]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOWorkLoop.cpp
xnu-4570.20.62.tar.gz
[apple/xnu.git] / iokit / Kernel / IOWorkLoop.cpp
1 /*
2 * Copyright (c) 1998-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <pexpert/pexpert.h>
30 #include <IOKit/IOWorkLoop.h>
31 #include <IOKit/IOEventSource.h>
32 #include <IOKit/IOInterruptEventSource.h>
33 #include <IOKit/IOCommandGate.h>
34 #include <IOKit/IOCommandPool.h>
35 #include <IOKit/IOTimeStamp.h>
36 #include <IOKit/IOKitDebug.h>
37 #include <libkern/OSDebug.h>
38 #include <kern/thread.h>
39
40 #define super OSObject
41
42 OSDefineMetaClassAndStructors(IOWorkLoop, OSObject);
43
44 // Block of unused functions intended for future use
45 #if __LP64__
46 OSMetaClassDefineReservedUnused(IOWorkLoop, 0);
47 OSMetaClassDefineReservedUnused(IOWorkLoop, 1);
48 OSMetaClassDefineReservedUnused(IOWorkLoop, 2);
49 #else
50 OSMetaClassDefineReservedUsed(IOWorkLoop, 0);
51 OSMetaClassDefineReservedUsed(IOWorkLoop, 1);
52 OSMetaClassDefineReservedUsed(IOWorkLoop, 2);
53 #endif
54 OSMetaClassDefineReservedUnused(IOWorkLoop, 3);
55 OSMetaClassDefineReservedUnused(IOWorkLoop, 4);
56 OSMetaClassDefineReservedUnused(IOWorkLoop, 5);
57 OSMetaClassDefineReservedUnused(IOWorkLoop, 6);
58 OSMetaClassDefineReservedUnused(IOWorkLoop, 7);
59
60 enum IOWorkLoopState { kLoopRestart = 0x1, kLoopTerminate = 0x2 };
61 static inline void SETP(void *addr, unsigned int flag)
62 { unsigned char *num = (unsigned char *) addr; *num |= flag; }
63 static inline void CLRP(void *addr, unsigned int flag)
64 { unsigned char *num = (unsigned char *) addr; *num &= ~flag; }
65 static inline bool ISSETP(void *addr, unsigned int flag)
66 { unsigned char *num = (unsigned char *) addr; return (*num & flag) != 0; }
67
68 #define fFlags loopRestart
69
70 #define passiveEventChain reserved->passiveEventChain
71
72 #if IOKITSTATS
73
74 #define IOStatisticsRegisterCounter() \
75 do { \
76 reserved->counter = IOStatistics::registerWorkLoop(this); \
77 } while(0)
78
79 #define IOStatisticsUnregisterCounter() \
80 do { \
81 if (reserved) \
82 IOStatistics::unregisterWorkLoop(reserved->counter); \
83 } while(0)
84
85 #define IOStatisticsOpenGate() \
86 do { \
87 IOStatistics::countWorkLoopOpenGate(reserved->counter); \
88 if (reserved->lockInterval) lockTime(); \
89 } while(0)
90 #define IOStatisticsCloseGate() \
91 do { \
92 IOStatistics::countWorkLoopCloseGate(reserved->counter); \
93 if (reserved->lockInterval) reserved->lockTime = mach_absolute_time(); \
94 } while(0)
95
96 #define IOStatisticsAttachEventSource() \
97 do { \
98 IOStatistics::attachWorkLoopEventSource(reserved->counter, inEvent->reserved->counter); \
99 } while(0)
100
101 #define IOStatisticsDetachEventSource() \
102 do { \
103 IOStatistics::detachWorkLoopEventSource(reserved->counter, inEvent->reserved->counter); \
104 } while(0)
105
106 #else
107
108 #define IOStatisticsRegisterCounter()
109 #define IOStatisticsUnregisterCounter()
110 #define IOStatisticsOpenGate()
111 #define IOStatisticsCloseGate()
112 #define IOStatisticsAttachEventSource()
113 #define IOStatisticsDetachEventSource()
114
115 #endif /* IOKITSTATS */
116
117 bool IOWorkLoop::init()
118 {
119 // The super init and gateLock allocation MUST be done first.
120 if ( !super::init() )
121 return false;
122
123 // Allocate our ExpansionData if it hasn't been allocated already.
124 if ( !reserved )
125 {
126 reserved = IONew(ExpansionData,1);
127 if ( !reserved )
128 return false;
129
130 bzero(reserved,sizeof(ExpansionData));
131 }
132
133 if ( gateLock == NULL ) {
134 if ( !( gateLock = IORecursiveLockAlloc()) )
135 return false;
136 }
137
138 if ( workToDoLock == NULL ) {
139 if ( !(workToDoLock = IOSimpleLockAlloc()) )
140 return false;
141 IOSimpleLockInit(workToDoLock);
142 workToDo = false;
143 }
144
145 IOStatisticsRegisterCounter();
146
147 if ( controlG == NULL ) {
148 controlG = IOCommandGate::commandGate(
149 this,
150 OSMemberFunctionCast(
151 IOCommandGate::Action,
152 this,
153 &IOWorkLoop::_maintRequest));
154
155 if ( !controlG )
156 return false;
157 // Point the controlGate at the workLoop. Usually addEventSource
158 // does this automatically. The problem is in this case addEventSource
159 // uses the control gate and it has to be bootstrapped.
160 controlG->setWorkLoop(this);
161 if (addEventSource(controlG) != kIOReturnSuccess)
162 return false;
163 }
164
165 if ( workThread == NULL ) {
166 thread_continue_t cptr = OSMemberFunctionCast(
167 thread_continue_t,
168 this,
169 &IOWorkLoop::threadMain);
170 if (KERN_SUCCESS != kernel_thread_start(cptr, this, &workThread))
171 return false;
172 }
173
174 (void) thread_set_tag(workThread, THREAD_TAG_IOWORKLOOP);
175 return true;
176 }
177
178 IOWorkLoop *
179 IOWorkLoop::workLoop()
180 {
181 return IOWorkLoop::workLoopWithOptions(0);
182 }
183
184 IOWorkLoop *
185 IOWorkLoop::workLoopWithOptions(IOOptionBits options)
186 {
187 IOWorkLoop *me = new IOWorkLoop;
188
189 if (me && options) {
190 me->reserved = IONew(ExpansionData,1);
191 if (!me->reserved) {
192 me->release();
193 return 0;
194 }
195 bzero(me->reserved,sizeof(ExpansionData));
196 me->reserved->options = options;
197 }
198
199 if (me && !me->init()) {
200 me->release();
201 return 0;
202 }
203
204 return me;
205 }
206
207 // Free is called twice:
208 // First when the atomic retainCount transitions from 1 -> 0
209 // Secondly when the work loop itself is commiting hari kari
210 // Hence the each leg of the free must be single threaded.
211 void IOWorkLoop::free()
212 {
213 if (workThread) {
214 IOInterruptState is;
215
216 // If we are here then we must be trying to shut down this work loop
217 // in this case disable all of the event source, mark the loop
218 // as terminating and wakeup the work thread itself and return
219 // Note: we hold the gate across the entire operation mainly for the
220 // benefit of our event sources so we can disable them cleanly.
221 closeGate();
222
223 disableAllEventSources();
224
225 is = IOSimpleLockLockDisableInterrupt(workToDoLock);
226 SETP(&fFlags, kLoopTerminate);
227 thread_wakeup_thread((void *) &workToDo, workThread);
228 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
229
230 openGate();
231 }
232 else /* !workThread */ {
233 IOEventSource *event, *next;
234
235 for (event = eventChain; event; event = next) {
236 next = event->getNext();
237 event->setWorkLoop(0);
238 event->setNext(0);
239 event->release();
240 }
241 eventChain = 0;
242
243 for (event = passiveEventChain; event; event = next) {
244 next = event->getNext();
245 event->setWorkLoop(0);
246 event->setNext(0);
247 event->release();
248 }
249 passiveEventChain = 0;
250
251 // Either we have a partial initialization to clean up
252 // or the workThread itself is performing hari-kari.
253 // Either way clean up all of our resources and return.
254
255 if (controlG) {
256 controlG->workLoop = 0;
257 controlG->release();
258 controlG = 0;
259 }
260
261 if (workToDoLock) {
262 IOSimpleLockFree(workToDoLock);
263 workToDoLock = 0;
264 }
265
266 if (gateLock) {
267 IORecursiveLockFree(gateLock);
268 gateLock = 0;
269 }
270
271 IOStatisticsUnregisterCounter();
272
273 if (reserved) {
274 IODelete(reserved, ExpansionData, 1);
275 reserved = 0;
276 }
277
278 super::free();
279 }
280 }
281
282 IOReturn IOWorkLoop::addEventSource(IOEventSource *newEvent)
283 {
284 if ((workThread)
285 && !thread_has_thread_name(workThread)
286 && (newEvent->owner)
287 && !OSDynamicCast(IOCommandPool, newEvent->owner)) {
288 thread_set_thread_name(workThread, newEvent->owner->getMetaClass()->getClassName());
289 }
290
291 return controlG->runCommand((void *) mAddEvent, (void *) newEvent);
292 }
293
294 IOReturn IOWorkLoop::removeEventSource(IOEventSource *toRemove)
295 {
296 return controlG->runCommand((void *) mRemoveEvent, (void *) toRemove);
297 }
298
299 void IOWorkLoop::enableAllEventSources() const
300 {
301 IOEventSource *event;
302
303 for (event = eventChain; event; event = event->getNext())
304 event->enable();
305
306 for (event = passiveEventChain; event; event = event->getNext())
307 event->enable();
308 }
309
310 void IOWorkLoop::disableAllEventSources() const
311 {
312 IOEventSource *event;
313
314 for (event = eventChain; event; event = event->getNext())
315 event->disable();
316
317 /* NOTE: controlG is in passiveEventChain since it's an IOCommandGate */
318 for (event = passiveEventChain; event; event = event->getNext())
319 if (event != controlG) // Don't disable the control gate
320 event->disable();
321 }
322
323 void IOWorkLoop::enableAllInterrupts() const
324 {
325 IOEventSource *event;
326
327 for (event = eventChain; event; event = event->getNext())
328 if (OSDynamicCast(IOInterruptEventSource, event))
329 event->enable();
330 }
331
332 void IOWorkLoop::disableAllInterrupts() const
333 {
334 IOEventSource *event;
335
336 for (event = eventChain; event; event = event->getNext())
337 if (OSDynamicCast(IOInterruptEventSource, event))
338 event->disable();
339 }
340
341
342 /* virtual */ bool IOWorkLoop::runEventSources()
343 {
344 bool res = false;
345 bool traceWL = (gIOKitTrace & kIOTraceWorkLoops) ? true : false;
346 bool traceES = (gIOKitTrace & kIOTraceEventSources) ? true : false;
347
348 closeGate();
349 if (ISSETP(&fFlags, kLoopTerminate))
350 goto abort;
351
352 if (traceWL)
353 IOTimeStampStartConstant(IODBG_WORKLOOP(IOWL_WORK), VM_KERNEL_ADDRHIDE(this));
354
355 bool more;
356 do {
357 CLRP(&fFlags, kLoopRestart);
358 more = false;
359 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
360 workToDo = false;
361 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
362 /* NOTE: only loop over event sources in eventChain. Bypass "passive" event sources for performance */
363 for (IOEventSource *evnt = eventChain; evnt; evnt = evnt->getNext()) {
364
365 if (traceES)
366 IOTimeStampStartConstant(IODBG_WORKLOOP(IOWL_CLIENT), VM_KERNEL_ADDRHIDE(this), VM_KERNEL_ADDRHIDE(evnt));
367
368 more |= evnt->checkForWork();
369
370 if (traceES)
371 IOTimeStampEndConstant(IODBG_WORKLOOP(IOWL_CLIENT), VM_KERNEL_ADDRHIDE(this), VM_KERNEL_ADDRHIDE(evnt));
372
373 if (ISSETP(&fFlags, kLoopTerminate))
374 goto abort;
375 else if (fFlags & kLoopRestart) {
376 more = true;
377 break;
378 }
379 }
380 } while (more);
381
382 res = true;
383
384 if (traceWL)
385 IOTimeStampEndConstant(IODBG_WORKLOOP(IOWL_WORK), VM_KERNEL_ADDRHIDE(this));
386
387 abort:
388 openGate();
389 return res;
390 }
391
392 /* virtual */ void IOWorkLoop::threadMain()
393 {
394 restartThread:
395 do {
396 if ( !runEventSources() )
397 goto exitThread;
398
399 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
400 if ( !ISSETP(&fFlags, kLoopTerminate) && !workToDo) {
401 assert_wait((void *) &workToDo, false);
402 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
403 thread_continue_t cptr = NULL;
404 if (!reserved || !(kPreciousStack & reserved->options))
405 cptr = OSMemberFunctionCast(
406 thread_continue_t, this, &IOWorkLoop::threadMain);
407 thread_block_parameter(cptr, this);
408 goto restartThread;
409 /* NOTREACHED */
410 }
411
412 // At this point we either have work to do or we need
413 // to commit suicide. But no matter
414 // Clear the simple lock and retore the interrupt state
415 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
416 } while(workToDo);
417
418 exitThread:
419 thread_t thread = workThread;
420 workThread = 0; // Say we don't have a loop and free ourselves
421 free();
422
423 thread_deallocate(thread);
424 (void) thread_terminate(thread);
425 }
426
427 IOThread IOWorkLoop::getThread() const
428 {
429 return workThread;
430 }
431
432 bool IOWorkLoop::onThread() const
433 {
434 return (IOThreadSelf() == workThread);
435 }
436
437 bool IOWorkLoop::inGate() const
438 {
439 return IORecursiveLockHaveLock(gateLock);
440 }
441
442 // Internal APIs used by event sources to control the thread
443 void IOWorkLoop::signalWorkAvailable()
444 {
445 if (workToDoLock) {
446 IOInterruptState is = IOSimpleLockLockDisableInterrupt(workToDoLock);
447 workToDo = true;
448 thread_wakeup_thread((void *) &workToDo, workThread);
449 IOSimpleLockUnlockEnableInterrupt(workToDoLock, is);
450 }
451 }
452
453 void IOWorkLoop::openGate()
454 {
455 IOStatisticsOpenGate();
456 IORecursiveLockUnlock(gateLock);
457 }
458
459 void IOWorkLoop::closeGate()
460 {
461 IORecursiveLockLock(gateLock);
462 IOStatisticsCloseGate();
463 }
464
465 bool IOWorkLoop::tryCloseGate()
466 {
467 bool res = (IORecursiveLockTryLock(gateLock) != 0);
468 if (res) {
469 IOStatisticsCloseGate();
470 }
471 return res;
472 }
473
474 int IOWorkLoop::sleepGate(void *event, UInt32 interuptibleType)
475 {
476 int res;
477 IOStatisticsOpenGate();
478 res = IORecursiveLockSleep(gateLock, event, interuptibleType);
479 IOStatisticsCloseGate();
480 return res;
481 }
482
483 int IOWorkLoop::sleepGate(void *event, AbsoluteTime deadline, UInt32 interuptibleType)
484 {
485 int res;
486 IOStatisticsOpenGate();
487 res = IORecursiveLockSleepDeadline(gateLock, event, deadline, interuptibleType);
488 IOStatisticsCloseGate();
489 return res;
490 }
491
492 void IOWorkLoop::wakeupGate(void *event, bool oneThread)
493 {
494 IORecursiveLockWakeup(gateLock, event, oneThread);
495 }
496
497 IOReturn IOWorkLoop::runAction(Action inAction, OSObject *target,
498 void *arg0, void *arg1,
499 void *arg2, void *arg3)
500 {
501 IOReturn res;
502
503 // closeGate is recursive so don't worry if we already hold the lock.
504 closeGate();
505 res = (*inAction)(target, arg0, arg1, arg2, arg3);
506 openGate();
507
508 return res;
509 }
510
511 IOReturn IOWorkLoop::_maintRequest(void *inC, void *inD, void *, void *)
512 {
513 maintCommandEnum command = (maintCommandEnum) (uintptr_t) inC;
514 IOEventSource *inEvent = (IOEventSource *) inD;
515 IOReturn res = kIOReturnSuccess;
516
517 switch (command)
518 {
519 case mAddEvent:
520 if (!inEvent->getWorkLoop()) {
521 SETP(&fFlags, kLoopRestart);
522
523 inEvent->retain();
524 inEvent->setWorkLoop(this);
525 inEvent->setNext(0);
526
527 /* Check if this is a passive or active event source being added */
528 if (eventSourcePerformsWork(inEvent)) {
529
530 if (!eventChain)
531 eventChain = inEvent;
532 else {
533 IOEventSource *event, *next;
534
535 for (event = eventChain; (next = event->getNext()); event = next)
536 ;
537 event->setNext(inEvent);
538
539 }
540
541 }
542 else {
543
544 if (!passiveEventChain)
545 passiveEventChain = inEvent;
546 else {
547 IOEventSource *event, *next;
548
549 for (event = passiveEventChain; (next = event->getNext()); event = next)
550 ;
551 event->setNext(inEvent);
552
553 }
554
555 }
556 IOStatisticsAttachEventSource();
557 }
558 break;
559
560 case mRemoveEvent:
561 if (inEvent->getWorkLoop()) {
562 IOStatisticsDetachEventSource();
563
564 if (eventSourcePerformsWork(inEvent)) {
565 if (eventChain == inEvent)
566 eventChain = inEvent->getNext();
567 else {
568 IOEventSource *event, *next = 0;
569
570 event = eventChain;
571 if (event) while ((next = event->getNext()) && (next != inEvent))
572 event = next;
573
574 if (!next) {
575 res = kIOReturnBadArgument;
576 break;
577 }
578 event->setNext(inEvent->getNext());
579 }
580 }
581 else {
582 if (passiveEventChain == inEvent)
583 passiveEventChain = inEvent->getNext();
584 else {
585 IOEventSource *event, *next = 0;
586
587 event = passiveEventChain;
588 if (event) while ((next = event->getNext()) && (next != inEvent))
589 event = next;
590
591 if (!next) {
592 res = kIOReturnBadArgument;
593 break;
594 }
595 event->setNext(inEvent->getNext());
596 }
597 }
598
599 inEvent->setWorkLoop(0);
600 inEvent->setNext(0);
601 inEvent->release();
602 SETP(&fFlags, kLoopRestart);
603 }
604 break;
605
606 default:
607 return kIOReturnUnsupported;
608 }
609
610 return res;
611 }
612
613 bool
614 IOWorkLoop::eventSourcePerformsWork(IOEventSource *inEventSource)
615 {
616 bool result = true;
617
618 /*
619 * The idea here is to see if the subclass of IOEventSource has overridden checkForWork().
620 * The assumption is that if you override checkForWork(), you need to be
621 * active and not passive.
622 *
623 * We picked a known quantity controlG that does not override
624 * IOEventSource::checkForWork(), namely the IOCommandGate associated with
625 * the workloop to which this event source is getting attached.
626 *
627 * We do a pointer comparison on the offset in the vtable for inNewEvent against
628 * the offset in the vtable for inReferenceEvent. This works because
629 * IOCommandGate's slot for checkForWork() has the address of
630 * IOEventSource::checkForWork() in it.
631 *
632 * Think of OSMemberFunctionCast yielding the value at the vtable offset for
633 * checkForWork() here. We're just testing to see if it's the same or not.
634 *
635 */
636
637 if (IOEventSource::kPassive & inEventSource->flags) result = false;
638 else if (IOEventSource::kActive & inEventSource->flags) result = true;
639 else if (controlG) {
640 void * ptr1;
641 void * ptr2;
642
643 ptr1 = OSMemberFunctionCast(void*, inEventSource, &IOEventSource::checkForWork);
644 ptr2 = OSMemberFunctionCast(void*, controlG, &IOEventSource::checkForWork);
645
646 if (ptr1 == ptr2)
647 result = false;
648 }
649
650 return result;
651 }
652
653 void
654 IOWorkLoop::lockTime(void)
655 {
656 uint64_t time;
657 time = mach_absolute_time() - reserved->lockTime;
658 if (time > reserved->lockInterval)
659 {
660 absolutetime_to_nanoseconds(time, &time);
661 if (kTimeLockPanics & reserved->options) panic("IOWorkLoop %p lock time %qd us", this, time / 1000ULL);
662 else OSReportWithBacktrace("IOWorkLoop %p lock time %qd us", this, time / 1000ULL);
663 }
664 }
665
666 void
667 IOWorkLoop::setMaximumLockTime(uint64_t interval, uint32_t options)
668 {
669 IORecursiveLockLock(gateLock);
670 reserved->lockInterval = interval;
671 reserved->options = (reserved->options & ~kTimeLockPanics) | (options & kTimeLockPanics);
672 IORecursiveLockUnlock(gateLock);
673 }