2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <IOKit/IOBSD.h>
43 #include <corpses/task_corpse.h>
44 #include <libkern/libkern.h>
45 #include <mach/coalition.h>
46 #include <mach/mach_time.h>
47 #include <mach/task.h>
48 #include <mach/host_priv.h>
49 #include <mach/mach_host.h>
51 #include <pexpert/pexpert.h>
52 #include <sys/coalition.h>
53 #include <sys/kern_event.h>
55 #include <sys/proc_info.h>
56 #include <sys/reason.h>
57 #include <sys/signal.h>
58 #include <sys/signalvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
64 #include <vm/vm_pageout.h>
65 #include <vm/vm_protos.h>
66 #include <mach/machine/sdt.h>
67 #include <libkern/section_keywords.h>
68 #include <stdatomic.h>
71 #include <vm/vm_map.h>
72 #endif /* CONFIG_FREEZE */
74 #include <sys/kern_memorystatus.h>
75 #include <sys/kern_memorystatus_freeze.h>
76 #include <sys/kern_memorystatus_notify.h>
78 /* For logging clarity */
79 static const char *memorystatus_kill_cause_name
[] = {
80 "", /* kMemorystatusInvalid */
81 "jettisoned", /* kMemorystatusKilled */
82 "highwater", /* kMemorystatusKilledHiwat */
83 "vnode-limit", /* kMemorystatusKilledVnodes */
84 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
85 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
86 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
87 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
88 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
89 "idle-exit", /* kMemorystatusKilledIdleExit */
90 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
91 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
92 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
96 memorystatus_priority_band_name(int32_t priority
)
99 case JETSAM_PRIORITY_FOREGROUND
:
101 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
102 return "AUDIO_AND_ACCESSORY";
103 case JETSAM_PRIORITY_CONDUCTOR
:
105 case JETSAM_PRIORITY_DRIVER_APPLE
:
106 return "DRIVER_APPLE";
107 case JETSAM_PRIORITY_HOME
:
109 case JETSAM_PRIORITY_EXECUTIVE
:
111 case JETSAM_PRIORITY_IMPORTANT
:
113 case JETSAM_PRIORITY_CRITICAL
:
120 /* Does cause indicate vm or fc thrashing? */
122 is_reason_thrashing(unsigned cause
)
125 case kMemorystatusKilledFCThrashing
:
126 case kMemorystatusKilledVMCompressorThrashing
:
127 case kMemorystatusKilledVMCompressorSpaceShortage
:
134 /* Is the zone map almost full? */
136 is_reason_zone_map_exhaustion(unsigned cause
)
138 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
145 * Returns the current zone map size and capacity to include in the jetsam snapshot.
146 * Defined in zalloc.c
148 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
151 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
152 * Defined in zalloc.c
154 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
157 * Active / Inactive limit support
158 * proc list must be locked
160 * The SET_*** macros are used to initialize a limit
161 * for the first time.
163 * The CACHE_*** macros are use to cache the limit that will
164 * soon be in effect down in the ledgers.
167 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
169 (p)->p_memstat_memlimit_active = (limit); \
171 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
173 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
177 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
179 (p)->p_memstat_memlimit_inactive = (limit); \
181 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
183 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
187 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
189 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
190 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
191 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
194 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
199 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
201 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
202 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
203 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
206 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
212 /* General tunables */
214 unsigned long delta_percentage
= 5;
215 unsigned long critical_threshold_percentage
= 5;
216 // On embedded devices with more than 3GB of memory we lower the critical percentage.
217 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
218 unsigned long critical_threshold_percentage_larger_devices
= 4;
219 unsigned long delta_percentage_larger_devices
= 4;
220 unsigned long idle_offset_percentage
= 5;
221 unsigned long pressure_threshold_percentage
= 15;
222 unsigned long policy_more_free_offset_percentage
= 5;
223 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
226 * default jetsam snapshot support
228 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
230 unsigned int memorystatus_jetsam_snapshot_count
= 0;
231 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
232 unsigned int memorystatus_jetsam_snapshot_max
= 0;
233 unsigned int memorystatus_jetsam_snapshot_size
= 0;
234 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
235 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
237 /* General memorystatus stuff */
239 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
240 uint64_t memorystatus_apps_idle_delay_time
= 0;
242 static lck_grp_attr_t
*memorystatus_jetsam_fg_band_lock_grp_attr
;
243 static lck_grp_t
*memorystatus_jetsam_fg_band_lock_grp
;
244 lck_mtx_t memorystatus_jetsam_fg_band_lock
;
246 /* Idle guard handling */
248 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
249 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
251 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
252 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
253 static void memorystatus_reschedule_idle_demotion_locked(void);
254 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
255 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
256 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
257 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
258 void memorystatus_send_low_swap_note(void);
259 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
260 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
261 uint32_t *errors
, uint64_t *memory_reclaimed
);
262 uint64_t memorystatus_available_memory_internal(proc_t p
);
264 unsigned int memorystatus_level
= 0;
265 static int memorystatus_list_count
= 0;
266 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
267 static thread_call_t memorystatus_idle_demotion_call
;
268 uint64_t memstat_idle_demotion_deadline
= 0;
269 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
270 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
272 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
274 #define kJetsamAgingPolicyNone (0)
275 #define kJetsamAgingPolicyLegacy (1)
276 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
277 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
278 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
280 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
282 extern int corpse_for_fatal_memkill
;
283 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
284 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
285 #if DEVELOPMENT || DEBUG
286 void memorystatus_abort_vm_map_fork(task_t
);
290 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
291 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
293 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
294 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
295 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
296 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
299 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
300 * behaved daemons for aging purposes.
302 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
305 memorystatus_sysprocs_idle_time(proc_t p
)
308 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
309 * determine the exact idle deferred time provided to the daemons. For all other aging
310 * policies, simply return the default aging idle time.
312 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
313 return memorystatus_sysprocs_idle_delay_time
;
316 uint64_t idle_delay_time
= 0;
318 * For system processes, base the idle delay time on the
319 * jetsam relaunch behavior specified by launchd. The idea
320 * is to provide extra protection to the daemons which would
321 * relaunch immediately after jetsam.
323 switch (p
->p_memstat_relaunch_flags
) {
324 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
325 case P_MEMSTAT_RELAUNCH_LOW
:
326 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
328 case P_MEMSTAT_RELAUNCH_MED
:
329 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
331 case P_MEMSTAT_RELAUNCH_HIGH
:
332 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
335 panic("Unknown relaunch flags on process!");
338 return idle_delay_time
;
342 memorystatus_apps_idle_time(__unused proc_t p
)
345 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
346 * relaunch candidates. So only provide limited protection to them. In the other
347 * aging policies, return the default aging idle time.
349 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
350 return memorystatus_apps_idle_delay_time
;
353 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
359 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
362 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
364 #pragma unused(oidp, arg1, arg2)
366 int error
= 0, val
= 0;
367 memstat_bucket_t
*old_bucket
= 0;
368 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
369 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
370 proc_t p
= NULL
, next_proc
= NULL
;
373 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
374 if (error
|| !req
->newptr
) {
378 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
379 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
384 * We need to synchronize with any potential adding/removal from aging bands
385 * that might be in progress currently. We use the proc_list_lock() just for
386 * consistency with all the routines dealing with 'aging' processes. We need
387 * a lighterweight lock.
391 old_system_procs_aging_band
= system_procs_aging_band
;
392 old_applications_aging_band
= applications_aging_band
;
395 case kJetsamAgingPolicyNone
:
396 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
397 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
400 case kJetsamAgingPolicyLegacy
:
402 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
404 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
405 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
408 case kJetsamAgingPolicySysProcsReclaimedFirst
:
409 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
410 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
413 case kJetsamAgingPolicyAppsReclaimedFirst
:
414 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
415 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
422 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
423 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
424 p
= TAILQ_FIRST(&old_bucket
->list
);
427 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
430 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
431 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
434 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
442 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
443 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
444 p
= TAILQ_FIRST(&old_bucket
->list
);
447 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
450 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
451 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
454 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
462 jetsam_aging_policy
= val
;
463 system_procs_aging_band
= new_system_procs_aging_band
;
464 applications_aging_band
= new_applications_aging_band
;
471 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
472 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
476 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
478 #pragma unused(oidp, arg1, arg2)
480 int error
= 0, val
= 0, old_time_in_secs
= 0;
481 uint64_t old_time_in_ns
= 0;
483 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
484 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
486 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
487 if (error
|| !req
->newptr
) {
491 if ((val
< 0) || (val
> INT32_MAX
)) {
492 printf("jetsam: new idle delay interval has invalid value.\n");
496 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
501 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
502 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
506 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
508 #pragma unused(oidp, arg1, arg2)
510 int error
= 0, val
= 0, old_time_in_secs
= 0;
511 uint64_t old_time_in_ns
= 0;
513 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
514 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
516 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
517 if (error
|| !req
->newptr
) {
521 if ((val
< 0) || (val
> INT32_MAX
)) {
522 printf("jetsam: new idle delay interval has invalid value.\n");
526 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
531 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
532 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
534 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
536 static unsigned int memorystatus_dirty_count
= 0;
538 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
540 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
541 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
544 #if CONFIG_MEMORYSTATUS
545 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
546 * that needed the additional room in their footprint when
547 * the 'correct' accounting methods were applied to them.
550 #if DEVELOPMENT || DEBUG
551 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
552 #endif /* DEVELOPMENT || DEBUG */
555 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
557 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
558 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= 0, use_active_limit
= FALSE
;
566 if (p
->p_memstat_memlimit_active
> 0) {
567 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
568 } else if (p
->p_memstat_memlimit_active
== -1) {
569 memlimit_mb_active
= max_task_footprint_mb
;
572 * Nothing to do for '0' which is
573 * a special value only used internally
574 * to test 'no limits'.
580 if (p
->p_memstat_memlimit_inactive
> 0) {
581 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
582 } else if (p
->p_memstat_memlimit_inactive
== -1) {
583 memlimit_mb_inactive
= max_task_footprint_mb
;
586 * Nothing to do for '0' which is
587 * a special value only used internally
588 * to test 'no limits'.
594 if (footprint_increase
) {
595 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
596 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
598 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
599 if (memlimit_mb_active
== max_task_footprint_mb
) {
600 memlimit_mb_active
= -1; /* reverting back to default system limit */
603 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
604 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
605 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
609 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
610 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
612 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
613 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
615 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
616 use_active_limit
= TRUE
;
617 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
619 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
623 if (memorystatus_highwater_enabled
) {
624 task_set_phys_footprint_limit_internal(p
->task
,
625 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
626 NULL
, /*return old value */
627 use_active_limit
, /*active limit?*/
628 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
634 #endif /* CONFIG_MEMORYSTATUS */
635 #endif /* __arm64__ */
639 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
641 #endif /* CONFIG_EMBEDDED */
644 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
646 user_addr_t level
= 0;
650 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
657 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
661 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
662 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
665 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
667 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
669 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
671 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
673 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
674 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
676 int proc_get_memstat_priority(proc_t
, boolean_t
);
678 static boolean_t memorystatus_idle_snapshot
= 0;
680 unsigned int memorystatus_delta
= 0;
682 /* Jetsam Loop Detection */
683 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
684 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
685 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
686 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
689 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
690 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
693 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
694 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
696 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
698 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
701 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
702 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
703 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
705 #if DEVELOPMENT || DEBUG
707 * Jetsam Loop Detection tunables.
710 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
711 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
712 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
713 #endif /* DEVELOPMENT || DEBUG */
715 static uint32_t kill_under_pressure_cause
= 0;
718 * snapshot support for memstats collected at boot.
720 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
722 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
723 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
724 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
726 static void memorystatus_clear_errors(void);
727 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
728 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
729 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
730 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
731 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
733 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
735 static uint32_t memorystatus_build_state(proc_t p
);
736 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
738 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
739 uint32_t *errors
, uint64_t *memory_reclaimed
);
740 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
741 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
743 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
745 /* Priority Band Sorting Routines */
746 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
747 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
748 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
749 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
752 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
753 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
754 static int memstat_asc_cmp(const void *a
, const void *b
);
758 extern unsigned int vm_page_free_count
;
759 extern unsigned int vm_page_active_count
;
760 extern unsigned int vm_page_inactive_count
;
761 extern unsigned int vm_page_throttled_count
;
762 extern unsigned int vm_page_purgeable_count
;
763 extern unsigned int vm_page_wire_count
;
764 #if CONFIG_SECLUDED_MEMORY
765 extern unsigned int vm_page_secluded_count
;
766 extern unsigned int vm_page_secluded_count_over_target
;
767 #endif /* CONFIG_SECLUDED_MEMORY */
769 /* Aggressive jetsam pages threshold for sysproc aging policy */
770 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
773 unsigned int memorystatus_available_pages
= (unsigned int)-1;
774 unsigned int memorystatus_available_pages_pressure
= 0;
775 unsigned int memorystatus_available_pages_critical
= 0;
776 unsigned int memorystatus_available_pages_critical_base
= 0;
777 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
779 #if DEVELOPMENT || DEBUG
780 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
782 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
783 #endif /* DEVELOPMENT || DEBUG */
785 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
786 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
787 static void memorystatus_update_levels_locked(boolean_t critical_only
);
788 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
790 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
791 extern void vm_thrashing_jetsam_done(void);
792 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
793 #if DEVELOPMENT || DEBUG
794 static inline uint32_t
795 roundToNearestMB(uint32_t in
)
797 return (in
+ ((1 << 20) - 1)) >> 20;
800 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
803 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
805 #else /* CONFIG_JETSAM */
807 uint64_t memorystatus_available_pages
= (uint64_t)-1;
808 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
809 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
811 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
812 #endif /* CONFIG_JETSAM */
814 #if DEVELOPMENT || DEBUG
816 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
817 lck_grp_t
*disconnect_page_mappings_lck_grp
;
818 static lck_mtx_t disconnect_page_mappings_mutex
;
820 extern boolean_t kill_on_no_paging_space
;
821 #endif /* DEVELOPMENT || DEBUG */
826 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
828 #if DEVELOPMENT || DEBUG
830 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
833 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
837 int ledger_limit
= 0;
838 unsigned int b
= bucket_index
;
839 boolean_t traverse_all_buckets
= FALSE
;
841 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
842 traverse_all_buckets
= TRUE
;
845 traverse_all_buckets
= FALSE
;
850 * footprint reported in [pages / MB ]
851 * limits reported as:
852 * L-limit proc's Ledger limit
853 * C-limit proc's Cached limit, should match Ledger
854 * A-limit proc's Active limit
855 * IA-limit proc's Inactive limit
856 * F==Fatal, NF==NonFatal
859 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
860 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
861 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
863 bytes
= get_task_phys_footprint(p
->task
);
864 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
865 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
867 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
868 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
869 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
870 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
872 p
->p_memstat_memlimit
,
873 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
874 p
->p_memstat_memlimit_active
,
875 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
876 p
->p_memstat_memlimit_inactive
,
877 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
878 (*p
->p_name
? p
->p_name
: "unknown"));
879 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
881 printf("memorystatus_debug_dump ***END***\n");
885 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
887 #pragma unused(oidp, arg2)
888 int bucket_index
= 0;
890 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
891 if (error
|| !req
->newptr
) {
894 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
895 if (error
|| !req
->newptr
) {
898 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
900 * All jetsam buckets will be dumped.
904 * Only a single bucket will be dumped.
909 memorystatus_debug_dump_bucket_locked(bucket_index
);
911 memorystatus_debug_dump_this_bucket
= bucket_index
;
916 * Debug aid to look at jetsam buckets and proc jetsam fields.
917 * Use this sysctl to act on a particular jetsam bucket.
918 * Writing the sysctl triggers the dump.
919 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
922 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
925 /* Debug aid to aid determination of limit */
928 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
930 #pragma unused(oidp, arg2)
933 int error
, enable
= 0;
934 boolean_t use_active
; /* use the active limit and active limit attributes */
937 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
938 if (error
|| !req
->newptr
) {
942 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
943 if (error
|| !req
->newptr
) {
947 if (!(enable
== 0 || enable
== 1)) {
953 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
955 use_active
= proc_jetsam_state_is_active_locked(p
);
958 if (use_active
== TRUE
) {
959 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
961 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
965 * Disabling limits does not touch the stored variants.
966 * Set the cached limit fields to system_wide defaults.
968 p
->p_memstat_memlimit
= -1;
969 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
974 * Enforce the cached limit by writing to the ledger.
976 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
978 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
981 memorystatus_highwater_enabled
= enable
;
988 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
990 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
993 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
994 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
995 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
996 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
998 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1000 #if VM_PRESSURE_EVENTS
1002 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1004 #endif /* VM_PRESSURE_EVENTS */
1006 #endif /* CONFIG_JETSAM */
1008 #endif /* DEVELOPMENT || DEBUG */
1010 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1013 thread_t
*new_thread
);
1015 #if DEVELOPMENT || DEBUG
1018 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1020 #pragma unused(arg1, arg2)
1021 int error
= 0, pid
= 0;
1024 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1025 if (error
|| !req
->newptr
) {
1029 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1032 vm_pageout_disconnect_all_pages();
1037 error
= task_disconnect_page_mappings(p
->task
);
1048 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1053 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1054 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1056 #endif /* DEVELOPMENT || DEBUG */
1060 * Picks the sorting routine for a given jetsam priority band.
1063 * bucket_index - jetsam priority band to be sorted.
1064 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1065 * Currently sort_order is only meaningful when handling
1073 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1075 int coal_sort_order
;
1078 * Verify the jetsam priority
1080 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1084 #if DEVELOPMENT || DEBUG
1085 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1086 coal_sort_order
= COALITION_SORT_DEFAULT
;
1088 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1091 /* Verify default */
1092 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1093 coal_sort_order
= COALITION_SORT_DEFAULT
;
1101 if (memstat_bucket
[bucket_index
].count
== 0) {
1106 switch (bucket_index
) {
1107 case JETSAM_PRIORITY_FOREGROUND
:
1108 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1110 * Fall back to per process sorting when zero coalitions are found.
1112 memorystatus_sort_by_largest_process_locked(bucket_index
);
1116 memorystatus_sort_by_largest_process_locked(bucket_index
);
1125 * Sort processes by size for a single jetsam bucket.
1129 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1131 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1132 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1133 uint32_t pages
= 0, max_pages
= 0;
1134 memstat_bucket_t
*current_bucket
;
1136 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1140 current_bucket
= &memstat_bucket
[bucket_index
];
1142 p
= TAILQ_FIRST(¤t_bucket
->list
);
1145 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1150 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1151 /* traversing list until we find next largest process */
1153 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1154 if (pages
> max_pages
) {
1160 if (prev_max_proc
!= max_proc
) {
1161 /* found a larger process, place it in the list */
1162 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1163 if (insert_after_proc
== NULL
) {
1164 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1166 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1168 prev_max_proc
= max_proc
;
1171 insert_after_proc
= max_proc
;
1173 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1178 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1180 memstat_bucket_t
*current_bucket
;
1183 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1187 current_bucket
= &memstat_bucket
[*bucket_index
];
1188 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1189 if (!next_p
&& search
) {
1190 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1191 current_bucket
= &memstat_bucket
[*bucket_index
];
1192 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1200 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1202 memstat_bucket_t
*current_bucket
;
1205 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1209 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1210 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1211 current_bucket
= &memstat_bucket
[*bucket_index
];
1212 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1219 * Structure to hold state for a jetsam thread.
1220 * Typically there should be a single jetsam thread
1221 * unless parallel jetsam is enabled.
1223 struct jetsam_thread_state
{
1224 uint8_t inited
; /* boolean - if the thread is initialized */
1225 uint8_t limit_to_low_bands
; /* boolean */
1226 int memorystatus_wakeup
; /* wake channel */
1227 int index
; /* jetsam thread index */
1228 thread_t thread
; /* jetsam thread pointer */
1231 /* Maximum number of jetsam threads allowed */
1232 #define JETSAM_THREADS_LIMIT 3
1234 /* Number of active jetsam threads */
1235 _Atomic
int active_jetsam_threads
= 1;
1237 /* Number of maximum jetsam threads configured */
1238 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1241 * Global switch for enabling fast jetsam. Fast jetsam is
1242 * hooked up via the system_override() system call. It has the
1243 * following effects:
1244 * - Raise the jetsam threshold ("clear-the-deck")
1245 * - Enabled parallel jetsam on eligible devices
1247 int fast_jetsam_enabled
= 0;
1249 /* Routine to find the jetsam state structure for the current jetsam thread */
1250 static inline struct jetsam_thread_state
*
1251 jetsam_current_thread(void)
1253 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1254 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1255 return &(jetsam_threads
[thr_id
]);
1262 __private_extern__
void
1263 memorystatus_init(void)
1265 kern_return_t result
;
1269 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1270 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1271 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1272 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1273 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1274 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1275 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1276 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1279 #if DEVELOPMENT || DEBUG
1280 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1281 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1283 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1285 if (kill_on_no_paging_space
== TRUE
) {
1286 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1290 memorystatus_jetsam_fg_band_lock_grp_attr
= lck_grp_attr_alloc_init();
1291 memorystatus_jetsam_fg_band_lock_grp
=
1292 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr
);
1293 lck_mtx_init(&memorystatus_jetsam_fg_band_lock
, memorystatus_jetsam_fg_band_lock_grp
, NULL
);
1296 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1297 TAILQ_INIT(&memstat_bucket
[i
].list
);
1298 memstat_bucket
[i
].count
= 0;
1299 memstat_bucket
[i
].relaunch_high_count
= 0;
1301 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1303 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1304 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1307 /* Apply overrides */
1308 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1309 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1311 if (delta_percentage
== 0) {
1312 delta_percentage
= 5;
1314 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1315 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1316 delta_percentage
= delta_percentage_larger_devices
;
1318 assert(delta_percentage
< 100);
1319 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1320 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1322 assert(critical_threshold_percentage
< 100);
1323 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1324 assert(idle_offset_percentage
< 100);
1325 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1326 assert(pressure_threshold_percentage
< 100);
1327 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1328 assert(freeze_threshold_percentage
< 100);
1331 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1332 sizeof(jetsam_aging_policy
))) {
1333 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1334 sizeof(jetsam_aging_policy
))) {
1335 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1339 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1340 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1343 switch (jetsam_aging_policy
) {
1344 case kJetsamAgingPolicyNone
:
1345 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1346 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1349 case kJetsamAgingPolicyLegacy
:
1351 * Legacy behavior where some daemons get a 10s protection once
1352 * AND only before the first clean->dirty->clean transition before
1353 * going into IDLE band.
1355 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1356 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1359 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1360 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1361 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1364 case kJetsamAgingPolicyAppsReclaimedFirst
:
1365 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1366 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1374 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1375 * band and must be below it in priority. This is so that we don't have to make
1376 * our 'aging' code worry about a mix of processes, some of which need to age
1377 * and some others that need to stay elevated in the jetsam bands.
1379 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1380 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1382 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1383 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1384 /* ...no boot-arg, so check the device tree */
1385 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1388 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1389 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1390 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1391 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1392 memorystatus_sysproc_aging_aggr_pages
= sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100;
1394 /* Jetsam Loop Detection */
1395 if (max_mem
<= (512 * 1024 * 1024)) {
1396 /* 512 MB devices */
1397 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1399 /* 1GB and larger devices */
1400 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1403 memorystatus_jld_enabled
= TRUE
;
1405 /* No contention at this point */
1406 memorystatus_update_levels_locked(FALSE
);
1408 #endif /* CONFIG_JETSAM */
1410 memorystatus_jetsam_snapshot_max
= maxproc
;
1412 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1413 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1415 memorystatus_jetsam_snapshot
=
1416 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1417 if (!memorystatus_jetsam_snapshot
) {
1418 panic("Could not allocate memorystatus_jetsam_snapshot");
1421 memorystatus_jetsam_snapshot_copy
=
1422 (memorystatus_jetsam_snapshot_t
*)kalloc(memorystatus_jetsam_snapshot_size
);
1423 if (!memorystatus_jetsam_snapshot_copy
) {
1424 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1427 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1429 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1432 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1435 /* Check the boot-arg to see if fast jetsam is allowed */
1436 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1437 fast_jetsam_enabled
= 0;
1440 /* Check the boot-arg to configure the maximum number of jetsam threads */
1441 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1442 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1445 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1446 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1447 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1450 /* For low CPU systems disable fast jetsam mechanism */
1451 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1452 max_jetsam_threads
= 1;
1453 fast_jetsam_enabled
= 0;
1456 /* Initialize the jetsam_threads state array */
1457 jetsam_threads
= kalloc(sizeof(struct jetsam_thread_state
) * max_jetsam_threads
);
1459 /* Initialize all the jetsam threads */
1460 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1461 jetsam_threads
[i
].inited
= FALSE
;
1462 jetsam_threads
[i
].index
= i
;
1463 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1464 if (result
!= KERN_SUCCESS
) {
1465 panic("Could not create memorystatus_thread %d", i
);
1467 thread_deallocate(jetsam_threads
[i
].thread
);
1471 /* Centralised for the purposes of allowing panic-on-jetsam */
1473 vm_run_compactor(void);
1476 * The jetsam no frills kill call
1477 * Return: 0 on success
1478 * error code on failure (EINVAL...)
1481 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1484 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1489 * Wrapper for processes exiting with memorystatus details
1492 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1495 __unused pid_t victim_pid
= p
->p_pid
;
1496 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1497 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1498 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1499 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1501 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1502 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1503 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1504 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1505 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1506 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1509 #pragma unused(cause)
1512 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1513 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1514 (*p
->p_name
? p
->p_name
: "unknown"),
1515 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1516 (uint64_t)memorystatus_available_pages
);
1520 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1521 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1523 int jetsam_flags
= P_LTERM_JETSAM
;
1525 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1526 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1527 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1528 case kMemorystatusKilledVMCompressorThrashing
:
1529 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1530 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1531 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1532 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1534 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1535 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1537 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1538 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1540 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1541 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1545 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1546 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1556 memorystatus_check_levels_locked(void)
1560 memorystatus_update_levels_locked(TRUE
);
1561 #else /* CONFIG_JETSAM */
1563 * Nothing to do here currently since we update
1564 * memorystatus_available_pages in vm_pressure_response.
1566 #endif /* CONFIG_JETSAM */
1570 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1571 * For an application: that means no longer in the FG band
1572 * For a daemon: that means no longer in its 'requested' jetsam priority band
1576 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1579 boolean_t enable
= FALSE
;
1582 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1584 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1592 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1593 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1595 * No change in state.
1601 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1602 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1604 if (effective_now
) {
1605 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1606 if (memorystatus_highwater_enabled
) {
1608 * Process is about to transition from
1609 * inactive --> active
1610 * assign active state
1613 boolean_t use_active
= TRUE
;
1614 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1615 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1617 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1620 if (isProcessInAgingBands(p
)) {
1621 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1625 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1626 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1628 if (effective_now
) {
1629 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1630 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1633 if (isProcessInAgingBands(p
)) {
1634 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1651 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1654 uint64_t current_time
= 0, idle_delay_time
= 0;
1655 int demote_prio_band
= 0;
1656 memstat_bucket_t
*demotion_bucket
;
1658 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1660 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1662 current_time
= mach_absolute_time();
1666 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1668 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1669 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1673 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1674 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1677 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1679 assert(p
->p_memstat_idledeadline
);
1681 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1683 if (current_time
>= p
->p_memstat_idledeadline
) {
1684 if ((isSysProc(p
) &&
1685 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1686 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1687 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1689 p
->p_memstat_idledeadline
+= idle_delay_time
;
1690 p
= TAILQ_NEXT(p
, p_memstat_list
);
1692 proc_t next_proc
= NULL
;
1694 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1695 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1697 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1703 // No further candidates
1709 memorystatus_reschedule_idle_demotion_locked();
1713 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1717 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1719 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1720 boolean_t present_in_apps_aging_bucket
= FALSE
;
1721 uint64_t idle_delay_time
= 0;
1723 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1727 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1728 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1730 * This process isn't going to be making the trip to the lower bands.
1735 if (isProcessInAgingBands(p
)) {
1736 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1737 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1740 if (isSysProc(p
) && system_procs_aging_band
) {
1741 present_in_sysprocs_aging_bucket
= TRUE
;
1742 } else if (isApp(p
) && applications_aging_band
) {
1743 present_in_apps_aging_bucket
= TRUE
;
1747 assert(!present_in_sysprocs_aging_bucket
);
1748 assert(!present_in_apps_aging_bucket
);
1750 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1751 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1754 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1757 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1759 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1760 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1763 assert(p
->p_memstat_idledeadline
);
1765 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1766 memorystatus_scheduled_idle_demotions_sysprocs
++;
1767 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1768 memorystatus_scheduled_idle_demotions_apps
++;
1773 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1775 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1776 boolean_t present_in_apps_aging_bucket
= FALSE
;
1778 if (!system_procs_aging_band
&& !applications_aging_band
) {
1782 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1786 if (isProcessInAgingBands(p
)) {
1787 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1788 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1791 if (isSysProc(p
) && system_procs_aging_band
) {
1792 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1793 assert(p
->p_memstat_idledeadline
);
1794 present_in_sysprocs_aging_bucket
= TRUE
;
1795 } else if (isApp(p
) && applications_aging_band
) {
1796 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1797 assert(p
->p_memstat_idledeadline
);
1798 present_in_apps_aging_bucket
= TRUE
;
1802 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1803 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1807 p
->p_memstat_idledeadline
= 0;
1808 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1811 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1812 memorystatus_scheduled_idle_demotions_sysprocs
--;
1813 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1814 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1815 memorystatus_scheduled_idle_demotions_apps
--;
1816 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1819 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1823 memorystatus_reschedule_idle_demotion_locked(void)
1825 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1826 if (memstat_idle_demotion_deadline
) {
1827 /* Transitioned 1->0, so cancel next call */
1828 thread_call_cancel(memorystatus_idle_demotion_call
);
1829 memstat_idle_demotion_deadline
= 0;
1832 memstat_bucket_t
*demotion_bucket
;
1833 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1835 if (system_procs_aging_band
) {
1836 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1837 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1842 if (applications_aging_band
) {
1843 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1844 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1847 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1849 p
= (p1
== NULL
) ? p2
: p1
;
1856 assert(p
&& p
->p_memstat_idledeadline
);
1857 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
1858 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
1859 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
1870 memorystatus_add(proc_t p
, boolean_t locked
)
1872 memstat_bucket_t
*bucket
;
1874 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
1880 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
1882 /* Processes marked internal do not have priority tracked */
1883 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
1888 * Opt out system processes from being frozen by default.
1889 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
1892 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
1895 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1897 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
1898 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
1899 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
1900 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
1901 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
1903 * Entering the idle band.
1904 * Record idle start time.
1906 p
->p_memstat_idle_start
= mach_absolute_time();
1909 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
1911 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
1912 bucket
->relaunch_high_count
++;
1915 memorystatus_list_count
++;
1917 memorystatus_check_levels_locked();
1929 * Moves a process from one jetsam bucket to another.
1930 * which changes the LRU position of the process.
1932 * Monitors transition between buckets and if necessary
1933 * will update cached memory limits accordingly.
1935 * skip_demotion_check:
1936 * - if the 'jetsam aging policy' is NOT 'legacy':
1937 * When this flag is TRUE, it means we are going
1938 * to age the ripe processes out of the aging bands and into the
1939 * IDLE band and apply their inactive memory limits.
1941 * - if the 'jetsam aging policy' is 'legacy':
1942 * When this flag is TRUE, it might mean the above aging mechanism
1944 * It might be that we have a process that has used up its 'idle deferral'
1945 * stay that is given to it once per lifetime. And in this case, the process
1946 * won't be going through any aging codepaths. But we still need to apply
1947 * the right inactive limits and so we explicitly set this to TRUE if the
1948 * new priority for the process is the IDLE band.
1951 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
1953 memstat_bucket_t
*old_bucket
, *new_bucket
;
1955 assert(priority
< MEMSTAT_BUCKET_COUNT
);
1957 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
1958 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
1962 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
1963 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
1965 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
1967 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1969 if (skip_demotion_check
== FALSE
) {
1972 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
1973 * the processes from the aging bands and balancing the demotion counts.
1974 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
1977 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
1979 * 2 types of processes can use the non-standard elevated inactive band:
1980 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
1982 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
1985 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
1986 if (priority
<= memorystatus_freeze_jetsam_band
) {
1987 priority
= memorystatus_freeze_jetsam_band
;
1990 #endif /* CONFIG_FREEZE */
1992 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1993 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
1996 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
1998 } else if (isApp(p
)) {
2000 * Check to see if the application is being lowered in jetsam priority. If so, and:
2001 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2002 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2005 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2007 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2008 if (priority
<= memorystatus_freeze_jetsam_band
) {
2009 priority
= memorystatus_freeze_jetsam_band
;
2012 #endif /* CONFIG_FREEZE */
2014 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2015 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2019 if (applications_aging_band
) {
2020 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2021 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2024 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2025 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2026 priority
= applications_aging_band
;
2027 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2034 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2035 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2038 #if DEVELOPMENT || DEBUG
2039 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2040 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2041 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2042 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2043 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2044 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2046 #endif /* DEVELOPMENT || DEBUG */
2048 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2049 old_bucket
->count
--;
2050 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2051 old_bucket
->relaunch_high_count
--;
2054 new_bucket
= &memstat_bucket
[priority
];
2056 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2058 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2060 new_bucket
->count
++;
2061 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2062 new_bucket
->relaunch_high_count
++;
2065 if (memorystatus_highwater_enabled
) {
2067 boolean_t use_active
;
2070 * If cached limit data is updated, then the limits
2071 * will be enforced by writing to the ledgers.
2073 boolean_t ledger_update_needed
= TRUE
;
2076 * Here, we must update the cached memory limit if the task
2077 * is transitioning between:
2078 * active <--> inactive
2081 * dirty <--> clean is ignored
2083 * We bypass non-idle processes that have opted into dirty tracking because
2084 * a move between buckets does not imply a transition between the
2085 * dirty <--> clean state.
2088 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2089 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2090 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2093 ledger_update_needed
= FALSE
;
2095 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2097 * inactive --> active
2099 * assign active state
2101 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2103 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2105 * active --> inactive
2107 * assign inactive state
2109 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2113 * The transition between jetsam priority buckets apparently did
2114 * not affect active/inactive state.
2115 * This is not unusual... especially during startup when
2116 * processes are getting established in their respective bands.
2118 ledger_update_needed
= FALSE
;
2122 * Enforce the new limits by writing to the ledger
2124 if (ledger_update_needed
) {
2125 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2127 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2128 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2129 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2130 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2135 * Record idle start or idle delta.
2137 if (p
->p_memstat_effectivepriority
== priority
) {
2139 * This process is not transitioning between
2140 * jetsam priority buckets. Do nothing.
2142 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2145 * Transitioning out of the idle priority bucket.
2146 * Record idle delta.
2148 assert(p
->p_memstat_idle_start
!= 0);
2149 now
= mach_absolute_time();
2150 if (now
> p
->p_memstat_idle_start
) {
2151 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2155 * About to become active and so memory footprint could change.
2156 * So mark it eligible for freeze-considerations next time around.
2158 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2159 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2161 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2163 * Transitioning into the idle priority bucket.
2164 * Record idle start.
2166 p
->p_memstat_idle_start
= mach_absolute_time();
2169 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2171 p
->p_memstat_effectivepriority
= priority
;
2173 #if CONFIG_SECLUDED_MEMORY
2174 if (secluded_for_apps
&&
2175 task_could_use_secluded_mem(p
->task
)) {
2176 task_set_can_use_secluded_mem(
2178 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2180 #endif /* CONFIG_SECLUDED_MEMORY */
2182 memorystatus_check_levels_locked();
2186 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2188 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2189 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2195 * Description: Update the jetsam priority and memory limit attributes for a given process.
2198 * p init this process's jetsam information.
2199 * priority The jetsam priority band
2200 * user_data user specific data, unused by the kernel
2201 * is_assertion When true, a priority update is driven by an assertion.
2202 * effective guards against race if process's update already occurred
2203 * update_memlimit When true we know this is the init step via the posix_spawn path.
2205 * memlimit_active Value in megabytes; The monitored footprint level while the
2206 * process is active. Exceeding it may result in termination
2207 * based on it's associated fatal flag.
2209 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2210 * this describes whether or not it should be immediately fatal.
2212 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2213 * process is inactive. Exceeding it may result in termination
2214 * based on it's associated fatal flag.
2216 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2217 * this describes whether or not it should be immediatly fatal.
2219 * Returns: 0 Success
2224 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2225 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2226 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2229 boolean_t head_insert
= false;
2231 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2233 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2235 if (priority
== -1) {
2236 /* Use as shorthand for default priority */
2237 priority
= JETSAM_PRIORITY_DEFAULT
;
2238 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2239 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2240 priority
= JETSAM_PRIORITY_IDLE
;
2241 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2242 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2243 priority
= JETSAM_PRIORITY_IDLE
;
2245 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2253 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2255 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2258 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2262 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2264 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2271 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2272 p
->p_memstat_userdata
= user_data
;
2275 if (priority
== JETSAM_PRIORITY_IDLE
) {
2277 * Assertions relinquish control when the process is heading to IDLE.
2279 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2281 * Mark the process as no longer being managed by assertions.
2283 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2286 * Ignore an idle priority transition if the process is not
2287 * already managed by assertions. We won't treat this as
2288 * an error, but we will log the unexpected behavior and bail.
2290 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2291 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2299 * Process is now being managed by assertions,
2301 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2304 /* Always update the assertion priority in this path */
2306 p
->p_memstat_assertionpriority
= priority
;
2308 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2310 if (memstat_dirty_flags
!= 0) {
2312 * Calculate maximum priority only when dirty tracking processes are involved.
2315 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2316 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2320 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2322 * The aging policy must be evaluated and applied here because runnningboardd
2323 * has relinquished its hold on the jetsam priority by attempting to move a
2324 * clean process to the idle band.
2327 int newpriority
= JETSAM_PRIORITY_IDLE
;
2328 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2329 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2332 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2334 if (newpriority
== system_procs_aging_band
) {
2335 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2339 * Preserves requestedpriority when the process does not support pressured exit.
2341 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2344 priority
= maxpriority
;
2347 p
->p_memstat_requestedpriority
= priority
;
2350 if (update_memlimit
) {
2352 boolean_t use_active
;
2355 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2356 * Forked processes do not come through this path, so no ledger limits exist.
2357 * (That's why forked processes can consume unlimited memory.)
2360 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2361 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2362 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2363 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2365 if (memlimit_active
<= 0) {
2367 * This process will have a system_wide task limit when active.
2368 * System_wide task limit is always fatal.
2369 * It's quite common to see non-fatal flag passed in here.
2370 * It's not an error, we just ignore it.
2374 * For backward compatibility with some unexplained launchd behavior,
2375 * we allow a zero sized limit. But we still enforce system_wide limit
2376 * when written to the ledgers.
2379 if (memlimit_active
< 0) {
2380 memlimit_active
= -1; /* enforces system_wide task limit */
2382 memlimit_active_is_fatal
= TRUE
;
2385 if (memlimit_inactive
<= 0) {
2387 * This process will have a system_wide task limit when inactive.
2388 * System_wide task limit is always fatal.
2391 memlimit_inactive
= -1;
2392 memlimit_inactive_is_fatal
= TRUE
;
2396 * Initialize the active limit variants for this process.
2398 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2401 * Initialize the inactive limit variants for this process.
2403 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2406 * Initialize the cached limits for target process.
2407 * When the target process is dirty tracked, it's typically
2408 * in a clean state. Non dirty tracked processes are
2409 * typically active (Foreground or above).
2410 * But just in case, we don't make assumptions...
2413 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2414 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2417 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2422 * Enforce the cached limit by writing to the ledger.
2424 if (memorystatus_highwater_enabled
) {
2426 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2428 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2429 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2430 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2431 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2436 * We can't add to the aging bands buckets here.
2437 * But, we could be removing it from those buckets.
2438 * Check and take appropriate steps if so.
2441 if (isProcessInAgingBands(p
)) {
2442 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2444 * Runningboardd is pulling up an application that is in the aging band.
2445 * We reset the app's state here so that it'll get a fresh stay in the
2446 * aging band on the way back.
2448 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2449 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2450 * But with extensions (daemon-app hybrid), runningboardd is now going through
2451 * this routine for daemons too and things have gotten a bit tangled. This should
2452 * be simplified/untangled at some point and might require some assistance from
2455 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2457 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2459 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2461 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2463 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2464 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2465 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2466 * is any other aging policy, then we don't need to worry because all processes
2467 * will go through the aging bands and then the demotion thread will take care to
2468 * move them into the IDLE band and apply the required limits.
2470 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2474 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2480 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2486 memorystatus_remove(proc_t p
)
2489 memstat_bucket_t
*bucket
;
2490 boolean_t reschedule
= FALSE
;
2492 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2495 * Check if this proc is locked (because we're performing a freeze).
2496 * If so, we fail and instruct the caller to try again later.
2498 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2502 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2504 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2506 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2507 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2509 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2510 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2518 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2519 uint64_t now
= mach_absolute_time();
2520 if (now
> p
->p_memstat_idle_start
) {
2521 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2525 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2527 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2528 bucket
->relaunch_high_count
--;
2531 memorystatus_list_count
--;
2533 /* If awaiting demotion to the idle band, clean up */
2535 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2536 memorystatus_reschedule_idle_demotion_locked();
2539 memorystatus_check_levels_locked();
2542 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2543 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2544 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2545 memorystatus_refreeze_eligible_count
--;
2548 memorystatus_frozen_count
--;
2549 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2550 p
->p_memstat_freeze_sharedanon_pages
= 0;
2553 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2554 memorystatus_suspended_count
--;
2568 * Validate dirty tracking flags with process state.
2574 * The proc_list_lock is held by the caller.
2578 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2580 /* See that the process isn't marked for termination */
2581 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2585 /* Idle exit requires that process be tracked */
2586 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2587 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2591 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2592 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2593 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2597 /* Only one type of DEFER behavior is allowed.*/
2598 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2599 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2603 /* Deferral is only relevant if idle exit is specified */
2604 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2605 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2606 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2614 memorystatus_update_idle_priority_locked(proc_t p
)
2618 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2620 assert(isSysProc(p
));
2622 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2623 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2625 priority
= p
->p_memstat_requestedpriority
;
2628 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2630 * This process has a jetsam priority managed by an assertion.
2631 * Policy is to choose the max priority.
2633 if (p
->p_memstat_assertionpriority
> priority
) {
2634 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2635 p
->p_memstat_assertionpriority
, priority
,
2636 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2637 priority
= p
->p_memstat_assertionpriority
;
2641 if (priority
!= p
->p_memstat_effectivepriority
) {
2642 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2643 (priority
== JETSAM_PRIORITY_IDLE
)) {
2645 * This process is on its way into the IDLE band. The system is
2646 * using 'legacy' jetsam aging policy. That means, this process
2647 * has already used up its idle-deferral aging time that is given
2648 * once per its lifetime. So we need to set the INACTIVE limits
2649 * explicitly because it won't be going through the demotion paths
2650 * that take care to apply the limits appropriately.
2653 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2655 * This process has the 'elevated inactive jetsam band' attribute.
2656 * So, there will be no trip to IDLE after all.
2657 * Instead, we pin the process in the elevated band,
2658 * where its ACTIVE limits will apply.
2661 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2664 memorystatus_update_priority_locked(p
, priority
, false, true);
2666 memorystatus_update_priority_locked(p
, priority
, false, false);
2672 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2673 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2674 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2675 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2677 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2678 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2679 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2680 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2681 * band. The deferral can be cleared early by clearing the appropriate flag.
2683 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2684 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2685 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2689 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2691 unsigned int old_dirty
;
2692 boolean_t reschedule
= FALSE
;
2693 boolean_t already_deferred
= FALSE
;
2694 boolean_t defer_now
= FALSE
;
2697 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2698 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2702 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2704 * Process is on its way out.
2710 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2715 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2720 old_dirty
= p
->p_memstat_dirty
;
2722 /* These bits are cumulative, as per <rdar://problem/11159924> */
2723 if (pcontrol
& PROC_DIRTY_TRACK
) {
2724 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2727 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2728 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2731 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2732 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2735 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2736 already_deferred
= TRUE
;
2740 /* This can be set and cleared exactly once. */
2741 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2742 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2743 !(old_dirty
& P_DIRTY_DEFER
)) {
2744 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2747 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2748 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2749 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2755 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2756 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2757 defer_now
? "Y" : "N",
2758 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2761 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2762 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2763 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2764 if (defer_now
&& !already_deferred
) {
2766 * Request to defer a clean process that's idle-exit enabled
2767 * and not already in the jetsam deferred band. Most likely a
2770 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2772 } else if (!defer_now
) {
2774 * The process isn't asking for the 'aging' facility.
2775 * Could be that it is:
2778 if (already_deferred
) {
2780 * already in the aging bands. Traditionally,
2781 * some processes have tried to use this to
2782 * opt out of the 'aging' facility.
2785 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2788 * agnostic to the 'aging' facility. In that case,
2789 * we'll go ahead and opt it in because this is likely
2790 * a new launch (clean process, dirty tracking enabled)
2793 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2801 * We are trying to operate on a dirty process. Dirty processes have to
2802 * be removed from the deferred band. The question is do we reset the
2803 * deferred state or not?
2805 * This could be a legal request like:
2806 * - this process had opted into the 'aging' band
2807 * - but it's now dirty and requests to opt out.
2808 * In this case, we remove the process from the band and reset its
2809 * state too. It'll opt back in properly when needed.
2811 * OR, this request could be a user-space bug. E.g.:
2812 * - this process had opted into the 'aging' band when clean
2813 * - and, then issues another request to again put it into the band except
2814 * this time the process is dirty.
2815 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2816 * the deferred band with its state intact. So our request below is no-op.
2817 * But we do it here anyways for coverage.
2819 * memorystatus_update_idle_priority_locked()
2820 * single-mindedly treats a dirty process as "cannot be in the aging band".
2823 if (!defer_now
&& already_deferred
) {
2824 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2827 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2829 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2834 memorystatus_update_idle_priority_locked(p
);
2837 memorystatus_reschedule_idle_demotion_locked();
2849 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
2852 boolean_t kill
= false;
2853 boolean_t reschedule
= FALSE
;
2854 boolean_t was_dirty
= FALSE
;
2855 boolean_t now_dirty
= FALSE
;
2857 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2858 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2862 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2864 * Process is on its way out.
2870 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2875 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2879 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2880 /* Dirty tracking not enabled */
2882 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2884 * Process is set to be terminated and we're attempting to mark it dirty.
2885 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2889 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2890 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2891 /* Mark the process as having been dirtied at some point */
2892 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2893 memorystatus_dirty_count
++;
2895 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2896 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2897 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2898 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2900 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2901 /* Kill previously terminated processes if set clean */
2904 p
->p_memstat_dirty
&= ~flag
;
2905 memorystatus_dirty_count
--;
2917 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2921 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
2922 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
2923 /* Manage idle exit deferral, if applied */
2924 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2926 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
2927 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
2928 * P_DIRTY_DEFER: one-time protection window given at launch
2929 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
2931 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
2932 * in that band on it's way to IDLE.
2935 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2937 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
2939 * The process will move from its aging band to its higher requested
2942 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2944 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2948 * Process is back from "dirty" to "clean".
2951 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
2952 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
2953 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
2955 * The process' hasn't enrolled in the "always defer after dirty"
2956 * mode and its deadline has expired. It currently
2957 * does not reside in any of the aging buckets.
2959 * It's on its way to the JETSAM_PRIORITY_IDLE
2960 * bucket via memorystatus_update_idle_priority_locked()
2963 * So all we need to do is reset all the state on the
2964 * process that's related to the aging bucket i.e.
2965 * the AGING_IN_PROGRESS flag and the timer deadline.
2968 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2972 * Process enrolled in "always stop in deferral band after dirty" OR
2973 * it still has some protection window left and so
2974 * we just re-arm the timer without modifying any
2975 * state on the process iff it still wants into that band.
2978 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
2979 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2981 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2982 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2987 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2993 memorystatus_update_idle_priority_locked(p
);
2995 if (memorystatus_highwater_enabled
) {
2996 boolean_t ledger_update_needed
= TRUE
;
2997 boolean_t use_active
;
3000 * We are in this path because this process transitioned between
3001 * dirty <--> clean state. Update the cached memory limits.
3004 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3006 * process is pinned in elevated band
3010 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3012 ledger_update_needed
= TRUE
;
3015 * process is clean...but if it has opted into pressured-exit
3016 * we don't apply the INACTIVE limit till the process has aged
3017 * out and is entering the IDLE band.
3018 * See memorystatus_update_priority_locked() for that.
3021 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3022 ledger_update_needed
= FALSE
;
3024 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3026 ledger_update_needed
= TRUE
;
3031 * Enforce the new limits by writing to the ledger.
3033 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3034 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3035 * We aren't traversing the jetsam bucket list here, so we should be safe.
3036 * See rdar://21394491.
3039 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3041 if (p
->p_memstat_memlimit
> 0) {
3042 ledger_limit
= p
->p_memstat_memlimit
;
3047 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3049 proc_rele_locked(p
);
3051 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3052 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3053 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3054 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3058 /* If the deferral state changed, reschedule the demotion timer */
3060 memorystatus_reschedule_idle_demotion_locked();
3065 if (proc_ref_locked(p
) == p
) {
3067 psignal(p
, SIGKILL
);
3069 proc_rele_locked(p
);
3080 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3084 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3086 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3090 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3092 * Process is on its way out.
3098 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3103 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3104 /* Dirty tracking not enabled */
3109 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3114 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3115 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3118 /* This can be set and cleared exactly once. */
3119 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3120 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3121 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3124 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3125 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3128 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3129 memorystatus_update_idle_priority_locked(p
);
3130 memorystatus_reschedule_idle_demotion_locked();
3141 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3149 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3150 ret
|= PROC_DIRTY_TRACKED
;
3151 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3152 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3154 if (p
->p_memstat_dirty
& P_DIRTY
) {
3155 ret
|= PROC_DIRTY_IS_DIRTY
;
3157 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3158 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3170 memorystatus_on_terminate(proc_t p
)
3176 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3178 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3179 /* Clean; mark as terminated and issue SIGKILL */
3182 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3192 memorystatus_on_suspend(proc_t p
)
3196 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3200 memorystatus_suspended_count
++;
3202 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3207 memorystatus_on_resume(proc_t p
)
3217 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3220 * Now that we don't _thaw_ a process completely,
3221 * resuming it (and having some on-demand swapins)
3222 * shouldn't preclude it from being counted as frozen.
3224 * memorystatus_frozen_count--;
3226 * We preserve the P_MEMSTAT_FROZEN state since the process
3227 * could have state on disk AND so will deserve some protection
3228 * in the jetsam bands.
3230 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3231 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3232 memorystatus_refreeze_eligible_count
++;
3234 p
->p_memstat_thaw_count
++;
3236 memorystatus_thaw_count
++;
3239 memorystatus_suspended_count
--;
3245 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3246 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3248 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3254 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3255 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3261 memorystatus_on_inactivity(proc_t p
)
3265 /* Wake the freeze thread */
3266 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3271 * The proc_list_lock is held by the caller.
3274 memorystatus_build_state(proc_t p
)
3276 uint32_t snapshot_state
= 0;
3279 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3280 snapshot_state
|= kMemorystatusSuspended
;
3282 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3283 snapshot_state
|= kMemorystatusFrozen
;
3285 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3286 snapshot_state
|= kMemorystatusWasThawed
;
3288 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3289 snapshot_state
|= kMemorystatusAssertion
;
3293 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3294 snapshot_state
|= kMemorystatusTracked
;
3296 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3297 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3299 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3300 snapshot_state
|= kMemorystatusDirty
;
3303 return snapshot_state
;
3307 kill_idle_exit_proc(void)
3309 proc_t p
, victim_p
= PROC_NULL
;
3310 uint64_t current_time
, footprint_of_killed_proc
;
3311 boolean_t killed
= FALSE
;
3313 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3315 /* Pick next idle exit victim. */
3316 current_time
= mach_absolute_time();
3318 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3319 if (jetsam_reason
== OS_REASON_NULL
) {
3320 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3325 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3327 /* No need to look beyond the idle band */
3328 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3332 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3333 if (current_time
>= p
->p_memstat_idledeadline
) {
3334 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3335 victim_p
= proc_ref_locked(p
);
3340 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3346 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3347 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3348 proc_rele(victim_p
);
3350 os_reason_free(jetsam_reason
);
3357 memorystatus_thread_wake(void)
3360 int active_thr
= atomic_load(&active_jetsam_threads
);
3362 /* Wakeup all the jetsam threads */
3363 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3364 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3371 memorystatus_thread_pool_max()
3373 /* Increase the jetsam thread pool to max_jetsam_threads */
3374 int max_threads
= max_jetsam_threads
;
3375 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3376 atomic_store(&active_jetsam_threads
, max_threads
);
3380 memorystatus_thread_pool_default()
3382 /* Restore the jetsam thread pool to a single thread */
3383 printf("Reverting memorystatus pool back to 1\n");
3384 atomic_store(&active_jetsam_threads
, 1);
3387 #endif /* CONFIG_JETSAM */
3389 extern void vm_pressure_response(void);
3392 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3394 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3396 assert(jetsam_thread
!= NULL
);
3398 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3400 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3403 return thread_block(continuation
);
3407 memorystatus_avail_pages_below_pressure(void)
3411 * Instead of CONFIG_EMBEDDED for these *avail_pages* routines, we should
3412 * key off of the system having dynamic swap support. With full swap support,
3413 * the system shouldn't really need to worry about various page thresholds.
3415 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3416 #else /* CONFIG_EMBEDDED */
3418 #endif /* CONFIG_EMBEDDED */
3422 memorystatus_avail_pages_below_critical(void)
3425 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3426 #else /* CONFIG_EMBEDDED */
3428 #endif /* CONFIG_EMBEDDED */
3432 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3434 boolean_t is_idle_priority
;
3436 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3437 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3439 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3442 #pragma unused(cause)
3444 * Don't generate logs for steady-state idle-exit kills,
3445 * unless it is overridden for debug or by the device
3449 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3451 #else /* CONFIG_EMBEDDED */
3453 * Don't generate logs for steady-state idle-exit kills,
3455 * - it is overridden for debug or by the device
3458 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3461 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3462 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3463 #endif /* CONFIG_EMBEDDED */
3467 memorystatus_action_needed(void)
3470 return is_reason_thrashing(kill_under_pressure_cause
) ||
3471 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3472 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3473 #else /* CONFIG_EMBEDDED */
3474 return is_reason_thrashing(kill_under_pressure_cause
) ||
3475 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3476 #endif /* CONFIG_EMBEDDED */
3480 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3482 boolean_t purged
= FALSE
, killed
= FALSE
;
3484 *memory_reclaimed
= 0;
3485 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3488 *hwm_kill
= *hwm_kill
+ 1;
3489 *post_snapshot
= TRUE
;
3492 if (purged
== FALSE
) {
3493 /* couldn't purge and couldn't kill */
3494 memorystatus_hwm_candidates
= FALSE
;
3499 /* No highwater processes to kill. Continue or stop for now? */
3500 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3501 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3502 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3504 * We are _not_ out of pressure but we are above the critical threshold and there's:
3505 * - no compressor thrashing
3506 * - enough zone memory
3507 * - no more HWM processes left.
3508 * For now, don't kill any other processes.
3511 if (*hwm_kill
== 0) {
3512 memorystatus_thread_wasted_wakeup
++;
3515 *is_critical
= FALSE
;
3519 #endif /* CONFIG_JETSAM */
3525 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3526 * in the idle & deferred bands that need to be bad candidates in order to trigger
3527 * aggressive jetsam.
3529 #define kJetsamHighRelaunchCandidatesThreshold (100)
3531 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3532 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3533 * how much memory the system is ready to hold in the lower bands without triggering
3534 * aggressive jetsam. This number should ideally be tuned based on the memory config
3537 #define kJetsamMinCandidatesThreshold (5)
3540 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3542 boolean_t aggressive_jetsam_needed
= false;
3545 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3546 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3547 * every dirty->clean transition. For this aging policy, the best way to determine if
3548 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3549 * If yes, then we need to go to higher bands to reclaim memory.
3552 /* Get total candidate counts for idle and idle deferred bands */
3553 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3554 /* Get counts of bad kill candidates in idle and idle deferred bands */
3555 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3557 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3561 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3562 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3565 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3566 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3567 * make sure the system is really under memory pressure before triggering aggressive
3570 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3571 aggressive_jetsam_needed
= false;
3574 #if DEVELOPMENT || DEBUG
3575 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3576 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3577 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)memorystatus_available_pages
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3578 #endif /* DEVELOPMENT || DEBUG */
3579 return aggressive_jetsam_needed
;
3583 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3585 boolean_t aggressive_jetsam_needed
= false;
3586 /* Jetsam Loop Detection - locals */
3587 memstat_bucket_t
*bucket
;
3588 int jld_bucket_count
= 0;
3591 switch (jetsam_aging_policy
) {
3592 case kJetsamAgingPolicyLegacy
:
3593 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3594 jld_bucket_count
= bucket
->count
;
3595 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3596 jld_bucket_count
+= bucket
->count
;
3598 case kJetsamAgingPolicyAppsReclaimedFirst
:
3599 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3600 jld_bucket_count
= bucket
->count
;
3601 bucket
= &memstat_bucket
[system_procs_aging_band
];
3602 jld_bucket_count
+= bucket
->count
;
3603 bucket
= &memstat_bucket
[applications_aging_band
];
3604 jld_bucket_count
+= bucket
->count
;
3606 case kJetsamAgingPolicyNone
:
3608 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3609 jld_bucket_count
= bucket
->count
;
3613 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3614 *elevated_bucket_count
= bucket
->count
;
3615 *total_candidates
= jld_bucket_count
;
3618 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3620 #if DEVELOPMENT || DEBUG
3621 if (aggressive_jetsam_needed
) {
3622 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3623 jld_eval_aggressive_count
,
3624 jld_idle_kill_candidates
,
3627 #endif /* DEVELOPMENT || DEBUG */
3628 return aggressive_jetsam_needed
;
3632 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3634 boolean_t aggressive_jetsam_needed
= false;
3636 uint32_t errors
= 0;
3637 uint64_t footprint_of_killed_proc
= 0;
3638 int elevated_bucket_count
= 0;
3639 int total_candidates
= 0;
3640 *memory_reclaimed
= 0;
3643 * The aggressive jetsam logic looks at the number of times it has been in the
3644 * aggressive loop to determine the max priority band it should kill upto. The
3645 * static variables below are used to track that property.
3647 * To reset those values, the implementation checks if it has been
3648 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3650 static int jld_eval_aggressive_count
= 0;
3651 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3652 static uint64_t jld_timestamp_msecs
= 0;
3653 static int jld_idle_kill_candidates
= 0;
3655 if (memorystatus_jld_enabled
== FALSE
) {
3656 /* If aggressive jetsam is disabled, nothing to do here */
3660 /* Get current timestamp (msecs only) */
3661 struct timeval jld_now_tstamp
= {0, 0};
3662 uint64_t jld_now_msecs
= 0;
3663 microuptime(&jld_now_tstamp
);
3664 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3667 * The aggressive jetsam logic looks at the number of candidates and their
3668 * properties to decide if aggressive jetsam should be engaged.
3670 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3672 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3673 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3676 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3677 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3680 * The other aging policies look at number of candidate processes over a specific time window and
3681 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3683 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3684 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3688 * Check if its been really long since the aggressive jetsam evaluation
3689 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3690 * counter to make sure we reset the aggressive jetsam severity.
3692 boolean_t param_reval
= false;
3694 if ((total_candidates
== 0) ||
3695 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3696 jld_timestamp_msecs
= jld_now_msecs
;
3697 jld_idle_kill_candidates
= total_candidates
;
3698 *jld_idle_kills
= 0;
3699 jld_eval_aggressive_count
= 0;
3700 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3705 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3706 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3708 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3709 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3713 * It is also possible that the system is down to a very small number of processes in the candidate
3714 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3715 * would not be useful. In that case, do not trigger aggressive jetsam.
3717 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3718 #if DEVELOPMENT || DEBUG
3719 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3720 #endif /* DEVELOPMENT || DEBUG */
3721 aggressive_jetsam_needed
= false;
3724 if (aggressive_jetsam_needed
== false) {
3725 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3729 /* Looks like aggressive jetsam is needed */
3730 jld_eval_aggressive_count
++;
3732 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3733 memorystatus_issue_fg_band_notify();
3736 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3737 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3738 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3740 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3741 task_purge_all_corpses();
3742 *corpse_list_purged
= TRUE
;
3744 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3746 * Bump up the jetsam priority limit (eg: the bucket index)
3747 * Enforce bucket index sanity.
3749 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3750 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3752 * Do nothing. Stick with the default level.
3755 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3759 /* Visit elevated processes first */
3760 while (elevated_bucket_count
) {
3761 elevated_bucket_count
--;
3764 * memorystatus_kill_elevated_process() drops a reference,
3765 * so take another one so we can continue to use this exit reason
3766 * even after it returns.
3769 os_reason_ref(jetsam_reason
);
3770 killed
= memorystatus_kill_elevated_process(
3773 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3774 jld_eval_aggressive_count
,
3775 &errors
, &footprint_of_killed_proc
);
3777 *post_snapshot
= TRUE
;
3778 *memory_reclaimed
+= footprint_of_killed_proc
;
3779 if (memorystatus_avail_pages_below_pressure()) {
3781 * Still under pressure.
3782 * Find another pinned processes.
3790 * No pinned processes left to kill.
3791 * Abandon elevated band.
3798 * memorystatus_kill_processes_aggressive() allocates its own
3799 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
3800 * is consistent throughout the aggressive march.
3802 killed
= memorystatus_kill_processes_aggressive(
3803 kMemorystatusKilledProcThrashing
,
3804 jld_eval_aggressive_count
,
3805 jld_priority_band_max
,
3806 &errors
, &footprint_of_killed_proc
);
3809 /* Always generate logs after aggressive kill */
3810 *post_snapshot
= TRUE
;
3811 *memory_reclaimed
+= footprint_of_killed_proc
;
3812 *jld_idle_kills
= 0;
3821 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3823 boolean_t post_snapshot
= FALSE
;
3824 uint32_t errors
= 0;
3825 uint32_t hwm_kill
= 0;
3826 boolean_t sort_flag
= TRUE
;
3827 boolean_t corpse_list_purged
= FALSE
;
3828 int jld_idle_kills
= 0;
3829 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3830 uint64_t total_memory_reclaimed
= 0;
3832 assert(jetsam_thread
!= NULL
);
3833 if (jetsam_thread
->inited
== FALSE
) {
3835 * It's the first time the thread has run, so just mark the thread as privileged and block.
3836 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3840 thread_wire(host_priv_self(), current_thread(), TRUE
);
3841 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
3843 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
3844 if (jetsam_thread
->index
== 0) {
3845 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
3846 thread_vm_bind_group_add();
3848 jetsam_thread
->limit_to_low_bands
= FALSE
;
3850 jetsam_thread
->limit_to_low_bands
= TRUE
;
3852 thread_set_thread_name(current_thread(), name
);
3853 jetsam_thread
->inited
= TRUE
;
3854 memorystatus_thread_block(0, memorystatus_thread
);
3857 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3858 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
3861 * Jetsam aware version.
3863 * The VM pressure notification thread is working it's way through clients in parallel.
3865 * So, while the pressure notification thread is targeting processes in order of
3866 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3867 * any processes that have exceeded their highwater mark.
3869 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3870 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3872 while (memorystatus_action_needed()) {
3876 uint64_t memory_reclaimed
= 0;
3877 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3878 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3880 cause
= kill_under_pressure_cause
;
3882 case kMemorystatusKilledFCThrashing
:
3883 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3885 case kMemorystatusKilledVMCompressorThrashing
:
3886 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
3888 case kMemorystatusKilledVMCompressorSpaceShortage
:
3889 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
3891 case kMemorystatusKilledZoneMapExhaustion
:
3892 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
3894 case kMemorystatusKilledVMPageShortage
:
3897 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3898 cause
= kMemorystatusKilledVMPageShortage
;
3903 boolean_t is_critical
= TRUE
;
3904 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
3905 total_memory_reclaimed
+= memory_reclaimed
;
3906 if (is_critical
== FALSE
) {
3908 * For now, don't kill any other processes.
3916 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3917 if (jetsam_reason
== OS_REASON_NULL
) {
3918 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3921 /* Only unlimited jetsam threads should act aggressive */
3922 if (!jetsam_thread
->limit_to_low_bands
&&
3923 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
3924 total_memory_reclaimed
+= memory_reclaimed
;
3929 * memorystatus_kill_top_process() drops a reference,
3930 * so take another one so we can continue to use this exit reason
3931 * even after it returns
3933 os_reason_ref(jetsam_reason
);
3936 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
3940 total_memory_reclaimed
+= memory_reclaimed
;
3941 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
3942 post_snapshot
= TRUE
;
3945 /* Jetsam Loop Detection */
3946 if (memorystatus_jld_enabled
== TRUE
) {
3947 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
3951 * We've reached into bands beyond idle deferred.
3952 * We make no attempt to monitor them
3958 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
3959 * then we attempt to relieve pressure by purging corpse memory and notifying
3960 * anybody wanting to know this.
3962 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
3963 memorystatus_issue_fg_band_notify();
3964 if (total_corpses_count() > 0 && !corpse_list_purged
) {
3965 task_purge_all_corpses();
3966 corpse_list_purged
= TRUE
;
3972 if (memorystatus_avail_pages_below_critical()) {
3974 * Still under pressure and unable to kill a process - purge corpse memory
3976 if (total_corpses_count() > 0) {
3977 task_purge_all_corpses();
3978 corpse_list_purged
= TRUE
;
3981 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
3983 * Still under pressure and unable to kill a process - panic
3985 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)memorystatus_available_pages
);
3992 * We do not want to over-kill when thrashing has been detected.
3993 * To avoid that, we reset the flag here and notify the
3996 if (is_reason_thrashing(kill_under_pressure_cause
)) {
3997 kill_under_pressure_cause
= 0;
3999 vm_thrashing_jetsam_done();
4000 #endif /* CONFIG_JETSAM */
4001 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4002 kill_under_pressure_cause
= 0;
4005 os_reason_free(jetsam_reason
);
4008 kill_under_pressure_cause
= 0;
4011 memorystatus_clear_errors();
4014 if (post_snapshot
) {
4016 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4017 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4018 uint64_t timestamp_now
= mach_absolute_time();
4019 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4020 memorystatus_jetsam_snapshot
->js_gencount
++;
4021 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4022 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4024 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4027 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4035 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4036 memorystatus_available_pages
, total_memory_reclaimed
, 0, 0, 0);
4038 memorystatus_thread_block(0, memorystatus_thread
);
4043 * when an idle-exitable proc was killed
4045 * when there are no more idle-exitable procs found
4046 * when the attempt to kill an idle-exitable proc failed
4049 memorystatus_idle_exit_from_VM(void)
4052 * This routine should no longer be needed since we are
4053 * now using jetsam bands on all platforms and so will deal
4054 * with IDLE processes within the memorystatus thread itself.
4056 * But we still use it because we observed that macos systems
4057 * started heavy compression/swapping with a bunch of
4058 * idle-exitable processes alive and doing nothing. We decided
4059 * to rather kill those processes than start swapping earlier.
4062 return kill_idle_exit_proc();
4066 * Callback invoked when allowable physical memory footprint exceeded
4067 * (dirty pages + IOKit mappings)
4069 * This is invoked for both advisory, non-fatal per-task high watermarks,
4070 * as well as the fatal task memory limits.
4073 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4075 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4077 proc_t p
= current_proc();
4079 #if VM_PRESSURE_EVENTS
4080 if (warning
== TRUE
) {
4082 * This is a warning path which implies that the current process is close, but has
4083 * not yet exceeded its per-process memory limit.
4085 if (memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4086 /* Print warning, since it's possible that task has not registered for pressure notifications */
4087 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4091 #endif /* VM_PRESSURE_EVENTS */
4093 if (memlimit_is_fatal
) {
4095 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4096 * has violated either the system-wide per-task memory limit OR its own task limit.
4098 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4099 if (jetsam_reason
== NULL
) {
4100 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4101 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4102 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4103 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4106 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4107 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4111 * HWM offender exists. Done without locks or synchronization.
4112 * See comment near its declaration for more details.
4114 memorystatus_hwm_candidates
= TRUE
;
4116 #if VM_PRESSURE_EVENTS
4118 * The current process is not in the warning path.
4119 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4120 * Failure to send note is ignored here.
4122 (void)memorystatus_warn_process(p
->p_pid
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4124 #endif /* VM_PRESSURE_EVENTS */
4129 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4131 proc_t p
= current_proc();
4134 * The limit violation is logged here, but only once per process per limit.
4135 * Soft memory limit is a non-fatal high-water-mark
4136 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4139 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4140 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4141 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4142 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4150 * Evaluates process state to determine which limit
4151 * should be applied (active vs. inactive limit).
4153 * Processes that have the 'elevated inactive jetsam band' attribute
4154 * are first evaluated based on their current priority band.
4155 * presently elevated ==> active
4157 * Processes that opt into dirty tracking are evaluated
4158 * based on clean vs dirty state.
4160 * clean ==> inactive
4162 * Process that do not opt into dirty tracking are
4163 * evalulated based on priority level.
4164 * Foreground or above ==> active
4165 * Below Foreground ==> inactive
4167 * Return: TRUE if active
4172 proc_jetsam_state_is_active_locked(proc_t p
)
4174 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4175 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4177 * process has the 'elevated inactive jetsam band' attribute
4178 * and process is present in the elevated band
4179 * implies active state
4182 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4184 * process has opted into dirty tracking
4185 * active state is based on dirty vs. clean
4187 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4190 * implies active state
4196 * implies inactive state
4200 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4202 * process is Foreground or higher
4203 * implies active state
4208 * process found below Foreground
4209 * implies inactive state
4216 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4220 uint32_t errors
= 0;
4221 uint64_t memory_reclaimed
= 0;
4223 if (victim_pid
== -1) {
4224 /* No pid, so kill first process */
4225 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4227 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4231 memorystatus_clear_errors();
4235 /* Fire off snapshot notification */
4237 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4238 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4239 uint64_t timestamp_now
= mach_absolute_time();
4240 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4241 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4242 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4244 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4247 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4259 * Jetsam a specific process.
4262 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4266 uint64_t killtime
= 0;
4267 uint64_t footprint_of_killed_proc
;
4269 clock_usec_t tv_usec
;
4272 /* TODO - add a victim queue and push this into the main jetsam thread */
4274 p
= proc_find(victim_pid
);
4276 os_reason_free(jetsam_reason
);
4282 if (memorystatus_jetsam_snapshot_count
== 0) {
4283 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4286 killtime
= mach_absolute_time();
4287 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4288 tv_msec
= tv_usec
/ 1000;
4290 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4294 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4296 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4297 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4298 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4299 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
4308 * Toggle the P_MEMSTAT_TERMINATED state.
4309 * Takes the proc_list_lock.
4312 proc_memstat_terminated(proc_t p
, boolean_t set
)
4314 #if DEVELOPMENT || DEBUG
4318 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4320 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4325 #pragma unused(p, set)
4329 #endif /* DEVELOPMENT || DEBUG */
4336 * This is invoked when cpulimits have been exceeded while in fatal mode.
4337 * The jetsam_flags do not apply as those are for memory related kills.
4338 * We call this routine so that the offending process is killed with
4339 * a non-zero exit status.
4342 jetsam_on_ledger_cpulimit_exceeded(void)
4345 int jetsam_flags
= 0; /* make it obvious */
4346 proc_t p
= current_proc();
4347 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4349 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4350 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4352 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4353 if (jetsam_reason
== OS_REASON_NULL
) {
4354 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4357 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4360 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4364 #endif /* CONFIG_JETSAM */
4367 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4372 *count
= get_task_memory_region_count(task
);
4376 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4377 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4379 #if DEVELOPMENT || DEBUG
4382 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4383 * set a new pidwatch value
4385 * get the current pidwatch value
4387 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4389 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4390 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4391 * - set to -1ull if the map_fork() is aborted for other reasons.
4394 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4396 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4397 #pragma unused(oidp, arg1, arg2)
4399 uint64_t new_value
= 0;
4400 uint64_t old_value
= 0;
4404 * The pid is held in the low 32 bits.
4405 * The 'allowed' flags are in the upper 32 bits.
4407 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4409 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4411 if (error
|| !req
->newptr
) {
4413 * No new value passed in.
4419 * A new pid was passed in via req->newptr.
4420 * Ignore any attempt to set the higher order bits.
4422 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4423 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4428 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4429 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4433 * Record if a watched process fails to qualify for a vm_map_fork().
4436 memorystatus_abort_vm_map_fork(task_t task
)
4438 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4439 proc_t p
= get_bsdtask_info(task
);
4440 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4441 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4447 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4449 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4450 proc_t p
= get_bsdtask_info(task
);
4451 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4452 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4457 #else /* DEVELOPMENT || DEBUG */
4461 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4463 #pragma unused(task)
4467 #endif /* DEVELOPMENT || DEBUG */
4470 * Called during EXC_RESOURCE handling when a process exceeds a soft
4471 * memory limit. This is the corpse fork path and here we decide if
4472 * vm_map_fork will be allowed when creating the corpse.
4473 * The task being considered is suspended.
4475 * By default, a vm_map_fork is allowed to proceed.
4477 * A few simple policy assumptions:
4478 * Desktop platform is not considered in this path.
4479 * The vm_map_fork is always allowed.
4481 * If the device has a zero system-wide task limit,
4482 * then the vm_map_fork is allowed.
4484 * And if a process's memory footprint calculates less
4485 * than or equal to half of the system-wide task limit,
4486 * then the vm_map_fork is allowed. This calculation
4487 * is based on the assumption that a process can
4488 * munch memory up to the system-wide task limit.
4491 memorystatus_allowed_vm_map_fork(task_t task
)
4493 boolean_t is_allowed
= TRUE
; /* default */
4497 uint64_t footprint_in_bytes
;
4498 uint64_t max_allowed_bytes
;
4500 if (max_task_footprint_mb
== 0) {
4501 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4505 footprint_in_bytes
= get_task_phys_footprint(task
);
4508 * Maximum is 1/4 of the system-wide task limit.
4510 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4512 if (footprint_in_bytes
> max_allowed_bytes
) {
4513 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4514 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4517 #endif /* CONFIG_EMBEDDED */
4519 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4524 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4531 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4532 assert(((uint32_t)pages
) == pages
);
4533 *footprint
= (uint32_t)pages
;
4535 if (max_footprint_lifetime
) {
4536 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4537 assert(((uint32_t)pages
) == pages
);
4538 *max_footprint_lifetime
= (uint32_t)pages
;
4540 if (purgeable_pages
) {
4541 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4542 assert(((uint32_t)pages
) == pages
);
4543 *purgeable_pages
= (uint32_t)pages
;
4548 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4549 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4550 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4551 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4552 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4556 if (internal_pages
) {
4557 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4560 if (internal_compressed_pages
) {
4561 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4564 if (purgeable_nonvolatile_pages
) {
4565 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4568 if (purgeable_nonvolatile_compressed_pages
) {
4569 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4572 if (alternate_accounting_pages
) {
4573 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4576 if (alternate_accounting_compressed_pages
) {
4577 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4580 if (iokit_mapped_pages
) {
4581 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4584 if (page_table_pages
) {
4585 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4590 * This routine only acts on the global jetsam event snapshot.
4591 * Updating the process's entry can race when the memorystatus_thread
4592 * has chosen to kill a process that is racing to exit on another core.
4595 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4597 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4598 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4599 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4603 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4605 if (memorystatus_jetsam_snapshot_count
== 0) {
4607 * No active snapshot.
4614 * Sanity check as this routine should only be called
4615 * from a jetsam kill path.
4617 assert(kill_cause
!= 0 && killtime
!= 0);
4619 snapshot
= memorystatus_jetsam_snapshot
;
4620 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4622 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4623 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4624 entry
= &snapshot_list
[i
];
4626 if (entry
->killed
|| entry
->jse_killtime
) {
4628 * We apparently raced on the exit path
4629 * for this process, as it's snapshot entry
4630 * has already recorded a kill.
4632 assert(entry
->killed
&& entry
->jse_killtime
);
4637 * Update the entry we just found in the snapshot.
4640 entry
->killed
= kill_cause
;
4641 entry
->jse_killtime
= killtime
;
4642 entry
->jse_gencount
= snapshot
->js_gencount
;
4643 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4645 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4646 #else /* CONFIG_FREEZE */
4647 entry
->jse_thaw_count
= 0;
4648 #endif /* CONFIG_FREEZE */
4651 * If a process has moved between bands since snapshot was
4652 * initialized, then likely these fields changed too.
4654 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4655 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4656 entry
->priority
= p
->p_memstat_effectivepriority
;
4657 entry
->state
= memorystatus_build_state(p
);
4658 entry
->user_data
= p
->p_memstat_userdata
;
4659 entry
->fds
= p
->p_fd
->fd_nfiles
;
4663 * Always update the page counts on a kill.
4667 uint32_t max_pages_lifetime
= 0;
4668 uint32_t purgeable_pages
= 0;
4670 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4671 entry
->pages
= (uint64_t)pages
;
4672 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4673 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4675 uint64_t internal_pages
= 0;
4676 uint64_t internal_compressed_pages
= 0;
4677 uint64_t purgeable_nonvolatile_pages
= 0;
4678 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4679 uint64_t alternate_accounting_pages
= 0;
4680 uint64_t alternate_accounting_compressed_pages
= 0;
4681 uint64_t iokit_mapped_pages
= 0;
4682 uint64_t page_table_pages
= 0;
4684 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4685 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4686 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4687 &iokit_mapped_pages
, &page_table_pages
);
4689 entry
->jse_internal_pages
= internal_pages
;
4690 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4691 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4692 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4693 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4694 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4695 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4696 entry
->jse_page_table_pages
= page_table_pages
;
4698 uint64_t region_count
= 0;
4699 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4700 entry
->jse_memory_region_count
= region_count
;
4706 if (entry
== NULL
) {
4708 * The entry was not found in the snapshot, so the process must have
4709 * launched after the snapshot was initialized.
4710 * Let's try to append the new entry.
4712 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4714 * A populated snapshot buffer exists
4715 * and there is room to init a new entry.
4717 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4719 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4721 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4722 entry
= &snapshot_list
[next
];
4723 entry
->killed
= kill_cause
;
4724 entry
->jse_killtime
= killtime
;
4726 snapshot
->entry_count
= ++next
;
4727 memorystatus_jetsam_snapshot_count
= next
;
4729 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4731 * We just used the last slot in the snapshot buffer.
4732 * We only want to log it once... so we do it here
4733 * when we notice we've hit the max.
4735 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4736 memorystatus_jetsam_snapshot_count
);
4743 if (entry
== NULL
) {
4745 * If we reach here, the snapshot buffer could not be updated.
4746 * Most likely, the buffer is full, in which case we would have
4747 * logged a warning in the previous call.
4749 * For now, we will stop appending snapshot entries.
4750 * When the buffer is consumed, the snapshot state will reset.
4753 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4754 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4762 memorystatus_pages_update(unsigned int pages_avail
)
4764 memorystatus_available_pages
= pages_avail
;
4766 #if VM_PRESSURE_EVENTS
4768 * Since memorystatus_available_pages changes, we should
4769 * re-evaluate the pressure levels on the system and
4770 * check if we need to wake the pressure thread.
4771 * We also update memorystatus_level in that routine.
4773 vm_pressure_response();
4775 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4776 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4777 memorystatus_thread_wake();
4782 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
4783 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
4784 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
4785 * will result in the "mutex with preemption disabled" panic.
4788 if (memorystatus_freeze_thread_should_run() == TRUE
) {
4790 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
4791 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
4793 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
4794 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
4797 #endif /* CONFIG_FREEZE */
4799 #else /* VM_PRESSURE_EVENTS */
4801 boolean_t critical
, delta
;
4803 if (!memorystatus_delta
) {
4807 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4808 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4809 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4811 if (critical
|| delta
) {
4812 unsigned int total_pages
;
4814 total_pages
= (unsigned int) atop_64(max_mem
);
4815 #if CONFIG_SECLUDED_MEMORY
4816 total_pages
-= vm_page_secluded_count
;
4817 #endif /* CONFIG_SECLUDED_MEMORY */
4818 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4819 memorystatus_thread_wake();
4821 #endif /* VM_PRESSURE_EVENTS */
4823 #endif /* CONFIG_JETSAM */
4826 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4829 clock_usec_t tv_usec
;
4831 uint32_t max_pages_lifetime
= 0;
4832 uint32_t purgeable_pages
= 0;
4833 uint64_t internal_pages
= 0;
4834 uint64_t internal_compressed_pages
= 0;
4835 uint64_t purgeable_nonvolatile_pages
= 0;
4836 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4837 uint64_t alternate_accounting_pages
= 0;
4838 uint64_t alternate_accounting_compressed_pages
= 0;
4839 uint64_t iokit_mapped_pages
= 0;
4840 uint64_t page_table_pages
= 0;
4841 uint64_t region_count
= 0;
4842 uint64_t cids
[COALITION_NUM_TYPES
];
4844 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4846 entry
->pid
= p
->p_pid
;
4847 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4848 entry
->priority
= p
->p_memstat_effectivepriority
;
4850 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4851 entry
->pages
= (uint64_t)pages
;
4852 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4853 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4855 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4856 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4857 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4858 &iokit_mapped_pages
, &page_table_pages
);
4860 entry
->jse_internal_pages
= internal_pages
;
4861 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4862 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4863 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4864 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4865 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4866 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4867 entry
->jse_page_table_pages
= page_table_pages
;
4869 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4870 entry
->jse_memory_region_count
= region_count
;
4872 entry
->state
= memorystatus_build_state(p
);
4873 entry
->user_data
= p
->p_memstat_userdata
;
4874 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4875 entry
->fds
= p
->p_fd
->fd_nfiles
;
4877 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4878 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
4879 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
4881 assert(p
->p_stats
!= NULL
);
4882 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4883 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4884 entry
->killed
= 0; /* the jetsam kill cause */
4885 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4887 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4890 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4891 #else /* CONFIG_FREEZE */
4892 entry
->jse_thaw_count
= 0;
4893 #endif /* CONFIG_FREEZE */
4895 proc_coalitionids(p
, cids
);
4896 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4902 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4904 kern_return_t kr
= KERN_SUCCESS
;
4905 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4906 vm_statistics64_data_t vm_stat
;
4908 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
4909 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4910 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
4912 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
4913 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
4914 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
4915 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
4916 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
4917 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
4919 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
4920 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
4921 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
4922 snapshot
->stats
.compressions
= vm_stat
.compressions
;
4923 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
4924 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
4925 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
4928 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
4930 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
4931 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
4932 &snapshot
->stats
.largest_zone_size
);
4936 * Collect vm statistics at boot.
4937 * Called only once (see kern_exec.c)
4938 * Data can be consumed at any time.
4941 memorystatus_init_at_boot_snapshot()
4943 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
4944 memorystatus_at_boot_snapshot
.entry_count
= 0;
4945 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
4946 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
4950 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
4953 unsigned int b
= 0, i
= 0;
4955 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4956 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4957 unsigned int snapshot_max
= 0;
4959 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4963 * This is an on_demand snapshot
4965 snapshot
= od_snapshot
;
4966 snapshot_list
= od_snapshot
->entries
;
4967 snapshot_max
= ods_list_count
;
4970 * This is a jetsam event snapshot
4972 snapshot
= memorystatus_jetsam_snapshot
;
4973 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4974 snapshot_max
= memorystatus_jetsam_snapshot_max
;
4978 * Init the snapshot header information
4980 memorystatus_init_snapshot_vmstats(snapshot
);
4981 snapshot
->snapshot_time
= mach_absolute_time();
4982 snapshot
->notification_time
= 0;
4983 snapshot
->js_gencount
= 0;
4985 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
4988 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
4990 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
4994 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4996 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
4997 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
4999 if (++i
== snapshot_max
) {
5004 snapshot
->entry_count
= i
;
5007 /* update the system buffer count */
5008 memorystatus_jetsam_snapshot_count
= i
;
5012 #if DEVELOPMENT || DEBUG
5016 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
)
5019 memorystatus_jetsam_panic_options_t debug
;
5021 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5025 ret
= copyin(buffer
, &debug
, buffer_size
);
5030 /* Panic bits match kMemorystatusKilled* enum */
5031 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5033 /* Copyout new value */
5034 debug
.data
= memorystatus_jetsam_panic_debug
;
5035 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5039 #endif /* CONFIG_JETSAM */
5042 * Triggers a sort_order on a specified jetsam priority band.
5043 * This is for testing only, used to force a path through the sort
5047 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
)
5051 unsigned int bucket_index
= 0;
5053 if (priority
== -1) {
5054 /* Use as shorthand for default priority */
5055 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5057 bucket_index
= (unsigned int)priority
;
5060 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
5065 #endif /* DEVELOPMENT || DEBUG */
5068 * Prepare the process to be killed (set state, update snapshot) and kill it.
5070 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5073 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5076 uint32_t aPid_ep
= 0;
5078 uint64_t killtime
= 0;
5080 clock_usec_t tv_usec
;
5082 boolean_t retval
= FALSE
;
5085 aPid_ep
= p
->p_memstat_effectivepriority
;
5087 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5089 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5091 boolean_t success
= FALSE
;
5092 uint64_t num_pages_purged
;
5093 uint64_t num_pages_reclaimed
= 0;
5094 uint64_t num_pages_unsecluded
= 0;
5096 networking_memstatus_callout(p
, cause
);
5097 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5098 num_pages_reclaimed
+= num_pages_purged
;
5099 #if CONFIG_SECLUDED_MEMORY
5100 if (cause
== kMemorystatusKilledVMPageShortage
&&
5101 vm_page_secluded_count
> 0 &&
5102 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5104 * We're about to kill a process that has access
5105 * to the secluded pool. Drain that pool into the
5106 * free or active queues to make these pages re-appear
5107 * as "available", which might make us no longer need
5108 * to kill that process.
5109 * Since the secluded pool does not get refilled while
5110 * a process has access to it, it should remain
5113 num_pages_unsecluded
= vm_page_secluded_drain();
5114 num_pages_reclaimed
+= num_pages_unsecluded
;
5116 #endif /* CONFIG_SECLUDED_MEMORY */
5118 if (num_pages_reclaimed
) {
5120 * We actually reclaimed something and so let's
5121 * check if we need to continue with the kill.
5123 if (cause
== kMemorystatusKilledHiwat
) {
5124 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5125 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5126 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5128 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5129 #if CONFIG_SECLUDED_MEMORY
5130 if (!success
&& num_pages_unsecluded
) {
5132 * We just drained the secluded pool
5133 * because we're about to kill a
5134 * process that has access to it.
5135 * This is an important process and
5136 * we'd rather not kill it unless
5137 * absolutely necessary, so declare
5138 * success even if draining the pool
5139 * did not quite get us out of the
5140 * "pressure" level but still got
5141 * us out of the "critical" level.
5143 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5145 #endif /* CONFIG_SECLUDED_MEMORY */
5149 memorystatus_purge_before_jetsam_success
++;
5151 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5152 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5161 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5162 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5163 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5164 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5165 p
->p_memstat_memlimit
);
5166 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5168 killtime
= mach_absolute_time();
5169 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5170 tv_msec
= tv_usec
/ 1000;
5173 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5176 char kill_reason_string
[128];
5178 if (cause
== kMemorystatusKilledHiwat
) {
5179 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5181 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5182 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5184 strlcpy(kill_reason_string
, "killing_top_process", 128);
5189 * memorystatus_do_kill drops a reference, so take another one so we can
5190 * continue to use this exit reason even after memorystatus_do_kill()
5193 os_reason_ref(jetsam_reason
);
5195 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5198 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5199 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5200 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5201 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5202 (*footprint_of_killed_proc
) >> 10, (uint64_t)memorystatus_available_pages
);
5208 * Jetsam the first process in the queue.
5211 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5212 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5215 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5216 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5219 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5220 uint64_t footprint_of_killed_proc
= 0;
5222 #ifndef CONFIG_FREEZE
5226 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5227 memorystatus_available_pages
, 0, 0, 0, 0);
5231 if (sort_flag
== TRUE
) {
5232 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5235 local_max_kill_prio
= max_kill_priority
;
5237 force_new_snapshot
= FALSE
;
5239 #else /* CONFIG_JETSAM */
5241 if (sort_flag
== TRUE
) {
5242 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5246 * On macos, we currently only have 2 reasons to be here:
5248 * kMemorystatusKilledZoneMapExhaustion
5250 * kMemorystatusKilledVMCompressorSpaceShortage
5252 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5253 * any and all processes as eligible kill candidates since we need to avoid a panic.
5255 * Since this function can be called async. it is harder to toggle the max_kill_priority
5256 * value before and after a call. And so we use this local variable to set the upper band
5257 * on the eligible kill bands.
5259 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5260 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5262 local_max_kill_prio
= max_kill_priority
;
5266 * And, because we are here under extreme circumstances, we force a snapshot even for
5269 force_new_snapshot
= TRUE
;
5271 #endif /* CONFIG_JETSAM */
5273 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5274 jetsam_current_thread() != NULL
&&
5275 jetsam_current_thread()->limit_to_low_bands
&&
5276 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5277 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5282 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5283 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5285 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5289 aPid_ep
= p
->p_memstat_effectivepriority
;
5291 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5292 continue; /* with lock held */
5295 if (cause
== kMemorystatusKilledVnodes
) {
5297 * If the system runs out of vnodes, we systematically jetsam
5298 * processes in hopes of stumbling onto a vnode gain that helps
5299 * the system recover. The process that happens to trigger
5300 * this path has no known relationship to the vnode shortage.
5301 * Deadlock avoidance: attempt to safeguard the caller.
5304 if (p
== current_proc()) {
5305 /* do not jetsam the current process */
5312 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5313 if (any
|| reclaim_proc
) {
5324 if (proc_ref_locked(p
) == p
) {
5326 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5327 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5328 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5329 * acquisition of the proc lock.
5331 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5334 * We need to restart the search again because
5335 * proc_ref_locked _can_ drop the proc_list lock
5336 * and we could have lost our stored next_p via
5337 * an exit() on another core.
5340 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5345 * Capture a snapshot if none exists and:
5346 * - we are forcing a new snapshot creation, either because:
5347 * - on a particular platform we need these snapshots every time, OR
5348 * - a boot-arg/embedded device tree property has been set.
5349 * - priority was not requested (this is something other than an ambient kill)
5350 * - the priority was requested *and* the targeted process is not at idle priority
5352 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5353 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5354 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5355 new_snapshot
= TRUE
;
5360 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5364 *memory_reclaimed
= footprint_of_killed_proc
;
5366 *priority
= aPid_ep
;
5371 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5379 * Failure - first unwind the state,
5380 * then fall through to restart the search.
5383 proc_rele_locked(p
);
5384 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5385 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5389 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5396 os_reason_free(jetsam_reason
);
5399 *memory_reclaimed
= 0;
5401 /* Clear snapshot if freshly captured and no target was found */
5404 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5409 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5410 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5416 * Jetsam aggressively
5419 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5420 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5423 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5424 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5427 int32_t aPid_ep
= 0;
5428 unsigned int memorystatus_level_snapshot
= 0;
5429 uint64_t killtime
= 0;
5431 clock_usec_t tv_usec
;
5433 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5434 uint64_t footprint_of_killed_proc
= 0;
5436 *memory_reclaimed
= 0;
5438 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5439 memorystatus_available_pages
, priority_max
, 0, 0, 0);
5441 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5443 * Check if aggressive jetsam has been asked to kill upto or beyond the
5444 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5445 * coalition footprint.
5447 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5450 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5451 if (jetsam_reason
== OS_REASON_NULL
) {
5452 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5457 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5459 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5460 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5462 * We have raced with next_p running on another core.
5463 * It may be exiting or it may have moved to a different
5464 * jetsam priority band. This means we have lost our
5465 * place in line while traversing the jetsam list. We
5466 * attempt to recover by rewinding to the beginning of the band
5467 * we were already traversing. By doing this, we do not guarantee
5468 * that no process escapes this aggressive march, but we can make
5469 * skipping an entire range of processes less likely. (PR-21069019)
5472 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5473 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5475 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5480 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5482 if (p
->p_memstat_effectivepriority
> priority_max
) {
5484 * Bail out of this killing spree if we have
5485 * reached beyond the priority_max jetsam band.
5486 * That is, we kill up to and through the
5487 * priority_max jetsam band.
5494 aPid_ep
= p
->p_memstat_effectivepriority
;
5496 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5501 * Capture a snapshot if none exists.
5503 if (memorystatus_jetsam_snapshot_count
== 0) {
5504 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5505 new_snapshot
= TRUE
;
5509 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5510 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5511 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5512 * acquisition of the proc lock.
5514 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5516 killtime
= mach_absolute_time();
5517 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5518 tv_msec
= tv_usec
/ 1000;
5520 /* Shift queue, update stats */
5521 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5524 * In order to kill the target process, we will drop the proc_list_lock.
5525 * To guaranteee that p and next_p don't disappear out from under the lock,
5526 * we must take a ref on both.
5527 * If we cannot get a reference, then it's likely we've raced with
5528 * that process exiting on another core.
5530 if (proc_ref_locked(p
) == p
) {
5532 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5536 * We must have raced with next_p exiting on another core.
5537 * Recover by getting the next eligible process in the band.
5540 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5541 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5544 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5549 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5550 (unsigned long)tv_sec
, tv_msec
,
5551 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5552 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5553 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)memorystatus_available_pages
);
5555 memorystatus_level_snapshot
= memorystatus_level
;
5558 * memorystatus_do_kill() drops a reference, so take another one so we can
5559 * continue to use this exit reason even after memorystatus_do_kill()
5562 os_reason_ref(jetsam_reason
);
5563 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5567 *memory_reclaimed
+= footprint_of_killed_proc
;
5574 * Continue the killing spree.
5578 proc_rele_locked(next_p
);
5581 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5582 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5583 #if DEVELOPMENT || DEBUG
5584 printf("Disabling Lenient mode after one-time deployment.\n");
5585 #endif /* DEVELOPMENT || DEBUG */
5586 memorystatus_aggressive_jetsam_lenient
= FALSE
;
5595 * Failure - first unwind the state,
5596 * then fall through to restart the search.
5599 proc_rele_locked(p
);
5601 proc_rele_locked(next_p
);
5603 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5604 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5610 * Failure - restart the search at the beginning of
5611 * the band we were already traversing.
5613 * We might have raced with "p" exiting on another core, resulting in no
5614 * ref on "p". Or, we may have failed to kill "p".
5616 * Either way, we fall thru to here, leaving the proc in the
5617 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
5619 * And, we hold the the proc_list_lock at this point.
5622 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5628 os_reason_free(jetsam_reason
);
5630 /* Clear snapshot if freshly captured and no target was found */
5631 if (new_snapshot
&& (kill_count
== 0)) {
5633 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5637 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5638 memorystatus_available_pages
, 0, kill_count
, *memory_reclaimed
, 0);
5640 if (kill_count
> 0) {
5648 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
5651 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5652 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5655 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5656 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
5657 memorystatus_available_pages
, 0, 0, 0, 0);
5659 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
5660 if (jetsam_reason
== OS_REASON_NULL
) {
5661 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
5666 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5668 uint64_t footprint_in_bytes
= 0;
5669 uint64_t memlimit_in_bytes
= 0;
5673 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5676 aPid_ep
= p
->p_memstat_effectivepriority
;
5678 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5682 /* skip if no limit set */
5683 if (p
->p_memstat_memlimit
<= 0) {
5687 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5688 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5689 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5693 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5704 if (memorystatus_jetsam_snapshot_count
== 0) {
5705 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5706 new_snapshot
= TRUE
;
5709 if (proc_ref_locked(p
) == p
) {
5711 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5712 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5713 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5714 * acquisition of the proc lock.
5716 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5721 * We need to restart the search again because
5722 * proc_ref_locked _can_ drop the proc_list lock
5723 * and we could have lost our stored next_p via
5724 * an exit() on another core.
5727 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5731 footprint_in_bytes
= 0;
5732 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
5736 if (killed
== FALSE
) {
5737 /* purged 'p'..don't reset HWM candidate count */
5741 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5744 *memory_reclaimed
= footprint_in_bytes
;
5750 * Failure - first unwind the state,
5751 * then fall through to restart the search.
5754 proc_rele_locked(p
);
5755 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5756 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5760 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5767 os_reason_free(jetsam_reason
);
5770 *memory_reclaimed
= 0;
5772 /* Clear snapshot if freshly captured and no target was found */
5775 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5780 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5781 memorystatus_available_pages
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5787 * Jetsam a process pinned in the elevated band.
5789 * Return: true -- a pinned process was jetsammed
5790 * false -- no pinned process was jetsammed
5793 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5796 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5797 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5800 uint64_t killtime
= 0;
5802 clock_usec_t tv_usec
;
5804 uint64_t footprint_of_killed_proc
= 0;
5807 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5808 memorystatus_available_pages
, 0, 0, 0, 0);
5811 boolean_t consider_frozen_only
= FALSE
;
5813 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
5814 consider_frozen_only
= TRUE
;
5816 #endif /* CONFIG_FREEZE */
5820 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
5823 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
5826 aPid_ep
= p
->p_memstat_effectivepriority
;
5829 * Only pick a process pinned in this elevated band
5831 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5835 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5840 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
5844 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5847 #endif /* CONFIG_FREEZE */
5849 #if DEVELOPMENT || DEBUG
5850 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5852 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5853 memorystatus_available_pages
);
5854 #endif /* DEVELOPMENT || DEBUG */
5856 if (memorystatus_jetsam_snapshot_count
== 0) {
5857 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5858 new_snapshot
= TRUE
;
5861 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5863 killtime
= mach_absolute_time();
5864 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5865 tv_msec
= tv_usec
/ 1000;
5867 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5869 if (proc_ref_locked(p
) == p
) {
5873 * memorystatus_do_kill drops a reference, so take another one so we can
5874 * continue to use this exit reason even after memorystatus_do_kill()
5877 os_reason_ref(jetsam_reason
);
5878 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5880 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
5881 (unsigned long)tv_sec
, tv_msec
,
5883 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5884 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5885 footprint_of_killed_proc
>> 10, (uint64_t)memorystatus_available_pages
);
5889 *memory_reclaimed
= footprint_of_killed_proc
;
5896 * Failure - first unwind the state,
5897 * then fall through to restart the search.
5900 proc_rele_locked(p
);
5901 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5902 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5907 * Failure - restart the search.
5909 * We might have raced with "p" exiting on another core, resulting in no
5910 * ref on "p". Or, we may have failed to kill "p".
5912 * Either way, we fall thru to here, leaving the proc in the
5913 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5915 * And, we hold the the proc_list_lock at this point.
5918 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
5924 os_reason_free(jetsam_reason
);
5926 if (kill_count
== 0) {
5927 *memory_reclaimed
= 0;
5929 /* Clear snapshot if freshly captured and no target was found */
5932 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5937 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5938 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
5944 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
5947 * TODO: allow a general async path
5949 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
5950 * add the appropriate exit reason code mapping.
5952 if ((victim_pid
!= -1) ||
5953 (cause
!= kMemorystatusKilledVMPageShortage
&&
5954 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
5955 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
5956 cause
!= kMemorystatusKilledFCThrashing
&&
5957 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
5961 kill_under_pressure_cause
= cause
;
5962 memorystatus_thread_wake();
5967 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
5970 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
5972 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
5973 if (jetsam_reason
== OS_REASON_NULL
) {
5974 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
5977 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
5983 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
5986 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
5988 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
5989 if (jetsam_reason
== OS_REASON_NULL
) {
5990 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
5993 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
5998 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6001 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6003 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6004 if (jetsam_reason
== OS_REASON_NULL
) {
6005 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6008 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6013 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6016 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6018 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6019 if (jetsam_reason
== OS_REASON_NULL
) {
6020 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6023 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6028 memorystatus_kill_on_vnode_limit(void)
6030 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6031 if (jetsam_reason
== OS_REASON_NULL
) {
6032 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6035 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6038 #endif /* CONFIG_JETSAM */
6041 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6043 boolean_t res
= FALSE
;
6045 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6047 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6048 if (jetsam_reason
== OS_REASON_NULL
) {
6049 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6052 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6058 memorystatus_on_pageout_scan_end(void)
6063 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6065 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6067 uint32_t list_count
, i
= 0;
6068 memorystatus_priority_entry_t
*list_entry
;
6071 list_count
= memorystatus_list_count
;
6072 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6074 /* Just a size check? */
6079 /* Otherwise, validate the size of the buffer */
6080 if (*buffer_size
< *list_size
) {
6084 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
6089 memset(*list_ptr
, 0, *list_size
);
6091 *buffer_size
= *list_size
;
6094 list_entry
= *list_ptr
;
6098 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6099 while (p
&& (*list_size
< *buffer_size
)) {
6100 list_entry
->pid
= p
->p_pid
;
6101 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6102 list_entry
->user_data
= p
->p_memstat_userdata
;
6104 if (p
->p_memstat_memlimit
<= 0) {
6105 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6107 list_entry
->limit
= p
->p_memstat_memlimit
;
6110 list_entry
->state
= memorystatus_build_state(p
);
6113 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6115 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6120 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6126 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6129 memorystatus_priority_entry_t mp_entry
;
6132 /* Validate inputs */
6133 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6137 proc_t p
= proc_find(pid
);
6142 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6144 mp_entry
.pid
= p
->p_pid
;
6145 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6146 mp_entry
.user_data
= p
->p_memstat_userdata
;
6147 if (p
->p_memstat_memlimit
<= 0) {
6148 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6149 if (ret
!= KERN_SUCCESS
) {
6154 mp_entry
.limit
= p
->p_memstat_memlimit
;
6156 mp_entry
.state
= memorystatus_build_state(p
);
6160 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6166 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6169 boolean_t size_only
;
6173 * When a non-zero pid is provided, the 'list' has only one entry.
6176 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6179 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6181 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6184 memorystatus_priority_entry_t
*list
= NULL
;
6185 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6189 error
= copyout(list
, buffer
, list_size
);
6194 kfree(list
, buffer_size
);
6199 *retval
= list_size
;
6206 memorystatus_clear_errors(void)
6211 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6215 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6217 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6218 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6220 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6225 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6230 memorystatus_update_levels_locked(boolean_t critical_only
)
6232 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6235 * If there's an entry in the first bucket, we have idle processes.
6238 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6239 if (first_bucket
->count
) {
6240 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6242 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6244 * The critical threshold must never exceed the pressure threshold
6246 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6250 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6251 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6254 if (critical_only
) {
6258 #if VM_PRESSURE_EVENTS
6259 memorystatus_available_pages_pressure
= (pressure_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
6264 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6266 /* If fast jetsam is not enabled, simply return */
6267 if (!fast_jetsam_enabled
) {
6271 if (enable_override
) {
6272 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6276 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6277 memorystatus_thread_pool_max();
6278 memorystatus_update_levels_locked(TRUE
);
6281 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6285 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6286 memorystatus_thread_pool_default();
6287 memorystatus_update_levels_locked(TRUE
);
6294 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6296 #pragma unused(arg1, arg2, oidp)
6297 int error
= 0, more_free
= 0;
6300 * TODO: Enable this privilege check?
6302 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6307 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6308 if (error
|| !req
->newptr
) {
6313 memorystatus_fast_jetsam_override(true);
6315 memorystatus_fast_jetsam_override(false);
6320 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6321 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6323 #endif /* CONFIG_JETSAM */
6326 * Get the at_boot snapshot
6329 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6331 size_t input_size
= *snapshot_size
;
6334 * The at_boot snapshot has no entry list.
6336 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6343 * Validate the size of the snapshot buffer
6345 if (input_size
< *snapshot_size
) {
6350 * Update the notification_time only
6352 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6353 *snapshot
= &memorystatus_at_boot_snapshot
;
6355 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6356 (long)input_size
, (long)*snapshot_size
, 0);
6361 * Get the previous fully populated snapshot
6364 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6366 size_t input_size
= *snapshot_size
;
6368 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6369 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6378 if (input_size
< *snapshot_size
) {
6382 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6384 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6385 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6391 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6393 size_t input_size
= *snapshot_size
;
6394 uint32_t ods_list_count
= memorystatus_list_count
;
6395 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6397 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6404 * Validate the size of the snapshot buffer.
6405 * This is inherently racey. May want to revisit
6406 * this error condition and trim the output when
6409 if (input_size
< *snapshot_size
) {
6414 * Allocate and initialize a snapshot buffer.
6416 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
6421 memset(ods
, 0, *snapshot_size
);
6424 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6428 * Return the kernel allocated, on_demand buffer.
6429 * The caller of this routine will copy the data out
6430 * to user space and then free the kernel allocated
6435 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6436 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6442 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6444 size_t input_size
= *snapshot_size
;
6446 if (memorystatus_jetsam_snapshot_count
> 0) {
6447 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6456 if (input_size
< *snapshot_size
) {
6460 *snapshot
= memorystatus_jetsam_snapshot
;
6462 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6463 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6470 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6473 boolean_t size_only
;
6474 boolean_t is_default_snapshot
= FALSE
;
6475 boolean_t is_on_demand_snapshot
= FALSE
;
6476 boolean_t is_at_boot_snapshot
= FALSE
;
6477 memorystatus_jetsam_snapshot_t
*snapshot
;
6479 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6483 is_default_snapshot
= TRUE
;
6484 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6486 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
)) {
6488 * Unsupported bit set in flag.
6493 if (flags
& (flags
- 0x1)) {
6495 * Can't have multiple flags set at the same time.
6500 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6501 is_on_demand_snapshot
= TRUE
;
6503 * When not requesting the size only, the following call will allocate
6504 * an on_demand snapshot buffer, which is freed below.
6506 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6507 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6508 is_at_boot_snapshot
= TRUE
;
6509 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6510 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6511 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6514 * Invalid flag setting.
6525 * Copy the data out to user space and clear the snapshot buffer.
6526 * If working with the jetsam snapshot,
6527 * clearing the buffer means, reset the count.
6528 * If working with an on_demand snapshot
6529 * clearing the buffer means, free it.
6530 * If working with the at_boot snapshot
6531 * there is nothing to clear or update.
6532 * If working with a copy of the snapshot
6533 * there is nothing to clear or update.
6536 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6537 if (is_default_snapshot
) {
6539 * The jetsam snapshot is never freed, its count is simply reset.
6540 * However, we make a copy for any parties that might be interested
6541 * in the previous fully populated snapshot.
6544 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
6545 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
6546 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6547 memorystatus_jetsam_snapshot_last_timestamp
= 0;
6552 if (is_on_demand_snapshot
) {
6554 * The on_demand snapshot is always freed,
6555 * even if the copyout failed.
6558 kfree(snapshot
, buffer_size
);
6564 *retval
= buffer_size
;
6571 * Routine: memorystatus_cmd_grp_set_priorities
6572 * Purpose: Update priorities for a group of processes.
6575 * Move each process out of its effective priority
6576 * band and into a new priority band.
6577 * Maintains relative order from lowest to highest priority.
6578 * In single band, maintains relative order from head to tail.
6580 * eg: before [effectivepriority | pid]
6582 * [17 | p55, p67, p19 ]
6587 * after [ new band | pid]
6588 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
6590 * Returns: 0 on success, else non-zero.
6592 * Caveat: We know there is a race window regarding recycled pids.
6593 * A process could be killed before the kernel can act on it here.
6594 * If a pid cannot be found in any of the jetsam priority bands,
6595 * then we simply ignore it. No harm.
6596 * But, if the pid has been recycled then it could be an issue.
6597 * In that scenario, we might move an unsuspecting process to the new
6598 * priority band. It's not clear how the kernel can safeguard
6599 * against this, but it would be an extremely rare case anyway.
6600 * The caller of this api might avoid such race conditions by
6601 * ensuring that the processes passed in the pid list are suspended.
6606 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
6609 * We only handle setting priority
6614 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6615 uint32_t entry_count
= 0;
6617 /* This will be the ordered proc list */
6618 typedef struct memorystatus_internal_properties
{
6621 } memorystatus_internal_properties_t
;
6623 memorystatus_internal_properties_t
*table
= NULL
;
6624 size_t table_size
= 0;
6625 uint32_t table_count
= 0;
6628 uint32_t bucket_index
= 0;
6629 boolean_t head_insert
;
6630 int32_t new_priority
;
6635 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6640 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6641 if ((entries
= (memorystatus_properties_entry_v1_t
*)kalloc(buffer_size
)) == NULL
) {
6646 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
6648 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6652 /* Verify sanity of input priorities */
6653 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6654 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6663 for (i
= 0; i
< entry_count
; i
++) {
6664 if (entries
[i
].priority
== -1) {
6665 /* Use as shorthand for default priority */
6666 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
6667 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
6668 /* Both the aging bands are reserved for internal use;
6669 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
6670 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
6671 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6672 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
6674 /* Deal with this later */
6675 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
6682 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
6683 if ((table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
6687 memset(table
, 0, table_size
);
6691 * For each jetsam bucket entry, spin through the input property list.
6692 * When a matching pid is found, populate an adjacent table with the
6693 * appropriate proc pointer and new property values.
6694 * This traversal automatically preserves order from lowest
6695 * to highest priority.
6702 /* Create the ordered table */
6703 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
6704 while (p
&& (table_count
< entry_count
)) {
6705 for (i
= 0; i
< entry_count
; i
++) {
6706 if (p
->p_pid
== entries
[i
].pid
) {
6707 /* Build the table data */
6708 table
[table_count
].proc
= p
;
6709 table
[table_count
].priority
= entries
[i
].priority
;
6714 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
6717 /* We now have ordered list of procs ready to move */
6718 for (i
= 0; i
< table_count
; i
++) {
6722 /* Allow head inserts -- but relative order is now */
6723 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
6724 new_priority
= JETSAM_PRIORITY_IDLE
;
6727 new_priority
= table
[i
].priority
;
6728 head_insert
= false;
6732 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
6737 * Take appropriate steps if moving proc out of
6738 * either of the aging bands.
6740 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
6741 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
6744 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
6750 * if (table_count != entry_count)
6751 * then some pids were not found in a jetsam band.
6752 * harmless but interesting...
6755 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
6758 kfree(entries
, buffer_size
);
6761 kfree(table
, table_size
);
6767 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
6768 size_t memorystatus_global_probabilities_size
= 0;
6771 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
6774 memorystatus_properties_entry_v1_t
*entries
= NULL
;
6775 uint32_t entry_count
= 0, i
= 0;
6776 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
6777 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
6780 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
6785 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
6787 if ((entries
= (memorystatus_properties_entry_v1_t
*) kalloc(buffer_size
)) == NULL
) {
6792 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
6794 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
6798 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
6799 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
6808 /* Verify sanity of input priorities */
6809 for (i
= 0; i
< entry_count
; i
++) {
6811 * 0 - low probability of use.
6812 * 1 - high probability of use.
6814 * Keeping this field an int (& not a bool) to allow
6815 * us to experiment with different values/approaches
6818 if (entries
[i
].use_probability
> 1) {
6824 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
6826 if ((tmp_table_new
= (memorystatus_internal_probabilities_t
*) kalloc(tmp_table_new_size
)) == NULL
) {
6830 memset(tmp_table_new
, 0, tmp_table_new_size
);
6834 if (memorystatus_global_probabilities_table
) {
6835 tmp_table_old
= memorystatus_global_probabilities_table
;
6836 tmp_table_old_size
= memorystatus_global_probabilities_size
;
6839 memorystatus_global_probabilities_table
= tmp_table_new
;
6840 memorystatus_global_probabilities_size
= tmp_table_new_size
;
6841 tmp_table_new
= NULL
;
6843 for (i
= 0; i
< entry_count
; i
++) {
6844 /* Build the table data */
6845 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
6846 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
6852 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
6855 kfree(entries
, buffer_size
);
6859 if (tmp_table_old
) {
6860 kfree(tmp_table_old
, tmp_table_old_size
);
6861 tmp_table_old
= NULL
;
6868 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6872 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
6873 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
6874 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
6875 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
6884 * This routine is used to update a process's jetsam priority position and stored user_data.
6885 * It is not used for the setting of memory limits, which is why the last 6 args to the
6886 * memorystatus_update() call are 0 or FALSE.
6888 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
6889 * transition. By default, the kernel updates the process's original requested priority when
6890 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
6891 * updates the process's assertion driven priority.
6893 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
6894 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
6895 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
6896 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
6897 * eg: requested priority versus assertion priority.
6901 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6904 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
6905 memorystatus_priority_properties_t mpp_entry
;
6907 /* Validate inputs */
6908 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
6912 /* Validate flags */
6915 * Default. This path updates requestedpriority.
6918 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
6920 * Unsupported bit set in flag.
6923 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
6924 is_assertion
= TRUE
;
6928 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
6938 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
6944 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
6945 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
6948 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
6956 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
6959 memorystatus_memlimit_properties_t mmp_entry
;
6961 /* Validate inputs */
6962 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
6966 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
6969 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
6976 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
6978 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
6980 if (p
->p_memstat_memlimit_active
> 0) {
6981 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
6983 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
6986 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
6987 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
6991 * Get the inactive limit and attributes
6993 if (p
->p_memstat_memlimit_inactive
<= 0) {
6994 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
6996 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
6998 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
6999 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7004 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7005 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7006 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7007 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7008 * to the task's ledgers via task_set_phys_footprint_limit().
7011 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7013 memorystatus_memlimit_properties2_t mmp_entry
;
7015 /* Validate inputs */
7016 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7017 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7018 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7022 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7024 proc_t p
= proc_find(pid
);
7030 * Get the active limit and attributes.
7031 * No locks taken since we hold a reference to the proc.
7034 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7037 #if DEVELOPMENT || DEBUG
7039 * Get the limit increased via SPI
7041 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7042 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7043 #endif /* DEVELOPMENT || DEBUG */
7044 #endif /* CONFIG_JETSAM */
7048 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7055 * SPI for kbd - pr24956468
7056 * This is a very simple snapshot that calculates how much a
7057 * process's phys_footprint exceeds a specific memory limit.
7058 * Only the inactive memory limit is supported for now.
7059 * The delta is returned as bytes in excess or zero.
7062 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7065 uint64_t footprint_in_bytes
= 0;
7066 uint64_t delta_in_bytes
= 0;
7067 int32_t memlimit_mb
= 0;
7068 uint64_t memlimit_bytes
= 0;
7070 /* Validate inputs */
7071 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7075 proc_t p
= proc_find(pid
);
7081 * Get the inactive limit.
7082 * No locks taken since we hold a reference to the proc.
7085 if (p
->p_memstat_memlimit_inactive
<= 0) {
7086 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7088 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7091 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7095 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7098 * Computed delta always returns >= 0 bytes
7100 if (footprint_in_bytes
> memlimit_bytes
) {
7101 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7104 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7111 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7115 /* Need privilege for check */
7116 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7121 /* Inherently racy, so it's not worth taking a lock here */
7122 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7128 memorystatus_get_pressure_status_kdp()
7130 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7134 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7136 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7137 * So, with 2-level HWM preserving previous behavior will map as follows.
7138 * - treat the limit passed in as both an active and inactive limit.
7139 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7141 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7142 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7143 * - so mapping is (active/non-fatal, inactive/non-fatal)
7145 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7146 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7147 * - so mapping is (active/fatal, inactive/fatal)
7152 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7155 memorystatus_memlimit_properties_t entry
;
7157 entry
.memlimit_active
= high_water_mark
;
7158 entry
.memlimit_active_attr
= 0;
7159 entry
.memlimit_inactive
= high_water_mark
;
7160 entry
.memlimit_inactive_attr
= 0;
7162 if (is_fatal_limit
== TRUE
) {
7163 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7164 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7167 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7170 #endif /* CONFIG_JETSAM */
7173 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7177 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7180 * Store the active limit variants in the proc.
7182 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7185 * Store the inactive limit variants in the proc.
7187 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7190 * Enforce appropriate limit variant by updating the cached values
7191 * and writing the ledger.
7192 * Limit choice is based on process active/inactive state.
7195 if (memorystatus_highwater_enabled
) {
7197 boolean_t use_active
;
7199 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7200 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7203 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7207 /* Enforce the limit by writing to the ledgers */
7208 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7210 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7211 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7212 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7213 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7214 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7221 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7223 memorystatus_memlimit_properties_t set_entry
;
7225 proc_t p
= proc_find(pid
);
7231 * Check for valid attribute flags.
7233 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7234 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7238 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7244 * Setup the active memlimit properties
7246 set_entry
.memlimit_active
= entry
->memlimit_active
;
7247 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7250 * Setup the inactive memlimit properties
7252 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7253 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7256 * Setting a limit of <= 0 implies that the process has no
7257 * high-water-mark and has no per-task-limit. That means
7258 * the system_wide task limit is in place, which by the way,
7262 if (set_entry
.memlimit_active
<= 0) {
7264 * Enforce the fatal system_wide task limit while process is active.
7266 set_entry
.memlimit_active
= -1;
7267 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7270 #if DEVELOPMENT || DEBUG
7272 /* add the current increase to it, for roots */
7273 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7275 #endif /* DEVELOPMENT || DEBUG */
7276 #endif /* CONFIG_JETSAM */
7278 if (set_entry
.memlimit_inactive
<= 0) {
7280 * Enforce the fatal system_wide task limit while process is inactive.
7282 set_entry
.memlimit_inactive
= -1;
7283 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7286 #if DEVELOPMENT || DEBUG
7288 /* add the current increase to it, for roots */
7289 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7291 #endif /* DEVELOPMENT || DEBUG */
7292 #endif /* CONFIG_JETSAM */
7296 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7305 * Returns the jetsam priority (effective or requested) of the process
7306 * associated with this task.
7309 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7312 if (effective_priority
) {
7313 return p
->p_memstat_effectivepriority
;
7315 return p
->p_memstat_requestedpriority
;
7322 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7326 /* Validate inputs */
7337 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7338 proc_rele_locked(p
);
7345 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7349 /* Validate inputs */
7360 if (set_managed
== TRUE
) {
7361 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7363 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7364 * Also opt them in to being frozen (they might have started
7365 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7367 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7369 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7371 proc_rele_locked(p
);
7378 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7381 boolean_t skip_auth_check
= FALSE
;
7382 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7386 #pragma unused(jetsam_reason)
7389 /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */
7390 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
|| args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
) {
7391 skip_auth_check
= TRUE
;
7394 /* Need to be root or have entitlement. */
7395 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7402 * Do not enforce it for snapshots.
7404 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7405 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7411 switch (args
->command
) {
7412 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7413 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7415 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7416 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7418 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7419 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7421 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7422 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7424 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7425 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7427 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7428 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7430 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7431 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7433 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7434 error
= memorystatus_cmd_get_pressure_status(ret
);
7437 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7439 * This call does not distinguish between active and inactive limits.
7440 * Default behavior in 2-level HWM world is to set both.
7441 * Non-fatal limit is also assumed for both.
7443 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7445 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7447 * This call does not distinguish between active and inactive limits.
7448 * Default behavior in 2-level HWM world is to set both.
7449 * Fatal limit is also assumed for both.
7451 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7453 #endif /* CONFIG_JETSAM */
7455 #if DEVELOPMENT || DEBUG
7456 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7457 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7458 if (jetsam_reason
== OS_REASON_NULL
) {
7459 printf("memorystatus_control: failed to allocate jetsam reason\n");
7462 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7464 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7465 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
7468 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7469 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7471 #endif /* CONFIG_JETSAM */
7472 #else /* DEVELOPMENT || DEBUG */
7473 #pragma unused(jetsam_reason)
7474 #endif /* DEVELOPMENT || DEBUG */
7475 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7476 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7477 #if DEVELOPMENT || DEBUG
7478 printf("Enabling Lenient Mode\n");
7479 #endif /* DEVELOPMENT || DEBUG */
7481 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7482 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7486 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7487 #if DEVELOPMENT || DEBUG
7488 printf("Disabling Lenient mode\n");
7489 #endif /* DEVELOPMENT || DEBUG */
7490 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7491 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7494 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
7495 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
7498 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
7499 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
7500 error
= memorystatus_low_mem_privileged_listener(args
->command
);
7503 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
7504 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
7505 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
7507 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
7508 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
7511 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
7512 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
7516 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
7517 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
7520 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
7521 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
7524 #if DEVELOPMENT || DEBUG
7525 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
7526 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7528 #endif /* DEVELOPMENT || DEBUG */
7529 #endif /* CONFIG_FREEZE */
7532 #if DEVELOPMENT || DEBUG
7533 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
7534 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
7536 #endif /* DEVELOPMENT */
7537 #endif /* CONFIG_JETSAM */
7547 /* Coalition support */
7549 /* sorting info for a particular priority bucket */
7550 typedef struct memstat_sort_info
{
7551 coalition_t msi_coal
;
7552 uint64_t msi_page_count
;
7555 } memstat_sort_info_t
;
7558 * qsort from smallest page count to largest page count
7560 * return < 0 for a < b
7565 memstat_asc_cmp(const void *a
, const void *b
)
7567 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
7568 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
7570 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
7574 * Return the number of pids rearranged during this sort.
7577 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
7579 #define MAX_SORT_PIDS 80
7580 #define MAX_COAL_LEADERS 10
7582 unsigned int b
= bucket_index
;
7586 coalition_t coal
= COALITION_NULL
;
7588 int total_pids_moved
= 0;
7592 * The system is typically under memory pressure when in this
7593 * path, hence, we want to avoid dynamic memory allocation.
7595 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
7596 pid_t pid_list
[MAX_SORT_PIDS
];
7598 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7603 * Clear the array that holds coalition leader information
7605 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
7606 leaders
[i
].msi_coal
= COALITION_NULL
;
7607 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
7608 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
7609 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
7612 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7614 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
7615 if (coalition_is_leader(p
->task
, coal
)) {
7616 if (nleaders
< MAX_COAL_LEADERS
) {
7617 int coal_ntasks
= 0;
7618 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
7619 leaders
[nleaders
].msi_coal
= coal
;
7620 leaders
[nleaders
].msi_page_count
= coal_page_count
;
7621 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
7622 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
7626 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
7627 * Abandoned coalitions will linger at the tail of the priority band
7628 * when this sort session ends.
7629 * TODO: should this be an assert?
7631 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
7632 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
7636 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7639 if (nleaders
== 0) {
7640 /* Nothing to sort */
7645 * Sort the coalition leader array, from smallest coalition page count
7646 * to largest coalition page count. When inserted in the priority bucket,
7647 * smallest coalition is handled first, resulting in the last to be jetsammed.
7650 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
7654 for (i
= 0; i
< nleaders
; i
++) {
7655 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
7656 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
7657 leaders
[i
].msi_ntasks
);
7662 * During coalition sorting, processes in a priority band are rearranged
7663 * by being re-inserted at the head of the queue. So, when handling a
7664 * list, the first process that gets moved to the head of the queue,
7665 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
7667 * So, for example, the coalition leader is expected to jetsam last,
7668 * after its coalition members. Therefore, the coalition leader is
7669 * inserted at the head of the queue first.
7671 * After processing a coalition, the jetsam order is as follows:
7672 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
7676 * Coalition members are rearranged in the priority bucket here,
7677 * based on their coalition role.
7679 total_pids_moved
= 0;
7680 for (i
= 0; i
< nleaders
; i
++) {
7681 /* a bit of bookkeeping */
7684 /* Coalition leaders are jetsammed last, so move into place first */
7685 pid_list
[0] = leaders
[i
].msi_pid
;
7686 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
7688 /* xpc services should jetsam after extensions */
7689 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
7690 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7693 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7694 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7697 /* extensions should jetsam after unmarked processes */
7698 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
7699 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7702 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7703 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7706 /* undefined coalition members should be the first to jetsam */
7707 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
7708 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
7711 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
7712 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
7716 if (pids_moved
== leaders
[i
].msi_ntasks
) {
7718 * All the pids in the coalition were found in this band.
7720 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
7721 pids_moved
, leaders
[i
].msi_ntasks
);
7722 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
7724 * Apparently new coalition members showed up during the sort?
7726 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
7727 pids_moved
, leaders
[i
].msi_ntasks
);
7730 * Apparently not all the pids in the coalition were found in this band?
7732 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
7733 pids_moved
, leaders
[i
].msi_ntasks
);
7737 total_pids_moved
+= pids_moved
;
7740 return total_pids_moved
;
7745 * Traverse a list of pids, searching for each within the priority band provided.
7746 * If pid is found, move it to the front of the priority band.
7747 * Never searches outside the priority band provided.
7750 * bucket_index - jetsam priority band.
7751 * pid_list - pointer to a list of pids.
7752 * list_sz - number of pids in the list.
7754 * Pid list ordering is important in that,
7755 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
7756 * The sort_order is set by the coalition default.
7759 * the number of pids found and hence moved within the priority band.
7762 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
7764 memstat_bucket_t
*current_bucket
;
7768 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
7772 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7776 current_bucket
= &memstat_bucket
[bucket_index
];
7777 for (i
= 0; i
< list_sz
; i
++) {
7778 unsigned int b
= bucket_index
;
7780 proc_t aProc
= NULL
;
7784 list_index
= ((list_sz
- 1) - i
);
7785 aPid
= pid_list
[list_index
];
7787 /* never search beyond bucket_index provided */
7788 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
7790 if (p
->p_pid
== aPid
) {
7794 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
7797 if (aProc
== NULL
) {
7798 /* pid not found in this band, just skip it */
7801 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
7802 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
7810 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
7812 int32_t i
= JETSAM_PRIORITY_IDLE
;
7815 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
7819 while (i
<= max_bucket_index
) {
7820 count
+= memstat_bucket
[i
++].count
;
7827 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
7830 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
7832 * Ineligible processes OR system processes e.g. launchd.
7834 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
7835 * they're managed by assertiond. These are iOS apps that have been ported
7836 * to macOS. assertiond might be in the process of modifying the app's
7837 * priority / memory limit - so it might have the proc_list lock, and then try
7838 * to take the task lock. Meanwhile we've entered this function with the task lock
7839 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
7841 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
7842 * lock here, since assertiond only sets this bit on process launch.
7849 * We would like to use memorystatus_update() here to move the processes
7850 * within the bands. Unfortunately memorystatus_update() calls
7851 * memorystatus_update_priority_locked() which uses any band transitions
7852 * as an indication to modify ledgers. For that it needs the task lock
7853 * and since we came into this function with the task lock held, we'll deadlock.
7855 * Unfortunately we can't completely disable ledger updates because we still
7856 * need the ledger updates for a subset of processes i.e. daemons.
7857 * When all processes on all platforms support memory limits, we can simply call
7858 * memorystatus_update().
7860 * It also has some logic to deal with 'aging' which, currently, is only applicable
7861 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
7862 * to do this explicit band transition.
7865 memstat_bucket_t
*current_bucket
, *new_bucket
;
7866 int32_t priority
= 0;
7870 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
7871 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
7873 * If the process is on its way out OR
7874 * jetsam has alread tried and failed to kill this process,
7875 * let's skip the whole jetsam band transition.
7882 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
7883 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7884 priority
= JETSAM_PRIORITY_IDLE
;
7886 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
7888 * It is possible that someone pulled this process
7889 * out of the IDLE band without updating its app-nap
7896 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
7897 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
7898 priority
= p
->p_memstat_requestedpriority
;
7901 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
7902 current_bucket
->count
--;
7903 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7904 current_bucket
->relaunch_high_count
--;
7906 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
7907 new_bucket
->count
++;
7908 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
7909 new_bucket
->relaunch_high_count
++;
7912 * Record idle start or idle delta.
7914 if (p
->p_memstat_effectivepriority
== priority
) {
7916 * This process is not transitioning between
7917 * jetsam priority buckets. Do nothing.
7919 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
7922 * Transitioning out of the idle priority bucket.
7923 * Record idle delta.
7925 assert(p
->p_memstat_idle_start
!= 0);
7926 now
= mach_absolute_time();
7927 if (now
> p
->p_memstat_idle_start
) {
7928 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
7930 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
7932 * Transitioning into the idle priority bucket.
7933 * Record idle start.
7935 p
->p_memstat_idle_start
= mach_absolute_time();
7938 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
7940 p
->p_memstat_effectivepriority
= priority
;
7946 #else /* !CONFIG_JETSAM */
7948 #pragma unused(is_appnap)
7950 #endif /* !CONFIG_JETSAM */
7954 memorystatus_available_memory_internal(proc_t p
)
7956 #ifdef XNU_TARGET_OS_OSX
7960 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7961 int32_t memlimit_mb
;
7962 int64_t memlimit_bytes
;
7965 if (isApp(p
) == FALSE
) {
7969 if (p
->p_memstat_memlimit
> 0) {
7970 memlimit_mb
= p
->p_memstat_memlimit
;
7971 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
7975 if (memlimit_mb
<= 0) {
7976 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
7978 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
7981 rc
= memlimit_bytes
- footprint_in_bytes
;
7983 return (rc
>= 0) ? rc
: 0;
7988 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
7990 *ret
= memorystatus_available_memory_internal(p
);
7996 #if DEVELOPMENT || DEBUG
7998 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8000 memorystatus_memlimit_properties_t mmp_entry
;
8002 /* Validate inputs */
8003 if ((pid
== 0) || (byte_increase
== 0)) {
8007 proc_t p
= proc_find(pid
);
8013 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8014 const uint32_t page_aligned_increase
= round_page(p
->p_memlimit_increase
+ byte_increase
); /* round to page */
8018 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8020 if (mmp_entry
.memlimit_active
> 0) {
8021 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8022 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8025 if (mmp_entry
.memlimit_inactive
> 0) {
8026 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8027 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8031 * Store the updated delta limit in the proc.
8033 p
->p_memlimit_increase
= page_aligned_increase
;
8035 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8042 #endif /* DEVELOPMENT */
8043 #endif /* CONFIG_JETSAM */