if (!panic_stackshot) {
1975 /*
1976 * Try to catch instances where stackshot takes too long BEFORE returning from
1977 * the debugger
1978 */
1979 ml_check_interrupts_disabled_duration(current_thread());
1980 }
1981 #endif
1982
1983 stack_enable_faulting = FALSE;
1984
1985 return error;
1986 }
1987
1988 static uint64_t
1989 proc_was_throttled_from_task(task_t task)
1990 {
1991 uint64_t was_throttled = 0;
1992
1993 if (task->bsd_info)
1994 was_throttled = proc_was_throttled(task->bsd_info);
1995
1996 return was_throttled;
1997 }
1998
1999 static uint64_t
2000 proc_did_throttle_from_task(task_t task)
2001 {
2002 uint64_t did_throttle = 0;
2003
2004 if (task->bsd_info)
2005 did_throttle = proc_did_throttle(task->bsd_info);
2006
2007 return did_throttle;
2008 }
2009
2010 static void
2011 kdp_mem_and_io_snapshot(struct mem_and_io_snapshot *memio_snap)
2012 {
2013 unsigned int pages_reclaimed;
2014 unsigned int pages_wanted;
2015 kern_return_t kErr;
2016
2017 processor_t processor;
2018 vm_statistics64_t stat;
2019 vm_statistics64_data_t host_vm_stat;
2020
2021 processor = processor_list;
2022 stat = &PROCESSOR_DATA(processor, vm_stat);
2023 host_vm_stat = *stat;
2024
2025 if (processor_count > 1) {
2026 /*
2027 * processor_list may be in the process of changing as we are
2028 * attempting a stackshot. Ordinarily it will be lock protected,
2029 * but it is not safe to lock in the context of the debugger.
2030 * Fortunately we never remove elements from the processor list,
2031 * and only add to to the end of the list, so we SHOULD be able
2032 * to walk it. If we ever want to truly tear down processors,
2033 * this will have to change.
2034 */
2035 while ((processor = processor->processor_list) != NULL) {
2036 stat = &PROCESSOR_DATA(processor, vm_stat);
2037 host_vm_stat.compressions += stat->compressions;
2038 host_vm_stat.decompressions += stat->decompressions;
2039 }
2040 }
2041
2042 memio_snap->snapshot_magic = STACKSHOT_MEM_AND_IO_SNAPSHOT_MAGIC;
2043 memio_snap->free_pages = vm_page_free_count;
2044 memio_snap->active_pages = vm_page_active_count;
2045 memio_snap->inactive_pages = vm_page_inactive_count;
2046 memio_snap->purgeable_pages = vm_page_purgeable_count;
2047 memio_snap->wired_pages = vm_page_wire_count;
2048 memio_snap->speculative_pages = vm_page_speculative_count;
2049 memio_snap->throttled_pages = vm_page_throttled_count;
2050 memio_snap->busy_buffer_count = count_busy_buffers();
2051 memio_snap->filebacked_pages = vm_page_pageable_external_count;
2052 memio_snap->compressions = (uint32_t)host_vm_stat.compressions;
2053 memio_snap->decompressions = (uint32_t)host_vm_stat.decompressions;
2054 memio_snap->compressor_size = VM_PAGE_COMPRESSOR_COUNT;
2055 kErr = mach_vm_pressure_monitor(FALSE, VM_PRESSURE_TIME_WINDOW, &pages_reclaimed, &pages_wanted);
2056
2057 if ( ! kErr ) {
2058 memio_snap->pages_wanted = (uint32_t)pages_wanted;
2059 memio_snap->pages_reclaimed = (uint32_t)pages_reclaimed;
2060 memio_snap->pages_wanted_reclaimed_valid = 1;
2061 } else {
2062 memio_snap->pages_wanted = 0;
2063 memio_snap->pages_reclaimed = 0;
2064 memio_snap->pages_wanted_reclaimed_valid = 0;
2065 }
2066 }
2067
2068 void
2069 stackshot_memcpy(void *dst, const void *src, size_t len)
2070 {
2071 #if CONFIG_EMBEDDED
2072 if (panic_stackshot) {
2073 uint8_t *dest_bytes = (uint8_t *)dst;
2074 const uint8_t *src_bytes = (const uint8_t *)src;
2075 for (size_t i = 0; i < len; i++) {
2076 dest_bytes[i] = src_bytes[i];
2077 }
2078 } else
2079 #endif
2080 memcpy(dst, src, len);
2081 }
2082
2083 size_t
2084 stackshot_strlcpy(char *dst, const char *src, size_t maxlen)
2085 {
2086 const size_t srclen = strlen(src);
2087
2088 if (srclen < maxlen) {
2089 stackshot_memcpy(dst, src, srclen+1);
2090 } else if (maxlen != 0) {
2091 stackshot_memcpy(dst, src, maxlen-1);
2092 dst[maxlen-1] = '\0';
2093 }
2094
2095 return srclen;
2096 }
2097
2098
2099 /*
2100 * Returns the physical address of the specified map:target address,
2101 * using the kdp fault path if requested and the page is not resident.
2102 */
2103 vm_offset_t
2104 kdp_find_phys(vm_map_t map, vm_offset_t target_addr, boolean_t try_fault, uint32_t *kdp_fault_results)
2105 {
2106 vm_offset_t cur_phys_addr;
2107 unsigned cur_wimg_bits;
2108 uint64_t fault_start_time = 0;
2109
2110 if (map == VM_MAP_NULL) {
2111 return 0;
2112 }
2113
2114 cur_phys_addr = kdp_vtophys(map->pmap, target_addr);
2115 if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) {
2116 if (!try_fault || fault_stats.sfs_stopped_faulting) {
2117 if (kdp_fault_results)
2118 *kdp_fault_results |= KDP_FAULT_RESULT_PAGED_OUT;
2119
2120 return 0;
2121 }
2122
2123 /*
2124 * The pmap doesn't have a valid page so we start at the top level
2125 * vm map and try a lightweight fault. Update fault path usage stats.
2126 */
2127 fault_start_time = mach_absolute_time();
2128 cur_phys_addr = kdp_lightweight_fault(map, (target_addr & ~PAGE_MASK));
2129 fault_stats.sfs_time_spent_faulting += (mach_absolute_time() - fault_start_time);
2130
2131 if ((fault_stats.sfs_time_spent_faulting >= fault_stats.sfs_system_max_fault_time) && !panic_stackshot) {
2132 fault_stats.sfs_stopped_faulting = (uint8_t) TRUE;
2133 }
2134
2135 cur_phys_addr += (target_addr & PAGE_MASK);
2136
2137 if (!pmap_valid_page((ppnum_t) atop(cur_phys_addr))) {
2138 if (kdp_fault_results)
2139 *kdp_fault_results |= (KDP_FAULT_RESULT_TRIED_FAULT | KDP_FAULT_RESULT_PAGED_OUT);
2140
2141 return 0;
2142 }
2143
2144 if (kdp_fault_results)
2145 *kdp_fault_results |= KDP_FAULT_RESULT_FAULTED_IN;
2146
2147 fault_stats.sfs_pages_faulted_in++;
2148 } else {
2149 /*
2150 * This check is done in kdp_lightweight_fault for the fault path.
2151 */
2152 cur_wimg_bits = pmap_cache_attributes((ppnum_t) atop(cur_phys_addr));
2153
2154 if ((cur_wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
2155 return 0;
2156 }
2157 }
2158
2159 return cur_phys_addr;
2160 }
2161
2162 boolean_t
2163 kdp_copyin_word(
2164 task_t task, uint64_t addr, uint64_t *result, boolean_t try_fault, uint32_t *kdp_fault_results)
2165 {
2166 if (task_has_64BitAddr(task)) {
2167 return kdp_copyin(task->map, addr, result, sizeof(uint64_t), try_fault, kdp_fault_results);
2168 } else {
2169 uint32_t buf;
2170 boolean_t r = kdp_copyin(task->map, addr, &buf, sizeof(uint32_t), try_fault, kdp_fault_results);
2171 *result = buf;
2172 return r;
2173 }
2174 }
2175
2176 boolean_t
2177 kdp_copyin(vm_map_t map, uint64_t uaddr, void *dest, size_t size, boolean_t try_fault, uint32_t *kdp_fault_results)
2178 {
2179 size_t rem = size;
2180 char *kvaddr = dest;
2181
2182 #if CONFIG_EMBEDDED
2183 /* Identify if destination buffer is in panic storage area */
2184 if (panic_stackshot && ((vm_offset_t)dest >= gPanicBase) && ((vm_offset_t)dest < (gPanicBase + gPanicSize))) {
2185 if (((vm_offset_t)dest + size) > (gPanicBase + gPanicSize)) {
2186 return FALSE;
2187 }
2188 }
2189 #endif
2190
2191 while (rem) {
2192 uint64_t phys_src = kdp_find_phys(map, uaddr, try_fault, kdp_fault_results);
2193 uint64_t phys_dest = kvtophys((vm_offset_t)kvaddr);
2194 uint64_t src_rem = PAGE_SIZE - (phys_src & PAGE_MASK);
2195 uint64_t dst_rem = PAGE_SIZE - (phys_dest & PAGE_MASK);
2196 size_t cur_size = (uint32_t) MIN(src_rem, dst_rem);
2197 cur_size = MIN(cur_size, rem);
2198
2199 if (phys_src && phys_dest) {
2200 #if CONFIG_EMBEDDED
2201 /*
2202 * On embedded the panic buffer is mapped as device memory and doesn't allow
2203 * unaligned accesses. To prevent these, we copy over bytes individually here.
2204 */
2205 if (panic_stackshot)
2206 stackshot_memcpy(kvaddr, (const void *)phystokv(phys_src), cur_size);
2207 else
2208 #endif /* CONFIG_EMBEDDED */
2209 bcopy_phys(phys_src, phys_dest, cur_size);
2210 } else {
2211 break;
2212 }
2213
2214 uaddr += cur_size;
2215 kvaddr += cur_size;
2216 rem -= cur_size;
2217 }
2218
2219 return (rem == 0);
2220 }
2221
2222 kern_return_t
2223 do_stackshot(void *context)
2224 {
2225 #pragma unused(context)
2226 kdp_snapshot++;
2227
2228 stack_snapshot_ret = kdp_stackshot_kcdata_format(stack_snapshot_pid,
2229 stack_snapshot_flags,
2230 &stack_snapshot_bytes_traced);
2231
2232 kdp_snapshot--;
2233 return stack_snapshot_ret;
2234 }
2235
2236 /*
2237 * A fantastical routine that tries to be fast about returning
2238 * translations. Caches the last page we found a translation
2239 * for, so that we can be quick about multiple queries to the
2240 * same page. It turns out this is exactly the workflow
2241 * machine_trace_thread and its relatives tend to throw at us.
2242 *
2243 * Please zero the nasty global this uses after a bulk lookup;
2244 * this isn't safe across a switch of the map or changes
2245 * to a pmap.
2246 *
2247 * This also means that if zero is a valid KVA, we are
2248 * screwed. Sucks to be us. Fortunately, this should never
2249 * happen.
2250 */
2251 vm_offset_t
2252 machine_trace_thread_get_kva(vm_offset_t cur_target_addr, vm_map_t map, uint32_t *thread_trace_flags)
2253 {
2254 vm_offset_t cur_target_page;
2255 vm_offset_t cur_phys_addr;
2256 vm_offset_t kern_virt_target_addr;
2257 uint32_t kdp_fault_results = 0;
2258
2259 cur_target_page = atop(cur_target_addr);
2260
2261 if ((cur_target_page != prev_target_page) || validate_next_addr) {
2262
2263 /*
2264 * Alright; it wasn't our previous page. So
2265 * we must validate that there is a page
2266 * table entry for this address under the
2267 * current pmap, and that it has default
2268 * cache attributes (otherwise it may not be
2269 * safe to access it).
2270 */
2271 cur_phys_addr = kdp_find_phys(map, cur_target_addr, stack_enable_faulting, &kdp_fault_results);
2272 if (thread_trace_flags) {
2273 if (kdp_fault_results & KDP_FAULT_RESULT_PAGED_OUT) {
2274 *thread_trace_flags |= kThreadTruncatedBT;
2275 }
2276
2277 if (kdp_fault_results & KDP_FAULT_RESULT_TRIED_FAULT) {
2278 *thread_trace_flags |= kThreadTriedFaultBT;
2279 }
2280
2281 if (kdp_fault_results & KDP_FAULT_RESULT_FAULTED_IN) {
2282 *thread_trace_flags |= kThreadFaultedBT;
2283 }
2284 }
2285
2286 if (cur_phys_addr == 0) {
2287 return 0;
2288 }
2289 #if __x86_64__
2290 kern_virt_target_addr = (vm_offset_t) PHYSMAP_PTOV(cur_phys_addr);
2291 #elif __arm__ || __arm64__
2292 kern_virt_target_addr = phystokv(cur_phys_addr);
2293 #else
2294 #error Oh come on... we should really unify the physical -> kernel virtual interface
2295 #endif
2296 prev_target_page = cur_target_page;
2297 prev_target_kva = (kern_virt_target_addr & ~PAGE_MASK);
2298 validate_next_addr = FALSE;
2299 } else {
2300 /* We found a translation, so stash this page */
2301 kern_virt_target_addr = prev_target_kva + (cur_target_addr & PAGE_MASK);
2302 }
2303
2304 #if KASAN
2305 kasan_notify_address(kern_virt_target_addr, sizeof(uint64_t));
2306 #endif
2307 return kern_virt_target_addr;
2308 }
2309
2310 void
2311 machine_trace_thread_clear_validation_cache(void)
2312 {
2313 validate_next_addr = TRUE;
2314 }
2315
2316 boolean_t
2317 stackshot_thread_is_idle_worker_unsafe(thread_t thread)
2318 {
2319 /* When the pthread kext puts a worker thread to sleep, it will
2320 * set kThreadWaitParkedWorkQueue in the block_hint of the thread
2321 * struct. See parkit() in kern/kern_support.c in libpthread.
2322 */
2323 return (thread->state & TH_WAIT) &&
2324 (thread->block_hint == kThreadWaitParkedWorkQueue);
2325 }
2326
2327 #if CONFIG_COALITIONS
2328 static void
2329 stackshot_coalition_jetsam_count(void *arg, int i, coalition_t coal)
2330 {
2331 #pragma unused(i, coal)
2332 unsigned int *coalition_count = (unsigned int*)arg;
2333 (*coalition_count)++;
2334 }
2335
2336 static void
2337 stackshot_coalition_jetsam_snapshot(void *arg, int i, coalition_t coal)
2338 {
2339 if (coalition_type(coal) != COALITION_TYPE_JETSAM)
2340 return;
2341
2342 struct jetsam_coalition_snapshot *coalitions = (struct jetsam_coalition_snapshot*)arg;
2343 struct jetsam_coalition_snapshot *jcs = &coalitions[i];
2344 task_t leader = TASK_NULL;
2345 jcs->jcs_id = coalition_id(coal);
2346 jcs->jcs_flags = 0;
2347
2348 if (coalition_term_requested(coal))
2349 jcs->jcs_flags |= kCoalitionTermRequested;
2350 if (coalition_is_terminated(coal))
2351 jcs->jcs_flags |= kCoalitionTerminated;
2352 if (coalition_is_reaped(coal))
2353 jcs->jcs_flags |= kCoalitionReaped;
2354 if (coalition_is_privileged(coal))
2355 jcs->jcs_flags |= kCoalitionPrivileged;
2356
2357
2358 leader = kdp_coalition_get_leader(coal);
2359 if (leader)
2360 jcs->jcs_leader_task_uniqueid = get_task_uniqueid(leader);
2361 else
2362 jcs->jcs_leader_task_uniqueid = 0;
2363 }
2364 #endif /* CONFIG_COALITIONS */
2365
2366
2367 /* Determine if a thread has waitinfo that stackshot can provide */
2368 static int
2369 stackshot_thread_has_valid_waitinfo(thread_t thread)
2370 {
2371 if (!(thread->state & TH_WAIT))
2372 return 0;
2373
2374 switch (thread->block_hint) {
2375 // If set to None or is a parked work queue, ignore it
2376 case kThreadWaitParkedWorkQueue:
2377 case kThreadWaitNone:
2378 return 0;
2379 // There is a short window where the pthread kext removes a thread
2380 // from its ksyn wait queue before waking the thread up
2381 case kThreadWaitPThreadMutex:
2382 case kThreadWaitPThreadRWLockRead:
2383 case kThreadWaitPThreadRWLockWrite:
2384 case kThreadWaitPThreadCondVar:
2385 return (kdp_pthread_get_thread_kwq(thread) != NULL);
2386 // All other cases are valid block hints if in a wait state
2387 default:
2388 return 1;
2389 }
2390 }
2391
2392 static void
2393 stackshot_thread_wait_owner_info(thread_t thread, thread_waitinfo_t *waitinfo)
2394 {
2395 waitinfo->waiter = thread_tid(thread);
2396 waitinfo->wait_type = thread->block_hint;
2397 switch (waitinfo->wait_type) {
2398 case kThreadWaitKernelMutex:
2399 kdp_lck_mtx_find_owner(thread->waitq, thread->wait_event, waitinfo);
2400 break;
2401 case kThreadWaitPortReceive:
2402 kdp_mqueue_recv_find_owner(thread->waitq, thread->wait_event, waitinfo);
2403 break;
2404 case kThreadWaitPortSend:
2405 kdp_mqueue_send_find_owner(thread->waitq, thread->wait_event, waitinfo);
2406 break;
2407 case kThreadWaitSemaphore:
2408 kdp_sema_find_owner(thread->waitq, thread->wait_event, waitinfo);
2409 break;
2410 case kThreadWaitUserLock:
2411 kdp_ulock_find_owner(thread->waitq, thread->wait_event, waitinfo);
2412 break;
2413 case kThreadWaitKernelRWLockRead:
2414 case kThreadWaitKernelRWLockWrite:
2415 case kThreadWaitKernelRWLockUpgrade:
2416 kdp_rwlck_find_owner(thread->waitq, thread->wait_event, waitinfo);
2417 break;
2418 case kThreadWaitPThreadMutex:
2419 case kThreadWaitPThreadRWLockRead:
2420 case kThreadWaitPThreadRWLockWrite:
2421 case kThreadWaitPThreadCondVar:
2422 kdp_pthread_find_owner(thread, waitinfo);
2423 break;
2424 case kThreadWaitWorkloopSyncWait:
2425 kdp_workloop_sync_wait_find_owner(thread, thread->wait_event, waitinfo);
2426 break;
2427 default:
2428 waitinfo->owner = 0;
2429 waitinfo->context = 0;
2430 break;
2431 }
2432 }
2433