]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOBufferMemoryDescriptor.cpp
xnu-6153.11.26.tar.gz
[apple/xnu.git] / iokit / Kernel / IOBufferMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #define _IOMEMORYDESCRIPTOR_INTERNAL_
30
31 #include <IOKit/assert.h>
32 #include <IOKit/system.h>
33
34 #include <IOKit/IOLib.h>
35 #include <IOKit/IOMapper.h>
36 #include <IOKit/IOBufferMemoryDescriptor.h>
37 #include <libkern/OSDebug.h>
38 #include <mach/mach_vm.h>
39
40 #include "IOKitKernelInternal.h"
41
42 #ifdef IOALLOCDEBUG
43 #include <libkern/c++/OSCPPDebug.h>
44 #endif
45 #include <IOKit/IOStatisticsPrivate.h>
46
47 #if IOKITSTATS
48 #define IOStatisticsAlloc(type, size) \
49 do { \
50 IOStatistics::countAlloc(type, size); \
51 } while (0)
52 #else
53 #define IOStatisticsAlloc(type, size)
54 #endif /* IOKITSTATS */
55
56
57 __BEGIN_DECLS
58 void ipc_port_release_send(ipc_port_t port);
59 #include <vm/pmap.h>
60
61 __END_DECLS
62
63 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
64
65 enum{
66 kInternalFlagPhysical = 0x00000001,
67 kInternalFlagPageSized = 0x00000002,
68 kInternalFlagPageAllocated = 0x00000004,
69 kInternalFlagInit = 0x00000008
70 };
71
72 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
73
74 #define super IOGeneralMemoryDescriptor
75 OSDefineMetaClassAndStructors(IOBufferMemoryDescriptor,
76 IOGeneralMemoryDescriptor);
77
78 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
79
80 static uintptr_t
81 IOBMDPageProc(iopa_t * a)
82 {
83 kern_return_t kr;
84 vm_address_t vmaddr = 0;
85 int options = 0;// KMA_LOMEM;
86
87 kr = kernel_memory_allocate(kernel_map, &vmaddr,
88 page_size, 0, options, VM_KERN_MEMORY_IOKIT);
89
90 if (KERN_SUCCESS != kr) {
91 vmaddr = 0;
92 } else {
93 bzero((void *) vmaddr, page_size);
94 }
95
96 return (uintptr_t) vmaddr;
97 }
98
99 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
100
101 #ifndef __LP64__
102 bool
103 IOBufferMemoryDescriptor::initWithOptions(
104 IOOptionBits options,
105 vm_size_t capacity,
106 vm_offset_t alignment,
107 task_t inTask)
108 {
109 mach_vm_address_t physicalMask = 0;
110 return initWithPhysicalMask(inTask, options, capacity, alignment, physicalMask);
111 }
112 #endif /* !__LP64__ */
113
114 IOBufferMemoryDescriptor *
115 IOBufferMemoryDescriptor::withCopy(
116 task_t inTask,
117 IOOptionBits options,
118 vm_map_t sourceMap,
119 mach_vm_address_t source,
120 mach_vm_size_t size)
121 {
122 IOBufferMemoryDescriptor * inst;
123 kern_return_t err;
124 vm_map_copy_t copy;
125 vm_map_address_t address;
126
127 copy = NULL;
128 do {
129 err = kIOReturnNoMemory;
130 inst = new IOBufferMemoryDescriptor;
131 if (!inst) {
132 break;
133 }
134 inst->_ranges.v64 = IONew(IOAddressRange, 1);
135 if (!inst->_ranges.v64) {
136 break;
137 }
138
139 err = vm_map_copyin(sourceMap, source, size,
140 false /* src_destroy */, &copy);
141 if (KERN_SUCCESS != err) {
142 break;
143 }
144
145 err = vm_map_copyout(get_task_map(inTask), &address, copy);
146 if (KERN_SUCCESS != err) {
147 break;
148 }
149 copy = NULL;
150
151 inst->_ranges.v64->address = address;
152 inst->_ranges.v64->length = size;
153
154 if (!inst->initWithPhysicalMask(inTask, options, size, page_size, 0)) {
155 err = kIOReturnError;
156 }
157 } while (false);
158
159 if (KERN_SUCCESS == err) {
160 return inst;
161 }
162
163 if (copy) {
164 vm_map_copy_discard(copy);
165 }
166 OSSafeReleaseNULL(inst);
167 return NULL;
168 }
169
170
171 bool
172 IOBufferMemoryDescriptor::initWithPhysicalMask(
173 task_t inTask,
174 IOOptionBits options,
175 mach_vm_size_t capacity,
176 mach_vm_address_t alignment,
177 mach_vm_address_t physicalMask)
178 {
179 task_t mapTask = NULL;
180 vm_map_t vmmap = NULL;
181 mach_vm_address_t highestMask = 0;
182 IOOptionBits iomdOptions = kIOMemoryTypeVirtual64 | kIOMemoryAsReference;
183 IODMAMapSpecification mapSpec;
184 bool mapped = false;
185 bool withCopy = false;
186 bool needZero;
187
188 if (!capacity) {
189 return false;
190 }
191
192 _options = options;
193 _capacity = capacity;
194 _internalFlags = 0;
195 _internalReserved = 0;
196 _buffer = NULL;
197
198 if (!_ranges.v64) {
199 _ranges.v64 = IONew(IOAddressRange, 1);
200 if (!_ranges.v64) {
201 return false;
202 }
203 _ranges.v64->address = 0;
204 _ranges.v64->length = 0;
205 } else {
206 if (!_ranges.v64->address) {
207 return false;
208 }
209 if (!(kIOMemoryPageable & options)) {
210 return false;
211 }
212 if (!inTask) {
213 return false;
214 }
215 _buffer = (void *) _ranges.v64->address;
216 withCopy = true;
217 }
218 // make sure super::free doesn't dealloc _ranges before super::init
219 _flags = kIOMemoryAsReference;
220
221 // Grab IOMD bits from the Buffer MD options
222 iomdOptions |= (options & kIOBufferDescriptorMemoryFlags);
223
224 if (!(kIOMemoryMapperNone & options)) {
225 IOMapper::checkForSystemMapper();
226 mapped = (NULL != IOMapper::gSystem);
227 }
228 needZero = (mapped || (0 != (kIOMemorySharingTypeMask & options)));
229
230 if (physicalMask && (alignment <= 1)) {
231 alignment = ((physicalMask ^ (-1ULL)) & (physicalMask - 1));
232 highestMask = (physicalMask | alignment);
233 alignment++;
234 if (alignment < page_size) {
235 alignment = page_size;
236 }
237 }
238
239 if ((options & (kIOMemorySharingTypeMask | kIOMapCacheMask | kIOMemoryClearEncrypt)) && (alignment < page_size)) {
240 alignment = page_size;
241 }
242
243 if (alignment >= page_size) {
244 capacity = round_page(capacity);
245 }
246
247 if (alignment > page_size) {
248 options |= kIOMemoryPhysicallyContiguous;
249 }
250
251 _alignment = alignment;
252
253 if ((capacity + alignment) < _capacity) {
254 return false;
255 }
256
257 if ((inTask != kernel_task) && !(options & kIOMemoryPageable)) {
258 return false;
259 }
260
261 bzero(&mapSpec, sizeof(mapSpec));
262 mapSpec.alignment = _alignment;
263 mapSpec.numAddressBits = 64;
264 if (highestMask && mapped) {
265 if (highestMask <= 0xFFFFFFFF) {
266 mapSpec.numAddressBits = (32 - __builtin_clz((unsigned int) highestMask));
267 } else {
268 mapSpec.numAddressBits = (64 - __builtin_clz((unsigned int) (highestMask >> 32)));
269 }
270 highestMask = 0;
271 }
272
273 // set memory entry cache mode, pageable, purgeable
274 iomdOptions |= ((options & kIOMapCacheMask) >> kIOMapCacheShift) << kIOMemoryBufferCacheShift;
275 if (options & kIOMemoryPageable) {
276 iomdOptions |= kIOMemoryBufferPageable;
277 if (options & kIOMemoryPurgeable) {
278 iomdOptions |= kIOMemoryBufferPurgeable;
279 }
280 } else {
281 vmmap = kernel_map;
282
283 // Buffer shouldn't auto prepare they should be prepared explicitly
284 // But it never was enforced so what are you going to do?
285 iomdOptions |= kIOMemoryAutoPrepare;
286
287 /* Allocate a wired-down buffer inside kernel space. */
288
289 bool contig = (0 != (options & kIOMemoryHostPhysicallyContiguous));
290
291 if (!contig && (0 != (options & kIOMemoryPhysicallyContiguous))) {
292 contig |= (!mapped);
293 contig |= (0 != (kIOMemoryMapperNone & options));
294 #if 0
295 // treat kIOMemoryPhysicallyContiguous as kIOMemoryHostPhysicallyContiguous for now
296 contig |= true;
297 #endif
298 }
299
300 if (contig || highestMask || (alignment > page_size)) {
301 _internalFlags |= kInternalFlagPhysical;
302 if (highestMask) {
303 _internalFlags |= kInternalFlagPageSized;
304 capacity = round_page(capacity);
305 }
306 _buffer = (void *) IOKernelAllocateWithPhysicalRestrict(
307 capacity, highestMask, alignment, contig);
308 } else if (needZero
309 && ((capacity + alignment) <= (page_size - gIOPageAllocChunkBytes))) {
310 _internalFlags |= kInternalFlagPageAllocated;
311 needZero = false;
312 _buffer = (void *) iopa_alloc(&gIOBMDPageAllocator, &IOBMDPageProc, capacity, alignment);
313 if (_buffer) {
314 IOStatisticsAlloc(kIOStatisticsMallocAligned, capacity);
315 #if IOALLOCDEBUG
316 OSAddAtomic(capacity, &debug_iomalloc_size);
317 #endif
318 }
319 } else if (alignment > 1) {
320 _buffer = IOMallocAligned(capacity, alignment);
321 } else {
322 _buffer = IOMalloc(capacity);
323 }
324 if (!_buffer) {
325 return false;
326 }
327 if (needZero) {
328 bzero(_buffer, capacity);
329 }
330 }
331
332 if ((options & (kIOMemoryPageable | kIOMapCacheMask))) {
333 vm_size_t size = round_page(capacity);
334
335 // initWithOptions will create memory entry
336 if (!withCopy) {
337 iomdOptions |= kIOMemoryPersistent;
338 }
339
340 if (options & kIOMemoryPageable) {
341 #if IOALLOCDEBUG
342 OSAddAtomicLong(size, &debug_iomallocpageable_size);
343 #endif
344 if (!withCopy) {
345 mapTask = inTask;
346 }
347 if (NULL == inTask) {
348 inTask = kernel_task;
349 }
350 } else if (options & kIOMapCacheMask) {
351 // Prefetch each page to put entries into the pmap
352 volatile UInt8 * startAddr = (UInt8 *)_buffer;
353 volatile UInt8 * endAddr = (UInt8 *)_buffer + capacity;
354
355 while (startAddr < endAddr) {
356 UInt8 dummyVar = *startAddr;
357 (void) dummyVar;
358 startAddr += page_size;
359 }
360 }
361 }
362
363 _ranges.v64->address = (mach_vm_address_t) _buffer;
364 _ranges.v64->length = _capacity;
365
366 if (!super::initWithOptions(_ranges.v64, 1, 0,
367 inTask, iomdOptions, /* System mapper */ NULL)) {
368 return false;
369 }
370
371 _internalFlags |= kInternalFlagInit;
372 #if IOTRACKING
373 if (!(options & kIOMemoryPageable)) {
374 trackingAccumSize(capacity);
375 }
376 #endif /* IOTRACKING */
377
378 // give any system mapper the allocation params
379 if (kIOReturnSuccess != dmaCommandOperation(kIOMDAddDMAMapSpec,
380 &mapSpec, sizeof(mapSpec))) {
381 return false;
382 }
383
384 if (mapTask) {
385 if (!reserved) {
386 reserved = IONew( ExpansionData, 1 );
387 if (!reserved) {
388 return false;
389 }
390 }
391 reserved->map = createMappingInTask(mapTask, 0,
392 kIOMapAnywhere | (options & kIOMapPrefault) | (options & kIOMapCacheMask), 0, 0);
393 if (!reserved->map) {
394 _buffer = NULL;
395 return false;
396 }
397 release(); // map took a retain on this
398 reserved->map->retain();
399 removeMapping(reserved->map);
400 mach_vm_address_t buffer = reserved->map->getAddress();
401 _buffer = (void *) buffer;
402 if (kIOMemoryTypeVirtual64 == (kIOMemoryTypeMask & iomdOptions)) {
403 _ranges.v64->address = buffer;
404 }
405 }
406
407 setLength(_capacity);
408
409 return true;
410 }
411
412 IOBufferMemoryDescriptor *
413 IOBufferMemoryDescriptor::inTaskWithOptions(
414 task_t inTask,
415 IOOptionBits options,
416 vm_size_t capacity,
417 vm_offset_t alignment)
418 {
419 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
420
421 if (me && !me->initWithPhysicalMask(inTask, options, capacity, alignment, 0)) {
422 me->release();
423 me = NULL;
424 }
425 return me;
426 }
427
428 IOBufferMemoryDescriptor *
429 IOBufferMemoryDescriptor::inTaskWithPhysicalMask(
430 task_t inTask,
431 IOOptionBits options,
432 mach_vm_size_t capacity,
433 mach_vm_address_t physicalMask)
434 {
435 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
436
437 if (me && !me->initWithPhysicalMask(inTask, options, capacity, 1, physicalMask)) {
438 me->release();
439 me = NULL;
440 }
441 return me;
442 }
443
444 #ifndef __LP64__
445 bool
446 IOBufferMemoryDescriptor::initWithOptions(
447 IOOptionBits options,
448 vm_size_t capacity,
449 vm_offset_t alignment)
450 {
451 return initWithPhysicalMask(kernel_task, options, capacity, alignment, (mach_vm_address_t)0);
452 }
453 #endif /* !__LP64__ */
454
455 IOBufferMemoryDescriptor *
456 IOBufferMemoryDescriptor::withOptions(
457 IOOptionBits options,
458 vm_size_t capacity,
459 vm_offset_t alignment)
460 {
461 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
462
463 if (me && !me->initWithPhysicalMask(kernel_task, options, capacity, alignment, 0)) {
464 me->release();
465 me = NULL;
466 }
467 return me;
468 }
469
470
471 /*
472 * withCapacity:
473 *
474 * Returns a new IOBufferMemoryDescriptor with a buffer large enough to
475 * hold capacity bytes. The descriptor's length is initially set to the capacity.
476 */
477 IOBufferMemoryDescriptor *
478 IOBufferMemoryDescriptor::withCapacity(vm_size_t inCapacity,
479 IODirection inDirection,
480 bool inContiguous)
481 {
482 return IOBufferMemoryDescriptor::withOptions(
483 inDirection | kIOMemoryUnshared
484 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
485 inCapacity, inContiguous ? inCapacity : 1 );
486 }
487
488 #ifndef __LP64__
489 /*
490 * initWithBytes:
491 *
492 * Initialize a new IOBufferMemoryDescriptor preloaded with bytes (copied).
493 * The descriptor's length and capacity are set to the input buffer's size.
494 */
495 bool
496 IOBufferMemoryDescriptor::initWithBytes(const void * inBytes,
497 vm_size_t inLength,
498 IODirection inDirection,
499 bool inContiguous)
500 {
501 if (!initWithPhysicalMask(kernel_task, inDirection | kIOMemoryUnshared
502 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
503 inLength, inLength, (mach_vm_address_t)0)) {
504 return false;
505 }
506
507 // start out with no data
508 setLength(0);
509
510 if (!appendBytes(inBytes, inLength)) {
511 return false;
512 }
513
514 return true;
515 }
516 #endif /* !__LP64__ */
517
518 /*
519 * withBytes:
520 *
521 * Returns a new IOBufferMemoryDescriptor preloaded with bytes (copied).
522 * The descriptor's length and capacity are set to the input buffer's size.
523 */
524 IOBufferMemoryDescriptor *
525 IOBufferMemoryDescriptor::withBytes(const void * inBytes,
526 vm_size_t inLength,
527 IODirection inDirection,
528 bool inContiguous)
529 {
530 IOBufferMemoryDescriptor *me = new IOBufferMemoryDescriptor;
531
532 if (me && !me->initWithPhysicalMask(
533 kernel_task, inDirection | kIOMemoryUnshared
534 | (inContiguous ? kIOMemoryPhysicallyContiguous : 0),
535 inLength, inLength, 0 )) {
536 me->release();
537 me = NULL;
538 }
539
540 if (me) {
541 // start out with no data
542 me->setLength(0);
543
544 if (!me->appendBytes(inBytes, inLength)) {
545 me->release();
546 me = NULL;
547 }
548 }
549 return me;
550 }
551
552 /*
553 * free:
554 *
555 * Free resources
556 */
557 void
558 IOBufferMemoryDescriptor::free()
559 {
560 // Cache all of the relevant information on the stack for use
561 // after we call super::free()!
562 IOOptionBits flags = _flags;
563 IOOptionBits internalFlags = _internalFlags;
564 IOOptionBits options = _options;
565 vm_size_t size = _capacity;
566 void * buffer = _buffer;
567 IOMemoryMap * map = NULL;
568 IOAddressRange * range = _ranges.v64;
569 vm_offset_t alignment = _alignment;
570
571 if (alignment >= page_size) {
572 size = round_page(size);
573 }
574
575 if (reserved) {
576 map = reserved->map;
577 IODelete( reserved, ExpansionData, 1 );
578 if (map) {
579 map->release();
580 }
581 }
582
583 if ((options & kIOMemoryPageable)
584 || (kInternalFlagPageSized & internalFlags)) {
585 size = round_page(size);
586 }
587
588 #if IOTRACKING
589 if (!(options & kIOMemoryPageable)
590 && buffer
591 && (kInternalFlagInit & _internalFlags)) {
592 trackingAccumSize(-size);
593 }
594 #endif /* IOTRACKING */
595
596 /* super::free may unwire - deallocate buffer afterwards */
597 super::free();
598
599 if (options & kIOMemoryPageable) {
600 #if IOALLOCDEBUG
601 OSAddAtomicLong(-size, &debug_iomallocpageable_size);
602 #endif
603 } else if (buffer) {
604 if (kInternalFlagPhysical & internalFlags) {
605 IOKernelFreePhysical((mach_vm_address_t) buffer, size);
606 } else if (kInternalFlagPageAllocated & internalFlags) {
607 uintptr_t page;
608 page = iopa_free(&gIOBMDPageAllocator, (uintptr_t) buffer, size);
609 if (page) {
610 kmem_free(kernel_map, page, page_size);
611 }
612 #if IOALLOCDEBUG
613 OSAddAtomic(-size, &debug_iomalloc_size);
614 #endif
615 IOStatisticsAlloc(kIOStatisticsFreeAligned, size);
616 } else if (alignment > 1) {
617 IOFreeAligned(buffer, size);
618 } else {
619 IOFree(buffer, size);
620 }
621 }
622 if (range && (kIOMemoryAsReference & flags)) {
623 IODelete(range, IOAddressRange, 1);
624 }
625 }
626
627 /*
628 * getCapacity:
629 *
630 * Get the buffer capacity
631 */
632 vm_size_t
633 IOBufferMemoryDescriptor::getCapacity() const
634 {
635 return _capacity;
636 }
637
638 /*
639 * setLength:
640 *
641 * Change the buffer length of the memory descriptor. When a new buffer
642 * is created, the initial length of the buffer is set to be the same as
643 * the capacity. The length can be adjusted via setLength for a shorter
644 * transfer (there is no need to create more buffer descriptors when you
645 * can reuse an existing one, even for different transfer sizes). Note
646 * that the specified length must not exceed the capacity of the buffer.
647 */
648 void
649 IOBufferMemoryDescriptor::setLength(vm_size_t length)
650 {
651 assert(length <= _capacity);
652 if (length > _capacity) {
653 return;
654 }
655
656 _length = length;
657 _ranges.v64->length = length;
658 }
659
660 /*
661 * setDirection:
662 *
663 * Change the direction of the transfer. This method allows one to redirect
664 * the descriptor's transfer direction. This eliminates the need to destroy
665 * and create new buffers when different transfer directions are needed.
666 */
667 void
668 IOBufferMemoryDescriptor::setDirection(IODirection direction)
669 {
670 _flags = (_flags & ~kIOMemoryDirectionMask) | direction;
671 #ifndef __LP64__
672 _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
673 #endif /* !__LP64__ */
674 }
675
676 /*
677 * appendBytes:
678 *
679 * Add some data to the end of the buffer. This method automatically
680 * maintains the memory descriptor buffer length. Note that appendBytes
681 * will not copy past the end of the memory descriptor's current capacity.
682 */
683 bool
684 IOBufferMemoryDescriptor::appendBytes(const void * bytes, vm_size_t withLength)
685 {
686 vm_size_t actualBytesToCopy = min(withLength, _capacity - _length);
687 IOByteCount offset;
688
689 assert(_length <= _capacity);
690
691 offset = _length;
692 _length += actualBytesToCopy;
693 _ranges.v64->length += actualBytesToCopy;
694
695 if (_task == kernel_task) {
696 bcopy(/* from */ bytes, (void *)(_ranges.v64->address + offset),
697 actualBytesToCopy);
698 } else {
699 writeBytes(offset, bytes, actualBytesToCopy);
700 }
701
702 return true;
703 }
704
705 /*
706 * getBytesNoCopy:
707 *
708 * Return the virtual address of the beginning of the buffer
709 */
710 void *
711 IOBufferMemoryDescriptor::getBytesNoCopy()
712 {
713 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) {
714 return _buffer;
715 } else {
716 return (void *)_ranges.v64->address;
717 }
718 }
719
720
721 /*
722 * getBytesNoCopy:
723 *
724 * Return the virtual address of an offset from the beginning of the buffer
725 */
726 void *
727 IOBufferMemoryDescriptor::getBytesNoCopy(vm_size_t start, vm_size_t withLength)
728 {
729 IOVirtualAddress address;
730
731 if ((start + withLength) < start) {
732 return NULL;
733 }
734
735 if (kIOMemoryTypePhysical64 == (_flags & kIOMemoryTypeMask)) {
736 address = (IOVirtualAddress) _buffer;
737 } else {
738 address = _ranges.v64->address;
739 }
740
741 if (start < _length && (start + withLength) <= _length) {
742 return (void *)(address + start);
743 }
744 return NULL;
745 }
746
747 #ifndef __LP64__
748 void *
749 IOBufferMemoryDescriptor::getVirtualSegment(IOByteCount offset,
750 IOByteCount * lengthOfSegment)
751 {
752 void * bytes = getBytesNoCopy(offset, 0);
753
754 if (bytes && lengthOfSegment) {
755 *lengthOfSegment = _length - offset;
756 }
757
758 return bytes;
759 }
760 #endif /* !__LP64__ */
761
762 #ifdef __LP64__
763 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 0);
764 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 1);
765 #else /* !__LP64__ */
766 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 0);
767 OSMetaClassDefineReservedUsed(IOBufferMemoryDescriptor, 1);
768 #endif /* !__LP64__ */
769 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 2);
770 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 3);
771 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 4);
772 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 5);
773 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 6);
774 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 7);
775 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 8);
776 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 9);
777 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 10);
778 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 11);
779 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 12);
780 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 13);
781 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 14);
782 OSMetaClassDefineReservedUnused(IOBufferMemoryDescriptor, 15);