]> git.saurik.com Git - apple/xnu.git/blob - EXTERNAL_HEADERS/corecrypto/cczp.h
xnu-4570.20.62.tar.gz
[apple/xnu.git] / EXTERNAL_HEADERS / corecrypto / cczp.h
1 /*
2 * cczp.h
3 * corecrypto
4 *
5 * Created on 11/16/2010
6 *
7 * Copyright (c) 2010,2011,2012,2013,2014,2015 Apple Inc. All rights reserved.
8 *
9 */
10
11 #ifndef _CORECRYPTO_CCZP_H_
12 #define _CORECRYPTO_CCZP_H_
13
14 #include <corecrypto/ccn.h>
15 #include <corecrypto/ccrng.h>
16
17 /*
18 Don't use cczp_hd struct directly, except in static tables such as eliptic curve parameter definitions.
19
20 Declare cczp objects using cczp_decl_n(). It allocates cc_unit arrays of the length returned by either cczp_nof_n() or cczp_short_nof_n().
21 */
22
23 struct cczp;
24 #if CORECRYPTO_USE_TRANSPARENT_UNION
25
26 typedef union {
27 cc_unit *u;
28 struct cczp *zp;
29 //cczp_const_t czp; //for automatic type cast
30 //struct cczp_prime *prime;
31 } cczp_t __attribute__((transparent_union));
32
33 typedef union {
34 const cc_unit *u;
35 const struct cczp *zp;
36 //const struct cczp_prime *prime;
37 cczp_t _nczp;
38 } cczp_const_t __attribute__((transparent_union));
39
40 #else
41 typedef struct cczp* cczp_t;
42 typedef const struct cczp* cczp_const_t;
43 #endif
44 typedef void (*ccmod_func_t)(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s);
45
46 // keep cczp_hd and cczp structures consistent
47 // cczp_hd is typecasted to cczp to read EC curve params
48 // options field is to specify Montgomery arithmetic, bit field, etc
49 // make sure n is the first element see ccrsa_ctx_n macro
50 #define __CCZP_HEADER_ELEMENTS_DEFINITIONS(pre) \
51 cc_size pre ## n;\
52 cc_unit pre ## options;\
53 ccmod_func_t pre ## mod_prime;
54
55 #define __CCZP_ELEMENTS_DEFINITIONS(pre) \
56 __CCZP_HEADER_ELEMENTS_DEFINITIONS(pre) \
57 cc_unit pre ## ccn[];
58
59 //cczp_hd must be defined separetly without variable length array ccn[], because it is used in sructures such as ccdh_gp_decl_n
60 struct cczp_hd{
61 __CCZP_HEADER_ELEMENTS_DEFINITIONS()
62 } CC_ALIGNED(CCN_UNIT_SIZE);
63
64 struct cczp {
65 __CCZP_ELEMENTS_DEFINITIONS()
66 } CC_ALIGNED(CCN_UNIT_SIZE);
67
68
69 /* Return the size of an cczp where each ccn is _size_ bytes. */
70 #define cczp_size(_size_) (sizeof(struct cczp) + ccn_sizeof_n(1) + 2 * (_size_))
71
72 /* Return number of units that a struct cczp needs to be in units for a prime
73 size of N units. This is large enough for all operations. */
74 #define cczp_nof_n(_n_) (ccn_nof_size(sizeof(struct cczp)) + 1 + 2 * (_n_))
75
76 /* Return number of units that a struct cczp needs to be in units for a prime
77 size of _n_ units. The _short variant does not have room for CCZP_RECIP,
78 so it can not be used with cczp_mod, cczp_mul, cczp_sqr. It can be used
79 with cczp_add, cczp_sub, cczp_div2, cczp_mod_inv. */
80 #define cczp_short_nof_n(_n_) (ccn_nof_size(sizeof(struct cczp)) + (_n_))
81
82 #define cczp_decl_n(_n_, _name_) cc_ctx_decl(struct cczp, ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
83 #define cczp_short_decl_n(_n_, _name_) cc_ctx_decl(struct cczp_short, ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
84
85 #define cczp_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_nof_n(_n_)), _name_)
86 #define cczp_short_clear_n(_n_, _name_) cc_clear(ccn_sizeof_n(cczp_short_nof_n(_n_)), _name_)
87
88 #if CORECRYPTO_USE_TRANSPARENT_UNION
89 #define CCZP_N(ZP) (((cczp_t)(ZP)).zp->n)
90 #define CCZP_MOD(ZP) (((cczp_t)(ZP)).zp->mod_prime)
91 #define CCZP_PRIME(ZP) (((cczp_t)(ZP)).zp->ccn)
92 #define CCZP_RECIP(ZP) (((cczp_t)(ZP)).zp->ccn + cczp_n(ZP))
93 #define CCZP_OPS(ZP) ((ZP).zp->options)
94 #define CCZP_MOD_PRIME(ZP) CCZP_MOD(ZP)
95
96 CC_CONST CC_NONNULL_TU((1))
97 static inline cc_size cczp_n(cczp_const_t zp) {
98 return zp.zp->n;
99 }
100
101 CC_CONST CC_NONNULL_TU((1))
102 static inline cc_unit cczp_options(cczp_const_t zp) {
103 return zp.zp->options;
104 }
105
106 CC_CONST CC_NONNULL_TU((1))
107 static inline ccmod_func_t cczp_mod_prime(cczp_const_t zp) {
108 return zp.zp->mod_prime;
109 }
110
111 CC_CONST CC_NONNULL_TU((1))
112 static inline const cc_unit *cczp_prime(cczp_const_t zp) {
113 return zp.zp->ccn;
114 }
115
116 /* Return a pointer to the Reciprocal or Montgomery constant of zp, which is
117 allocated cczp_n(zp) + 1 units long. */
118 CC_CONST CC_NONNULL_TU((1))
119
120 static inline const cc_unit *cczp_recip(cczp_const_t zp) {
121 return zp.zp->ccn + zp.zp->n;
122 }
123
124 #else
125 #define CCZP_N(ZP) ((ZP)->n)
126 #define CCZP_MOD(ZP) ((ZP)->mod_prime)
127 #define CCZP_MOD_PRIME(ZP) CCZP_MOD(ZP)
128 #define CCZP_PRIME(ZP) ((ZP)->ccn)
129 #define CCZP_RECIP(ZP) ((ZP)->ccn + CCZP_N(ZP))
130 #define CCZP_OPS(ZP) ((ZP)->options)
131 CC_CONST CC_NONNULL_TU((1))
132 static inline cc_size cczp_n(cczp_const_t zp) {
133 return zp->n;
134 }
135
136 CC_CONST CC_NONNULL_TU((1))
137 static inline cc_unit cczp_options(cczp_const_t zp) {
138 return zp->options;
139 }
140
141 CC_CONST CC_NONNULL_TU((1))
142 static inline ccmod_func_t cczp_mod_prime(cczp_const_t zp) {
143 return zp->mod_prime;
144 }
145
146 CC_CONST CC_NONNULL_TU((1))
147 static inline const cc_unit *cczp_prime(cczp_const_t zp) {
148 return zp->ccn;
149 }
150
151 /* Return a pointer to the Reciprocal or Montgomery constant of zp, which is
152 allocated cczp_n(zp) + 1 units long. */
153 CC_CONST CC_NONNULL_TU((1))
154
155 static inline const cc_unit *cczp_recip(cczp_const_t zp) {
156 return zp->ccn + zp->n;
157 }
158
159 #endif
160
161
162 CC_CONST CC_NONNULL_TU((1))
163 CC_INLINE size_t cczp_bitlen(cczp_const_t zp) {
164 return ccn_bitlen(cczp_n(zp), cczp_prime(zp));
165 }
166
167
168 /* Ensure both cczp_mod_prime(zp) and cczp_recip(zp) are valid. cczp_n and
169 cczp_prime must have been previously initialized. */
170 CC_NONNULL_TU((1))
171 int cczp_init(cczp_t zp);
172
173 /* Compute r = s2n mod cczp_prime(zp). Will write cczp_n(zp)
174 units to r and reads 2 * cczp_n(zp) units units from s2n. If r and s2n are not
175 identical they must not overlap. Before calling this function either
176 cczp_init(zp) must have been called or both CCZP_MOD_PRIME((cc_unit *)zp)
177 and CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
178 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
179 void cczp_mod(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s2n);
180
181 /* Compute r = sn mod cczp_prime(zp), Will write cczp_n(zp)
182 units to r and reads sn units units from s. If r and s are not
183 identical they must not overlap. Before calling this function either
184 cczp_init(zp) must have been called or both CCZP_MOD_PRIME((cc_unit *)zp)
185 and CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
186 CC_NONNULL_TU((1)) CC_NONNULL((2, 4))
187 int cczp_modn(cczp_const_t zp, cc_unit *r, cc_size ns, const cc_unit *s);
188
189 /* Compute r = x * y mod cczp_prime(zp). Will write cczp_n(zp) units to r
190 and reads cczp_n(zp) units units from both x and y. If r and x are not
191 identical they must not overlap, The same holds for r and y. Before
192 calling this function either cczp_init(zp) must have been called or both
193 CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must be
194 initialized some other way. */
195 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
196 void cczp_mul(cczp_const_t zp, cc_unit *t, const cc_unit *x, const cc_unit *y);
197
198 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
199 void cczp_mul_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *t, const cc_unit *x, const cc_unit *y);
200
201 /* Compute r = x * x mod cczp_prime(zp). Will write cczp_n(zp) units to r
202 and reads cczp_n(zp) units from x. If r and x are not identical they must
203 not overlap. Before calling this function either cczp_init(zp) must have
204 been called or both CCZP_MOD_PRIME((cc_unit *)zp) and
205 CCZP_RECIP((cc_unit *)zp) must be initialized some other way. */
206 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
207 void cczp_sqr(cczp_const_t zp, cc_unit *r, const cc_unit *x);
208
209 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
210 void cczp_sqr_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x);
211
212 /* Compute r = x^(1/2) mod cczp_prime(zp). Will write cczp_n(zp) units to r
213 and reads cczp_n(zp) units from x. If r and x are not identical they must
214 not overlap. Before calling this function either cczp_init(zp) must have
215 been called or both CCZP_MOD_PRIME((cc_unit *)zp) and
216 CCZP_RECIP((cc_unit *)zp) must be initialized some other way.
217 Only support prime = 3 mod 4 */
218 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
219 int cczp_sqrt(cczp_const_t zp, cc_unit *r, const cc_unit *x);
220
221 /* Compute r = m ^ e mod cczp_prime(zp), using Montgomery ladder.
222 - writes cczp_n(zp) units to r
223 - reads cczp_n(zp) units units from m and e
224 - if r and m are not identical they must not overlap.
225 - r and e must not overlap nor be identical.
226 - before calling this function either cczp_init(zp) must have been called
227 or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
228 be initialized some other way.
229 */
230 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
231 int cczp_power(cczp_const_t zp, cc_unit *r, const cc_unit *m,
232 const cc_unit *e);
233
234 /* Compute r = m ^ e mod cczp_prime(zp), using Square Square Multiply Always.
235 - writes cczp_n(zp) units to r
236 - reads cczp_n(zp) units units from m and e
237 - if r and m are not identical they must not overlap.
238 - r and e must not overlap nor be identical.
239 - before calling this function either cczp_init(zp) must have been called
240 or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
241 be initialized some other way.
242
243 Important: This function is intented to be constant time but is more likely
244 to leak information due to memory cache. Only used with randomized input
245 */
246 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
247 int cczp_power_ssma(cczp_const_t zp, cc_unit *r, const cc_unit *m,
248 const cc_unit *e);
249
250 int cczp_power_ssma_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *s, const cc_unit *e);
251
252 /* Compute r = m ^ e mod cczp_prime(zp). Will write cczp_n(zp) units to r and
253 reads cczp_n(zp) units units from m. Reads ebitlen bits from e.
254 m must be <= to cczp_prime(zp). If r and m are not identical they must not
255 overlap. r and e must not overlap nor be identical.
256 Before calling this function either cczp_init(zp) must have been called
257 or both CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must
258 be initialized some other way. */
259 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 5))
260 int cczp_powern(cczp_const_t zp, cc_unit *r, const cc_unit *s,
261 size_t ebitlen, const cc_unit *e);
262
263 /* Compute r = x + y mod cczp_prime(zp). Will write cczp_n(zp) units to r and
264 reads cczp_n(zp) units units from x and y. If r and x are not identical
265 they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
266 Can be used with cczp_short_nof_n sized cc_unit array zp. */
267 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
268 void cczp_add(cczp_const_t zp, cc_unit *r, const cc_unit *x,
269 const cc_unit *y);
270
271 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
272 void cczp_add_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x,
273 const cc_unit *y);
274
275 /* Compute r = x - y mod cczp_prime(zp). Will write cczp_n(zp) units to r and
276 reads cczp_n(zp) units units from x and y. If r and x are not identical
277 they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
278 Can be used with cczp_short_nof_n sized cc_unit array zp. */
279 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
280 void cczp_sub(cczp_const_t zp, cc_unit *r, const cc_unit *x, const cc_unit *y);
281
282 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4, 5))
283 void cczp_sub_ws(cc_ws_t ws, cczp_const_t zp, cc_unit *r, const cc_unit *x,
284 const cc_unit *y);
285
286 /* Compute r = x / 2 mod cczp_prime(zp). Will write cczp_n(zp) units to r and
287 reads cczp_n(zp) units units from x. If r and x are not identical
288 they must not overlap. Only cczp_n(zp) and cczp_prime(zp) need to be valid.
289 Can be used with cczp_short_nof_n sized cc_unit array zp. */
290 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
291 void cczp_div2(cczp_const_t zp, cc_unit *r, const cc_unit *x);
292
293 /* Compute q = a_2n / cczp_prime(zd) (mod cczp_prime(zd)) . Will write cczp_n(zd)
294 units to q and r. Will read 2 * cczp_n(zd) units units from a. If r and a
295 are not identical they must not overlap. Before calling this function
296 either cczp_init(zp) must have been called or both
297 CCZP_MOD_PRIME((cc_unit *)zp) and CCZP_RECIP((cc_unit *)zp) must be
298 initialized some other way. */
299 CC_NONNULL_TU((1)) CC_NONNULL((2, 3, 4))
300 void cczp_div(cczp_const_t zd, cc_unit *q, cc_unit *r, const cc_unit *a_2n);
301
302
303 /*!
304 @brief cczp_inv(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp).
305 @discussion It is a general function and works for any p. It validates the inputs. r and x can overlap. It writes n =cczp_n(zp) units to r, and read n units units from x and p. The output r is overwriten only if the inverse is correctly computed. This function is not constant time in absolute sense, but it does not have data dependent 'if' statements in the code.
306 @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking cczp_inv().
307 @param x input big integer
308 @param r output big integer
309 @return 0 if inverse exists and correctly computed.
310 */
311 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
312
313 int cczp_inv(cczp_const_t zp, cc_unit *r, const cc_unit *x);
314
315 /*!
316 @brief cczp_inv_odd(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp) is an odd number.
317 @discussion r and x can overlap.
318 @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking.
319 @param x input big integer
320 @param r output big integer
321 @return 0 if successful
322 */
323 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
324 int cczp_inv_odd(cczp_const_t zp, cc_unit *r, const cc_unit *x);
325
326 /*!
327 @brief cczp_inv_field(zp, r, x) computes r = x^-1 (mod p) , where p=cczp_prime(zp) is a prime number number.
328 @discussion r and x must NOT overlap. The excution time of the function is independent to the value of the input x. It works only if p is a field. That is, when p is a prime. It supports Montgomery and non-Montgomery form of zp. It leaks the value of the prime and should only be used be used for public (not secret) primes (ex. Elliptic Curves)
329
330 @param zp The input zp. cczp_n(zp) and cczp_prime(zp) need to be valid. cczp_init(zp) need not to be called before invoking cczp_inv_field().
331 @param x input big unteger
332 @param r output big integer
333 @return 0 if inverse exists and correctly computed.
334 */
335 CC_NONNULL_TU((1)) CC_NONNULL((2, 3))
336 int cczp_inv_field(cczp_const_t zp, cc_unit *r, const cc_unit *x);
337
338 #endif /* _CORECRYPTO_CCZP_H_ */