]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_shared_region_pager.c
xnu-6153.11.26.tar.gz
[apple/xnu.git] / osfmk / vm / vm_shared_region_pager.c
1 /*
2 * Copyright (c) 2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <sys/errno.h>
30
31 #include <mach/mach_types.h>
32 #include <mach/mach_traps.h>
33 #include <mach/host_priv.h>
34 #include <mach/kern_return.h>
35 #include <mach/memory_object_control.h>
36 #include <mach/memory_object_types.h>
37 #include <mach/port.h>
38 #include <mach/policy.h>
39 #include <mach/upl.h>
40 #include <mach/thread_act.h>
41 #include <mach/mach_vm.h>
42
43 #include <kern/host.h>
44 #include <kern/kalloc.h>
45 #include <kern/queue.h>
46 #include <kern/thread.h>
47 #include <kern/ipc_kobject.h>
48
49 #include <ipc/ipc_port.h>
50 #include <ipc/ipc_space.h>
51
52 #include <vm/memory_object.h>
53 #include <vm/vm_kern.h>
54 #include <vm/vm_fault.h>
55 #include <vm/vm_map.h>
56 #include <vm/vm_pageout.h>
57 #include <vm/vm_pageout.h>
58 #include <vm/vm_protos.h>
59 #include <vm/vm_shared_region.h>
60
61
62 /*
63 * SHARED REGION MEMORY PAGER
64 *
65 * This external memory manager (EMM) handles mappings of a dyld shared cache
66 * in shared regions, applying any necessary modifications (sliding,
67 * pointer signing, ...).
68 *
69 * It mostly handles page-in requests (from memory_object_data_request()) by
70 * getting the original data from its backing VM object, itself backed by
71 * the dyld shared cache file, modifying it if needed and providing it to VM.
72 *
73 * The modified pages will never be dirtied, so the memory manager doesn't
74 * need to handle page-out requests (from memory_object_data_return()). The
75 * pages need to be mapped copy-on-write, so that the originals stay clean.
76 *
77 * We don't expect to have to handle a large number of shared cache files,
78 * so the data structures are very simple (simple linked list) for now.
79 */
80
81 /* forward declarations */
82 void shared_region_pager_reference(memory_object_t mem_obj);
83 void shared_region_pager_deallocate(memory_object_t mem_obj);
84 kern_return_t shared_region_pager_init(memory_object_t mem_obj,
85 memory_object_control_t control,
86 memory_object_cluster_size_t pg_size);
87 kern_return_t shared_region_pager_terminate(memory_object_t mem_obj);
88 kern_return_t shared_region_pager_data_request(memory_object_t mem_obj,
89 memory_object_offset_t offset,
90 memory_object_cluster_size_t length,
91 vm_prot_t protection_required,
92 memory_object_fault_info_t fault_info);
93 kern_return_t shared_region_pager_data_return(memory_object_t mem_obj,
94 memory_object_offset_t offset,
95 memory_object_cluster_size_t data_cnt,
96 memory_object_offset_t *resid_offset,
97 int *io_error,
98 boolean_t dirty,
99 boolean_t kernel_copy,
100 int upl_flags);
101 kern_return_t shared_region_pager_data_initialize(memory_object_t mem_obj,
102 memory_object_offset_t offset,
103 memory_object_cluster_size_t data_cnt);
104 kern_return_t shared_region_pager_data_unlock(memory_object_t mem_obj,
105 memory_object_offset_t offset,
106 memory_object_size_t size,
107 vm_prot_t desired_access);
108 kern_return_t shared_region_pager_synchronize(memory_object_t mem_obj,
109 memory_object_offset_t offset,
110 memory_object_size_t length,
111 vm_sync_t sync_flags);
112 kern_return_t shared_region_pager_map(memory_object_t mem_obj,
113 vm_prot_t prot);
114 kern_return_t shared_region_pager_last_unmap(memory_object_t mem_obj);
115
116 /*
117 * Vector of VM operations for this EMM.
118 * These routines are invoked by VM via the memory_object_*() interfaces.
119 */
120 const struct memory_object_pager_ops shared_region_pager_ops = {
121 .memory_object_reference = shared_region_pager_reference,
122 .memory_object_deallocate = shared_region_pager_deallocate,
123 .memory_object_init = shared_region_pager_init,
124 .memory_object_terminate = shared_region_pager_terminate,
125 .memory_object_data_request = shared_region_pager_data_request,
126 .memory_object_data_return = shared_region_pager_data_return,
127 .memory_object_data_initialize = shared_region_pager_data_initialize,
128 .memory_object_data_unlock = shared_region_pager_data_unlock,
129 .memory_object_synchronize = shared_region_pager_synchronize,
130 .memory_object_map = shared_region_pager_map,
131 .memory_object_last_unmap = shared_region_pager_last_unmap,
132 .memory_object_data_reclaim = NULL,
133 .memory_object_pager_name = "shared_region"
134 };
135
136 /*
137 * The "shared_region_pager" describes a memory object backed by
138 * the "shared_region" EMM.
139 */
140 typedef struct shared_region_pager {
141 /* mandatory generic header */
142 struct memory_object sc_pgr_hdr;
143
144 /* pager-specific data */
145 queue_chain_t pager_queue; /* next & prev pagers */
146 unsigned int ref_count; /* reference count */
147 boolean_t is_ready; /* is this pager ready ? */
148 boolean_t is_mapped; /* is this mem_obj mapped ? */
149 vm_object_t backing_object; /* VM obj for shared cache */
150 vm_object_offset_t backing_offset;
151 struct vm_shared_region_slide_info *scp_slide_info;
152 } *shared_region_pager_t;
153 #define SHARED_REGION_PAGER_NULL ((shared_region_pager_t) NULL)
154
155 /*
156 * List of memory objects managed by this EMM.
157 * The list is protected by the "shared_region_pager_lock" lock.
158 */
159 int shared_region_pager_count = 0; /* number of pagers */
160 int shared_region_pager_count_mapped = 0; /* number of unmapped pagers */
161 queue_head_t shared_region_pager_queue;
162 decl_lck_mtx_data(, shared_region_pager_lock);
163
164 /*
165 * Maximum number of unmapped pagers we're willing to keep around.
166 */
167 int shared_region_pager_cache_limit = 0;
168
169 /*
170 * Statistics & counters.
171 */
172 int shared_region_pager_count_max = 0;
173 int shared_region_pager_count_unmapped_max = 0;
174 int shared_region_pager_num_trim_max = 0;
175 int shared_region_pager_num_trim_total = 0;
176
177
178 lck_grp_t shared_region_pager_lck_grp;
179 lck_grp_attr_t shared_region_pager_lck_grp_attr;
180 lck_attr_t shared_region_pager_lck_attr;
181
182 uint64_t shared_region_pager_copied = 0;
183 uint64_t shared_region_pager_slid = 0;
184 uint64_t shared_region_pager_slid_error = 0;
185 uint64_t shared_region_pager_reclaimed = 0;
186
187 /* internal prototypes */
188 shared_region_pager_t shared_region_pager_create(
189 vm_object_t backing_object,
190 vm_object_offset_t backing_offset,
191 struct vm_shared_region_slide_info *slide_info);
192 shared_region_pager_t shared_region_pager_lookup(memory_object_t mem_obj);
193 void shared_region_pager_dequeue(shared_region_pager_t pager);
194 void shared_region_pager_deallocate_internal(shared_region_pager_t pager,
195 boolean_t locked);
196 void shared_region_pager_terminate_internal(shared_region_pager_t pager);
197 void shared_region_pager_trim(void);
198
199
200 #if DEBUG
201 int shared_region_pagerdebug = 0;
202 #define PAGER_ALL 0xffffffff
203 #define PAGER_INIT 0x00000001
204 #define PAGER_PAGEIN 0x00000002
205
206 #define PAGER_DEBUG(LEVEL, A) \
207 MACRO_BEGIN \
208 if ((shared_region_pagerdebug & (LEVEL)) == (LEVEL)) { \
209 printf A; \
210 } \
211 MACRO_END
212 #else
213 #define PAGER_DEBUG(LEVEL, A)
214 #endif
215
216
217 void
218 shared_region_pager_bootstrap(void)
219 {
220 lck_grp_attr_setdefault(&shared_region_pager_lck_grp_attr);
221 lck_grp_init(&shared_region_pager_lck_grp, "shared_region", &shared_region_pager_lck_grp_attr);
222 lck_attr_setdefault(&shared_region_pager_lck_attr);
223 lck_mtx_init(&shared_region_pager_lock, &shared_region_pager_lck_grp, &shared_region_pager_lck_attr);
224 queue_init(&shared_region_pager_queue);
225 }
226
227 /*
228 * shared_region_pager_init()
229 *
230 * Initialize the memory object and makes it ready to be used and mapped.
231 */
232 kern_return_t
233 shared_region_pager_init(
234 memory_object_t mem_obj,
235 memory_object_control_t control,
236 #if !DEBUG
237 __unused
238 #endif
239 memory_object_cluster_size_t pg_size)
240 {
241 shared_region_pager_t pager;
242 kern_return_t kr;
243 memory_object_attr_info_data_t attributes;
244
245 PAGER_DEBUG(PAGER_ALL,
246 ("shared_region_pager_init: %p, %p, %x\n",
247 mem_obj, control, pg_size));
248
249 if (control == MEMORY_OBJECT_CONTROL_NULL) {
250 return KERN_INVALID_ARGUMENT;
251 }
252
253 pager = shared_region_pager_lookup(mem_obj);
254
255 memory_object_control_reference(control);
256
257 pager->sc_pgr_hdr.mo_control = control;
258
259 attributes.copy_strategy = MEMORY_OBJECT_COPY_DELAY;
260 /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/
261 attributes.cluster_size = (1 << (PAGE_SHIFT));
262 attributes.may_cache_object = FALSE;
263 attributes.temporary = TRUE;
264
265 kr = memory_object_change_attributes(
266 control,
267 MEMORY_OBJECT_ATTRIBUTE_INFO,
268 (memory_object_info_t) &attributes,
269 MEMORY_OBJECT_ATTR_INFO_COUNT);
270 if (kr != KERN_SUCCESS) {
271 panic("shared_region_pager_init: "
272 "memory_object_change_attributes() failed");
273 }
274
275 #if CONFIG_SECLUDED_MEMORY
276 if (secluded_for_filecache) {
277 #if 00
278 /*
279 * XXX FBDP do we want this in the secluded pool?
280 * Ideally, we'd want the shared region used by Camera to
281 * NOT be in the secluded pool, but all other shared regions
282 * in the secluded pool...
283 */
284 memory_object_mark_eligible_for_secluded(control, TRUE);
285 #endif /* 00 */
286 }
287 #endif /* CONFIG_SECLUDED_MEMORY */
288
289 return KERN_SUCCESS;
290 }
291
292 /*
293 * shared_region_data_return()
294 *
295 * Handles page-out requests from VM. This should never happen since
296 * the pages provided by this EMM are not supposed to be dirty or dirtied
297 * and VM should simply discard the contents and reclaim the pages if it
298 * needs to.
299 */
300 kern_return_t
301 shared_region_pager_data_return(
302 __unused memory_object_t mem_obj,
303 __unused memory_object_offset_t offset,
304 __unused memory_object_cluster_size_t data_cnt,
305 __unused memory_object_offset_t *resid_offset,
306 __unused int *io_error,
307 __unused boolean_t dirty,
308 __unused boolean_t kernel_copy,
309 __unused int upl_flags)
310 {
311 panic("shared_region_pager_data_return: should never get called");
312 return KERN_FAILURE;
313 }
314
315 kern_return_t
316 shared_region_pager_data_initialize(
317 __unused memory_object_t mem_obj,
318 __unused memory_object_offset_t offset,
319 __unused memory_object_cluster_size_t data_cnt)
320 {
321 panic("shared_region_pager_data_initialize: should never get called");
322 return KERN_FAILURE;
323 }
324
325 kern_return_t
326 shared_region_pager_data_unlock(
327 __unused memory_object_t mem_obj,
328 __unused memory_object_offset_t offset,
329 __unused memory_object_size_t size,
330 __unused vm_prot_t desired_access)
331 {
332 return KERN_FAILURE;
333 }
334
335 /*
336 * shared_region_pager_data_request()
337 *
338 * Handles page-in requests from VM.
339 */
340 int shared_region_pager_data_request_debug = 0;
341 kern_return_t
342 shared_region_pager_data_request(
343 memory_object_t mem_obj,
344 memory_object_offset_t offset,
345 memory_object_cluster_size_t length,
346 #if !DEBUG
347 __unused
348 #endif
349 vm_prot_t protection_required,
350 memory_object_fault_info_t mo_fault_info)
351 {
352 shared_region_pager_t pager;
353 memory_object_control_t mo_control;
354 upl_t upl;
355 int upl_flags;
356 upl_size_t upl_size;
357 upl_page_info_t *upl_pl;
358 unsigned int pl_count;
359 vm_object_t src_top_object, src_page_object, dst_object;
360 kern_return_t kr, retval;
361 vm_offset_t src_vaddr, dst_vaddr;
362 vm_offset_t cur_offset;
363 vm_offset_t offset_in_page;
364 kern_return_t error_code;
365 vm_prot_t prot;
366 vm_page_t src_page, top_page;
367 int interruptible;
368 struct vm_object_fault_info fault_info;
369 mach_vm_offset_t slide_start_address;
370
371 PAGER_DEBUG(PAGER_ALL, ("shared_region_pager_data_request: %p, %llx, %x, %x\n", mem_obj, offset, length, protection_required));
372
373 retval = KERN_SUCCESS;
374 src_top_object = VM_OBJECT_NULL;
375 src_page_object = VM_OBJECT_NULL;
376 upl = NULL;
377 upl_pl = NULL;
378 fault_info = *((struct vm_object_fault_info *)(uintptr_t)mo_fault_info);
379 fault_info.stealth = TRUE;
380 fault_info.io_sync = FALSE;
381 fault_info.mark_zf_absent = FALSE;
382 fault_info.batch_pmap_op = FALSE;
383 interruptible = fault_info.interruptible;
384
385 pager = shared_region_pager_lookup(mem_obj);
386 assert(pager->is_ready);
387 assert(pager->ref_count > 1); /* pager is alive and mapped */
388
389 PAGER_DEBUG(PAGER_PAGEIN, ("shared_region_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj, offset, length, protection_required, pager));
390
391 /*
392 * Gather in a UPL all the VM pages requested by VM.
393 */
394 mo_control = pager->sc_pgr_hdr.mo_control;
395
396 upl_size = length;
397 upl_flags =
398 UPL_RET_ONLY_ABSENT |
399 UPL_SET_LITE |
400 UPL_NO_SYNC |
401 UPL_CLEAN_IN_PLACE | /* triggers UPL_CLEAR_DIRTY */
402 UPL_SET_INTERNAL;
403 pl_count = 0;
404 kr = memory_object_upl_request(mo_control,
405 offset, upl_size,
406 &upl, NULL, NULL, upl_flags, VM_KERN_MEMORY_SECURITY);
407 if (kr != KERN_SUCCESS) {
408 retval = kr;
409 goto done;
410 }
411 dst_object = mo_control->moc_object;
412 assert(dst_object != VM_OBJECT_NULL);
413
414 /*
415 * We'll map the original data in the kernel address space from the
416 * backing VM object (itself backed by the shared cache file via
417 * the vnode pager).
418 */
419 src_top_object = pager->backing_object;
420 assert(src_top_object != VM_OBJECT_NULL);
421 vm_object_reference(src_top_object); /* keep the source object alive */
422
423 slide_start_address = pager->scp_slide_info->slid_address;
424
425 fault_info.lo_offset += pager->backing_offset;
426 fault_info.hi_offset += pager->backing_offset;
427
428 /*
429 * Fill in the contents of the pages requested by VM.
430 */
431 upl_pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
432 pl_count = length / PAGE_SIZE;
433 for (cur_offset = 0;
434 retval == KERN_SUCCESS && cur_offset < length;
435 cur_offset += PAGE_SIZE) {
436 ppnum_t dst_pnum;
437
438 if (!upl_page_present(upl_pl, (int)(cur_offset / PAGE_SIZE))) {
439 /* this page is not in the UPL: skip it */
440 continue;
441 }
442
443 /*
444 * Map the source (dyld shared cache) page in the kernel's
445 * virtual address space.
446 * We already hold a reference on the src_top_object.
447 */
448 retry_src_fault:
449 vm_object_lock(src_top_object);
450 vm_object_paging_begin(src_top_object);
451 error_code = 0;
452 prot = VM_PROT_READ;
453 src_page = VM_PAGE_NULL;
454 kr = vm_fault_page(src_top_object,
455 pager->backing_offset + offset + cur_offset,
456 VM_PROT_READ,
457 FALSE,
458 FALSE, /* src_page not looked up */
459 &prot,
460 &src_page,
461 &top_page,
462 NULL,
463 &error_code,
464 FALSE,
465 FALSE,
466 &fault_info);
467 switch (kr) {
468 case VM_FAULT_SUCCESS:
469 break;
470 case VM_FAULT_RETRY:
471 goto retry_src_fault;
472 case VM_FAULT_MEMORY_SHORTAGE:
473 if (vm_page_wait(interruptible)) {
474 goto retry_src_fault;
475 }
476 /* fall thru */
477 case VM_FAULT_INTERRUPTED:
478 retval = MACH_SEND_INTERRUPTED;
479 goto done;
480 case VM_FAULT_SUCCESS_NO_VM_PAGE:
481 /* success but no VM page: fail */
482 vm_object_paging_end(src_top_object);
483 vm_object_unlock(src_top_object);
484 /*FALLTHROUGH*/
485 case VM_FAULT_MEMORY_ERROR:
486 /* the page is not there ! */
487 if (error_code) {
488 retval = error_code;
489 } else {
490 retval = KERN_MEMORY_ERROR;
491 }
492 goto done;
493 default:
494 panic("shared_region_pager_data_request: "
495 "vm_fault_page() unexpected error 0x%x\n",
496 kr);
497 }
498 assert(src_page != VM_PAGE_NULL);
499 assert(src_page->vmp_busy);
500
501 if (src_page->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) {
502 vm_page_lockspin_queues();
503 if (src_page->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q) {
504 vm_page_speculate(src_page, FALSE);
505 }
506 vm_page_unlock_queues();
507 }
508
509 /*
510 * Establish pointers to the source
511 * and destination physical pages.
512 */
513 dst_pnum = (ppnum_t)
514 upl_phys_page(upl_pl, (int)(cur_offset / PAGE_SIZE));
515 assert(dst_pnum != 0);
516
517 src_vaddr = (vm_map_offset_t)
518 phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(src_page)
519 << PAGE_SHIFT);
520 dst_vaddr = (vm_map_offset_t)
521 phystokv((pmap_paddr_t)dst_pnum << PAGE_SHIFT);
522 src_page_object = VM_PAGE_OBJECT(src_page);
523
524 /*
525 * Validate the original page...
526 */
527 if (src_page_object->code_signed) {
528 vm_page_validate_cs_mapped(
529 src_page,
530 (const void *) src_vaddr);
531 }
532 /*
533 * ... and transfer the results to the destination page.
534 */
535 UPL_SET_CS_VALIDATED(upl_pl, cur_offset / PAGE_SIZE,
536 src_page->vmp_cs_validated);
537 UPL_SET_CS_TAINTED(upl_pl, cur_offset / PAGE_SIZE,
538 src_page->vmp_cs_tainted);
539 UPL_SET_CS_NX(upl_pl, cur_offset / PAGE_SIZE,
540 src_page->vmp_cs_nx);
541
542 /*
543 * The page provider might access a mapped file, so let's
544 * release the object lock for the source page to avoid a
545 * potential deadlock.
546 * The source page is kept busy and we have a
547 * "paging_in_progress" reference on its object, so it's safe
548 * to unlock the object here.
549 */
550 assert(src_page->vmp_busy);
551 assert(src_page_object->paging_in_progress > 0);
552 vm_object_unlock(src_page_object);
553
554 /*
555 * Process the original contents of the source page
556 * into the destination page.
557 */
558 for (offset_in_page = 0;
559 offset_in_page < PAGE_SIZE;
560 offset_in_page += PAGE_SIZE_FOR_SR_SLIDE) {
561 vm_object_offset_t chunk_offset;
562 vm_object_offset_t offset_in_backing_object;
563 vm_object_offset_t offset_in_sliding_range;
564
565 chunk_offset = offset + cur_offset + offset_in_page;
566
567 bcopy((const char *)(src_vaddr +
568 offset_in_page),
569 (char *)(dst_vaddr + offset_in_page),
570 PAGE_SIZE_FOR_SR_SLIDE);
571
572 offset_in_backing_object = (chunk_offset +
573 pager->backing_offset);
574 if ((offset_in_backing_object < pager->scp_slide_info->start) ||
575 (offset_in_backing_object >= pager->scp_slide_info->end)) {
576 /* chunk is outside of sliding range: done */
577 shared_region_pager_copied++;
578 continue;
579 }
580
581 offset_in_sliding_range =
582 (offset_in_backing_object -
583 pager->scp_slide_info->start);
584 kr = vm_shared_region_slide_page(
585 pager->scp_slide_info,
586 dst_vaddr + offset_in_page,
587 (mach_vm_offset_t) (offset_in_sliding_range +
588 slide_start_address),
589 (uint32_t) (offset_in_sliding_range /
590 PAGE_SIZE_FOR_SR_SLIDE));
591 if (shared_region_pager_data_request_debug) {
592 printf("shared_region_data_request"
593 "(%p,0x%llx+0x%llx+0x%04llx): 0x%llx "
594 "in sliding range [0x%llx:0x%llx]: "
595 "SLIDE offset 0x%llx="
596 "(0x%llx+0x%llx+0x%llx+0x%04llx)"
597 "[0x%016llx 0x%016llx] "
598 "code_signed=%d "
599 "cs_validated=%d "
600 "cs_tainted=%d "
601 "cs_nx=%d "
602 "kr=0x%x\n",
603 pager,
604 offset,
605 (uint64_t) cur_offset,
606 (uint64_t) offset_in_page,
607 chunk_offset,
608 pager->scp_slide_info->start,
609 pager->scp_slide_info->end,
610 (pager->backing_offset +
611 offset +
612 cur_offset +
613 offset_in_page),
614 pager->backing_offset,
615 offset,
616 (uint64_t) cur_offset,
617 (uint64_t) offset_in_page,
618 *(uint64_t *)(dst_vaddr + offset_in_page),
619 *(uint64_t *)(dst_vaddr + offset_in_page + 8),
620 src_page_object->code_signed,
621 src_page->vmp_cs_validated,
622 src_page->vmp_cs_tainted,
623 src_page->vmp_cs_nx,
624 kr);
625 }
626 if (kr != KERN_SUCCESS) {
627 shared_region_pager_slid_error++;
628 break;
629 }
630 shared_region_pager_slid++;
631 }
632
633 assert(VM_PAGE_OBJECT(src_page) == src_page_object);
634 assert(src_page->vmp_busy);
635 assert(src_page_object->paging_in_progress > 0);
636 vm_object_lock(src_page_object);
637
638 /*
639 * Cleanup the result of vm_fault_page() of the source page.
640 */
641 PAGE_WAKEUP_DONE(src_page);
642 src_page = VM_PAGE_NULL;
643 vm_object_paging_end(src_page_object);
644 vm_object_unlock(src_page_object);
645
646 if (top_page != VM_PAGE_NULL) {
647 assert(VM_PAGE_OBJECT(top_page) == src_top_object);
648 vm_object_lock(src_top_object);
649 VM_PAGE_FREE(top_page);
650 vm_object_paging_end(src_top_object);
651 vm_object_unlock(src_top_object);
652 }
653 }
654
655 done:
656 if (upl != NULL) {
657 /* clean up the UPL */
658
659 /*
660 * The pages are currently dirty because we've just been
661 * writing on them, but as far as we're concerned, they're
662 * clean since they contain their "original" contents as
663 * provided by us, the pager.
664 * Tell the UPL to mark them "clean".
665 */
666 upl_clear_dirty(upl, TRUE);
667
668 /* abort or commit the UPL */
669 if (retval != KERN_SUCCESS) {
670 upl_abort(upl, 0);
671 } else {
672 boolean_t empty;
673 upl_commit_range(upl, 0, upl->size,
674 UPL_COMMIT_CS_VALIDATED | UPL_COMMIT_WRITTEN_BY_KERNEL,
675 upl_pl, pl_count, &empty);
676 }
677
678 /* and deallocate the UPL */
679 upl_deallocate(upl);
680 upl = NULL;
681 }
682 if (src_top_object != VM_OBJECT_NULL) {
683 vm_object_deallocate(src_top_object);
684 }
685 return retval;
686 }
687
688 /*
689 * shared_region_pager_reference()
690 *
691 * Get a reference on this memory object.
692 * For external usage only. Assumes that the initial reference count is not 0,
693 * i.e one should not "revive" a dead pager this way.
694 */
695 void
696 shared_region_pager_reference(
697 memory_object_t mem_obj)
698 {
699 shared_region_pager_t pager;
700
701 pager = shared_region_pager_lookup(mem_obj);
702
703 lck_mtx_lock(&shared_region_pager_lock);
704 assert(pager->ref_count > 0);
705 pager->ref_count++;
706 lck_mtx_unlock(&shared_region_pager_lock);
707 }
708
709
710 /*
711 * shared_region_pager_dequeue:
712 *
713 * Removes a pager from the list of pagers.
714 *
715 * The caller must hold "shared_region_pager_lock".
716 */
717 void
718 shared_region_pager_dequeue(
719 shared_region_pager_t pager)
720 {
721 assert(!pager->is_mapped);
722
723 queue_remove(&shared_region_pager_queue,
724 pager,
725 shared_region_pager_t,
726 pager_queue);
727 pager->pager_queue.next = NULL;
728 pager->pager_queue.prev = NULL;
729
730 shared_region_pager_count--;
731 }
732
733 /*
734 * shared_region_pager_terminate_internal:
735 *
736 * Trigger the asynchronous termination of the memory object associated
737 * with this pager.
738 * When the memory object is terminated, there will be one more call
739 * to memory_object_deallocate() (i.e. shared_region_pager_deallocate())
740 * to finish the clean up.
741 *
742 * "shared_region_pager_lock" should not be held by the caller.
743 * We don't need the lock because the pager has already been removed from
744 * the pagers' list and is now ours exclusively.
745 */
746 void
747 shared_region_pager_terminate_internal(
748 shared_region_pager_t pager)
749 {
750 assert(pager->is_ready);
751 assert(!pager->is_mapped);
752
753 if (pager->backing_object != VM_OBJECT_NULL) {
754 vm_object_deallocate(pager->backing_object);
755 pager->backing_object = VM_OBJECT_NULL;
756 }
757 /* trigger the destruction of the memory object */
758 memory_object_destroy(pager->sc_pgr_hdr.mo_control, 0);
759 }
760
761 /*
762 * shared_region_pager_deallocate_internal()
763 *
764 * Release a reference on this pager and free it when the last
765 * reference goes away.
766 * Can be called with shared_region_pager_lock held or not but always returns
767 * with it unlocked.
768 */
769 void
770 shared_region_pager_deallocate_internal(
771 shared_region_pager_t pager,
772 boolean_t locked)
773 {
774 boolean_t needs_trimming;
775 int count_unmapped;
776
777 if (!locked) {
778 lck_mtx_lock(&shared_region_pager_lock);
779 }
780
781 count_unmapped = (shared_region_pager_count -
782 shared_region_pager_count_mapped);
783 if (count_unmapped > shared_region_pager_cache_limit) {
784 /* we have too many unmapped pagers: trim some */
785 needs_trimming = TRUE;
786 } else {
787 needs_trimming = FALSE;
788 }
789
790 /* drop a reference on this pager */
791 pager->ref_count--;
792
793 if (pager->ref_count == 1) {
794 /*
795 * Only the "named" reference is left, which means that
796 * no one is really holding on to this pager anymore.
797 * Terminate it.
798 */
799 shared_region_pager_dequeue(pager);
800 /* the pager is all ours: no need for the lock now */
801 lck_mtx_unlock(&shared_region_pager_lock);
802 shared_region_pager_terminate_internal(pager);
803 } else if (pager->ref_count == 0) {
804 /*
805 * Dropped the existence reference; the memory object has
806 * been terminated. Do some final cleanup and release the
807 * pager structure.
808 */
809 lck_mtx_unlock(&shared_region_pager_lock);
810 if (pager->sc_pgr_hdr.mo_control != MEMORY_OBJECT_CONTROL_NULL) {
811 memory_object_control_deallocate(pager->sc_pgr_hdr.mo_control);
812 pager->sc_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL;
813 }
814 kfree(pager, sizeof(*pager));
815 pager = SHARED_REGION_PAGER_NULL;
816 } else {
817 /* there are still plenty of references: keep going... */
818 lck_mtx_unlock(&shared_region_pager_lock);
819 }
820
821 if (needs_trimming) {
822 shared_region_pager_trim();
823 }
824 /* caution: lock is not held on return... */
825 }
826
827 /*
828 * shared_region_pager_deallocate()
829 *
830 * Release a reference on this pager and free it when the last
831 * reference goes away.
832 */
833 void
834 shared_region_pager_deallocate(
835 memory_object_t mem_obj)
836 {
837 shared_region_pager_t pager;
838
839 PAGER_DEBUG(PAGER_ALL, ("shared_region_pager_deallocate: %p\n", mem_obj));
840 pager = shared_region_pager_lookup(mem_obj);
841 shared_region_pager_deallocate_internal(pager, FALSE);
842 }
843
844 /*
845 *
846 */
847 kern_return_t
848 shared_region_pager_terminate(
849 #if !DEBUG
850 __unused
851 #endif
852 memory_object_t mem_obj)
853 {
854 PAGER_DEBUG(PAGER_ALL, ("shared_region_pager_terminate: %p\n", mem_obj));
855
856 return KERN_SUCCESS;
857 }
858
859 /*
860 *
861 */
862 kern_return_t
863 shared_region_pager_synchronize(
864 __unused memory_object_t mem_obj,
865 __unused memory_object_offset_t offset,
866 __unused memory_object_size_t length,
867 __unused vm_sync_t sync_flags)
868 {
869 panic("shared_region_pager_synchronize: memory_object_synchronize no longer supported\n");
870 return KERN_FAILURE;
871 }
872
873 /*
874 * shared_region_pager_map()
875 *
876 * This allows VM to let us, the EMM, know that this memory object
877 * is currently mapped one or more times. This is called by VM each time
878 * the memory object gets mapped and we take one extra reference on the
879 * memory object to account for all its mappings.
880 */
881 kern_return_t
882 shared_region_pager_map(
883 memory_object_t mem_obj,
884 __unused vm_prot_t prot)
885 {
886 shared_region_pager_t pager;
887
888 PAGER_DEBUG(PAGER_ALL, ("shared_region_pager_map: %p\n", mem_obj));
889
890 pager = shared_region_pager_lookup(mem_obj);
891
892 lck_mtx_lock(&shared_region_pager_lock);
893 assert(pager->is_ready);
894 assert(pager->ref_count > 0); /* pager is alive */
895 if (pager->is_mapped == FALSE) {
896 /*
897 * First mapping of this pager: take an extra reference
898 * that will remain until all the mappings of this pager
899 * are removed.
900 */
901 pager->is_mapped = TRUE;
902 pager->ref_count++;
903 shared_region_pager_count_mapped++;
904 }
905 lck_mtx_unlock(&shared_region_pager_lock);
906
907 return KERN_SUCCESS;
908 }
909
910 /*
911 * shared_region_pager_last_unmap()
912 *
913 * This is called by VM when this memory object is no longer mapped anywhere.
914 */
915 kern_return_t
916 shared_region_pager_last_unmap(
917 memory_object_t mem_obj)
918 {
919 shared_region_pager_t pager;
920 int count_unmapped;
921
922 PAGER_DEBUG(PAGER_ALL,
923 ("shared_region_pager_last_unmap: %p\n", mem_obj));
924
925 pager = shared_region_pager_lookup(mem_obj);
926
927 lck_mtx_lock(&shared_region_pager_lock);
928 if (pager->is_mapped) {
929 /*
930 * All the mappings are gone, so let go of the one extra
931 * reference that represents all the mappings of this pager.
932 */
933 shared_region_pager_count_mapped--;
934 count_unmapped = (shared_region_pager_count -
935 shared_region_pager_count_mapped);
936 if (count_unmapped > shared_region_pager_count_unmapped_max) {
937 shared_region_pager_count_unmapped_max = count_unmapped;
938 }
939 pager->is_mapped = FALSE;
940 shared_region_pager_deallocate_internal(pager, TRUE);
941 /* caution: deallocate_internal() released the lock ! */
942 } else {
943 lck_mtx_unlock(&shared_region_pager_lock);
944 }
945
946 return KERN_SUCCESS;
947 }
948
949
950 /*
951 *
952 */
953 shared_region_pager_t
954 shared_region_pager_lookup(
955 memory_object_t mem_obj)
956 {
957 shared_region_pager_t pager;
958
959 assert(mem_obj->mo_pager_ops == &shared_region_pager_ops);
960 pager = (shared_region_pager_t)(uintptr_t) mem_obj;
961 assert(pager->ref_count > 0);
962 return pager;
963 }
964
965 shared_region_pager_t
966 shared_region_pager_create(
967 vm_object_t backing_object,
968 vm_object_offset_t backing_offset,
969 struct vm_shared_region_slide_info *slide_info)
970 {
971 shared_region_pager_t pager;
972 memory_object_control_t control;
973 kern_return_t kr;
974 vm_object_t object;
975
976 pager = (shared_region_pager_t) kalloc(sizeof(*pager));
977 if (pager == SHARED_REGION_PAGER_NULL) {
978 return SHARED_REGION_PAGER_NULL;
979 }
980
981 /*
982 * The vm_map call takes both named entry ports and raw memory
983 * objects in the same parameter. We need to make sure that
984 * vm_map does not see this object as a named entry port. So,
985 * we reserve the first word in the object for a fake ip_kotype
986 * setting - that will tell vm_map to use it as a memory object.
987 */
988 pager->sc_pgr_hdr.mo_ikot = IKOT_MEMORY_OBJECT;
989 pager->sc_pgr_hdr.mo_pager_ops = &shared_region_pager_ops;
990 pager->sc_pgr_hdr.mo_control = MEMORY_OBJECT_CONTROL_NULL;
991
992 pager->is_ready = FALSE;/* not ready until it has a "name" */
993 pager->ref_count = 1; /* existence reference (for the cache) */
994 pager->ref_count++; /* for the caller */
995 pager->is_mapped = FALSE;
996 pager->backing_object = backing_object;
997 pager->backing_offset = backing_offset;
998 pager->scp_slide_info = slide_info;
999
1000 vm_object_reference(backing_object);
1001
1002 lck_mtx_lock(&shared_region_pager_lock);
1003 /* enter new pager at the head of our list of pagers */
1004 queue_enter_first(&shared_region_pager_queue,
1005 pager,
1006 shared_region_pager_t,
1007 pager_queue);
1008 shared_region_pager_count++;
1009 if (shared_region_pager_count > shared_region_pager_count_max) {
1010 shared_region_pager_count_max = shared_region_pager_count;
1011 }
1012 lck_mtx_unlock(&shared_region_pager_lock);
1013
1014 kr = memory_object_create_named((memory_object_t) pager,
1015 0,
1016 &control);
1017 assert(kr == KERN_SUCCESS);
1018
1019 memory_object_mark_trusted(control);
1020
1021 lck_mtx_lock(&shared_region_pager_lock);
1022 /* the new pager is now ready to be used */
1023 pager->is_ready = TRUE;
1024 object = memory_object_to_vm_object((memory_object_t) pager);
1025 assert(object);
1026 /*
1027 * No one knows about this object and so we get away without the object lock.
1028 * This object is _eventually_ backed by the dyld shared cache and so we want
1029 * to benefit from the lock priority boosting.
1030 */
1031 object->object_is_shared_cache = TRUE;
1032 lck_mtx_unlock(&shared_region_pager_lock);
1033
1034 /* wakeup anyone waiting for this pager to be ready */
1035 thread_wakeup(&pager->is_ready);
1036
1037 return pager;
1038 }
1039
1040 /*
1041 * shared_region_pager_setup()
1042 *
1043 * Provide the caller with a memory object backed by the provided
1044 * "backing_object" VM object.
1045 */
1046 memory_object_t
1047 shared_region_pager_setup(
1048 vm_object_t backing_object,
1049 vm_object_offset_t backing_offset,
1050 struct vm_shared_region_slide_info *slide_info)
1051 {
1052 shared_region_pager_t pager;
1053
1054 /* create new pager */
1055 pager = shared_region_pager_create(
1056 backing_object,
1057 backing_offset,
1058 slide_info);
1059 if (pager == SHARED_REGION_PAGER_NULL) {
1060 /* could not create a new pager */
1061 return MEMORY_OBJECT_NULL;
1062 }
1063
1064 lck_mtx_lock(&shared_region_pager_lock);
1065 while (!pager->is_ready) {
1066 lck_mtx_sleep(&shared_region_pager_lock,
1067 LCK_SLEEP_DEFAULT,
1068 &pager->is_ready,
1069 THREAD_UNINT);
1070 }
1071 lck_mtx_unlock(&shared_region_pager_lock);
1072
1073 return (memory_object_t) pager;
1074 }
1075
1076 void
1077 shared_region_pager_trim(void)
1078 {
1079 shared_region_pager_t pager, prev_pager;
1080 queue_head_t trim_queue;
1081 int num_trim;
1082 int count_unmapped;
1083
1084 lck_mtx_lock(&shared_region_pager_lock);
1085
1086 /*
1087 * We have too many pagers, try and trim some unused ones,
1088 * starting with the oldest pager at the end of the queue.
1089 */
1090 queue_init(&trim_queue);
1091 num_trim = 0;
1092
1093 for (pager = (shared_region_pager_t)
1094 queue_last(&shared_region_pager_queue);
1095 !queue_end(&shared_region_pager_queue,
1096 (queue_entry_t) pager);
1097 pager = prev_pager) {
1098 /* get prev elt before we dequeue */
1099 prev_pager = (shared_region_pager_t)
1100 queue_prev(&pager->pager_queue);
1101
1102 if (pager->ref_count == 2 &&
1103 pager->is_ready &&
1104 !pager->is_mapped) {
1105 /* this pager can be trimmed */
1106 num_trim++;
1107 /* remove this pager from the main list ... */
1108 shared_region_pager_dequeue(pager);
1109 /* ... and add it to our trim queue */
1110 queue_enter_first(&trim_queue,
1111 pager,
1112 shared_region_pager_t,
1113 pager_queue);
1114
1115 count_unmapped = (shared_region_pager_count -
1116 shared_region_pager_count_mapped);
1117 if (count_unmapped <= shared_region_pager_cache_limit) {
1118 /* we have enough pagers to trim */
1119 break;
1120 }
1121 }
1122 }
1123 if (num_trim > shared_region_pager_num_trim_max) {
1124 shared_region_pager_num_trim_max = num_trim;
1125 }
1126 shared_region_pager_num_trim_total += num_trim;
1127
1128 lck_mtx_unlock(&shared_region_pager_lock);
1129
1130 /* terminate the trimmed pagers */
1131 while (!queue_empty(&trim_queue)) {
1132 queue_remove_first(&trim_queue,
1133 pager,
1134 shared_region_pager_t,
1135 pager_queue);
1136 pager->pager_queue.next = NULL;
1137 pager->pager_queue.prev = NULL;
1138 assert(pager->ref_count == 2);
1139 /*
1140 * We can't call deallocate_internal() because the pager
1141 * has already been dequeued, but we still need to remove
1142 * a reference.
1143 */
1144 pager->ref_count--;
1145 shared_region_pager_terminate_internal(pager);
1146 }
1147 }