2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1991, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/malloc.h>
98 #include <sys/protosw.h>
99 #include <sys/socket.h>
100 #include <sys/socketvar.h>
101 #include <sys/errno.h>
102 #include <sys/time.h>
103 #include <sys/proc.h>
104 #include <sys/sysctl.h>
105 #include <sys/kauth.h>
106 #include <sys/priv.h>
107 #include <kern/locks.h>
110 #include <net/if_types.h>
111 #include <net/route.h>
113 #include <netinet/in.h>
114 #include <netinet/in_var.h>
115 #include <netinet/in_systm.h>
116 #include <netinet/ip.h>
117 #include <netinet/in_pcb.h>
118 #include <netinet6/in6_var.h>
119 #include <netinet/ip6.h>
120 #include <netinet6/in6_pcb.h>
121 #include <netinet6/ip6_var.h>
122 #include <netinet6/scope6_var.h>
123 #include <netinet6/nd6.h>
125 #include <net/net_osdep.h>
129 SYSCTL_DECL(_net_inet6_ip6
);
131 static int ip6_select_srcif_debug
= 0;
132 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcif_debug
,
133 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcif_debug
, 0,
134 "log source interface selection debug info");
136 static int ip6_select_srcaddr_debug
= 0;
137 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_srcaddr_debug
,
138 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_srcaddr_debug
, 0,
139 "log source address selection debug info");
141 static int ip6_select_src_expensive_secondary_if
= 0;
142 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_expensive_secondary_if
,
143 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_expensive_secondary_if
, 0,
144 "allow source interface selection to use expensive secondaries");
146 static int ip6_select_src_strong_end
= 1;
147 SYSCTL_INT(_net_inet6_ip6
, OID_AUTO
, select_src_strong_end
,
148 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_select_src_strong_end
, 0,
149 "limit source address selection to outgoing interface");
151 #define ADDR_LABEL_NOTAPP (-1)
152 struct in6_addrpolicy defaultaddrpolicy
;
154 int ip6_prefer_tempaddr
= 1;
155 #ifdef ENABLE_ADDRSEL
156 extern lck_mtx_t
*addrsel_mutex
;
157 #define ADDRSEL_LOCK() lck_mtx_lock(addrsel_mutex)
158 #define ADDRSEL_UNLOCK() lck_mtx_unlock(addrsel_mutex)
160 #define ADDRSEL_LOCK()
161 #define ADDRSEL_UNLOCK()
164 static int selectroute(struct sockaddr_in6
*, struct sockaddr_in6
*,
165 struct ip6_pktopts
*, struct ip6_moptions
*, struct in6_ifaddr
**,
166 struct route_in6
*, struct ifnet
**, struct rtentry
**, int, int,
167 struct ip6_out_args
*ip6oa
);
168 static int in6_selectif(struct sockaddr_in6
*, struct ip6_pktopts
*,
169 struct ip6_moptions
*, struct route_in6
*ro
,
170 struct ip6_out_args
*, struct ifnet
**);
171 static void init_policy_queue(void);
172 static int add_addrsel_policyent(const struct in6_addrpolicy
*);
173 #ifdef ENABLE_ADDRSEL
174 static int delete_addrsel_policyent(const struct in6_addrpolicy
*);
176 static int walk_addrsel_policy(int (*)(const struct in6_addrpolicy
*, void *),
178 static int dump_addrsel_policyent(const struct in6_addrpolicy
*, void *);
179 static struct in6_addrpolicy
*match_addrsel_policy(struct sockaddr_in6
*);
180 void addrsel_policy_init(void);
182 #define SASEL_DO_DBG(inp) \
183 (ip6_select_srcaddr_debug && (inp) != NULL && \
184 (inp)->inp_socket != NULL && \
185 ((inp)->inp_socket->so_options & SO_DEBUG))
187 #define SASEL_LOG(fmt, ...) \
190 printf("%s:%d " fmt "\n",\
191 __FUNCTION__, __LINE__, ##__VA_ARGS__); \
195 * Return an IPv6 address, which is the most appropriate for a given
196 * destination and user specified options.
197 * If necessary, this function lookups the routing table and returns
198 * an entry to the caller for later use.
200 #define REPLACE(r) do {\
201 SASEL_LOG("REPLACE r %d ia %s ifp1 %s\n", \
202 (r), s_src, ifp1->if_xname); \
207 #define NEXTSRC(r) do {\
208 SASEL_LOG("NEXTSRC r %d ia %s ifp1 %s\n", \
209 (r), s_src, ifp1->if_xname); \
210 goto next; /* XXX: we can't use 'continue' here */ \
213 #define BREAK(r) do { \
214 SASEL_LOG("BREAK r %d ia %s ifp1 %s\n", \
215 (r), s_src, ifp1->if_xname); \
217 goto out; /* XXX: we can't use 'break' here */ \
221 in6_selectsrc_core(struct sockaddr_in6
*dstsock
, uint32_t hint_mask
,
222 struct ifnet
*ifp
, int srcsel_debug
, struct in6_addr
*src_storage
,
223 struct ifnet
**sifp
, int *errorp
, struct ifaddr
**ifapp
)
226 int bestrule
= IP6S_SRCRULE_0
;
227 struct in6_addrpolicy
*dst_policy
= NULL
, *best_policy
= NULL
;
229 struct in6_ifaddr
*ia
= NULL
, *ia_best
= NULL
;
230 char s_src
[MAX_IPv6_STR_LEN
] = {0};
231 char s_dst
[MAX_IPv6_STR_LEN
] = {0};
232 const struct in6_addr
*tmp
= NULL
;
233 int dst_scope
= -1, best_scope
= -1, best_matchlen
= -1;
234 uint64_t secs
= net_uptime();
235 VERIFY(dstsock
!= NULL
);
236 VERIFY(src_storage
!= NULL
);
245 dst
= dstsock
->sin6_addr
; /* make a copy for local operation */
248 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof (s_src
));
251 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof (s_src
));
252 printf("%s out src %s dst %s ifp %s\n",
253 __func__
, s_src
, s_dst
, ifp
->if_xname
);
256 *errorp
= in6_setscope(&dst
, ifp
, &odstzone
);
262 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
263 for (ia
= in6_ifaddrs
; ia
; ia
= ia
->ia_next
) {
264 int new_scope
= -1, new_matchlen
= -1;
265 struct in6_addrpolicy
*new_policy
= NULL
;
266 u_int32_t srczone
= 0, osrczone
, dstzone
;
268 struct ifnet
*ifp1
= ia
->ia_ifp
;
272 (void) inet_ntop(AF_INET6
, &ia
->ia_addr
.sin6_addr
,
273 s_src
, sizeof (s_src
));
275 IFA_LOCK(&ia
->ia_ifa
);
278 * XXX By default we are strong end system and will
279 * limit candidate set of source address to the ones
280 * configured on the outgoing interface.
282 if (ip6_select_src_strong_end
&&
284 SASEL_LOG("NEXT ia %s ifp1 %s address is not on outgoing "
285 "interface \n", s_src
, ifp1
->if_xname
);
290 * We'll never take an address that breaks the scope zone
291 * of the destination. We also skip an address if its zone
292 * does not contain the outgoing interface.
293 * XXX: we should probably use sin6_scope_id here.
295 if (in6_setscope(&dst
, ifp1
, &dstzone
) ||
296 odstzone
!= dstzone
) {
297 SASEL_LOG("NEXT ia %s ifp1 %s odstzone %d != dstzone %d\n",
298 s_src
, ifp1
->if_xname
, odstzone
, dstzone
);
301 src
= ia
->ia_addr
.sin6_addr
;
302 if (in6_setscope(&src
, ifp
, &osrczone
) ||
303 in6_setscope(&src
, ifp1
, &srczone
) ||
304 osrczone
!= srczone
) {
305 SASEL_LOG("NEXT ia %s ifp1 %s osrczone %d != srczone %d\n",
306 s_src
, ifp1
->if_xname
, osrczone
, srczone
);
309 /* avoid unusable addresses */
311 (IN6_IFF_NOTREADY
| IN6_IFF_ANYCAST
| IN6_IFF_DETACHED
))) {
312 SASEL_LOG("NEXT ia %s ifp1 %s ia6_flags 0x%x\n",
313 s_src
, ifp1
->if_xname
, ia
->ia6_flags
);
316 if (!ip6_use_deprecated
&& IFA6_IS_DEPRECATED(ia
, secs
)) {
317 SASEL_LOG("NEXT ia %s ifp1 %s IFA6_IS_DEPRECATED\n",
318 s_src
, ifp1
->if_xname
);
321 if (!nd6_optimistic_dad
&&
322 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0) {
323 SASEL_LOG("NEXT ia %s ifp1 %s IN6_IFF_OPTIMISTIC\n",
324 s_src
, ifp1
->if_xname
);
327 /* Rule 1: Prefer same address */
328 if (IN6_ARE_ADDR_EQUAL(&dst
, &ia
->ia_addr
.sin6_addr
))
329 BREAK(IP6S_SRCRULE_1
); /* there should be no better candidate */
332 REPLACE(IP6S_SRCRULE_0
);
334 /* Rule 2: Prefer appropriate scope */
336 dst_scope
= in6_addrscope(&dst
);
337 new_scope
= in6_addrscope(&ia
->ia_addr
.sin6_addr
);
338 if (IN6_ARE_SCOPE_CMP(best_scope
, new_scope
) < 0) {
339 if (IN6_ARE_SCOPE_CMP(best_scope
, dst_scope
) < 0)
340 REPLACE(IP6S_SRCRULE_2
);
341 NEXTSRC(IP6S_SRCRULE_2
);
342 } else if (IN6_ARE_SCOPE_CMP(new_scope
, best_scope
) < 0) {
343 if (IN6_ARE_SCOPE_CMP(new_scope
, dst_scope
) < 0)
344 NEXTSRC(IP6S_SRCRULE_2
);
345 REPLACE(IP6S_SRCRULE_2
);
349 * Rule 3: Avoid deprecated addresses. Note that the case of
350 * !ip6_use_deprecated is already rejected above.
352 if (!IFA6_IS_DEPRECATED(ia_best
, secs
) &&
353 IFA6_IS_DEPRECATED(ia
, secs
))
354 NEXTSRC(IP6S_SRCRULE_3
);
355 if (IFA6_IS_DEPRECATED(ia_best
, secs
) &&
356 !IFA6_IS_DEPRECATED(ia
, secs
))
357 REPLACE(IP6S_SRCRULE_3
);
360 * RFC 4429 says that optimistic addresses are equivalent to
361 * deprecated addresses, so avoid them here.
363 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0 &&
364 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0)
365 NEXTSRC(IP6S_SRCRULE_3
);
366 if ((ia_best
->ia6_flags
& IN6_IFF_OPTIMISTIC
) != 0 &&
367 (ia
->ia6_flags
& IN6_IFF_OPTIMISTIC
) == 0)
368 REPLACE(IP6S_SRCRULE_3
);
370 /* Rule 4: Prefer home addresses */
372 * XXX: This is a TODO. We should probably merge the MIP6
376 /* Rule 5: Prefer outgoing interface */
378 * XXX By default we are strong end with source address
379 * selection. That means all address selection candidate
380 * addresses will be the ones hosted on the outgoing interface
381 * making the following check redundant.
383 if (ip6_select_src_strong_end
== 0) {
384 if (ia_best
->ia_ifp
== ifp
&& ia
->ia_ifp
!= ifp
)
385 NEXTSRC(IP6S_SRCRULE_5
);
386 if (ia_best
->ia_ifp
!= ifp
&& ia
->ia_ifp
== ifp
)
387 REPLACE(IP6S_SRCRULE_5
);
391 * Rule 6: Prefer matching label
392 * Note that best_policy should be non-NULL here.
394 if (dst_policy
== NULL
)
395 dst_policy
= in6_addrsel_lookup_policy(dstsock
);
396 if (dst_policy
->label
!= ADDR_LABEL_NOTAPP
) {
397 new_policy
= in6_addrsel_lookup_policy(&ia
->ia_addr
);
398 if (dst_policy
->label
== best_policy
->label
&&
399 dst_policy
->label
!= new_policy
->label
)
400 NEXTSRC(IP6S_SRCRULE_6
);
401 if (dst_policy
->label
!= best_policy
->label
&&
402 dst_policy
->label
== new_policy
->label
)
403 REPLACE(IP6S_SRCRULE_6
);
407 * Rule 7: Prefer temporary addresses.
408 * We allow users to reverse the logic by configuring
409 * a sysctl variable, so that transparency conscious users can
410 * always prefer stable addresses.
412 if (!(ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
413 (ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
414 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
)
415 REPLACE(IP6S_SRCRULE_7
);
417 NEXTSRC(IP6S_SRCRULE_7
);
419 if ((ia_best
->ia6_flags
& IN6_IFF_TEMPORARY
) &&
420 !(ia
->ia6_flags
& IN6_IFF_TEMPORARY
)) {
421 if (hint_mask
& IPV6_SRCSEL_HINT_PREFER_TMPADDR
)
422 NEXTSRC(IP6S_SRCRULE_7
);
424 REPLACE(IP6S_SRCRULE_7
);
428 * Rule 7x: prefer addresses on alive interfaces.
429 * This is a KAME specific rule.
431 if ((ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
432 !(ia
->ia_ifp
->if_flags
& IFF_UP
))
433 NEXTSRC(IP6S_SRCRULE_7x
);
434 if (!(ia_best
->ia_ifp
->if_flags
& IFF_UP
) &&
435 (ia
->ia_ifp
->if_flags
& IFF_UP
))
436 REPLACE(IP6S_SRCRULE_7x
);
439 * Rule 8: Use longest matching prefix.
441 new_matchlen
= in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
);
442 if (best_matchlen
< new_matchlen
)
443 REPLACE(IP6S_SRCRULE_8
);
444 if (new_matchlen
< best_matchlen
)
445 NEXTSRC(IP6S_SRCRULE_8
);
448 * Last resort: just keep the current candidate.
449 * Or, do we need more rules?
451 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
452 ip6_select_src_expensive_secondary_if
== 0) {
453 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
454 s_src
, ifp1
->if_xname
);
455 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
458 SASEL_LOG("NEXT ia %s ifp1 %s last resort\n",
459 s_src
, ifp1
->if_xname
);
460 IFA_UNLOCK(&ia
->ia_ifa
);
465 * Ignore addresses on secondary interfaces that are marked
468 if (ifp1
!= ifp
&& (ifp1
->if_eflags
& IFEF_EXPENSIVE
) &&
469 ip6_select_src_expensive_secondary_if
== 0) {
470 SASEL_LOG("NEXT ia %s ifp1 %s IFEF_EXPENSIVE\n",
471 s_src
, ifp1
->if_xname
);
472 ip6stat
.ip6s_sources_skip_expensive_secondary_if
++;
476 best_scope
= (new_scope
>= 0 ? new_scope
:
477 in6_addrscope(&ia
->ia_addr
.sin6_addr
));
478 best_policy
= (new_policy
? new_policy
:
479 in6_addrsel_lookup_policy(&ia
->ia_addr
));
480 best_matchlen
= (new_matchlen
>= 0 ? new_matchlen
:
481 in6_matchlen(&ia
->ia_addr
.sin6_addr
, &dst
));
482 SASEL_LOG("NEXT ia %s ifp1 %s best_scope %d new_scope %d dst_scope %d\n",
483 s_src
, ifp1
->if_xname
, best_scope
, new_scope
, dst_scope
);
484 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
485 IFA_UNLOCK(&ia
->ia_ifa
);
487 IFA_REMREF(&ia_best
->ia_ifa
);
492 IFA_UNLOCK(&ia
->ia_ifa
);
496 IFA_ADDREF_LOCKED(&ia
->ia_ifa
); /* for ia_best */
497 IFA_UNLOCK(&ia
->ia_ifa
);
499 IFA_REMREF(&ia_best
->ia_ifa
);
504 lck_rw_done(&in6_ifaddr_rwlock
);
506 if ((ia
= ia_best
) == NULL
) {
508 *errorp
= EADDRNOTAVAIL
;
514 *sifp
= ia
->ia_ifa
.ifa_ifp
;
515 ifnet_reference(*sifp
);
518 IFA_LOCK_SPIN(&ia
->ia_ifa
);
519 if (bestrule
< IP6S_SRCRULE_COUNT
)
520 ip6stat
.ip6s_sources_rule
[bestrule
]++;
521 *src_storage
= satosin6(&ia
->ia_addr
)->sin6_addr
;
522 IFA_UNLOCK(&ia
->ia_ifa
);
525 *ifapp
= &ia
->ia_ifa
;
527 IFA_REMREF(&ia
->ia_ifa
);
531 (void) inet_ntop(AF_INET6
, &dst
, s_dst
, sizeof (s_src
));
533 tmp
= (src_storage
!= NULL
) ? src_storage
: &in6addr_any
;
534 (void) inet_ntop(AF_INET6
, tmp
, s_src
, sizeof (s_src
));
536 printf("%s out src %s dst %s dst_scope %d best_scope %d\n",
537 __func__
, s_src
, s_dst
, dst_scope
, best_scope
);
540 return (src_storage
);
544 * Regardless of error, it will return an ifp with a reference held if the
545 * caller provides a non-NULL ifpp. The caller is responsible for checking
546 * if the returned ifp is valid and release its reference at all times.
549 in6_selectsrc(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
550 struct inpcb
*inp
, struct route_in6
*ro
,
551 struct ifnet
**ifpp
, struct in6_addr
*src_storage
, unsigned int ifscope
,
554 struct ifnet
*ifp
= NULL
;
555 struct in6_pktinfo
*pi
= NULL
;
556 struct ip6_moptions
*mopts
;
557 struct ip6_out_args ip6oa
= { ifscope
, { 0 }, IP6OAF_SELECT_SRCIF
, 0,
558 SO_TC_UNSPEC
, _NET_SERVICE_TYPE_UNSPEC
};
559 boolean_t inp_debug
= FALSE
;
560 uint32_t hint_mask
= 0;
561 int prefer_tempaddr
= 0;
562 struct ifnet
*sifp
= NULL
;
569 inp_debug
= SASEL_DO_DBG(inp
);
570 mopts
= inp
->in6p_moptions
;
571 if (INP_NO_CELLULAR(inp
))
572 ip6oa
.ip6oa_flags
|= IP6OAF_NO_CELLULAR
;
573 if (INP_NO_EXPENSIVE(inp
))
574 ip6oa
.ip6oa_flags
|= IP6OAF_NO_EXPENSIVE
;
575 if (INP_AWDL_UNRESTRICTED(inp
))
576 ip6oa
.ip6oa_flags
|= IP6OAF_AWDL_UNRESTRICTED
;
577 if (INP_INTCOPROC_ALLOWED(inp
))
578 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
;
581 /* Allow the kernel to retransmit packets. */
582 ip6oa
.ip6oa_flags
|= IP6OAF_INTCOPROC_ALLOWED
|
583 IP6OAF_AWDL_UNRESTRICTED
;
586 if (ip6oa
.ip6oa_boundif
!= IFSCOPE_NONE
)
587 ip6oa
.ip6oa_flags
|= IP6OAF_BOUND_IF
;
590 * If the source address is explicitly specified by the caller,
591 * check if the requested source address is indeed a unicast address
592 * assigned to the node, and can be used as the packet's source
593 * address. If everything is okay, use the address as source.
595 if (opts
&& (pi
= opts
->ip6po_pktinfo
) &&
596 !IN6_IS_ADDR_UNSPECIFIED(&pi
->ipi6_addr
)) {
597 struct sockaddr_in6 srcsock
;
598 struct in6_ifaddr
*ia6
;
600 /* get the outgoing interface */
601 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
608 * determine the appropriate zone id of the source based on
609 * the zone of the destination and the outgoing interface.
610 * If the specified address is ambiguous wrt the scope zone,
611 * the interface must be specified; otherwise, ifa_ifwithaddr()
612 * will fail matching the address.
614 bzero(&srcsock
, sizeof (srcsock
));
615 srcsock
.sin6_family
= AF_INET6
;
616 srcsock
.sin6_len
= sizeof (srcsock
);
617 srcsock
.sin6_addr
= pi
->ipi6_addr
;
619 *errorp
= in6_setscope(&srcsock
.sin6_addr
, ifp
, NULL
);
625 ia6
= (struct in6_ifaddr
*)ifa_ifwithaddr((struct sockaddr
*)
628 *errorp
= EADDRNOTAVAIL
;
632 IFA_LOCK_SPIN(&ia6
->ia_ifa
);
633 if ((ia6
->ia6_flags
& (IN6_IFF_ANYCAST
| IN6_IFF_NOTREADY
)) ||
634 (inp
&& inp_restricted_send(inp
, ia6
->ia_ifa
.ifa_ifp
))) {
635 IFA_UNLOCK(&ia6
->ia_ifa
);
636 IFA_REMREF(&ia6
->ia_ifa
);
637 *errorp
= EHOSTUNREACH
;
642 *src_storage
= satosin6(&ia6
->ia_addr
)->sin6_addr
;
643 IFA_UNLOCK(&ia6
->ia_ifa
);
644 IFA_REMREF(&ia6
->ia_ifa
);
649 * Otherwise, if the socket has already bound the source, just use it.
651 if (inp
!= NULL
&& !IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
652 src_storage
= &inp
->in6p_laddr
;
657 * If the address is not specified, choose the best one based on
658 * the outgoing interface and the destination address.
660 /* get the outgoing interface */
661 if ((*errorp
= in6_selectif(dstsock
, opts
, mopts
, ro
, &ip6oa
,
670 opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_SYSTEM
) {
671 prefer_tempaddr
= ip6_prefer_tempaddr
;
672 } else if (opts
->ip6po_prefer_tempaddr
== IP6PO_TEMPADDR_NOTPREFER
) {
678 hint_mask
|= IPV6_SRCSEL_HINT_PREFER_TMPADDR
;
680 if (in6_selectsrc_core(dstsock
, hint_mask
, ifp
, inp_debug
, src_storage
,
681 &sifp
, errorp
, NULL
) == NULL
) {
686 VERIFY(sifp
!= NULL
);
688 if (inp
&& inp_restricted_send(inp
, sifp
)) {
690 *errorp
= EHOSTUNREACH
;
699 /* if ifp is non-NULL, refcnt held in in6_selectif() */
701 } else if (ifp
!= NULL
) {
704 return (src_storage
);
708 * Given a source IPv6 address (and route, if available), determine the best
709 * interface to send the packet from. Checking for (and updating) the
710 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
711 * without any locks, based on the assumption that in the event this is
712 * called from ip6_output(), the output operation is single-threaded per-pcb,
713 * i.e. for any given pcb there can only be one thread performing output at
716 * This routine is analogous to in_selectsrcif() for IPv4. Regardless of
717 * error, it will return an ifp with a reference held if the caller provides
718 * a non-NULL retifp. The caller is responsible for checking if the
719 * returned ifp is valid and release its reference at all times.
721 * clone - meaningful only for bsdi and freebsd
724 selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
725 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
726 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
,
727 struct ifnet
**retifp
, struct rtentry
**retrt
, int clone
,
728 int norouteok
, struct ip6_out_args
*ip6oa
)
731 struct ifnet
*ifp
= NULL
, *ifp0
= NULL
;
732 struct route_in6
*route
= NULL
;
733 struct sockaddr_in6
*sin6_next
;
734 struct in6_pktinfo
*pi
= NULL
;
735 struct in6_addr
*dst
= &dstsock
->sin6_addr
;
736 struct ifaddr
*ifa
= NULL
;
737 char s_src
[MAX_IPv6_STR_LEN
], s_dst
[MAX_IPv6_STR_LEN
];
738 boolean_t select_srcif
, proxied_ifa
= FALSE
, local_dst
= FALSE
;
739 unsigned int ifscope
= ((ip6oa
!= NULL
) ?
740 ip6oa
->ip6oa_boundif
: IFSCOPE_NONE
);
748 if (ip6_select_srcif_debug
) {
750 src
= (srcsock
!= NULL
) ? srcsock
->sin6_addr
: in6addr_any
;
751 (void) inet_ntop(AF_INET6
, &src
, s_src
, sizeof (s_src
));
752 (void) inet_ntop(AF_INET6
, dst
, s_dst
, sizeof (s_dst
));
756 * If the destination address is UNSPECIFIED addr, bail out.
758 if (IN6_IS_ADDR_UNSPECIFIED(dst
)) {
759 error
= EHOSTUNREACH
;
764 * Perform source interface selection only if Scoped Routing
765 * is enabled and a source address that isn't unspecified.
767 select_srcif
= (srcsock
!= NULL
&&
768 !IN6_IS_ADDR_UNSPECIFIED(&srcsock
->sin6_addr
));
770 if (ip6_select_srcif_debug
) {
771 printf("%s src %s dst %s ifscope %d select_srcif %d\n",
772 __func__
, s_src
, s_dst
, ifscope
, select_srcif
);
775 /* If the caller specified the outgoing interface explicitly, use it */
776 if (opts
!= NULL
&& (pi
= opts
->ip6po_pktinfo
) != NULL
&&
777 pi
->ipi6_ifindex
!= 0) {
779 * If IPV6_PKTINFO takes precedence over IPV6_BOUND_IF.
781 ifscope
= pi
->ipi6_ifindex
;
782 ifnet_head_lock_shared();
783 /* ifp may be NULL if detached or out of range */
785 ((ifscope
<= if_index
) ? ifindex2ifnet
[ifscope
] : NULL
);
787 if (norouteok
|| retrt
== NULL
|| IN6_IS_ADDR_MULTICAST(dst
)) {
789 * We do not have to check or get the route for
790 * multicast. If the caller didn't ask/care for
791 * the route and we have no interface to use,
795 error
= EHOSTUNREACH
;
803 * If the destination address is a multicast address and the outgoing
804 * interface for the address is specified by the caller, use it.
806 if (IN6_IS_ADDR_MULTICAST(dst
) && mopts
!= NULL
) {
808 if ((ifp
= ifp0
= mopts
->im6o_multicast_ifp
) != NULL
) {
810 goto done
; /* we do not need a route for multicast. */
817 * If the outgoing interface was not set via IPV6_BOUND_IF or
818 * IPV6_PKTINFO, use the scope ID in the destination address.
820 if (ifscope
== IFSCOPE_NONE
)
821 ifscope
= dstsock
->sin6_scope_id
;
824 * Perform source interface selection; the source IPv6 address
825 * must belong to one of the addresses of the interface used
826 * by the route. For performance reasons, do this only if
827 * there is no route, or if the routing table has changed,
828 * or if we haven't done source interface selection on this
829 * route (for this PCB instance) before.
833 } else if (!ROUTE_UNUSABLE(ro
) && ro
->ro_srcia
!= NULL
&&
834 (ro
->ro_flags
& ROF_SRCIF_SELECTED
)) {
835 if (ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)
838 IFA_ADDREF(ifa
); /* for caller */
843 * Given the source IPv6 address, find a suitable source interface
844 * to use for transmission; if a scope ID has been specified,
845 * optimize the search by looking at the addresses only for that
846 * interface. This is still suboptimal, however, as we need to
847 * traverse the per-interface list.
849 if (ifscope
!= IFSCOPE_NONE
|| (ro
!= NULL
&& ro
->ro_rt
!= NULL
)) {
850 unsigned int scope
= ifscope
;
851 struct ifnet
*rt_ifp
;
853 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
856 * If no scope is specified and the route is stale (pointing
857 * to a defunct interface) use the current primary interface;
858 * this happens when switching between interfaces configured
859 * with the same IPv6 address. Otherwise pick up the scope
860 * information from the route; the ULP may have looked up a
861 * correct route and we just need to verify it here and mark
862 * it with the ROF_SRCIF_SELECTED flag below.
864 if (scope
== IFSCOPE_NONE
) {
865 scope
= rt_ifp
->if_index
;
866 if (scope
!= get_primary_ifscope(AF_INET6
) &&
868 scope
= get_primary_ifscope(AF_INET6
);
871 ifa
= (struct ifaddr
*)
872 ifa_foraddr6_scoped(&srcsock
->sin6_addr
, scope
);
875 * If we are forwarding and proxying prefix(es), see if the
876 * source address is one of ours and is a proxied address;
879 if (ifa
== NULL
&& ip6_forwarding
&& nd6_prproxy
) {
880 ifa
= (struct ifaddr
*)
881 ifa_foraddr6(&srcsock
->sin6_addr
);
882 if (ifa
!= NULL
&& !(proxied_ifa
=
883 nd6_prproxy_ifaddr((struct in6_ifaddr
*)ifa
))) {
889 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
890 if (ro
->ro_rt
!= NULL
) {
891 printf("%s %s->%s ifscope %d->%d ifa_if %s "
894 s_src
, s_dst
, ifscope
,
895 scope
, if_name(ifa
->ifa_ifp
),
898 printf("%s %s->%s ifscope %d->%d ifa_if %s\n",
900 s_src
, s_dst
, ifscope
, scope
,
901 if_name(ifa
->ifa_ifp
));
907 * Slow path; search for an interface having the corresponding source
908 * IPv6 address if the scope was not specified by the caller, and:
910 * 1) There currently isn't any route, or,
911 * 2) The interface used by the route does not own that source
912 * IPv6 address; in this case, the route will get blown away
913 * and we'll do a more specific scoped search using the newly
916 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
917 struct ifaddr
*ifadst
;
919 /* Check if the destination address is one of ours */
920 ifadst
= (struct ifaddr
*)ifa_foraddr6(&dstsock
->sin6_addr
);
921 if (ifadst
!= NULL
) {
926 ifa
= (struct ifaddr
*)ifa_foraddr6(&srcsock
->sin6_addr
);
928 if (ip6_select_srcif_debug
&& ifa
!= NULL
) {
929 printf("%s %s->%s ifscope %d ifa_if %s\n",
931 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
932 } else if (ip6_select_srcif_debug
) {
933 printf("%s %s->%s ifscope %d ifa_if NULL\n",
935 s_src
, s_dst
, ifscope
);
940 if (ifa
!= NULL
&& !proxied_ifa
&& !local_dst
)
941 ifscope
= ifa
->ifa_ifp
->if_index
;
944 * If the next hop address for the packet is specified by the caller,
945 * use it as the gateway.
947 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
948 struct route_in6
*ron
;
950 sin6_next
= satosin6(opts
->ip6po_nexthop
);
952 /* at this moment, we only support AF_INET6 next hops */
953 if (sin6_next
->sin6_family
!= AF_INET6
) {
954 error
= EAFNOSUPPORT
; /* or should we proceed? */
959 * If the next hop is an IPv6 address, then the node identified
960 * by that address must be a neighbor of the sending host.
962 ron
= &opts
->ip6po_nextroute
;
963 if (ron
->ro_rt
!= NULL
)
965 if (ROUTE_UNUSABLE(ron
) || (ron
->ro_rt
!= NULL
&&
966 (!(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
967 (select_srcif
&& (ifa
== NULL
||
968 (ifa
->ifa_ifp
!= ron
->ro_rt
->rt_ifp
&& !proxied_ifa
))))) ||
969 !IN6_ARE_ADDR_EQUAL(&satosin6(&ron
->ro_dst
)->sin6_addr
,
970 &sin6_next
->sin6_addr
)) {
971 if (ron
->ro_rt
!= NULL
)
972 RT_UNLOCK(ron
->ro_rt
);
975 *satosin6(&ron
->ro_dst
) = *sin6_next
;
977 if (ron
->ro_rt
== NULL
) {
978 rtalloc_scoped((struct route
*)ron
, ifscope
);
979 if (ron
->ro_rt
!= NULL
)
981 if (ROUTE_UNUSABLE(ron
) ||
982 !(ron
->ro_rt
->rt_flags
& RTF_LLINFO
) ||
983 !IN6_ARE_ADDR_EQUAL(&satosin6(rt_key(ron
->ro_rt
))->
984 sin6_addr
, &sin6_next
->sin6_addr
)) {
985 if (ron
->ro_rt
!= NULL
)
986 RT_UNLOCK(ron
->ro_rt
);
989 error
= EHOSTUNREACH
;
994 ifp
= ifp0
= ron
->ro_rt
->rt_ifp
;
997 * When cloning is required, try to allocate a route to the
998 * destination so that the caller can store path MTU
1003 /* Keep the route locked */
1006 RT_UNLOCK(ron
->ro_rt
);
1009 RT_UNLOCK(ron
->ro_rt
);
1013 * Use a cached route if it exists and is valid, else try to allocate
1014 * a new one. Note that we should check the address family of the
1015 * cached destination, in case of sharing the cache with IPv4.
1019 if (ro
->ro_rt
!= NULL
)
1020 RT_LOCK_SPIN(ro
->ro_rt
);
1021 if (ROUTE_UNUSABLE(ro
) || (ro
->ro_rt
!= NULL
&&
1022 (satosin6(&ro
->ro_dst
)->sin6_family
!= AF_INET6
||
1023 !IN6_ARE_ADDR_EQUAL(&satosin6(&ro
->ro_dst
)->sin6_addr
, dst
) ||
1024 (select_srcif
&& (ifa
== NULL
||
1025 (ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& !proxied_ifa
)))))) {
1026 if (ro
->ro_rt
!= NULL
)
1027 RT_UNLOCK(ro
->ro_rt
);
1031 if (ro
->ro_rt
== NULL
) {
1032 struct sockaddr_in6
*sa6
;
1034 if (ro
->ro_rt
!= NULL
)
1035 RT_UNLOCK(ro
->ro_rt
);
1036 /* No route yet, so try to acquire one */
1037 bzero(&ro
->ro_dst
, sizeof (struct sockaddr_in6
));
1038 sa6
= (struct sockaddr_in6
*)&ro
->ro_dst
;
1039 sa6
->sin6_family
= AF_INET6
;
1040 sa6
->sin6_len
= sizeof (struct sockaddr_in6
);
1041 sa6
->sin6_addr
= *dst
;
1042 if (IN6_IS_ADDR_MULTICAST(dst
)) {
1043 ro
->ro_rt
= rtalloc1_scoped(
1044 &((struct route
*)ro
)->ro_dst
, 0, 0, ifscope
);
1046 rtalloc_scoped((struct route
*)ro
, ifscope
);
1048 if (ro
->ro_rt
!= NULL
)
1049 RT_LOCK_SPIN(ro
->ro_rt
);
1053 * Do not care about the result if we have the nexthop
1054 * explicitly specified (in case we're asked to clone.)
1056 if (opts
!= NULL
&& opts
->ip6po_nexthop
!= NULL
) {
1057 if (ro
->ro_rt
!= NULL
)
1058 RT_UNLOCK(ro
->ro_rt
);
1062 if (ro
->ro_rt
!= NULL
) {
1063 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1064 ifp
= ifp0
= ro
->ro_rt
->rt_ifp
;
1066 error
= EHOSTUNREACH
;
1072 boolean_t has_route
= (route
!= NULL
&& route
->ro_rt
!= NULL
);
1073 boolean_t srcif_selected
= FALSE
;
1076 RT_LOCK_ASSERT_HELD(route
->ro_rt
);
1078 * If there is a non-loopback route with the wrong interface,
1079 * or if there is no interface configured with such an address,
1080 * blow it away. Except for local/loopback, we look for one
1081 * with a matching interface scope/index.
1083 if (has_route
&& (ifa
== NULL
||
1084 (ifa
->ifa_ifp
!= ifp
&& ifp
!= lo_ifp
) ||
1085 !(route
->ro_rt
->rt_flags
& RTF_UP
))) {
1087 * If the destination address belongs to a proxied
1088 * prefix, relax the requirement and allow the packet
1089 * to come out of the proxy interface with the source
1090 * address of the real interface.
1092 if (ifa
!= NULL
&& proxied_ifa
&&
1093 (route
->ro_rt
->rt_flags
& (RTF_UP
|RTF_PROXY
)) ==
1094 (RTF_UP
|RTF_PROXY
)) {
1095 srcif_selected
= TRUE
;
1097 if (ip6_select_srcif_debug
) {
1099 printf("%s->%s ifscope %d "
1100 "ro_if %s != ifa_if %s "
1101 "(cached route cleared)\n",
1103 ifscope
, if_name(ifp
),
1104 if_name(ifa
->ifa_ifp
));
1106 printf("%s->%s ifscope %d "
1107 "ro_if %s (no ifa_if "
1108 "found)\n", s_src
, s_dst
,
1109 ifscope
, if_name(ifp
));
1112 RT_UNLOCK(route
->ro_rt
);
1113 ROUTE_RELEASE(route
);
1114 error
= EHOSTUNREACH
;
1115 /* Undo the settings done above */
1117 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1120 } else if (has_route
) {
1121 srcif_selected
= TRUE
;
1124 if (srcif_selected
) {
1126 if (ifa
!= route
->ro_srcia
||
1127 !(route
->ro_flags
& ROF_SRCIF_SELECTED
)) {
1128 RT_CONVERT_LOCK(route
->ro_rt
);
1130 IFA_ADDREF(ifa
); /* for route_in6 */
1131 if (route
->ro_srcia
!= NULL
)
1132 IFA_REMREF(route
->ro_srcia
);
1133 route
->ro_srcia
= ifa
;
1134 route
->ro_flags
|= ROF_SRCIF_SELECTED
;
1135 RT_GENID_SYNC(route
->ro_rt
);
1137 RT_UNLOCK(route
->ro_rt
);
1140 if (ro
->ro_rt
!= NULL
)
1141 RT_UNLOCK(ro
->ro_rt
);
1142 if (ifp
!= NULL
&& opts
!= NULL
&&
1143 opts
->ip6po_pktinfo
!= NULL
&&
1144 opts
->ip6po_pktinfo
->ipi6_ifindex
!= 0) {
1146 * Check if the outgoing interface conflicts with the
1147 * interface specified by ipi6_ifindex (if specified).
1148 * Note that loopback interface is always okay.
1149 * (this may happen when we are sending a packet to
1150 * one of our own addresses.)
1152 if (!(ifp
->if_flags
& IFF_LOOPBACK
) && ifp
->if_index
!=
1153 opts
->ip6po_pktinfo
->ipi6_ifindex
) {
1154 error
= EHOSTUNREACH
;
1162 * Check for interface restrictions.
1164 #define CHECK_RESTRICTIONS(_ip6oa, _ifp) \
1165 ((((_ip6oa)->ip6oa_flags & IP6OAF_NO_CELLULAR) && \
1166 IFNET_IS_CELLULAR(_ifp)) || \
1167 (((_ip6oa)->ip6oa_flags & IP6OAF_NO_EXPENSIVE) && \
1168 IFNET_IS_EXPENSIVE(_ifp)) || \
1169 (!((_ip6oa)->ip6oa_flags & IP6OAF_INTCOPROC_ALLOWED) && \
1170 IFNET_IS_INTCOPROC(_ifp)) || \
1171 (!((_ip6oa)->ip6oa_flags & IP6OAF_AWDL_UNRESTRICTED) && \
1172 IFNET_IS_AWDL_RESTRICTED(_ifp)))
1174 if (error
== 0 && ip6oa
!= NULL
&&
1175 ((ifp
&& CHECK_RESTRICTIONS(ip6oa
, ifp
)) ||
1176 (route
&& route
->ro_rt
&&
1177 CHECK_RESTRICTIONS(ip6oa
, route
->ro_rt
->rt_ifp
)))) {
1178 if (route
!= NULL
&& route
->ro_rt
!= NULL
) {
1179 ROUTE_RELEASE(route
);
1182 ifp
= NULL
; /* ditch ifp; keep ifp0 */
1183 error
= EHOSTUNREACH
;
1184 ip6oa
->ip6oa_retflags
|= IP6OARF_IFDENIED
;
1186 #undef CHECK_RESTRICTIONS
1189 * If the interface is disabled for IPv6, then ENETDOWN error.
1192 ifp
!= NULL
&& (ifp
->if_eflags
& IFEF_IPV6_DISABLED
)) {
1196 if (ifp
== NULL
&& (route
== NULL
|| route
->ro_rt
== NULL
)) {
1198 * This can happen if the caller did not pass a cached route
1199 * nor any other hints. We treat this case an error.
1201 error
= EHOSTUNREACH
;
1203 if (error
== EHOSTUNREACH
|| error
== ENETDOWN
)
1204 ip6stat
.ip6s_noroute
++;
1207 * We'll return ifp regardless of error, so pick it up from ifp0
1208 * in case it was nullified above. Caller is responsible for
1209 * releasing the ifp if it is non-NULL.
1212 if (retifp
!= NULL
) {
1214 ifnet_reference(ifp
); /* for caller */
1218 if (retsrcia
!= NULL
) {
1220 IFA_ADDREF(ifa
); /* for caller */
1221 *retsrcia
= (struct in6_ifaddr
*)ifa
;
1225 if (retrt
!= NULL
&& route
!= NULL
)
1226 *retrt
= route
->ro_rt
; /* ro_rt may be NULL */
1228 if (ip6_select_srcif_debug
) {
1229 printf("%s %s->%s ifscope %d ifa_if %s ro_if %s (error=%d)\n",
1231 s_src
, s_dst
, ifscope
,
1232 (ifa
!= NULL
) ? if_name(ifa
->ifa_ifp
) : "NONE",
1233 (ifp
!= NULL
) ? if_name(ifp
) : "NONE", error
);
1243 * Regardless of error, it will return an ifp with a reference held if the
1244 * caller provides a non-NULL retifp. The caller is responsible for checking
1245 * if the returned ifp is valid and release its reference at all times.
1248 in6_selectif(struct sockaddr_in6
*dstsock
, struct ip6_pktopts
*opts
,
1249 struct ip6_moptions
*mopts
, struct route_in6
*ro
,
1250 struct ip6_out_args
*ip6oa
, struct ifnet
**retifp
)
1253 struct route_in6 sro
;
1254 struct rtentry
*rt
= NULL
;
1257 bzero(&sro
, sizeof (sro
));
1261 if ((err
= selectroute(NULL
, dstsock
, opts
, mopts
, NULL
, ro
, retifp
,
1262 &rt
, 0, 1, ip6oa
)) != 0)
1266 * do not use a rejected or black hole route.
1267 * XXX: this check should be done in the L2 output routine.
1268 * However, if we skipped this check here, we'd see the following
1270 * - install a rejected route for a scoped address prefix
1272 * - send a packet to a destination that matches the scoped prefix,
1273 * with ambiguity about the scope zone.
1274 * - pick the outgoing interface from the route, and disambiguate the
1275 * scope zone with the interface.
1276 * - ip6_output() would try to get another route with the "new"
1277 * destination, which may be valid.
1278 * - we'd see no error on output.
1279 * Although this may not be very harmful, it should still be confusing.
1280 * We thus reject the case here.
1282 if (rt
&& (rt
->rt_flags
& (RTF_REJECT
| RTF_BLACKHOLE
))) {
1283 err
= ((rt
->rt_flags
& RTF_HOST
) ? EHOSTUNREACH
: ENETUNREACH
);
1288 * Adjust the "outgoing" interface. If we're going to loop the packet
1289 * back to ourselves, the ifp would be the loopback interface.
1290 * However, we'd rather know the interface associated to the
1291 * destination address (which should probably be one of our own
1294 if (rt
!= NULL
&& rt
->rt_ifa
!= NULL
&& rt
->rt_ifa
->ifa_ifp
!= NULL
&&
1296 ifnet_reference(rt
->rt_ifa
->ifa_ifp
);
1297 if (*retifp
!= NULL
)
1298 ifnet_release(*retifp
);
1299 *retifp
= rt
->rt_ifa
->ifa_ifp
;
1304 VERIFY(rt
== NULL
|| rt
== ro
->ro_rt
);
1309 * retifp might point to a valid ifp with a reference held;
1310 * caller is responsible for releasing it if non-NULL.
1316 * Regardless of error, it will return an ifp with a reference held if the
1317 * caller provides a non-NULL retifp. The caller is responsible for checking
1318 * if the returned ifp is valid and release its reference at all times.
1320 * clone - meaningful only for bsdi and freebsd
1323 in6_selectroute(struct sockaddr_in6
*srcsock
, struct sockaddr_in6
*dstsock
,
1324 struct ip6_pktopts
*opts
, struct ip6_moptions
*mopts
,
1325 struct in6_ifaddr
**retsrcia
, struct route_in6
*ro
, struct ifnet
**retifp
,
1326 struct rtentry
**retrt
, int clone
, struct ip6_out_args
*ip6oa
)
1329 return (selectroute(srcsock
, dstsock
, opts
, mopts
, retsrcia
, ro
, retifp
,
1330 retrt
, clone
, 0, ip6oa
));
1334 * Default hop limit selection. The precedence is as follows:
1335 * 1. Hoplimit value specified via ioctl.
1336 * 2. (If the outgoing interface is detected) the current
1337 * hop limit of the interface specified by router advertisement.
1338 * 3. The system default hoplimit.
1341 in6_selecthlim(struct in6pcb
*in6p
, struct ifnet
*ifp
)
1343 if (in6p
&& in6p
->in6p_hops
>= 0) {
1344 return (in6p
->in6p_hops
);
1345 } else if (NULL
!= ifp
) {
1347 struct nd_ifinfo
*ndi
= ND_IFINFO(ifp
);
1348 if (ndi
&& ndi
->initialized
) {
1349 /* access chlim without lock, for performance */
1352 chlim
= ip6_defhlim
;
1357 return (ip6_defhlim
);
1361 * XXX: this is borrowed from in6_pcbbind(). If possible, we should
1362 * share this function by all *bsd*...
1365 in6_pcbsetport(struct in6_addr
*laddr
, struct inpcb
*inp
, struct proc
*p
,
1368 #pragma unused(laddr)
1369 struct socket
*so
= inp
->inp_socket
;
1370 u_int16_t lport
= 0, first
, last
, *lastport
;
1371 int count
, error
= 0, wild
= 0;
1373 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
1375 if (!locked
) { /* Make sure we don't run into a deadlock: 4052373 */
1376 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
1377 socket_unlock(inp
->inp_socket
, 0);
1378 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
1379 socket_lock(inp
->inp_socket
, 0);
1383 * Check if a local port was assigned to the inp while
1384 * this thread was waiting for the pcbinfo lock
1386 if (inp
->inp_lport
!= 0) {
1387 VERIFY(inp
->inp_flags2
& INP2_INHASHLIST
);
1388 lck_rw_done(pcbinfo
->ipi_lock
);
1391 * It is not an error if another thread allocated
1398 /* XXX: this is redundant when called from in6_pcbbind */
1399 if ((so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)) == 0)
1400 wild
= INPLOOKUP_WILDCARD
;
1402 if (inp
->inp_flags
& INP_HIGHPORT
) {
1403 first
= ipport_hifirstauto
; /* sysctl */
1404 last
= ipport_hilastauto
;
1405 lastport
= &pcbinfo
->ipi_lasthi
;
1406 } else if (inp
->inp_flags
& INP_LOWPORT
) {
1407 cred
= kauth_cred_proc_ref(p
);
1408 error
= priv_check_cred(cred
, PRIV_NETINET_RESERVEDPORT
, 0);
1409 kauth_cred_unref(&cred
);
1412 lck_rw_done(pcbinfo
->ipi_lock
);
1415 first
= ipport_lowfirstauto
; /* 1023 */
1416 last
= ipport_lowlastauto
; /* 600 */
1417 lastport
= &pcbinfo
->ipi_lastlow
;
1419 first
= ipport_firstauto
; /* sysctl */
1420 last
= ipport_lastauto
;
1421 lastport
= &pcbinfo
->ipi_lastport
;
1424 * Simple check to ensure all ports are not used up causing
1427 * We split the two cases (up and down) so that the direction
1428 * is not being tested on each round of the loop.
1434 count
= first
- last
;
1438 if (count
-- < 0) { /* completely used? */
1440 * Undo any address bind that may have
1443 inp
->in6p_laddr
= in6addr_any
;
1444 inp
->in6p_last_outifp
= NULL
;
1446 lck_rw_done(pcbinfo
->ipi_lock
);
1450 if (*lastport
> first
|| *lastport
< last
)
1452 lport
= htons(*lastport
);
1454 found
= in6_pcblookup_local(pcbinfo
, &inp
->in6p_laddr
,
1455 lport
, wild
) == NULL
;
1459 count
= last
- first
;
1463 if (count
-- < 0) { /* completely used? */
1465 * Undo any address bind that may have
1468 inp
->in6p_laddr
= in6addr_any
;
1469 inp
->in6p_last_outifp
= NULL
;
1471 lck_rw_done(pcbinfo
->ipi_lock
);
1475 if (*lastport
< first
|| *lastport
> last
)
1477 lport
= htons(*lastport
);
1479 found
= in6_pcblookup_local(pcbinfo
, &inp
->in6p_laddr
,
1480 lport
, wild
) == NULL
;
1484 inp
->inp_lport
= lport
;
1485 inp
->inp_flags
|= INP_ANONPORT
;
1487 if (in_pcbinshash(inp
, 1) != 0) {
1488 inp
->in6p_laddr
= in6addr_any
;
1489 inp
->in6p_last_outifp
= NULL
;
1492 inp
->inp_flags
&= ~INP_ANONPORT
;
1494 lck_rw_done(pcbinfo
->ipi_lock
);
1499 lck_rw_done(pcbinfo
->ipi_lock
);
1504 * The followings are implementation of the policy table using a
1505 * simple tail queue.
1506 * XXX such details should be hidden.
1507 * XXX implementation using binary tree should be more efficient.
1509 struct addrsel_policyent
{
1510 TAILQ_ENTRY(addrsel_policyent
) ape_entry
;
1511 struct in6_addrpolicy ape_policy
;
1514 TAILQ_HEAD(addrsel_policyhead
, addrsel_policyent
);
1516 struct addrsel_policyhead addrsel_policytab
;
1519 init_policy_queue(void)
1521 TAILQ_INIT(&addrsel_policytab
);
1525 addrsel_policy_init(void)
1528 * Default address selection policy based on RFC 6724.
1530 static const struct in6_addrpolicy defaddrsel
[] = {
1531 /* Loopback -- prefix=::1/128, precedence=50, label=0 */
1534 .sin6_family
= AF_INET6
,
1535 .sin6_addr
= IN6ADDR_LOOPBACK_INIT
,
1536 .sin6_len
= sizeof (struct sockaddr_in6
)
1539 .sin6_family
= AF_INET6
,
1540 .sin6_addr
= IN6MASK128
,
1541 .sin6_len
= sizeof (struct sockaddr_in6
)
1547 /* Unspecified -- prefix=::/0, precedence=40, label=1 */
1550 .sin6_family
= AF_INET6
,
1551 .sin6_addr
= IN6ADDR_ANY_INIT
,
1552 .sin6_len
= sizeof (struct sockaddr_in6
)
1555 .sin6_family
= AF_INET6
,
1556 .sin6_addr
= IN6MASK0
,
1557 .sin6_len
= sizeof (struct sockaddr_in6
)
1563 /* IPv4 Mapped -- prefix=::ffff:0:0/96, precedence=35, label=4 */
1566 .sin6_family
= AF_INET6
,
1567 .sin6_addr
= IN6ADDR_V4MAPPED_INIT
,
1568 .sin6_len
= sizeof (struct sockaddr_in6
)
1571 .sin6_family
= AF_INET6
,
1572 .sin6_addr
= IN6MASK96
,
1573 .sin6_len
= sizeof (struct sockaddr_in6
)
1579 /* 6to4 -- prefix=2002::/16, precedence=30, label=2 */
1582 .sin6_family
= AF_INET6
,
1583 .sin6_addr
= {{{ 0x20, 0x02 }}},
1584 .sin6_len
= sizeof (struct sockaddr_in6
)
1587 .sin6_family
= AF_INET6
,
1588 .sin6_addr
= IN6MASK16
,
1589 .sin6_len
= sizeof (struct sockaddr_in6
)
1595 /* Teredo -- prefix=2001::/32, precedence=5, label=5 */
1598 .sin6_family
= AF_INET6
,
1599 .sin6_addr
= {{{ 0x20, 0x01 }}},
1600 .sin6_len
= sizeof (struct sockaddr_in6
)
1603 .sin6_family
= AF_INET6
,
1604 .sin6_addr
= IN6MASK32
,
1605 .sin6_len
= sizeof (struct sockaddr_in6
)
1611 /* Unique Local (ULA) -- prefix=fc00::/7, precedence=3, label=13 */
1614 .sin6_family
= AF_INET6
,
1615 .sin6_addr
= {{{ 0xfc }}},
1616 .sin6_len
= sizeof (struct sockaddr_in6
)
1619 .sin6_family
= AF_INET6
,
1620 .sin6_addr
= IN6MASK7
,
1621 .sin6_len
= sizeof (struct sockaddr_in6
)
1627 /* IPv4 Compatible -- prefix=::/96, precedence=1, label=3 */
1630 .sin6_family
= AF_INET6
,
1631 .sin6_addr
= IN6ADDR_ANY_INIT
,
1632 .sin6_len
= sizeof (struct sockaddr_in6
)
1635 .sin6_family
= AF_INET6
,
1636 .sin6_addr
= IN6MASK96
,
1637 .sin6_len
= sizeof (struct sockaddr_in6
)
1643 /* Site-local (deprecated) -- prefix=fec0::/10, precedence=1, label=11 */
1646 .sin6_family
= AF_INET6
,
1647 .sin6_addr
= {{{ 0xfe, 0xc0 }}},
1648 .sin6_len
= sizeof (struct sockaddr_in6
)
1651 .sin6_family
= AF_INET6
,
1652 .sin6_addr
= IN6MASK16
,
1653 .sin6_len
= sizeof (struct sockaddr_in6
)
1659 /* 6bone (deprecated) -- prefix=3ffe::/16, precedence=1, label=12 */
1662 .sin6_family
= AF_INET6
,
1663 .sin6_addr
= {{{ 0x3f, 0xfe }}},
1664 .sin6_len
= sizeof (struct sockaddr_in6
)
1667 .sin6_family
= AF_INET6
,
1668 .sin6_addr
= IN6MASK16
,
1669 .sin6_len
= sizeof (struct sockaddr_in6
)
1677 init_policy_queue();
1679 /* initialize the "last resort" policy */
1680 bzero(&defaultaddrpolicy
, sizeof (defaultaddrpolicy
));
1681 defaultaddrpolicy
.label
= ADDR_LABEL_NOTAPP
;
1683 for (i
= 0; i
< sizeof (defaddrsel
) / sizeof (defaddrsel
[0]); i
++)
1684 add_addrsel_policyent(&defaddrsel
[i
]);
1688 struct in6_addrpolicy
*
1689 in6_addrsel_lookup_policy(struct sockaddr_in6
*key
)
1691 struct in6_addrpolicy
*match
= NULL
;
1694 match
= match_addrsel_policy(key
);
1697 match
= &defaultaddrpolicy
;
1705 static struct in6_addrpolicy
*
1706 match_addrsel_policy(struct sockaddr_in6
*key
)
1708 struct addrsel_policyent
*pent
;
1709 struct in6_addrpolicy
*bestpol
= NULL
, *pol
;
1710 int matchlen
, bestmatchlen
= -1;
1711 u_char
*mp
, *ep
, *k
, *p
, m
;
1713 TAILQ_FOREACH(pent
, &addrsel_policytab
, ape_entry
) {
1716 pol
= &pent
->ape_policy
;
1717 mp
= (u_char
*)&pol
->addrmask
.sin6_addr
;
1718 ep
= mp
+ 16; /* XXX: scope field? */
1719 k
= (u_char
*)&key
->sin6_addr
;
1720 p
= (u_char
*)&pol
->addr
.sin6_addr
;
1721 for (; mp
< ep
&& *mp
; mp
++, k
++, p
++) {
1724 goto next
; /* not match */
1725 if (m
== 0xff) /* short cut for a typical case */
1735 /* matched. check if this is better than the current best. */
1736 if (bestpol
== NULL
||
1737 matchlen
> bestmatchlen
) {
1739 bestmatchlen
= matchlen
;
1750 add_addrsel_policyent(const struct in6_addrpolicy
*newpolicy
)
1752 struct addrsel_policyent
*new, *pol
;
1754 MALLOC(new, struct addrsel_policyent
*, sizeof (*new), M_IFADDR
,
1759 /* duplication check */
1760 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1761 if (IN6_ARE_ADDR_EQUAL(&newpolicy
->addr
.sin6_addr
,
1762 &pol
->ape_policy
.addr
.sin6_addr
) &&
1763 IN6_ARE_ADDR_EQUAL(&newpolicy
->addrmask
.sin6_addr
,
1764 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1766 FREE(new, M_IFADDR
);
1767 return (EEXIST
); /* or override it? */
1771 bzero(new, sizeof (*new));
1773 /* XXX: should validate entry */
1774 new->ape_policy
= *newpolicy
;
1776 TAILQ_INSERT_TAIL(&addrsel_policytab
, new, ape_entry
);
1781 #ifdef ENABLE_ADDRSEL
1783 delete_addrsel_policyent(const struct in6_addrpolicy
*key
)
1785 struct addrsel_policyent
*pol
;
1790 /* search for the entry in the table */
1791 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1792 if (IN6_ARE_ADDR_EQUAL(&key
->addr
.sin6_addr
,
1793 &pol
->ape_policy
.addr
.sin6_addr
) &&
1794 IN6_ARE_ADDR_EQUAL(&key
->addrmask
.sin6_addr
,
1795 &pol
->ape_policy
.addrmask
.sin6_addr
)) {
1804 TAILQ_REMOVE(&addrsel_policytab
, pol
, ape_entry
);
1805 FREE(pol
, M_IFADDR
);
1811 #endif /* ENABLE_ADDRSEL */
1814 walk_addrsel_policy(int (*callback
)(const struct in6_addrpolicy
*, void *),
1817 struct addrsel_policyent
*pol
;
1821 TAILQ_FOREACH(pol
, &addrsel_policytab
, ape_entry
) {
1822 if ((error
= (*callback
)(&pol
->ape_policy
, w
)) != 0) {
1831 * Subroutines to manage the address selection policy table via sysctl.
1834 struct sysctl_req
*w_req
;
1839 dump_addrsel_policyent(const struct in6_addrpolicy
*pol
, void *arg
)
1842 struct walkarg
*w
= arg
;
1844 error
= SYSCTL_OUT(w
->w_req
, pol
, sizeof (*pol
));
1850 in6_src_sysctl SYSCTL_HANDLER_ARGS
1852 #pragma unused(oidp, arg1, arg2)
1857 bzero(&w
, sizeof (w
));
1860 return (walk_addrsel_policy(dump_addrsel_policyent
, &w
));
1864 SYSCTL_NODE(_net_inet6_ip6
, IPV6CTL_ADDRCTLPOLICY
, addrctlpolicy
,
1865 CTLFLAG_RD
| CTLFLAG_LOCKED
, in6_src_sysctl
, "");
1867 in6_src_ioctl(u_long cmd
, caddr_t data
)
1870 struct in6_addrpolicy ent0
;
1872 if (cmd
!= SIOCAADDRCTL_POLICY
&& cmd
!= SIOCDADDRCTL_POLICY
)
1873 return (EOPNOTSUPP
); /* check for safety */
1875 bcopy(data
, &ent0
, sizeof (ent0
));
1877 if (ent0
.label
== ADDR_LABEL_NOTAPP
)
1879 /* check if the prefix mask is consecutive. */
1880 if (in6_mask2len(&ent0
.addrmask
.sin6_addr
, NULL
) < 0)
1882 /* clear trailing garbages (if any) of the prefix address. */
1883 for (i
= 0; i
< 4; i
++) {
1884 ent0
.addr
.sin6_addr
.s6_addr32
[i
] &=
1885 ent0
.addrmask
.sin6_addr
.s6_addr32
[i
];
1890 case SIOCAADDRCTL_POLICY
:
1891 #ifdef ENABLE_ADDRSEL
1892 return (add_addrsel_policyent(&ent0
));
1896 case SIOCDADDRCTL_POLICY
:
1897 #ifdef ENABLE_ADDRSEL
1898 return (delete_addrsel_policyent(&ent0
));
1904 return (0); /* XXX: compromise compilers */
1908 * generate kernel-internal form (scopeid embedded into s6_addr16[1]).
1909 * If the address scope of is link-local, embed the interface index in the
1910 * address. The routine determines our precedence
1911 * between advanced API scope/interface specification and basic API
1914 * this function should be nuked in the future, when we get rid of
1915 * embedded scopeid thing.
1917 * XXX actually, it is over-specification to return ifp against sin6_scope_id.
1918 * there can be multiple interfaces that belong to a particular scope zone
1919 * (in specification, we have 1:N mapping between a scope zone and interfaces).
1920 * we may want to change the function to return something other than ifp.
1923 in6_embedscope(struct in6_addr
*in6
, const struct sockaddr_in6
*sin6
,
1924 struct in6pcb
*in6p
, struct ifnet
**ifpp
, struct ip6_pktopts
*opt
)
1926 struct ifnet
*ifp
= NULL
;
1928 struct ip6_pktopts
*optp
= NULL
;
1930 *in6
= sin6
->sin6_addr
;
1931 scopeid
= sin6
->sin6_scope_id
;
1936 * don't try to read sin6->sin6_addr beyond here, since the caller may
1937 * ask us to overwrite existing sockaddr_in6
1940 #ifdef ENABLE_DEFAULT_SCOPE
1942 scopeid
= scope6_addr2default(in6
);
1945 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
1946 struct in6_pktinfo
*pi
;
1947 struct ifnet
*im6o_multicast_ifp
= NULL
;
1949 if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
1950 in6p
->in6p_moptions
!= NULL
) {
1951 IM6O_LOCK(in6p
->in6p_moptions
);
1952 im6o_multicast_ifp
=
1953 in6p
->in6p_moptions
->im6o_multicast_ifp
;
1954 IM6O_UNLOCK(in6p
->in6p_moptions
);
1959 else if (in6p
!= NULL
)
1960 optp
= in6p
->in6p_outputopts
;
1962 * KAME assumption: link id == interface id
1964 if (in6p
!= NULL
&& optp
!= NULL
&&
1965 (pi
= optp
->ip6po_pktinfo
) != NULL
&&
1966 pi
->ipi6_ifindex
!= 0) {
1967 /* ifp is needed here if only we're returning it */
1969 ifnet_head_lock_shared();
1970 ifp
= ifindex2ifnet
[pi
->ipi6_ifindex
];
1973 in6
->s6_addr16
[1] = htons(pi
->ipi6_ifindex
);
1974 } else if (in6p
!= NULL
&& IN6_IS_ADDR_MULTICAST(in6
) &&
1975 in6p
->in6p_moptions
!= NULL
&& im6o_multicast_ifp
!= NULL
) {
1976 ifp
= im6o_multicast_ifp
;
1977 in6
->s6_addr16
[1] = htons(ifp
->if_index
);
1978 } else if (scopeid
!= 0) {
1980 * Since scopeid is unsigned, we only have to check it
1981 * against if_index (ifnet_head_lock not needed since
1982 * if_index is an ever-increasing integer.)
1984 if (if_index
< scopeid
)
1985 return (ENXIO
); /* XXX EINVAL? */
1987 /* ifp is needed here only if we're returning it */
1989 ifnet_head_lock_shared();
1990 ifp
= ifindex2ifnet
[scopeid
];
1993 /* XXX assignment to 16bit from 32bit variable */
1994 in6
->s6_addr16
[1] = htons(scopeid
& 0xffff);
1999 ifnet_reference(ifp
); /* for caller */
2008 * generate standard sockaddr_in6 from embedded form.
2009 * touches sin6_addr and sin6_scope_id only.
2011 * this function should be nuked in the future, when we get rid of
2012 * embedded scopeid thing.
2016 struct sockaddr_in6
*sin6
,
2017 const struct in6_addr
*in6
,
2022 sin6
->sin6_addr
= *in6
;
2025 * don't try to read *in6 beyond here, since the caller may
2026 * ask us to overwrite existing sockaddr_in6
2029 sin6
->sin6_scope_id
= 0;
2030 if (IN6_IS_SCOPE_LINKLOCAL(in6
) || IN6_IS_ADDR_MC_INTFACELOCAL(in6
)) {
2032 * KAME assumption: link id == interface id
2034 scopeid
= ntohs(sin6
->sin6_addr
.s6_addr16
[1]);
2039 * Since scopeid is unsigned, we only have to check it
2042 if (if_index
< scopeid
)
2044 if (ifp
&& ifp
->if_index
!= scopeid
)
2046 sin6
->sin6_addr
.s6_addr16
[1] = 0;
2047 sin6
->sin6_scope_id
= scopeid
;