]> git.saurik.com Git - apple/xnu.git/blob - iokit/IOKit/IOMemoryDescriptor.h
xnu-1228.12.14.tar.gz
[apple/xnu.git] / iokit / IOKit / IOMemoryDescriptor.h
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #ifndef _IOMEMORYDESCRIPTOR_H
29 #define _IOMEMORYDESCRIPTOR_H
30
31 #include <sys/cdefs.h>
32
33 #include <IOKit/IOTypes.h>
34 #include <IOKit/IOLocks.h>
35 #include <libkern/c++/OSContainers.h>
36
37 __BEGIN_DECLS
38 #include <mach/memory_object_types.h>
39 __END_DECLS
40
41 struct IOPhysicalRange
42 {
43 IOPhysicalAddress address;
44 IOByteCount length;
45 };
46
47 class IOMemoryMap;
48 class IOMapper;
49
50 /*
51 * Direction of transfer, with respect to the described memory.
52 */
53 enum IODirection
54 {
55 kIODirectionNone = 0x0, // same as VM_PROT_NONE
56 kIODirectionIn = 0x1, // User land 'read', same as VM_PROT_READ
57 kIODirectionOut = 0x2, // User land 'write', same as VM_PROT_WRITE
58 kIODirectionOutIn = kIODirectionOut | kIODirectionIn,
59 kIODirectionInOut = kIODirectionIn | kIODirectionOut
60 };
61
62 /*
63 * IOOptionBits used in the withOptions variant
64 */
65 enum {
66 kIOMemoryDirectionMask = 0x00000007,
67 kIOMemoryAutoPrepare = 0x00000008, // Shared with Buffer MD
68
69 kIOMemoryTypeVirtual = 0x00000010,
70 kIOMemoryTypePhysical = 0x00000020,
71 kIOMemoryTypeUPL = 0x00000030,
72 kIOMemoryTypePersistentMD = 0x00000040, // Persistent Memory Descriptor
73 kIOMemoryTypeUIO = 0x00000050,
74 kIOMemoryTypeVirtual64 = 0x00000060,
75 kIOMemoryTypePhysical64 = 0x00000070,
76 kIOMemoryTypeMask = 0x000000f0,
77
78 kIOMemoryAsReference = 0x00000100,
79 kIOMemoryBufferPageable = 0x00000400,
80 kIOMemoryDontMap = 0x00000800,
81 #ifdef XNU_KERNEL_PRIVATE
82 kIOMemoryRedirected = 0x00004000,
83 kIOMemoryPreparedReadOnly = 0x00008000,
84 #endif
85 kIOMemoryPersistent = 0x00010000,
86 #ifdef XNU_KERNEL_PRIVATE
87 kIOMemoryReserved6156215 = 0x00020000,
88 #endif
89 kIOMemoryThreadSafe = 0x00100000, // Shared with Buffer MD
90 };
91
92 #define kIOMapperNone ((IOMapper *) -1)
93 #define kIOMapperSystem ((IOMapper *) 0)
94
95 enum
96 {
97 kIOMemoryPurgeableKeepCurrent = 1,
98 kIOMemoryPurgeableNonVolatile = 2,
99 kIOMemoryPurgeableVolatile = 3,
100 kIOMemoryPurgeableEmpty = 4
101 };
102 enum
103 {
104 kIOMemoryIncoherentIOFlush = 1,
105 kIOMemoryIncoherentIOStore = 2,
106 };
107
108 #define IOMEMORYDESCRIPTOR_SUPPORTS_DMACOMMAND 1
109
110
111 /*! @class IOMemoryDescriptor : public OSObject
112 @abstract An abstract base class defining common methods for describing physical or virtual memory.
113 @discussion The IOMemoryDescriptor object represents a buffer or range of memory, specified as one or more physical or virtual address ranges. It contains methods to return the memory's physically contiguous segments (fragments), for use with the IOMemoryCursor, and methods to map the memory into any address space with caching and placed mapping options. */
114
115 class IOMemoryDescriptor : public OSObject
116 {
117 friend class _IOMemoryMap;
118 friend class IOSubMemoryDescriptor;
119
120 OSDeclareDefaultStructors(IOMemoryDescriptor);
121
122 protected:
123 /*! @struct ExpansionData
124 @discussion This structure will be used to expand the capablilties of this class in the future.
125 */
126 struct ExpansionData {
127 void * devicePager;
128 unsigned int pagerContig:1;
129 unsigned int unused:31;
130 IOMemoryDescriptor * memory;
131 };
132
133 /*! @var reserved
134 Reserved for future use. (Internal use only) */
135 ExpansionData * reserved;
136
137 protected:
138 OSSet * _mappings;
139 IOOptionBits _flags;
140 void * _memEntry;
141
142 IODirection _direction; /* DEPRECATED: use _flags instead. direction of transfer */
143 IOByteCount _length; /* length of all ranges */
144 IOOptionBits _tag;
145
146 public:
147 typedef IOOptionBits DMACommandOps;
148 virtual IOPhysicalAddress getSourceSegment( IOByteCount offset,
149 IOByteCount * length );
150 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 0);
151
152 /*! @function initWithOptions
153 @abstract Master initialiser for all variants of memory descriptors. For a more complete description see IOMemoryDescriptor::withOptions.
154 @discussion Note this function can be used to re-init a previously created memory descriptor.
155 @result true on success, false on failure. */
156 virtual bool initWithOptions(void * buffers,
157 UInt32 count,
158 UInt32 offset,
159 task_t task,
160 IOOptionBits options,
161 IOMapper * mapper = kIOMapperSystem);
162 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 1);
163
164 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
165 IOByteCount * length );
166 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 2);
167
168
169 /*! @function setPurgeable
170 @abstract Control the purgeable status of a memory descriptors memory.
171 @discussion Buffers may be allocated with the ability to have their purgeable status changed - IOBufferMemoryDescriptor with the kIOMemoryPurgeable option, VM_FLAGS_PURGEABLE may be passed to vm_allocate() in user space to allocate such buffers. The purgeable status of such a buffer may be controlled with setPurgeable(). The process of making a purgeable memory descriptor non-volatile and determining its previous state is atomic - if a purgeable memory descriptor is made nonvolatile and the old state is returned as kIOMemoryPurgeableVolatile, then the memory's previous contents are completely intact and will remain so until the memory is made volatile again. If the old state is returned as kIOMemoryPurgeableEmpty then the memory was reclaimed while it was in a volatile state and its previous contents have been lost.
172 @param newState - the desired new purgeable state of the memory:<br>
173 kIOMemoryPurgeableKeepCurrent - make no changes to the memory's purgeable state.<br>
174 kIOMemoryPurgeableVolatile - make the memory volatile - the memory may be reclaimed by the VM system without saving its contents to backing store.<br>
175 kIOMemoryPurgeableNonVolatile - make the memory nonvolatile - the memory is treated as with usual allocations and must be saved to backing store if paged.<br>
176 kIOMemoryPurgeableEmpty - make the memory volatile, and discard any pages allocated to it.
177 @param oldState - if non-NULL, the previous purgeable state of the memory is returned here:<br>
178 kIOMemoryPurgeableNonVolatile - the memory was nonvolatile.<br>
179 kIOMemoryPurgeableVolatile - the memory was volatile but its content has not been discarded by the VM system.<br>
180 kIOMemoryPurgeableEmpty - the memory was volatile and has been discarded by the VM system.<br>
181 @result An IOReturn code. */
182
183 virtual IOReturn setPurgeable( IOOptionBits newState,
184 IOOptionBits * oldState );
185 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 3);
186
187 /*! @function performOperation
188 @abstract Perform an operation on the memory descriptor's memory.
189 @discussion This method performs some operation on a range of the memory descriptor's memory. When a memory descriptor's memory is not mapped, it should be more efficient to use this method than mapping the memory to perform the operation virtually.
190 @param options The operation to perform on the memory:<br>
191 kIOMemoryIncoherentIOFlush - pass this option to store to memory and flush any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.<br>
192 kIOMemoryIncoherentIOStore - pass this option to store to memory any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.
193 @param offset A byte offset into the memory descriptor's memory.
194 @param length The length of the data range.
195 @result An IOReturn code. */
196
197 virtual IOReturn performOperation( IOOptionBits options,
198 IOByteCount offset, IOByteCount length );
199 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 4);
200
201 // Used for dedicated communications for IODMACommand
202 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
203 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 5);
204
205 private:
206 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 6);
207 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 7);
208 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 8);
209 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 9);
210 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 10);
211 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 11);
212 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 12);
213 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 13);
214 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 14);
215 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 15);
216
217 protected:
218 virtual void free();
219 public:
220 static void initialize( void );
221
222 public:
223 /*! @function withAddress
224 @abstract Create an IOMemoryDescriptor to describe one virtual range of the kernel task.
225 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map.
226 @param address The virtual address of the first byte in the memory.
227 @param withLength The length of memory.
228 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
229 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
230
231 static IOMemoryDescriptor * withAddress(void * address,
232 IOByteCount withLength,
233 IODirection withDirection);
234
235 /*! @function withAddress
236 @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
237 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map.
238 @param address The virtual address of the first byte in the memory.
239 @param withLength The length of memory.
240 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
241 @param withTask The task the virtual ranges are mapped into.
242 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
243
244 static IOMemoryDescriptor * withAddress(vm_address_t address,
245 IOByteCount withLength,
246 IODirection withDirection,
247 task_t withTask);
248
249 /*! @function withPhysicalAddress
250 @abstract Create an IOMemoryDescriptor to describe one physical range.
251 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single physical memory range.
252 @param address The physical address of the first byte in the memory.
253 @param withLength The length of memory.
254 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
255 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
256
257 static IOMemoryDescriptor * withPhysicalAddress(
258 IOPhysicalAddress address,
259 IOByteCount withLength,
260 IODirection withDirection );
261
262 /*! @function withRanges
263 @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
264 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task.
265 @param ranges An array of IOVirtualRange structures which specify the virtual ranges in the specified map which make up the memory to be described.
266 @param withCount The member count of the ranges array.
267 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
268 @param withTask The task each of the virtual ranges are mapped into.
269 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
270 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
271
272 static IOMemoryDescriptor * withRanges(IOVirtualRange * ranges,
273 UInt32 withCount,
274 IODirection withDirection,
275 task_t withTask,
276 bool asReference = false);
277
278 /*! @function withAddressRange
279 @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
280 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api.
281 @param address The virtual address of the first byte in the memory.
282 @param withLength The length of memory.
283 @param options
284 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
285 @param task The task the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api.
286 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
287
288 static IOMemoryDescriptor * withAddressRange(
289 mach_vm_address_t address,
290 mach_vm_size_t length,
291 IOOptionBits options,
292 task_t task);
293
294 /*! @function withAddressRanges
295 @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
296 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api.
297 @param ranges An array of IOAddressRange structures which specify the virtual ranges in the specified map which make up the memory to be described. IOAddressRange is the 64bit version of IOVirtualRange.
298 @param rangeCount The member count of the ranges array.
299 @param options
300 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
301 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
302 @param task The task each of the virtual ranges are mapped into. Note that unlike IOMemoryDescriptor::withAddress(), kernel_task memory must be explicitly prepared when passed to this api.
303 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
304
305 static IOMemoryDescriptor * withAddressRanges(
306 IOAddressRange * ranges,
307 UInt32 rangeCount,
308 IOOptionBits options,
309 task_t withTask);
310
311 /*! @function withOptions
312 @abstract Master initialiser for all variants of memory descriptors.
313 @discussion This method creates and initializes an IOMemoryDescriptor for memory it has three main variants: Virtual, Physical & mach UPL. These variants are selected with the options parameter, see below. This memory descriptor needs to be prepared before it can be used to extract data from the memory described. However we temporarily have setup a mechanism that automatically prepares kernel_task memory descriptors at creation time.
314
315
316 @param buffers A pointer to an array of IOVirtualRanges or IOPhysicalRanges if the options:type is Virtual or Physical. For type UPL it is a upl_t returned by the mach/memory_object_types.h apis, primarily used internally by the UBC.
317
318 @param count options:type = Virtual or Physical count contains a count of the number of entires in the buffers array. For options:type = UPL this field contains a total length.
319
320 @param offset Only used when options:type = UPL, in which case this field contains an offset for the memory within the buffers upl.
321
322 @param task Only used options:type = Virtual, The task each of the virtual ranges are mapped into.
323
324 @param options
325 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
326 kIOMemoryTypeMask (options:type) kIOMemoryTypeVirtual, kIOMemoryTypePhysical, kIOMemoryTypeUPL Indicates that what type of memory basic memory descriptor to use. This sub-field also controls the interpretation of the buffers, count, offset & task parameters.
327 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
328 kIOMemoryBufferPageable Only used by the IOBufferMemoryDescriptor as an indication that the kernel virtual memory is in fact pageable and we need to use the kernel pageable submap rather than the default map.
329 kIOMemoryNoAutoPrepare Indicates that the temporary AutoPrepare of kernel_task memory should not be performed.
330
331 @param mapper Which IOMapper should be used to map the in-memory physical addresses into I/O space addresses. Defaults to 0 which indicates that the system mapper is to be used, if present.
332
333 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
334
335 static IOMemoryDescriptor *withOptions(void * buffers,
336 UInt32 count,
337 UInt32 offset,
338 task_t task,
339 IOOptionBits options,
340 IOMapper * mapper = kIOMapperSystem);
341
342 /*! @function withPhysicalRanges
343 @abstract Create an IOMemoryDescriptor to describe one or more physical ranges.
344 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of physical memory ranges.
345 @param ranges An array of IOPhysicalRange structures which specify the physical ranges which make up the memory to be described.
346 @param withCount The member count of the ranges array.
347 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
348 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
349 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
350
351 static IOMemoryDescriptor * withPhysicalRanges(
352 IOPhysicalRange * ranges,
353 UInt32 withCount,
354 IODirection withDirection,
355 bool asReference = false);
356
357 /*! @function withSubRange
358 @abstract Create an IOMemoryDescriptor to describe a subrange of an existing descriptor.
359 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a subrange of the specified memory descriptor. The parent memory descriptor is retained by the new descriptor.
360 @param of The parent IOMemoryDescriptor of which a subrange is to be used for the new descriptor, which will be retained by the subrange IOMemoryDescriptor.
361 @param offset A byte offset into the parent memory descriptor's memory.
362 @param length The length of the subrange.
363 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures. This is used over the direction of the parent descriptor.
364 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
365
366 static IOMemoryDescriptor * withSubRange(IOMemoryDescriptor *of,
367 IOByteCount offset,
368 IOByteCount length,
369 IODirection withDirection);
370
371 /*! @function withPersistentMemoryDescriptor
372 @abstract Copy constructor that generates a new memory descriptor if the backing memory for the same task's virtual address and length has changed.
373 @discussion If the original memory descriptor's address and length is still backed by the same real memory, i.e. the user hasn't deallocated and the reallocated memory at the same address then the original memory descriptor is returned with a additional reference. Otherwise we build a totally new memory descriptor with the same characteristics as the previous one but with a new view of the vm. Note not legal to call this function with anything except an IOGeneralMemoryDescriptor that was created with the kIOMemoryPersistent option.
374 @param originalMD The memory descriptor to be duplicated.
375 @result Either the original memory descriptor with an additional retain or a new memory descriptor, 0 for a bad original memory descriptor or some other resource shortage. */
376 static IOMemoryDescriptor *
377 withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD);
378
379 /*! @function initWithAddress
380 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one virtual range of the kernel task.
381 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
382 @param address The virtual address of the first byte in the memory.
383 @param withLength The length of memory.
384 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
385 @result true on success, false on failure. */
386
387 virtual bool initWithAddress(void * address,
388 IOByteCount withLength,
389 IODirection withDirection) = 0;
390
391 /*! @function initWithAddress
392 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one virtual range of the specified map.
393 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
394 @param address The virtual address of the first byte in the memory.
395 @param withLength The length of memory.
396 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
397 @param withTask The task the virtual ranges are mapped into.
398 @result true on success, false on failure. */
399
400 virtual bool initWithAddress(vm_address_t address,
401 IOByteCount withLength,
402 IODirection withDirection,
403 task_t withTask) = 0;
404
405 /*! @function initWithPhysicalAddress
406 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one physical range.
407 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single physical memory range. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
408 @param address The physical address of the first byte in the memory.
409 @param withLength The length of memory.
410 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
411 @result true on success, false on failure. */
412
413 virtual bool initWithPhysicalAddress(
414 IOPhysicalAddress address,
415 IOByteCount withLength,
416 IODirection withDirection ) = 0;
417
418 /*! @function initWithRanges
419 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one or more virtual ranges.
420 @discussion This method initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
421 @param ranges An array of IOVirtualRange structures which specify the virtual ranges in the specified map which make up the memory to be described.
422 @param withCount The member count of the ranges array.
423 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
424 @param withTask The task each of the virtual ranges are mapped into.
425 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
426 @result true on success, false on failure. */
427
428 virtual bool initWithRanges(IOVirtualRange * ranges,
429 UInt32 withCount,
430 IODirection withDirection,
431 task_t withTask,
432 bool asReference = false) = 0;
433
434 /*! @function initWithPhysicalRanges
435 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one or more physical ranges.
436 @discussion This method initializes an IOMemoryDescriptor for memory consisting of an array of physical memory ranges. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
437 @param ranges An array of IOPhysicalRange structures which specify the physical ranges which make up the memory to be described.
438 @param withCount The member count of the ranges array.
439 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
440 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
441 @result true on success, false on failure. */
442
443 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
444 UInt32 withCount,
445 IODirection withDirection,
446 bool asReference = false) = 0;
447
448 /*! @function getDirection
449 @abstract Accessor to get the direction the memory descriptor was created with.
450 @discussion This method returns the direction the memory descriptor was created with.
451 @result The direction. */
452
453 virtual IODirection getDirection() const;
454
455 /*! @function getLength
456 @abstract Accessor to get the length of the memory descriptor (over all its ranges).
457 @discussion This method returns the total length of the memory described by the descriptor, ie. the sum of its ranges' lengths.
458 @result The byte count. */
459
460 virtual IOByteCount getLength() const;
461
462 /*! @function setTag
463 @abstract Set the tag for the memory descriptor.
464 @discussion This method sets the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
465 @param tag The tag. */
466
467 virtual void setTag( IOOptionBits tag );
468
469 /*! @function getTag
470 @abstract Accessor to the retrieve the tag for the memory descriptor.
471 @discussion This method returns the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
472 @result The tag. */
473
474 virtual IOOptionBits getTag( void );
475
476 /*! @function readBytes
477 @abstract Copy data from the memory descriptor's buffer to the specified buffer.
478 @discussion This method copies data from the memory descriptor's memory at the given offset, to the caller's buffer. The memory descriptor MUST have the kIODirectionOut direcction bit set and be prepared. kIODirectionOut means that this memory descriptor will be output to an external device, so readBytes is used to get memory into a local buffer for a PIO transfer to the device.
479 @param offset A byte offset into the memory descriptor's memory.
480 @param bytes The caller supplied buffer to copy the data to.
481 @param withLength The length of the data to copy.
482 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. */
483
484 virtual IOByteCount readBytes(IOByteCount offset,
485 void * bytes, IOByteCount withLength);
486
487 /*! @function writeBytes
488 @abstract Copy data to the memory descriptor's buffer from the specified buffer.
489 @discussion This method copies data to the memory descriptor's memory at the given offset, from the caller's buffer. The memory descriptor MUST have the kIODirectionIn direcction bit set and be prepared. kIODirectionIn means that this memory descriptor will be input from an external device, so writeBytes is used to write memory into the descriptor for PIO drivers.
490 @param offset A byte offset into the memory descriptor's memory.
491 @param bytes The caller supplied buffer to copy the data from.
492 @param withLength The length of the data to copy.
493 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. */
494
495 virtual IOByteCount writeBytes(IOByteCount offset,
496 const void * bytes, IOByteCount withLength);
497
498 /*! @function getPhysicalSegment
499 @abstract Break a memory descriptor into its physically contiguous segments.
500 @discussion This method returns the physical address of the byte at the given offset into the memory, and optionally the length of the physically contiguous segment from that offset.
501 @param offset A byte offset into the memory whose physical address to return.
502 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
503 @result A physical address, or zero if the offset is beyond the length of the memory. */
504
505 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
506 IOByteCount * length) = 0;
507
508 /*! @function getPhysicalAddress
509 @abstract Return the physical address of the first byte in the memory.
510 @discussion This method returns the physical address of the first byte in the memory. It is most useful on memory known to be physically contiguous.
511 @result A physical address. */
512
513 /* inline */ IOPhysicalAddress getPhysicalAddress();
514 /* { return( getPhysicalSegment( 0, 0 )); } */
515
516 /* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
517 /* DEPRECATED */ virtual void * getVirtualSegment(IOByteCount offset,
518 /* DEPRECATED */ IOByteCount * length) = 0;
519 /* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
520
521 /*! @function prepare
522 @abstract Prepare the memory for an I/O transfer.
523 @discussion This involves paging in the memory, if necessary, and wiring it down for the duration of the transfer. The complete() method completes the processing of the memory after the I/O transfer finishes. Note that the prepare call is not thread safe and it is expected that the client will more easily be able to guarantee single threading a particular memory descriptor.
524 @param forDirection The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
525 @result An IOReturn code. */
526
527 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone) = 0;
528
529 /*! @function complete
530 @abstract Complete processing of the memory after an I/O transfer finishes.
531 @discussion This method should not be called unless a prepare was previously issued; the prepare() and complete() must occur in pairs, before and after an I/O transfer involving pageable memory. In 10.3 or greater systems the direction argument to complete is not longer respected. The direction is totally determined at prepare() time.
532 @param forDirection DEPRECATED The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
533 @result An IOReturn code. */
534
535 virtual IOReturn complete(IODirection forDirection = kIODirectionNone) = 0;
536
537 /*
538 * Mapping functions.
539 */
540
541 /*! @function createMappingInTask
542 @abstract Maps a IOMemoryDescriptor into a task.
543 @discussion This is the general purpose method to map all or part of the memory described by a memory descriptor into a task at any available address, or at a fixed address if possible. Caching & read-only options may be set for the mapping. The mapping is represented as a returned reference to a IOMemoryMap object, which may be shared if the mapping is compatible with an existing mapping of the IOMemoryDescriptor. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping.
544 @param intoTask Sets the target task for the mapping. Pass kernel_task for the kernel address space.
545 @param atAddress If a placed mapping is requested, atAddress specifies its address, and the kIOMapAnywhere should not be set. Otherwise, atAddress is ignored.
546 @param options Mapping options are defined in IOTypes.h,<br>
547 kIOMapAnywhere should be passed if the mapping can be created anywhere. If not set, the atAddress parameter sets the location of the mapping, if it is available in the target map.<br>
548 kIOMapDefaultCache to inhibit the cache in I/O areas, kIOMapCopybackCache in general purpose RAM.<br>
549 kIOMapInhibitCache, kIOMapWriteThruCache, kIOMapCopybackCache to set the appropriate caching.<br>
550 kIOMapReadOnly to allow only read only accesses to the memory - writes will cause and access fault.<br>
551 kIOMapReference will only succeed if the mapping already exists, and the IOMemoryMap object is just an extra reference, ie. no new mapping will be created.<br>
552 kIOMapUnique allows a special kind of mapping to be created that may be used with the IOMemoryMap::redirect() API. These mappings will not be shared as is the default - there will always be a unique mapping created for the caller, not an existing mapping with an extra reference.<br>
553 @param offset Is a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default to map all the memory.
554 @param length Is the length of the mapping requested for a subset of the IOMemoryDescriptor. Zero is the default to map all the memory.
555 @result A reference to an IOMemoryMap object representing the mapping, which can supply the virtual address of the mapping and other information. The mapping may be shared with multiple callers - multiple maps are avoided if a compatible one exists. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping. The IOMemoryMap instance also retains the IOMemoryDescriptor it maps while it exists. */
556
557 IOMemoryMap * createMappingInTask(
558 task_t intoTask,
559 mach_vm_address_t atAddress,
560 IOOptionBits options,
561 mach_vm_size_t offset = 0,
562 mach_vm_size_t length = 0 );
563
564 /*! @function map
565 @abstract Maps a IOMemoryDescriptor into a task - deprecated, only safe for 32 bit tasks. Use createMappingInTask instead.
566 @discussion This is the general purpose method to map all or part of the memory described by a memory descriptor into a task at any available address, or at a fixed address if possible. Caching & read-only options may be set for the mapping. The mapping is represented as a returned reference to a IOMemoryMap object, which may be shared if the mapping is compatible with an existing mapping of the IOMemoryDescriptor. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping.
567 @param intoTask Sets the target task for the mapping. Pass kernel_task for the kernel address space.
568 @param atAddress If a placed mapping is requested, atAddress specifies its address, and the kIOMapAnywhere should not be set. Otherwise, atAddress is ignored.
569 @param options Mapping options are defined in IOTypes.h,<br>
570 kIOMapAnywhere should be passed if the mapping can be created anywhere. If not set, the atAddress parameter sets the location of the mapping, if it is available in the target map.<br>
571 kIOMapDefaultCache to inhibit the cache in I/O areas, kIOMapCopybackCache in general purpose RAM.<br>
572 kIOMapInhibitCache, kIOMapWriteThruCache, kIOMapCopybackCache to set the appropriate caching.<br>
573 kIOMapReadOnly to allow only read only accesses to the memory - writes will cause and access fault.<br>
574 kIOMapReference will only succeed if the mapping already exists, and the IOMemoryMap object is just an extra reference, ie. no new mapping will be created.<br>
575 kIOMapUnique allows a special kind of mapping to be created that may be used with the IOMemoryMap::redirect() API. These mappings will not be shared as is the default - there will always be a unique mapping created for the caller, not an existing mapping with an extra reference.<br>
576 @param offset Is a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default to map all the memory.
577 @param length Is the length of the mapping requested for a subset of the IOMemoryDescriptor. Zero is the default to map all the memory.
578 @result A reference to an IOMemoryMap object representing the mapping, which can supply the virtual address of the mapping and other information. The mapping may be shared with multiple callers - multiple maps are avoided if a compatible one exists. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping. The IOMemoryMap instance also retains the IOMemoryDescriptor it maps while it exists. */
579
580 virtual IOMemoryMap * map(
581 task_t intoTask,
582 IOVirtualAddress atAddress,
583 IOOptionBits options,
584 IOByteCount offset = 0,
585 IOByteCount length = 0 );
586
587
588 /*! @function map
589 @abstract Maps a IOMemoryDescriptor into the kernel map.
590 @discussion This is a shortcut method to map all the memory described by a memory descriptor into the kernel map at any available address. See the full version of the createMappingInTask method for further details.
591 @param options Mapping options as in the full version of the createMappingInTask method, with kIOMapAnywhere assumed.
592 @result See the full version of the createMappingInTask method. */
593
594 virtual IOMemoryMap * map(
595 IOOptionBits options = 0 );
596
597 /*! @function setMapping
598 @abstract Establishes an already existing mapping.
599 @discussion This method tells the IOMemoryDescriptor about a mapping that exists, but was created elsewhere. It allows later callers of the map method to share this externally created mapping. The IOMemoryMap object returned is created to represent it. This method is not commonly needed.
600 @param task Address space in which the mapping exists.
601 @param mapAddress Virtual address of the mapping.
602 @param options Caching and read-only attributes of the mapping.
603 @result A IOMemoryMap object created to represent the mapping. */
604
605 virtual IOMemoryMap * setMapping(
606 task_t task,
607 IOVirtualAddress mapAddress,
608 IOOptionBits options = 0 );
609
610 // Following methods are private implementation
611
612 // make virtual
613 IOReturn redirect( task_t safeTask, bool redirect );
614
615 IOReturn handleFault(
616 void * pager,
617 vm_map_t addressMap,
618 mach_vm_address_t address,
619 mach_vm_size_t sourceOffset,
620 mach_vm_size_t length,
621 IOOptionBits options );
622
623 protected:
624 virtual IOMemoryMap * makeMapping(
625 IOMemoryDescriptor * owner,
626 task_t intoTask,
627 IOVirtualAddress atAddress,
628 IOOptionBits options,
629 IOByteCount offset,
630 IOByteCount length );
631
632 virtual void addMapping(
633 IOMemoryMap * mapping );
634
635 virtual void removeMapping(
636 IOMemoryMap * mapping );
637
638 virtual IOReturn doMap(
639 vm_map_t addressMap,
640 IOVirtualAddress * atAddress,
641 IOOptionBits options,
642 IOByteCount sourceOffset = 0,
643 IOByteCount length = 0 );
644
645 virtual IOReturn doUnmap(
646 vm_map_t addressMap,
647 IOVirtualAddress logical,
648 IOByteCount length );
649 };
650
651 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
652
653 /*! @class IOMemoryMap : public OSObject
654 @abstract An abstract base class defining common methods for describing a memory mapping.
655 @discussion The IOMemoryMap object represents a mapped range of memory, described by a IOMemoryDescriptor. The mapping may be in the kernel or a non-kernel task and has processor cache mode attributes. IOMemoryMap instances are created by IOMemoryDescriptor when it creates mappings in its map method, and returned to the caller. */
656
657 class IOMemoryMap : public OSObject
658 {
659 OSDeclareAbstractStructors(IOMemoryMap)
660
661 public:
662 /*! @function getVirtualAddress
663 @abstract Accessor to the virtual address of the first byte in the mapping.
664 @discussion This method returns the virtual address of the first byte in the mapping.
665 @result A virtual address. */
666
667 virtual IOVirtualAddress getVirtualAddress() = 0;
668
669 /*! @function getPhysicalSegment
670 @abstract Break a mapping into its physically contiguous segments.
671 @discussion This method returns the physical address of the byte at the given offset into the mapping, and optionally the length of the physically contiguous segment from that offset. It functions similarly to IOMemoryDescriptor::getPhysicalSegment.
672 @param offset A byte offset into the mapping whose physical address to return.
673 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
674 @result A physical address, or zero if the offset is beyond the length of the mapping. */
675
676 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
677 IOByteCount * length) = 0;
678
679 /*! @function getPhysicalAddress
680 @abstract Return the physical address of the first byte in the mapping.
681 @discussion This method returns the physical address of the first byte in the mapping. It is most useful on mappings known to be physically contiguous.
682 @result A physical address. */
683
684 /* inline */ IOPhysicalAddress getPhysicalAddress();
685 /* { return( getPhysicalSegment( 0, 0 )); } */
686
687 /*! @function getLength
688 @abstract Accessor to the length of the mapping.
689 @discussion This method returns the length of the mapping.
690 @result A byte count. */
691
692 virtual IOByteCount getLength() = 0;
693
694 /*! @function getAddressTask
695 @abstract Accessor to the task of the mapping.
696 @discussion This method returns the mach task the mapping exists in.
697 @result A mach task_t. */
698
699 virtual task_t getAddressTask() = 0;
700
701 /*! @function getMemoryDescriptor
702 @abstract Accessor to the IOMemoryDescriptor the mapping was created from.
703 @discussion This method returns the IOMemoryDescriptor the mapping was created from.
704 @result An IOMemoryDescriptor reference, which is valid while the IOMemoryMap object is retained. It should not be released by the caller. */
705
706 virtual IOMemoryDescriptor * getMemoryDescriptor() = 0;
707
708 /*! @function getMapOptions
709 @abstract Accessor to the options the mapping was created with.
710 @discussion This method returns the options to IOMemoryDescriptor::map the mapping was created with.
711 @result Options for the mapping, including cache settings. */
712
713 virtual IOOptionBits getMapOptions() = 0;
714
715 /*! @function unmap
716 @abstract Force the IOMemoryMap to unmap, without destroying the object.
717 @discussion IOMemoryMap instances will unmap themselves upon free, ie. when the last client with a reference calls release. This method forces the IOMemoryMap to destroy the mapping it represents, regardless of the number of clients. It is not generally used.
718 @result An IOReturn code. */
719
720 virtual IOReturn unmap() = 0;
721
722 virtual void taskDied() = 0;
723
724 /*! @function redirect
725 @abstract Replace the memory mapped in a process with new backing memory.
726 @discussion An IOMemoryMap created with the kIOMapUnique option to IOMemoryDescriptor::map() can remapped to a new IOMemoryDescriptor backing object. If the new IOMemoryDescriptor is specified as NULL, client access to the memory map is blocked until a new backing object has been set. By blocking access and copying data, the caller can create atomic copies of the memory while the client is potentially reading or writing the memory.
727 @param newBackingMemory The IOMemoryDescriptor that represents the physical memory that is to be now mapped in the virtual range the IOMemoryMap represents. If newBackingMemory is NULL, any access to the mapping will hang (in vm_fault()) until access has been restored by a new call to redirect() with non-NULL newBackingMemory argument.
728 @param options Mapping options are defined in IOTypes.h, and are documented in IOMemoryDescriptor::map()
729 @param offset As with IOMemoryDescriptor::map(), a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default.
730 @result An IOReturn code. */
731
732 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
733 IOOptionBits options,
734 IOByteCount offset = 0) = 0;
735
736 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
737 IOOptionBits options,
738 mach_vm_size_t offset = 0) = 0;
739
740 virtual mach_vm_address_t getAddress() = 0;
741 virtual mach_vm_size_t getSize() = 0;
742 };
743
744 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
745
746 // The following classes are private implementation of IOMemoryDescriptor - they
747 // should not be referenced directly, just through the public API's in the
748 // IOMemoryDescriptor class. For example, an IOGeneralMemoryDescriptor instance
749 // might be created by IOMemoryDescriptor::withAddress(), but there should be
750 // no need to reference as anything but a generic IOMemoryDescriptor *.
751
752 class IOGeneralMemoryDescriptor : public IOMemoryDescriptor
753 {
754 OSDeclareDefaultStructors(IOGeneralMemoryDescriptor);
755
756 public:
757 union Ranges {
758 IOVirtualRange *v;
759 IOAddressRange *v64;
760 IOPhysicalRange *p;
761 void *uio;
762 };
763 protected:
764 Ranges _ranges;
765 unsigned _rangesCount; /* number of address ranges in list */
766 bool _rangesIsAllocated; /* is list allocated by us? */
767
768 task_t _task; /* task where all ranges are mapped to */
769
770 union {
771 IOVirtualRange v;
772 IOPhysicalRange p;
773 } _singleRange; /* storage space for a single range */
774
775 unsigned _wireCount; /* number of outstanding wires */
776
777 /* DEPRECATED */ vm_address_t _cachedVirtualAddress; /* a cached virtual-to-physical */
778
779 /* DEPRECATED */ IOPhysicalAddress _cachedPhysicalAddress;
780
781 bool _initialized; /* has superclass been initialized? */
782
783 virtual void free();
784
785 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
786
787 private:
788
789 /* DEPRECATED */ virtual void setPosition(IOByteCount position);
790 /* DEPRECATED */ virtual void mapIntoKernel(unsigned rangeIndex);
791 /* DEPRECATED */ virtual void unmapFromKernel();
792
793 // Internal APIs may be made virtual at some time in the future.
794 IOReturn wireVirtual(IODirection forDirection);
795 void *createNamedEntry();
796
797 // Internal
798 OSData * _memoryEntries;
799 unsigned int _pages;
800 ppnum_t _highestPage;
801 uint32_t __iomd_reservedA;
802 uint32_t __iomd_reservedB;
803
804 IOLock * _prepareLock;
805
806 public:
807 /*
808 * IOMemoryDescriptor required methods
809 */
810
811 // Master initaliser
812 virtual bool initWithOptions(void * buffers,
813 UInt32 count,
814 UInt32 offset,
815 task_t task,
816 IOOptionBits options,
817 IOMapper * mapper = kIOMapperSystem);
818
819 // Secondary initialisers
820 virtual bool initWithAddress(void * address,
821 IOByteCount withLength,
822 IODirection withDirection);
823
824 virtual bool initWithAddress(vm_address_t address,
825 IOByteCount withLength,
826 IODirection withDirection,
827 task_t withTask);
828
829 virtual bool initWithPhysicalAddress(
830 IOPhysicalAddress address,
831 IOByteCount withLength,
832 IODirection withDirection );
833
834 virtual bool initWithRanges( IOVirtualRange * ranges,
835 UInt32 withCount,
836 IODirection withDirection,
837 task_t withTask,
838 bool asReference = false);
839
840 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
841 UInt32 withCount,
842 IODirection withDirection,
843 bool asReference = false);
844
845 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
846 IOByteCount * length );
847
848 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
849 IOByteCount * length);
850
851 virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
852 IOByteCount * length);
853
854 /* DEPRECATED */ virtual void * getVirtualSegment(IOByteCount offset,
855 /* DEPRECATED */ IOByteCount * length);
856
857 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
858
859 virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
860
861 virtual IOReturn doMap(
862 vm_map_t addressMap,
863 IOVirtualAddress * atAddress,
864 IOOptionBits options,
865 IOByteCount sourceOffset = 0,
866 IOByteCount length = 0 );
867
868 virtual IOReturn doUnmap(
869 vm_map_t addressMap,
870 IOVirtualAddress logical,
871 IOByteCount length );
872
873 virtual bool serialize(OSSerialize *s) const;
874
875 // Factory method for cloning a persistent IOMD, see IOMemoryDescriptor
876 static IOMemoryDescriptor *
877 withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD);
878
879 };
880
881 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
882
883 class IOSubMemoryDescriptor : public IOMemoryDescriptor
884 {
885 friend class IOMemoryDescriptor;
886
887 OSDeclareDefaultStructors(IOSubMemoryDescriptor);
888
889 protected:
890 IOMemoryDescriptor * _parent;
891 IOByteCount _start;
892
893 virtual void free();
894
895 virtual bool initWithAddress(void * address,
896 IOByteCount withLength,
897 IODirection withDirection);
898
899 virtual bool initWithAddress(vm_address_t address,
900 IOByteCount withLength,
901 IODirection withDirection,
902 task_t withTask);
903
904 virtual bool initWithPhysicalAddress(
905 IOPhysicalAddress address,
906 IOByteCount withLength,
907 IODirection withDirection );
908
909 virtual bool initWithRanges( IOVirtualRange * ranges,
910 UInt32 withCount,
911 IODirection withDirection,
912 task_t withTask,
913 bool asReference = false);
914
915 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
916 UInt32 withCount,
917 IODirection withDirection,
918 bool asReference = false);
919
920 IOMemoryDescriptor::withAddress;
921 IOMemoryDescriptor::withPhysicalAddress;
922 IOMemoryDescriptor::withPhysicalRanges;
923 IOMemoryDescriptor::withRanges;
924 IOMemoryDescriptor::withSubRange;
925
926 // used by IODMACommand
927 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
928
929 public:
930 /*
931 * Initialize or reinitialize an IOSubMemoryDescriptor to describe
932 * a subrange of an existing descriptor.
933 *
934 * An IOSubMemoryDescriptor can be re-used by calling initSubRange
935 * again on an existing instance -- note that this behavior is not
936 * commonly supported in other IOKit classes, although it is here.
937 */
938 virtual bool initSubRange( IOMemoryDescriptor * parent,
939 IOByteCount offset, IOByteCount length,
940 IODirection withDirection );
941
942 /*
943 * IOMemoryDescriptor required methods
944 */
945
946 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
947 IOByteCount * length );
948
949 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
950 IOByteCount * length);
951
952 virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
953 IOByteCount * length);
954
955 virtual IOByteCount readBytes(IOByteCount offset,
956 void * bytes, IOByteCount withLength);
957
958 virtual IOByteCount writeBytes(IOByteCount offset,
959 const void * bytes, IOByteCount withLength);
960
961 virtual void * getVirtualSegment(IOByteCount offset,
962 IOByteCount * length);
963
964 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
965
966 virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
967
968 // make virtual
969 IOReturn redirect( task_t safeTask, bool redirect );
970
971 virtual bool serialize(OSSerialize *s) const;
972
973 virtual IOReturn setPurgeable( IOOptionBits newState,
974 IOOptionBits * oldState );
975 virtual IOReturn performOperation( IOOptionBits options,
976 IOByteCount offset, IOByteCount length );
977
978 protected:
979 virtual IOMemoryMap * makeMapping(
980 IOMemoryDescriptor * owner,
981 task_t intoTask,
982 IOVirtualAddress atAddress,
983 IOOptionBits options,
984 IOByteCount offset,
985 IOByteCount length );
986
987 virtual IOReturn doMap(
988 vm_map_t addressMap,
989 IOVirtualAddress * atAddress,
990 IOOptionBits options,
991 IOByteCount sourceOffset = 0,
992 IOByteCount length = 0 );
993 };
994
995 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
996
997 #endif /* !_IOMEMORYDESCRIPTOR_H */