]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sysv_sem.c
xnu-6153.11.26.tar.gz
[apple/xnu.git] / bsd / kern / sysv_sem.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Implementation of SVID semaphores
30 *
31 * Author: Daniel Boulet
32 *
33 * This software is provided ``AS IS'' without any warranties of any kind.
34 */
35 /*
36 * John Bellardo modified the implementation for Darwin. 12/2000
37 */
38 /*
39 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
40 * support for mandatory and extensible security protections. This notice
41 * is included in support of clause 2.2 (b) of the Apple Public License,
42 * Version 2.0.
43 * Copyright (c) 2005-2006 SPARTA, Inc.
44 */
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/proc_internal.h>
50 #include <sys/kauth.h>
51 #include <sys/sem_internal.h>
52 #include <sys/malloc.h>
53 #include <mach/mach_types.h>
54
55 #include <sys/filedesc.h>
56 #include <sys/file_internal.h>
57 #include <sys/sysctl.h>
58 #include <sys/ipcs.h>
59 #include <sys/sysent.h>
60 #include <sys/sysproto.h>
61 #if CONFIG_MACF
62 #include <security/mac_framework.h>
63 #endif
64
65 #include <security/audit/audit.h>
66
67 #if SYSV_SEM
68
69
70 /* Uncomment this line to see the debugging output */
71 /* #define SEM_DEBUG */
72
73 /* Uncomment this line to see MAC debugging output. */
74 /* #define MAC_DEBUG */
75 #if CONFIG_MACF_DEBUG
76 #define MPRINTF(a) printf(a)
77 #else
78 #define MPRINTF(a)
79 #endif
80
81 #define M_SYSVSEM M_TEMP
82
83
84 /* Hard system limits to avoid resource starvation / DOS attacks.
85 * These are not needed if we can make the semaphore pages swappable.
86 */
87 static struct seminfo limitseminfo = {
88 .semmap = SEMMAP, /* # of entries in semaphore map */
89 .semmni = SEMMNI, /* # of semaphore identifiers */
90 .semmns = SEMMNS, /* # of semaphores in system */
91 .semmnu = SEMMNU, /* # of undo structures in system */
92 .semmsl = SEMMSL, /* max # of semaphores per id */
93 .semopm = SEMOPM, /* max # of operations per semop call */
94 .semume = SEMUME, /* max # of undo entries per process */
95 .semusz = SEMUSZ, /* size in bytes of undo structure */
96 .semvmx = SEMVMX, /* semaphore maximum value */
97 .semaem = SEMAEM /* adjust on exit max value */
98 };
99
100 /* Current system allocations. We use this structure to track how many
101 * resources we have allocated so far. This way we can set large hard limits
102 * and not allocate the memory for them up front.
103 */
104 struct seminfo seminfo = {
105 .semmap = SEMMAP, /* Unused, # of entries in semaphore map */
106 .semmni = 0, /* # of semaphore identifiers */
107 .semmns = 0, /* # of semaphores in system */
108 .semmnu = 0, /* # of undo entries in system */
109 .semmsl = SEMMSL, /* max # of semaphores per id */
110 .semopm = SEMOPM, /* max # of operations per semop call */
111 .semume = SEMUME, /* max # of undo entries per process */
112 .semusz = SEMUSZ, /* size in bytes of undo structure */
113 .semvmx = SEMVMX, /* semaphore maximum value */
114 .semaem = SEMAEM /* adjust on exit max value */
115 };
116
117
118 static int semu_alloc(struct proc *p);
119 static int semundo_adjust(struct proc *p, int *supidx,
120 int semid, int semnum, int adjval);
121 static void semundo_clear(int semid, int semnum);
122
123 /* XXX casting to (sy_call_t *) is bogus, as usual. */
124 static sy_call_t* const semcalls[] = {
125 (sy_call_t *)semctl, (sy_call_t *)semget,
126 (sy_call_t *)semop
127 };
128
129 static int semtot = 0; /* # of used semaphores */
130 struct semid_kernel *sema = NULL; /* semaphore id pool */
131 struct sem *sem_pool = NULL; /* semaphore pool */
132 static int semu_list_idx = -1; /* active undo structures */
133 struct sem_undo *semu = NULL; /* semaphore undo pool */
134
135
136 void sysv_sem_lock_init(void);
137 static lck_grp_t *sysv_sem_subsys_lck_grp;
138 static lck_grp_attr_t *sysv_sem_subsys_lck_grp_attr;
139 static lck_attr_t *sysv_sem_subsys_lck_attr;
140 static lck_mtx_t sysv_sem_subsys_mutex;
141
142 #define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex)
143 #define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex)
144
145
146 __private_extern__ void
147 sysv_sem_lock_init( void )
148 {
149 sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init();
150
151 sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_sem_subsys_lock", sysv_sem_subsys_lck_grp_attr);
152
153 sysv_sem_subsys_lck_attr = lck_attr_alloc_init();
154 lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr);
155 }
156
157 static __inline__ user_time_t
158 sysv_semtime(void)
159 {
160 struct timeval tv;
161 microtime(&tv);
162 return tv.tv_sec;
163 }
164
165 /*
166 * XXX conversion of internal user_time_t to external tume_t loses
167 * XXX precision; not an issue for us now, since we are only ever
168 * XXX setting 32 bits worth of time into it.
169 *
170 * pad field contents are not moved correspondingly; contents will be lost
171 *
172 * NOTE: Source and target may *NOT* overlap! (target is smaller)
173 */
174 static void
175 semid_ds_kernelto32(struct user_semid_ds *in, struct user32_semid_ds *out)
176 {
177 out->sem_perm = in->sem_perm;
178 out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
179 out->sem_nsems = in->sem_nsems;
180 out->sem_otime = in->sem_otime; /* XXX loses precision */
181 out->sem_ctime = in->sem_ctime; /* XXX loses precision */
182 }
183
184 static void
185 semid_ds_kernelto64(struct user_semid_ds *in, struct user64_semid_ds *out)
186 {
187 out->sem_perm = in->sem_perm;
188 out->sem_base = CAST_DOWN_EXPLICIT(__int32_t, in->sem_base);
189 out->sem_nsems = in->sem_nsems;
190 out->sem_otime = in->sem_otime; /* XXX loses precision */
191 out->sem_ctime = in->sem_ctime; /* XXX loses precision */
192 }
193
194 /*
195 * pad field contents are not moved correspondingly; contents will be lost
196 *
197 * NOTE: Source and target may are permitted to overlap! (source is smaller);
198 * this works because we copy fields in order from the end of the struct to
199 * the beginning.
200 *
201 * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect
202 * XXX is the same.
203 */
204 static void
205 semid_ds_32tokernel(struct user32_semid_ds *in, struct user_semid_ds *out)
206 {
207 out->sem_ctime = in->sem_ctime;
208 out->sem_otime = in->sem_otime;
209 out->sem_nsems = in->sem_nsems;
210 out->sem_base = (void *)(uintptr_t)in->sem_base;
211 out->sem_perm = in->sem_perm;
212 }
213
214 static void
215 semid_ds_64tokernel(struct user64_semid_ds *in, struct user_semid_ds *out)
216 {
217 out->sem_ctime = in->sem_ctime;
218 out->sem_otime = in->sem_otime;
219 out->sem_nsems = in->sem_nsems;
220 out->sem_base = (void *)(uintptr_t)in->sem_base;
221 out->sem_perm = in->sem_perm;
222 }
223
224
225 /*
226 * semsys
227 *
228 * Entry point for all SEM calls: semctl, semget, semop
229 *
230 * Parameters: p Process requesting the call
231 * uap User argument descriptor (see below)
232 * retval Return value of the selected sem call
233 *
234 * Indirect parameters: uap->which sem call to invoke (index in array of sem calls)
235 * uap->a2 User argument descriptor
236 *
237 * Returns: 0 Success
238 * !0 Not success
239 *
240 * Implicit returns: retval Return value of the selected sem call
241 *
242 * DEPRECATED: This interface should not be used to call the other SEM
243 * functions (semctl, semget, semop). The correct usage is
244 * to call the other SEM functions directly.
245 *
246 */
247 int
248 semsys(struct proc *p, struct semsys_args *uap, int32_t *retval)
249 {
250 /* The individual calls handling the locking now */
251
252 if (uap->which >= sizeof(semcalls) / sizeof(semcalls[0])) {
253 return EINVAL;
254 }
255 return (*semcalls[uap->which])(p, &uap->a2, retval);
256 }
257
258 /*
259 * Expand the semu array to the given capacity. If the expansion fails
260 * return 0, otherwise return 1.
261 *
262 * Assumes we already have the subsystem lock.
263 */
264 static int
265 grow_semu_array(int newSize)
266 {
267 int i;
268 struct sem_undo *newSemu;
269
270 if (newSize <= seminfo.semmnu) {
271 return 1;
272 }
273 if (newSize > limitseminfo.semmnu) { /* enforce hard limit */
274 #ifdef SEM_DEBUG
275 printf("undo structure hard limit of %d reached, requested %d\n",
276 limitseminfo.semmnu, newSize);
277 #endif
278 return 0;
279 }
280 newSize = (newSize / SEMMNU_INC + 1) * SEMMNU_INC;
281 newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize;
282
283 #ifdef SEM_DEBUG
284 printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize);
285 #endif
286 MALLOC(newSemu, struct sem_undo *, sizeof(struct sem_undo) * newSize,
287 M_SYSVSEM, M_WAITOK | M_ZERO);
288 if (NULL == newSemu) {
289 #ifdef SEM_DEBUG
290 printf("allocation failed. no changes made.\n");
291 #endif
292 return 0;
293 }
294
295 /* copy the old data to the new array */
296 for (i = 0; i < seminfo.semmnu; i++) {
297 newSemu[i] = semu[i];
298 }
299 /*
300 * The new elements (from newSemu[i] to newSemu[newSize-1]) have their
301 * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above,
302 * so they're already marked as "not in use".
303 */
304
305 /* Clean up the old array */
306 if (semu) {
307 FREE(semu, M_SYSVSEM);
308 }
309
310 semu = newSemu;
311 seminfo.semmnu = newSize;
312 #ifdef SEM_DEBUG
313 printf("expansion successful\n");
314 #endif
315 return 1;
316 }
317
318 /*
319 * Expand the sema array to the given capacity. If the expansion fails
320 * we return 0, otherwise we return 1.
321 *
322 * Assumes we already have the subsystem lock.
323 */
324 static int
325 grow_sema_array(int newSize)
326 {
327 struct semid_kernel *newSema;
328 int i;
329
330 if (newSize <= seminfo.semmni) {
331 return 0;
332 }
333 if (newSize > limitseminfo.semmni) { /* enforce hard limit */
334 #ifdef SEM_DEBUG
335 printf("identifier hard limit of %d reached, requested %d\n",
336 limitseminfo.semmni, newSize);
337 #endif
338 return 0;
339 }
340 newSize = (newSize / SEMMNI_INC + 1) * SEMMNI_INC;
341 newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize;
342
343 #ifdef SEM_DEBUG
344 printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize);
345 #endif
346 MALLOC(newSema, struct semid_kernel *,
347 sizeof(struct semid_kernel) * newSize,
348 M_SYSVSEM, M_WAITOK | M_ZERO);
349 if (NULL == newSema) {
350 #ifdef SEM_DEBUG
351 printf("allocation failed. no changes made.\n");
352 #endif
353 return 0;
354 }
355
356 /* copy over the old ids */
357 for (i = 0; i < seminfo.semmni; i++) {
358 newSema[i] = sema[i];
359 /* This is a hack. What we really want to be able to
360 * do is change the value a process is waiting on
361 * without waking it up, but I don't know how to do
362 * this with the existing code, so we wake up the
363 * process and let it do a lot of work to determine the
364 * semaphore set is really not available yet, and then
365 * sleep on the correct, reallocated semid_kernel pointer.
366 */
367 if (sema[i].u.sem_perm.mode & SEM_ALLOC) {
368 wakeup((caddr_t)&sema[i]);
369 }
370 }
371
372 #if CONFIG_MACF
373 for (i = seminfo.semmni; i < newSize; i++) {
374 mac_sysvsem_label_init(&newSema[i]);
375 }
376 #endif
377
378 /*
379 * The new elements (from newSema[i] to newSema[newSize-1]) have their
380 * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO
381 * flag to MALLOC() above, so they're already marked as "not in use".
382 */
383
384 /* Clean up the old array */
385 if (sema) {
386 FREE(sema, M_SYSVSEM);
387 }
388
389 sema = newSema;
390 seminfo.semmni = newSize;
391 #ifdef SEM_DEBUG
392 printf("expansion successful\n");
393 #endif
394 return 1;
395 }
396
397 /*
398 * Expand the sem_pool array to the given capacity. If the expansion fails
399 * we return 0 (fail), otherwise we return 1 (success).
400 *
401 * Assumes we already hold the subsystem lock.
402 */
403 static int
404 grow_sem_pool(int new_pool_size)
405 {
406 struct sem *new_sem_pool = NULL;
407 struct sem *sem_free;
408 int i;
409
410 if (new_pool_size < semtot) {
411 return 0;
412 }
413 /* enforce hard limit */
414 if (new_pool_size > limitseminfo.semmns) {
415 #ifdef SEM_DEBUG
416 printf("semaphore hard limit of %d reached, requested %d\n",
417 limitseminfo.semmns, new_pool_size);
418 #endif
419 return 0;
420 }
421
422 new_pool_size = (new_pool_size / SEMMNS_INC + 1) * SEMMNS_INC;
423 new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size;
424
425 #ifdef SEM_DEBUG
426 printf("growing sem_pool array from %d to %d\n", seminfo.semmns, new_pool_size);
427 #endif
428 MALLOC(new_sem_pool, struct sem *, sizeof(struct sem) * new_pool_size,
429 M_SYSVSEM, M_WAITOK | M_ZERO | M_NULL);
430 if (NULL == new_sem_pool) {
431 #ifdef SEM_DEBUG
432 printf("allocation failed. no changes made.\n");
433 #endif
434 return 0;
435 }
436
437 /* We have our new memory, now copy the old contents over */
438 if (sem_pool) {
439 for (i = 0; i < seminfo.semmns; i++) {
440 new_sem_pool[i] = sem_pool[i];
441 }
442 }
443
444 /* Update our id structures to point to the new semaphores */
445 for (i = 0; i < seminfo.semmni; i++) {
446 if (sema[i].u.sem_perm.mode & SEM_ALLOC) { /* ID in use */
447 sema[i].u.sem_base = new_sem_pool +
448 (sema[i].u.sem_base - sem_pool);
449 }
450 }
451
452 sem_free = sem_pool;
453 sem_pool = new_sem_pool;
454
455 /* clean up the old array */
456 if (sem_free != NULL) {
457 FREE(sem_free, M_SYSVSEM);
458 }
459
460 seminfo.semmns = new_pool_size;
461 #ifdef SEM_DEBUG
462 printf("expansion complete\n");
463 #endif
464 return 1;
465 }
466
467 /*
468 * Allocate a new sem_undo structure for a process
469 * (returns ptr to structure or NULL if no more room)
470 *
471 * Assumes we already hold the subsystem lock.
472 */
473
474 static int
475 semu_alloc(struct proc *p)
476 {
477 int i;
478 struct sem_undo *suptr;
479 int *supidx;
480 int attempt;
481
482 /*
483 * Try twice to allocate something.
484 * (we'll purge any empty structures after the first pass so
485 * two passes are always enough)
486 */
487
488 for (attempt = 0; attempt < 2; attempt++) {
489 /*
490 * Look for a free structure.
491 * Fill it in and return it if we find one.
492 */
493
494 for (i = 0; i < seminfo.semmnu; i++) {
495 suptr = SEMU(i);
496 if (suptr->un_proc == NULL) {
497 suptr->un_next_idx = semu_list_idx;
498 semu_list_idx = i;
499 suptr->un_cnt = 0;
500 suptr->un_ent = NULL;
501 suptr->un_proc = p;
502 return i;
503 }
504 }
505
506 /*
507 * We didn't find a free one, if this is the first attempt
508 * then try to free some structures.
509 */
510
511 if (attempt == 0) {
512 /* All the structures are in use - try to free some */
513 int did_something = 0;
514
515 supidx = &semu_list_idx;
516 while (*supidx != -1) {
517 suptr = SEMU(*supidx);
518 if (suptr->un_cnt == 0) {
519 suptr->un_proc = NULL;
520 *supidx = suptr->un_next_idx;
521 did_something = 1;
522 } else {
523 supidx = &(suptr->un_next_idx);
524 }
525 }
526
527 /* If we didn't free anything. Try expanding
528 * the semu[] array. If that doesn't work
529 * then fail. We expand last to get the
530 * most reuse out of existing resources.
531 */
532 if (!did_something) {
533 if (!grow_semu_array(seminfo.semmnu + 1)) {
534 return -1;
535 }
536 }
537 } else {
538 /*
539 * The second pass failed even though we freed
540 * something after the first pass!
541 * This is IMPOSSIBLE!
542 */
543 panic("semu_alloc - second attempt failed");
544 }
545 }
546 return -1;
547 }
548
549 /*
550 * Adjust a particular entry for a particular proc
551 *
552 * Assumes we already hold the subsystem lock.
553 */
554 static int
555 semundo_adjust(struct proc *p, int *supidx, int semid,
556 int semnum, int adjval)
557 {
558 struct sem_undo *suptr;
559 int suidx;
560 struct undo *sueptr, **suepptr, *new_sueptr;
561 int i;
562
563 /*
564 * Look for and remember the sem_undo if the caller doesn't provide it
565 */
566
567 suidx = *supidx;
568 if (suidx == -1) {
569 for (suidx = semu_list_idx; suidx != -1;
570 suidx = suptr->un_next_idx) {
571 suptr = SEMU(suidx);
572 if (suptr->un_proc == p) {
573 *supidx = suidx;
574 break;
575 }
576 }
577 if (suidx == -1) {
578 if (adjval == 0) {
579 return 0;
580 }
581 suidx = semu_alloc(p);
582 if (suidx == -1) {
583 return ENOSPC;
584 }
585 *supidx = suidx;
586 }
587 }
588
589 /*
590 * Look for the requested entry and adjust it (delete if adjval becomes
591 * 0).
592 */
593 suptr = SEMU(suidx);
594 new_sueptr = NULL;
595 for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent;
596 i < suptr->un_cnt;
597 i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) {
598 if (sueptr->une_id != semid || sueptr->une_num != semnum) {
599 continue;
600 }
601 if (adjval == 0) {
602 sueptr->une_adjval = 0;
603 } else {
604 sueptr->une_adjval += adjval;
605 }
606 if (sueptr->une_adjval == 0) {
607 suptr->un_cnt--;
608 *suepptr = sueptr->une_next;
609 FREE(sueptr, M_SYSVSEM);
610 sueptr = NULL;
611 }
612 return 0;
613 }
614
615 /* Didn't find the right entry - create it */
616 if (adjval == 0) {
617 /* no adjustment: no need for a new entry */
618 return 0;
619 }
620
621 if (suptr->un_cnt == limitseminfo.semume) {
622 /* reached the limit number of semaphore undo entries */
623 return EINVAL;
624 }
625
626 /* allocate a new semaphore undo entry */
627 MALLOC(new_sueptr, struct undo *, sizeof(struct undo),
628 M_SYSVSEM, M_WAITOK);
629 if (new_sueptr == NULL) {
630 return ENOMEM;
631 }
632
633 /* fill in the new semaphore undo entry */
634 new_sueptr->une_next = suptr->un_ent;
635 suptr->un_ent = new_sueptr;
636 suptr->un_cnt++;
637 new_sueptr->une_adjval = adjval;
638 new_sueptr->une_id = semid;
639 new_sueptr->une_num = semnum;
640
641 return 0;
642 }
643
644 /* Assumes we already hold the subsystem lock.
645 */
646 static void
647 semundo_clear(int semid, int semnum)
648 {
649 struct sem_undo *suptr;
650 int suidx;
651
652 for (suidx = semu_list_idx; suidx != -1; suidx = suptr->un_next_idx) {
653 struct undo *sueptr;
654 struct undo **suepptr;
655 int i = 0;
656
657 suptr = SEMU(suidx);
658 sueptr = suptr->un_ent;
659 suepptr = &suptr->un_ent;
660 while (i < suptr->un_cnt) {
661 if (sueptr->une_id == semid) {
662 if (semnum == -1 || sueptr->une_num == semnum) {
663 suptr->un_cnt--;
664 *suepptr = sueptr->une_next;
665 FREE(sueptr, M_SYSVSEM);
666 sueptr = *suepptr;
667 continue;
668 }
669 if (semnum != -1) {
670 break;
671 }
672 }
673 i++;
674 suepptr = &sueptr->une_next;
675 sueptr = sueptr->une_next;
676 }
677 }
678 }
679
680 /*
681 * Note that the user-mode half of this passes a union coerced to a
682 * user_addr_t. The union contains either an int or a pointer, and
683 * so we have to coerce it back, variant on whether the calling
684 * process is 64 bit or not. The coercion works for the 'val' element
685 * because the alignment is the same in user and kernel space.
686 */
687 int
688 semctl(struct proc *p, struct semctl_args *uap, int32_t *retval)
689 {
690 int semid = uap->semid;
691 int semnum = uap->semnum;
692 int cmd = uap->cmd;
693 user_semun_t user_arg = (user_semun_t)uap->arg;
694 kauth_cred_t cred = kauth_cred_get();
695 int i, rval, eval;
696 struct user_semid_ds sbuf;
697 struct semid_kernel *semakptr;
698
699
700 AUDIT_ARG(svipc_cmd, cmd);
701 AUDIT_ARG(svipc_id, semid);
702
703 SYSV_SEM_SUBSYS_LOCK();
704
705 #ifdef SEM_DEBUG
706 printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg);
707 #endif
708
709 semid = IPCID_TO_IX(semid);
710
711 if (semid < 0 || semid >= seminfo.semmni) {
712 #ifdef SEM_DEBUG
713 printf("Invalid semid\n");
714 #endif
715 eval = EINVAL;
716 goto semctlout;
717 }
718
719 semakptr = &sema[semid];
720 if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
721 semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
722 eval = EINVAL;
723 goto semctlout;
724 }
725 #if CONFIG_MACF
726 eval = mac_sysvsem_check_semctl(cred, semakptr, cmd);
727 if (eval) {
728 goto semctlout;
729 }
730 #endif
731
732 eval = 0;
733 rval = 0;
734
735 switch (cmd) {
736 case IPC_RMID:
737 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
738 goto semctlout;
739 }
740
741 semakptr->u.sem_perm.cuid = kauth_cred_getuid(cred);
742 semakptr->u.sem_perm.uid = kauth_cred_getuid(cred);
743 semtot -= semakptr->u.sem_nsems;
744 for (i = semakptr->u.sem_base - sem_pool; i < semtot; i++) {
745 sem_pool[i] = sem_pool[i + semakptr->u.sem_nsems];
746 }
747 for (i = 0; i < seminfo.semmni; i++) {
748 if ((sema[i].u.sem_perm.mode & SEM_ALLOC) &&
749 sema[i].u.sem_base > semakptr->u.sem_base) {
750 sema[i].u.sem_base -= semakptr->u.sem_nsems;
751 }
752 }
753 semakptr->u.sem_perm.mode = 0;
754 #if CONFIG_MACF
755 mac_sysvsem_label_recycle(semakptr);
756 #endif
757 semundo_clear(semid, -1);
758 wakeup((caddr_t)semakptr);
759 break;
760
761 case IPC_SET:
762 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_M))) {
763 goto semctlout;
764 }
765
766 if (IS_64BIT_PROCESS(p)) {
767 struct user64_semid_ds ds64;
768 eval = copyin(user_arg.buf, &ds64, sizeof(ds64));
769 semid_ds_64tokernel(&ds64, &sbuf);
770 } else {
771 struct user32_semid_ds ds32;
772 eval = copyin(user_arg.buf, &ds32, sizeof(ds32));
773 semid_ds_32tokernel(&ds32, &sbuf);
774 }
775
776 if (eval != 0) {
777 goto semctlout;
778 }
779
780 semakptr->u.sem_perm.uid = sbuf.sem_perm.uid;
781 semakptr->u.sem_perm.gid = sbuf.sem_perm.gid;
782 semakptr->u.sem_perm.mode = (semakptr->u.sem_perm.mode &
783 ~0777) | (sbuf.sem_perm.mode & 0777);
784 semakptr->u.sem_ctime = sysv_semtime();
785 break;
786
787 case IPC_STAT:
788 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
789 goto semctlout;
790 }
791
792 if (IS_64BIT_PROCESS(p)) {
793 struct user64_semid_ds semid_ds64;
794 bzero(&semid_ds64, sizeof(semid_ds64));
795 semid_ds_kernelto64(&semakptr->u, &semid_ds64);
796 eval = copyout(&semid_ds64, user_arg.buf, sizeof(semid_ds64));
797 } else {
798 struct user32_semid_ds semid_ds32;
799 bzero(&semid_ds32, sizeof(semid_ds32));
800 semid_ds_kernelto32(&semakptr->u, &semid_ds32);
801 eval = copyout(&semid_ds32, user_arg.buf, sizeof(semid_ds32));
802 }
803 break;
804
805 case GETNCNT:
806 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
807 goto semctlout;
808 }
809 if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
810 eval = EINVAL;
811 goto semctlout;
812 }
813 rval = semakptr->u.sem_base[semnum].semncnt;
814 break;
815
816 case GETPID:
817 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
818 goto semctlout;
819 }
820 if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
821 eval = EINVAL;
822 goto semctlout;
823 }
824 rval = semakptr->u.sem_base[semnum].sempid;
825 break;
826
827 case GETVAL:
828 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
829 goto semctlout;
830 }
831 if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
832 eval = EINVAL;
833 goto semctlout;
834 }
835 rval = semakptr->u.sem_base[semnum].semval;
836 break;
837
838 case GETALL:
839 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
840 goto semctlout;
841 }
842 /* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */
843 for (i = 0; i < semakptr->u.sem_nsems; i++) {
844 /* XXX could be done in one go... */
845 eval = copyout((caddr_t)&semakptr->u.sem_base[i].semval,
846 user_arg.array + (i * sizeof(unsigned short)),
847 sizeof(unsigned short));
848 if (eval != 0) {
849 break;
850 }
851 }
852 break;
853
854 case GETZCNT:
855 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_R))) {
856 goto semctlout;
857 }
858 if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
859 eval = EINVAL;
860 goto semctlout;
861 }
862 rval = semakptr->u.sem_base[semnum].semzcnt;
863 break;
864
865 case SETVAL:
866 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
867 #ifdef SEM_DEBUG
868 printf("Invalid credentials for write\n");
869 #endif
870 goto semctlout;
871 }
872 if (semnum < 0 || semnum >= semakptr->u.sem_nsems) {
873 #ifdef SEM_DEBUG
874 printf("Invalid number out of range for set\n");
875 #endif
876 eval = EINVAL;
877 goto semctlout;
878 }
879
880 /*
881 * Cast down a pointer instead of using 'val' member directly
882 * to avoid introducing endieness and a pad field into the
883 * header file. Ugly, but it works.
884 */
885 u_int newsemval = CAST_DOWN_EXPLICIT(u_int, user_arg.buf);
886
887 /*
888 * The check is being performed as unsigned values to match
889 * eventual destination
890 */
891 if (newsemval > (u_int)seminfo.semvmx) {
892 #ifdef SEM_DEBUG
893 printf("Out of range sem value for set\n");
894 #endif
895 eval = ERANGE;
896 goto semctlout;
897 }
898 semakptr->u.sem_base[semnum].semval = newsemval;
899 semakptr->u.sem_base[semnum].sempid = p->p_pid;
900 /* XXX scottl Should there be a MAC call here? */
901 semundo_clear(semid, semnum);
902 wakeup((caddr_t)semakptr);
903 break;
904
905 case SETALL:
906 if ((eval = ipcperm(cred, &semakptr->u.sem_perm, IPC_W))) {
907 goto semctlout;
908 }
909 /*** XXXXXXXXXXXX TBD ********/
910 for (i = 0; i < semakptr->u.sem_nsems; i++) {
911 /* XXX could be done in one go... */
912 eval = copyin(user_arg.array + (i * sizeof(unsigned short)),
913 (caddr_t)&semakptr->u.sem_base[i].semval,
914 sizeof(unsigned short));
915 if (eval != 0) {
916 break;
917 }
918 semakptr->u.sem_base[i].sempid = p->p_pid;
919 }
920 /* XXX scottl Should there be a MAC call here? */
921 semundo_clear(semid, -1);
922 wakeup((caddr_t)semakptr);
923 break;
924
925 default:
926 eval = EINVAL;
927 goto semctlout;
928 }
929
930 if (eval == 0) {
931 *retval = rval;
932 }
933 semctlout:
934 SYSV_SEM_SUBSYS_UNLOCK();
935 return eval;
936 }
937
938 int
939 semget(__unused struct proc *p, struct semget_args *uap, int32_t *retval)
940 {
941 int semid, eval;
942 int key = uap->key;
943 int nsems = uap->nsems;
944 int semflg = uap->semflg;
945 kauth_cred_t cred = kauth_cred_get();
946
947 #ifdef SEM_DEBUG
948 if (key != IPC_PRIVATE) {
949 printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
950 } else {
951 printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
952 }
953 #endif
954
955
956 SYSV_SEM_SUBSYS_LOCK();
957
958
959 if (key != IPC_PRIVATE) {
960 for (semid = 0; semid < seminfo.semmni; semid++) {
961 if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) &&
962 sema[semid].u.sem_perm._key == key) {
963 break;
964 }
965 }
966 if (semid < seminfo.semmni) {
967 #ifdef SEM_DEBUG
968 printf("found public key\n");
969 #endif
970 if ((eval = ipcperm(cred, &sema[semid].u.sem_perm,
971 semflg & 0700))) {
972 goto semgetout;
973 }
974 if (nsems < 0 || sema[semid].u.sem_nsems < nsems) {
975 #ifdef SEM_DEBUG
976 printf("too small\n");
977 #endif
978 eval = EINVAL;
979 goto semgetout;
980 }
981 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
982 #ifdef SEM_DEBUG
983 printf("not exclusive\n");
984 #endif
985 eval = EEXIST;
986 goto semgetout;
987 }
988 #if CONFIG_MACF
989 eval = mac_sysvsem_check_semget(cred, &sema[semid]);
990 if (eval) {
991 goto semgetout;
992 }
993 #endif
994 goto found;
995 }
996 }
997
998 #ifdef SEM_DEBUG
999 printf("need to allocate an id for the request\n");
1000 #endif
1001 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
1002 if (nsems <= 0 || nsems > limitseminfo.semmsl) {
1003 #ifdef SEM_DEBUG
1004 printf("nsems out of range (0<%d<=%d)\n", nsems,
1005 seminfo.semmsl);
1006 #endif
1007 eval = EINVAL;
1008 goto semgetout;
1009 }
1010 if (nsems > seminfo.semmns - semtot) {
1011 #ifdef SEM_DEBUG
1012 printf("not enough semaphores left (need %d, got %d)\n",
1013 nsems, seminfo.semmns - semtot);
1014 #endif
1015 if (!grow_sem_pool(semtot + nsems)) {
1016 #ifdef SEM_DEBUG
1017 printf("failed to grow the sem array\n");
1018 #endif
1019 eval = ENOSPC;
1020 goto semgetout;
1021 }
1022 }
1023 for (semid = 0; semid < seminfo.semmni; semid++) {
1024 if ((sema[semid].u.sem_perm.mode & SEM_ALLOC) == 0) {
1025 break;
1026 }
1027 }
1028 if (semid == seminfo.semmni) {
1029 #ifdef SEM_DEBUG
1030 printf("no more id's available\n");
1031 #endif
1032 if (!grow_sema_array(seminfo.semmni + 1)) {
1033 #ifdef SEM_DEBUG
1034 printf("failed to grow sema array\n");
1035 #endif
1036 eval = ENOSPC;
1037 goto semgetout;
1038 }
1039 }
1040 #ifdef SEM_DEBUG
1041 printf("semid %d is available\n", semid);
1042 #endif
1043 sema[semid].u.sem_perm._key = key;
1044 sema[semid].u.sem_perm.cuid = kauth_cred_getuid(cred);
1045 sema[semid].u.sem_perm.uid = kauth_cred_getuid(cred);
1046 sema[semid].u.sem_perm.cgid = kauth_cred_getgid(cred);
1047 sema[semid].u.sem_perm.gid = kauth_cred_getgid(cred);
1048 sema[semid].u.sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
1049 sema[semid].u.sem_perm._seq =
1050 (sema[semid].u.sem_perm._seq + 1) & 0x7fff;
1051 sema[semid].u.sem_nsems = nsems;
1052 sema[semid].u.sem_otime = 0;
1053 sema[semid].u.sem_ctime = sysv_semtime();
1054 sema[semid].u.sem_base = &sem_pool[semtot];
1055 semtot += nsems;
1056 bzero(sema[semid].u.sem_base,
1057 sizeof(sema[semid].u.sem_base[0]) * nsems);
1058 #if CONFIG_MACF
1059 mac_sysvsem_label_associate(cred, &sema[semid]);
1060 #endif
1061 #ifdef SEM_DEBUG
1062 printf("sembase = 0x%x, next = 0x%x\n", sema[semid].u.sem_base,
1063 &sem_pool[semtot]);
1064 #endif
1065 } else {
1066 #ifdef SEM_DEBUG
1067 printf("didn't find it and wasn't asked to create it\n");
1068 #endif
1069 eval = ENOENT;
1070 goto semgetout;
1071 }
1072
1073 found:
1074 *retval = IXSEQ_TO_IPCID(semid, sema[semid].u.sem_perm);
1075 AUDIT_ARG(svipc_id, *retval);
1076 #ifdef SEM_DEBUG
1077 printf("semget is done, returning %d\n", *retval);
1078 #endif
1079 eval = 0;
1080
1081 semgetout:
1082 SYSV_SEM_SUBSYS_UNLOCK();
1083 return eval;
1084 }
1085
1086 int
1087 semop(struct proc *p, struct semop_args *uap, int32_t *retval)
1088 {
1089 int semid = uap->semid;
1090 int nsops = uap->nsops;
1091 struct sembuf sops[seminfo.semopm];
1092 struct semid_kernel *semakptr;
1093 struct sembuf *sopptr = NULL; /* protected by 'semptr' */
1094 struct sem *semptr = NULL; /* protected by 'if' */
1095 int supidx = -1;
1096 int i, j, eval;
1097 int do_wakeup, do_undos;
1098
1099 AUDIT_ARG(svipc_id, uap->semid);
1100
1101 SYSV_SEM_SUBSYS_LOCK();
1102
1103 #ifdef SEM_DEBUG
1104 printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
1105 #endif
1106
1107 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
1108
1109 if (semid < 0 || semid >= seminfo.semmni) {
1110 eval = EINVAL;
1111 goto semopout;
1112 }
1113
1114 semakptr = &sema[semid];
1115 if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
1116 eval = EINVAL;
1117 goto semopout;
1118 }
1119 if (semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid)) {
1120 eval = EINVAL;
1121 goto semopout;
1122 }
1123
1124 if ((eval = ipcperm(kauth_cred_get(), &semakptr->u.sem_perm, IPC_W))) {
1125 #ifdef SEM_DEBUG
1126 printf("eval = %d from ipaccess\n", eval);
1127 #endif
1128 goto semopout;
1129 }
1130
1131 if (nsops < 0 || nsops > seminfo.semopm) {
1132 #ifdef SEM_DEBUG
1133 printf("too many sops (max=%d, nsops=%d)\n",
1134 seminfo.semopm, nsops);
1135 #endif
1136 eval = E2BIG;
1137 goto semopout;
1138 }
1139
1140 /* OK for LP64, since sizeof(struct sembuf) is currently invariant */
1141 if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) {
1142 #ifdef SEM_DEBUG
1143 printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
1144 uap->sops, &sops, nsops * sizeof(struct sembuf));
1145 #endif
1146 goto semopout;
1147 }
1148
1149 #if CONFIG_MACF
1150 /*
1151 * Initial pass thru sops to see what permissions are needed.
1152 */
1153 j = 0; /* permission needed */
1154 for (i = 0; i < nsops; i++) {
1155 j |= (sops[i].sem_op == 0) ? SEM_R : SEM_A;
1156 }
1157
1158 /*
1159 * The MAC hook checks whether the thread has read (and possibly
1160 * write) permissions to the semaphore array based on the
1161 * sopptr->sem_op value.
1162 */
1163 eval = mac_sysvsem_check_semop(kauth_cred_get(), semakptr, j);
1164 if (eval) {
1165 goto semopout;
1166 }
1167 #endif
1168
1169 /*
1170 * Loop trying to satisfy the vector of requests.
1171 * If we reach a point where we must wait, any requests already
1172 * performed are rolled back and we go to sleep until some other
1173 * process wakes us up. At this point, we start all over again.
1174 *
1175 * This ensures that from the perspective of other tasks, a set
1176 * of requests is atomic (never partially satisfied).
1177 */
1178 do_undos = 0;
1179
1180 for (;;) {
1181 do_wakeup = 0;
1182
1183 for (i = 0; i < nsops; i++) {
1184 sopptr = &sops[i];
1185
1186 if (sopptr->sem_num >= semakptr->u.sem_nsems) {
1187 eval = EFBIG;
1188 goto semopout;
1189 }
1190
1191 semptr = &semakptr->u.sem_base[sopptr->sem_num];
1192
1193 #ifdef SEM_DEBUG
1194 printf("semop: semakptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
1195 semakptr, semakptr->u.sem_base, semptr,
1196 sopptr->sem_num, semptr->semval, sopptr->sem_op,
1197 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
1198 #endif
1199
1200 if (sopptr->sem_op < 0) {
1201 if (semptr->semval + sopptr->sem_op < 0) {
1202 #ifdef SEM_DEBUG
1203 printf("semop: can't do it now\n");
1204 #endif
1205 break;
1206 } else {
1207 semptr->semval += sopptr->sem_op;
1208 if (semptr->semval == 0 &&
1209 semptr->semzcnt > 0) {
1210 do_wakeup = 1;
1211 }
1212 }
1213 if (sopptr->sem_flg & SEM_UNDO) {
1214 do_undos = 1;
1215 }
1216 } else if (sopptr->sem_op == 0) {
1217 if (semptr->semval > 0) {
1218 #ifdef SEM_DEBUG
1219 printf("semop: not zero now\n");
1220 #endif
1221 break;
1222 }
1223 } else {
1224 if (semptr->semncnt > 0) {
1225 do_wakeup = 1;
1226 }
1227 semptr->semval += sopptr->sem_op;
1228 if (sopptr->sem_flg & SEM_UNDO) {
1229 do_undos = 1;
1230 }
1231 }
1232 }
1233
1234 /*
1235 * Did we get through the entire vector?
1236 */
1237 if (i >= nsops) {
1238 goto done;
1239 }
1240
1241 /*
1242 * No ... rollback anything that we've already done
1243 */
1244 #ifdef SEM_DEBUG
1245 printf("semop: rollback 0 through %d\n", i - 1);
1246 #endif
1247 for (j = 0; j < i; j++) {
1248 semakptr->u.sem_base[sops[j].sem_num].semval -=
1249 sops[j].sem_op;
1250 }
1251
1252 /*
1253 * If the request that we couldn't satisfy has the
1254 * NOWAIT flag set then return with EAGAIN.
1255 */
1256 if (sopptr->sem_flg & IPC_NOWAIT) {
1257 eval = EAGAIN;
1258 goto semopout;
1259 }
1260
1261 if (sopptr->sem_op == 0) {
1262 semptr->semzcnt++;
1263 } else {
1264 semptr->semncnt++;
1265 }
1266
1267 #ifdef SEM_DEBUG
1268 printf("semop: good night!\n");
1269 #endif
1270 /* Release our lock on the semaphore subsystem so
1271 * another thread can get at the semaphore we are
1272 * waiting for. We will get the lock back after we
1273 * wake up.
1274 */
1275 eval = msleep((caddr_t)semakptr, &sysv_sem_subsys_mutex, (PZERO - 4) | PCATCH,
1276 "semwait", 0);
1277
1278 #ifdef SEM_DEBUG
1279 printf("semop: good morning (eval=%d)!\n", eval);
1280 #endif
1281 if (eval != 0) {
1282 eval = EINTR;
1283 }
1284
1285 /*
1286 * IMPORTANT: while we were asleep, the semaphore array might
1287 * have been reallocated somewhere else (see grow_sema_array()).
1288 * When we wake up, we have to re-lookup the semaphore
1289 * structures and re-validate them.
1290 */
1291
1292 semptr = NULL;
1293
1294 /*
1295 * Make sure that the semaphore still exists
1296 *
1297 * XXX POSIX: Third test this 'if' and 'EINTR' precedence may
1298 * fail testing; if so, we will need to revert this code.
1299 */
1300 semakptr = &sema[semid]; /* sema may have been reallocated */
1301 if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0 ||
1302 semakptr->u.sem_perm._seq != IPCID_TO_SEQ(uap->semid) ||
1303 sopptr->sem_num >= semakptr->u.sem_nsems) {
1304 /* The man page says to return EIDRM. */
1305 /* Unfortunately, BSD doesn't define that code! */
1306 if (eval == EINTR) {
1307 /*
1308 * EINTR takes precedence over the fact that
1309 * the semaphore disappeared while we were
1310 * sleeping...
1311 */
1312 } else {
1313 #ifdef EIDRM
1314 eval = EIDRM;
1315 #else
1316 eval = EINVAL; /* Ancient past */
1317 #endif
1318 }
1319 goto semopout;
1320 }
1321
1322 /*
1323 * The semaphore is still alive. Readjust the count of
1324 * waiting processes. semptr needs to be recomputed
1325 * because the sem[] may have been reallocated while
1326 * we were sleeping, updating our sem_base pointer.
1327 */
1328 semptr = &semakptr->u.sem_base[sopptr->sem_num];
1329 if (sopptr->sem_op == 0) {
1330 semptr->semzcnt--;
1331 } else {
1332 semptr->semncnt--;
1333 }
1334
1335 if (eval != 0) { /* EINTR */
1336 goto semopout;
1337 }
1338 }
1339
1340 done:
1341 /*
1342 * Process any SEM_UNDO requests.
1343 */
1344 if (do_undos) {
1345 for (i = 0; i < nsops; i++) {
1346 /*
1347 * We only need to deal with SEM_UNDO's for non-zero
1348 * op's.
1349 */
1350 int adjval;
1351
1352 if ((sops[i].sem_flg & SEM_UNDO) == 0) {
1353 continue;
1354 }
1355 adjval = sops[i].sem_op;
1356 if (adjval == 0) {
1357 continue;
1358 }
1359 eval = semundo_adjust(p, &supidx, semid,
1360 sops[i].sem_num, -adjval);
1361 if (eval == 0) {
1362 continue;
1363 }
1364
1365 /*
1366 * Oh-Oh! We ran out of either sem_undo's or undo's.
1367 * Rollback the adjustments to this point and then
1368 * rollback the semaphore ups and down so we can return
1369 * with an error with all structures restored. We
1370 * rollback the undo's in the exact reverse order that
1371 * we applied them. This guarantees that we won't run
1372 * out of space as we roll things back out.
1373 */
1374 for (j = i - 1; j >= 0; j--) {
1375 if ((sops[j].sem_flg & SEM_UNDO) == 0) {
1376 continue;
1377 }
1378 adjval = sops[j].sem_op;
1379 if (adjval == 0) {
1380 continue;
1381 }
1382 if (semundo_adjust(p, &supidx, semid,
1383 sops[j].sem_num, adjval) != 0) {
1384 panic("semop - can't undo undos");
1385 }
1386 }
1387
1388 for (j = 0; j < nsops; j++) {
1389 semakptr->u.sem_base[sops[j].sem_num].semval -=
1390 sops[j].sem_op;
1391 }
1392
1393 #ifdef SEM_DEBUG
1394 printf("eval = %d from semundo_adjust\n", eval);
1395 #endif
1396 goto semopout;
1397 } /* loop through the sops */
1398 } /* if (do_undos) */
1399
1400 /* We're definitely done - set the sempid's */
1401 for (i = 0; i < nsops; i++) {
1402 sopptr = &sops[i];
1403 semptr = &semakptr->u.sem_base[sopptr->sem_num];
1404 semptr->sempid = p->p_pid;
1405 }
1406 semakptr->u.sem_otime = sysv_semtime();
1407
1408 if (do_wakeup) {
1409 #ifdef SEM_DEBUG
1410 printf("semop: doing wakeup\n");
1411 #ifdef SEM_WAKEUP
1412 sem_wakeup((caddr_t)semakptr);
1413 #else
1414 wakeup((caddr_t)semakptr);
1415 #endif
1416 printf("semop: back from wakeup\n");
1417 #else
1418 wakeup((caddr_t)semakptr);
1419 #endif
1420 }
1421 #ifdef SEM_DEBUG
1422 printf("semop: done\n");
1423 #endif
1424 *retval = 0;
1425 eval = 0;
1426 semopout:
1427 SYSV_SEM_SUBSYS_UNLOCK();
1428 return eval;
1429 }
1430
1431 /*
1432 * Go through the undo structures for this process and apply the adjustments to
1433 * semaphores.
1434 */
1435 void
1436 semexit(struct proc *p)
1437 {
1438 struct sem_undo *suptr = NULL;
1439 int suidx;
1440 int *supidx;
1441 int did_something;
1442
1443 /* If we have not allocated our semaphores yet there can't be
1444 * anything to undo, but we need the lock to prevent
1445 * dynamic memory race conditions.
1446 */
1447 SYSV_SEM_SUBSYS_LOCK();
1448
1449 if (!sem_pool) {
1450 SYSV_SEM_SUBSYS_UNLOCK();
1451 return;
1452 }
1453 did_something = 0;
1454
1455 /*
1456 * Go through the chain of undo vectors looking for one
1457 * associated with this process.
1458 */
1459
1460 for (supidx = &semu_list_idx; (suidx = *supidx) != -1;
1461 supidx = &suptr->un_next_idx) {
1462 suptr = SEMU(suidx);
1463 if (suptr->un_proc == p) {
1464 break;
1465 }
1466 }
1467
1468 if (suidx == -1) {
1469 goto unlock;
1470 }
1471
1472 #ifdef SEM_DEBUG
1473 printf("proc @%08x has undo structure with %d entries\n", p,
1474 suptr->un_cnt);
1475 #endif
1476
1477 /*
1478 * If there are any active undo elements then process them.
1479 */
1480 if (suptr->un_cnt > 0) {
1481 while (suptr->un_ent != NULL) {
1482 struct undo *sueptr;
1483 int semid;
1484 int semnum;
1485 int adjval;
1486 struct semid_kernel *semakptr;
1487
1488 sueptr = suptr->un_ent;
1489 semid = sueptr->une_id;
1490 semnum = sueptr->une_num;
1491 adjval = sueptr->une_adjval;
1492
1493 semakptr = &sema[semid];
1494 if ((semakptr->u.sem_perm.mode & SEM_ALLOC) == 0) {
1495 panic("semexit - semid not allocated");
1496 }
1497 if (semnum >= semakptr->u.sem_nsems) {
1498 panic("semexit - semnum out of range");
1499 }
1500
1501 #ifdef SEM_DEBUG
1502 printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
1503 suptr->un_proc,
1504 semid,
1505 semnum,
1506 adjval,
1507 semakptr->u.sem_base[semnum].semval);
1508 #endif
1509
1510 if (adjval < 0) {
1511 if (semakptr->u.sem_base[semnum].semval < -adjval) {
1512 semakptr->u.sem_base[semnum].semval = 0;
1513 } else {
1514 semakptr->u.sem_base[semnum].semval +=
1515 adjval;
1516 }
1517 } else {
1518 semakptr->u.sem_base[semnum].semval += adjval;
1519 }
1520
1521 /* Maybe we should build a list of semakptr's to wake
1522 * up, finish all access to data structures, release the
1523 * subsystem lock, and wake all the processes. Something
1524 * to think about.
1525 */
1526 #ifdef SEM_WAKEUP
1527 sem_wakeup((caddr_t)semakptr);
1528 #else
1529 wakeup((caddr_t)semakptr);
1530 #endif
1531 #ifdef SEM_DEBUG
1532 printf("semexit: back from wakeup\n");
1533 #endif
1534 suptr->un_cnt--;
1535 suptr->un_ent = sueptr->une_next;
1536 FREE(sueptr, M_SYSVSEM);
1537 sueptr = NULL;
1538 }
1539 }
1540
1541 /*
1542 * Deallocate the undo vector.
1543 */
1544 #ifdef SEM_DEBUG
1545 printf("removing vector\n");
1546 #endif
1547 suptr->un_proc = NULL;
1548 *supidx = suptr->un_next_idx;
1549
1550 unlock:
1551 /*
1552 * There is a semaphore leak (i.e. memory leak) in this code.
1553 * We should be deleting the IPC_PRIVATE semaphores when they are
1554 * no longer needed, and we dont. We would have to track which processes
1555 * know about which IPC_PRIVATE semaphores, updating the list after
1556 * every fork. We can't just delete them semaphore when the process
1557 * that created it dies, because that process may well have forked
1558 * some children. So we need to wait until all of it's children have
1559 * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore
1560 * with the creating group ID, count the number of processes left in
1561 * that group, and delete the semaphore when the group is gone.
1562 * Until that code gets implemented we will leak IPC_PRIVATE semaphores.
1563 * There is an upper bound on the size of our semaphore array, so
1564 * leaking the semaphores should not work as a DOS attack.
1565 *
1566 * Please note that the original BSD code this file is based on had the
1567 * same leaky semaphore problem.
1568 */
1569
1570 SYSV_SEM_SUBSYS_UNLOCK();
1571 }
1572
1573
1574 /* (struct sysctl_oid *oidp, void *arg1, int arg2, \
1575 * struct sysctl_req *req) */
1576 static int
1577 sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1,
1578 __unused int arg2, struct sysctl_req *req)
1579 {
1580 int error = 0;
1581
1582 error = SYSCTL_OUT(req, arg1, sizeof(int));
1583 if (error || req->newptr == USER_ADDR_NULL) {
1584 return error;
1585 }
1586
1587 SYSV_SEM_SUBSYS_LOCK();
1588
1589 /* Set the values only if shared memory is not initialised */
1590 if ((sem_pool == NULL) &&
1591 (sema == NULL) &&
1592 (semu == NULL) &&
1593 (semu_list_idx == -1)) {
1594 if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) {
1595 goto out;
1596 }
1597 } else {
1598 error = EINVAL;
1599 }
1600 out:
1601 SYSV_SEM_SUBSYS_UNLOCK();
1602 return error;
1603 }
1604
1605 /* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */
1606 extern struct sysctl_oid_list sysctl__kern_sysv_children;
1607 SYSCTL_PROC(_kern_sysv, OID_AUTO, semmni, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1608 &limitseminfo.semmni, 0, &sysctl_seminfo, "I", "semmni");
1609
1610 SYSCTL_PROC(_kern_sysv, OID_AUTO, semmns, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1611 &limitseminfo.semmns, 0, &sysctl_seminfo, "I", "semmns");
1612
1613 SYSCTL_PROC(_kern_sysv, OID_AUTO, semmnu, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1614 &limitseminfo.semmnu, 0, &sysctl_seminfo, "I", "semmnu");
1615
1616 SYSCTL_PROC(_kern_sysv, OID_AUTO, semmsl, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1617 &limitseminfo.semmsl, 0, &sysctl_seminfo, "I", "semmsl");
1618
1619 SYSCTL_PROC(_kern_sysv, OID_AUTO, semume, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
1620 &limitseminfo.semume, 0, &sysctl_seminfo, "I", "semume");
1621
1622
1623 static int
1624 IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1,
1625 __unused int arg2, struct sysctl_req *req)
1626 {
1627 int error;
1628 int cursor;
1629 union {
1630 struct user32_IPCS_command u32;
1631 struct user_IPCS_command u64;
1632 } ipcs;
1633 struct user32_semid_ds semid_ds32; /* post conversion, 32 bit version */
1634 struct user64_semid_ds semid_ds64; /* post conversion, 64 bit version */
1635 void *semid_dsp;
1636 size_t ipcs_sz;
1637 size_t semid_ds_sz;
1638 struct proc *p = current_proc();
1639
1640 if (IS_64BIT_PROCESS(p)) {
1641 ipcs_sz = sizeof(struct user_IPCS_command);
1642 semid_ds_sz = sizeof(struct user64_semid_ds);
1643 } else {
1644 ipcs_sz = sizeof(struct user32_IPCS_command);
1645 semid_ds_sz = sizeof(struct user32_semid_ds);
1646 }
1647
1648 /* Copy in the command structure */
1649 if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) {
1650 return error;
1651 }
1652
1653 if (!IS_64BIT_PROCESS(p)) { /* convert in place */
1654 ipcs.u64.ipcs_data = CAST_USER_ADDR_T(ipcs.u32.ipcs_data);
1655 }
1656
1657 /* Let us version this interface... */
1658 if (ipcs.u64.ipcs_magic != IPCS_MAGIC) {
1659 return EINVAL;
1660 }
1661
1662 SYSV_SEM_SUBSYS_LOCK();
1663 switch (ipcs.u64.ipcs_op) {
1664 case IPCS_SEM_CONF: /* Obtain global configuration data */
1665 if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) {
1666 error = ERANGE;
1667 break;
1668 }
1669 if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */
1670 error = EINVAL;
1671 break;
1672 }
1673 error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1674 break;
1675
1676 case IPCS_SEM_ITER: /* Iterate over existing segments */
1677 cursor = ipcs.u64.ipcs_cursor;
1678 if (cursor < 0 || cursor >= seminfo.semmni) {
1679 error = ERANGE;
1680 break;
1681 }
1682 if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz) {
1683 error = EINVAL;
1684 break;
1685 }
1686 for (; cursor < seminfo.semmni; cursor++) {
1687 if (sema[cursor].u.sem_perm.mode & SEM_ALLOC) {
1688 break;
1689 }
1690 continue;
1691 }
1692 if (cursor == seminfo.semmni) {
1693 error = ENOENT;
1694 break;
1695 }
1696
1697 semid_dsp = &sema[cursor].u; /* default: 64 bit */
1698
1699 /*
1700 * If necessary, convert the 64 bit kernel segment
1701 * descriptor to a 32 bit user one.
1702 */
1703 if (!IS_64BIT_PROCESS(p)) {
1704 bzero(&semid_ds32, sizeof(semid_ds32));
1705 semid_ds_kernelto32(semid_dsp, &semid_ds32);
1706 semid_dsp = &semid_ds32;
1707 } else {
1708 bzero(&semid_ds64, sizeof(semid_ds64));
1709 semid_ds_kernelto64(semid_dsp, &semid_ds64);
1710 semid_dsp = &semid_ds64;
1711 }
1712
1713 error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1714 if (!error) {
1715 /* update cursor */
1716 ipcs.u64.ipcs_cursor = cursor + 1;
1717
1718 if (!IS_64BIT_PROCESS(p)) { /* convert in place */
1719 ipcs.u32.ipcs_data = CAST_DOWN_EXPLICIT(user32_addr_t, ipcs.u64.ipcs_data);
1720 }
1721
1722 error = SYSCTL_OUT(req, &ipcs, ipcs_sz);
1723 }
1724 break;
1725
1726 default:
1727 error = EINVAL;
1728 break;
1729 }
1730 SYSV_SEM_SUBSYS_UNLOCK();
1731 return error;
1732 }
1733
1734 SYSCTL_DECL(_kern_sysv_ipcs);
1735 SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_LOCKED,
1736 0, 0, IPCS_sem_sysctl,
1737 "S,IPCS_sem_command",
1738 "ipcs sem command interface");
1739
1740 #endif /* SYSV_SEM */