]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-1228.12.14.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1988, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)radix.c 8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
62 */
63
64 /*
65 * Routines to build and maintain radix trees for routing lookups.
66 */
67 #ifndef _RADIX_H_
68 #include <sys/param.h>
69 #ifdef KERNEL
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #define M_DONTWAIT M_NOWAIT
73 #include <sys/domain.h>
74 #else
75 #include <stdlib.h>
76 #endif
77 #include <sys/syslog.h>
78 #include <net/radix.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <kern/locks.h>
82 #endif
83
84 static int rn_walktree_from(struct radix_node_head *h, void *a,
85 void *m, walktree_f_t *f, void *w);
86 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
87 static struct radix_node
88 *rn_insert(void *, struct radix_node_head *, int *,
89 struct radix_node [2]),
90 *rn_newpair(void *, int, struct radix_node[2]),
91 *rn_search(void *, struct radix_node *),
92 *rn_search_m(void *, struct radix_node *, void *);
93
94 static int max_keylen;
95 static struct radix_mask *rn_mkfreelist;
96 static struct radix_node_head *mask_rnhead;
97 static char *addmask_key;
98 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
99 static char *rn_zeros, *rn_ones;
100
101
102 extern lck_grp_t *domain_proto_mtx_grp;
103 extern lck_attr_t *domain_proto_mtx_attr;
104 lck_mtx_t *rn_mutex;
105
106 #define rn_masktop (mask_rnhead->rnh_treetop)
107 #undef Bcmp
108 #define Bcmp(a, b, l) \
109 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
110
111 static int rn_lexobetter(void *m_arg, void *n_arg);
112 static struct radix_mask *
113 rn_new_radix_mask(struct radix_node *tt,
114 struct radix_mask *next);
115 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
116 rn_matchf_t *f, void *w);
117
118 #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
119
120 /*
121 * The data structure for the keys is a radix tree with one way
122 * branching removed. The index rn_bit at an internal node n represents a bit
123 * position to be tested. The tree is arranged so that all descendants
124 * of a node n have keys whose bits all agree up to position rn_bit - 1.
125 * (We say the index of n is rn_bit.)
126 *
127 * There is at least one descendant which has a one bit at position rn_bit,
128 * and at least one with a zero there.
129 *
130 * A route is determined by a pair of key and mask. We require that the
131 * bit-wise logical and of the key and mask to be the key.
132 * We define the index of a route to associated with the mask to be
133 * the first bit number in the mask where 0 occurs (with bit number 0
134 * representing the highest order bit).
135 *
136 * We say a mask is normal if every bit is 0, past the index of the mask.
137 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
138 * and m is a normal mask, then the route applies to every descendant of n.
139 * If the index(m) < rn_bit, this implies the trailing last few bits of k
140 * before bit b are all 0, (and hence consequently true of every descendant
141 * of n), so the route applies to all descendants of the node as well.
142 *
143 * Similar logic shows that a non-normal mask m such that
144 * index(m) <= index(n) could potentially apply to many children of n.
145 * Thus, for each non-host route, we attach its mask to a list at an internal
146 * node as high in the tree as we can go.
147 *
148 * The present version of the code makes use of normal routes in short-
149 * circuiting an explict mask and compare operation when testing whether
150 * a key satisfies a normal route, and also in remembering the unique leaf
151 * that governs a subtree.
152 */
153
154 static struct radix_node *
155 rn_search(void *v_arg, struct radix_node *head)
156 {
157 struct radix_node *x;
158 caddr_t v;
159
160 for (x = head, v = v_arg; x->rn_bit >= 0;) {
161 if (x->rn_bmask & v[x->rn_offset])
162 x = x->rn_right;
163 else
164 x = x->rn_left;
165 }
166 return (x);
167 }
168
169 static struct radix_node *
170 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
171 {
172 struct radix_node *x;
173 caddr_t v = v_arg, m = m_arg;
174
175 for (x = head; x->rn_bit >= 0;) {
176 if ((x->rn_bmask & m[x->rn_offset]) &&
177 (x->rn_bmask & v[x->rn_offset]))
178 x = x->rn_right;
179 else
180 x = x->rn_left;
181 }
182 return x;
183 }
184
185 int
186 rn_refines(void *m_arg, void *n_arg)
187 {
188 caddr_t m = m_arg, n = n_arg;
189 caddr_t lim, lim2 = lim = n + *(u_char *)n;
190 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
191 int masks_are_equal = 1;
192
193 if (longer > 0)
194 lim -= longer;
195 while (n < lim) {
196 if (*n & ~(*m))
197 return 0;
198 if (*n++ != *m++)
199 masks_are_equal = 0;
200 }
201 while (n < lim2)
202 if (*n++)
203 return 0;
204 if (masks_are_equal && (longer < 0))
205 for (lim2 = m - longer; m < lim2; )
206 if (*m++)
207 return 1;
208 return (!masks_are_equal);
209 }
210
211 struct radix_node *
212 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
213 {
214 return (rn_lookup_args(v_arg, m_arg, head, NULL, NULL));
215 }
216
217 struct radix_node *
218 rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head,
219 rn_matchf_t *f, void *w)
220 {
221 struct radix_node *x;
222 caddr_t netmask = NULL;
223
224 if (m_arg) {
225 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
226 if (x == 0)
227 return (NULL);
228 netmask = x->rn_key;
229 }
230 x = rn_match_args(v_arg, head, f, w);
231 if (x && netmask) {
232 while (x && x->rn_mask != netmask)
233 x = x->rn_dupedkey;
234 }
235 return x;
236 }
237
238 /*
239 * Returns true if address 'trial' has no bits differing from the
240 * leaf's key when compared under the leaf's mask. In other words,
241 * returns true when 'trial' matches leaf. If a leaf-matching
242 * routine is passed in, it is also used to find a match on the
243 * conditions defined by the caller of rn_match.
244 */
245 static int
246 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
247 rn_matchf_t *f, void *w)
248 {
249 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
250 char *cplim;
251 int length = min(*(u_char *)cp, *(u_char *)cp2);
252
253 if (cp3 == 0)
254 cp3 = rn_ones;
255 else
256 length = min(length, *(u_char *)cp3);
257 cplim = cp + length; cp3 += skip; cp2 += skip;
258 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
259 if ((*cp ^ *cp2) & *cp3)
260 return 0;
261
262 return (RN_MATCHF(leaf, f, w));
263 }
264
265 struct radix_node *
266 rn_match(void *v_arg, struct radix_node_head *head)
267 {
268 return (rn_match_args(v_arg, head, NULL, NULL));
269 }
270
271 struct radix_node *
272 rn_match_args(void *v_arg, struct radix_node_head *head,
273 rn_matchf_t *f, void *w)
274 {
275 caddr_t v = v_arg;
276 struct radix_node *t = head->rnh_treetop, *x;
277 caddr_t cp = v, cp2;
278 caddr_t cplim;
279 struct radix_node *saved_t, *top = t;
280 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
281 int test, b, rn_bit;
282
283 /*
284 * Open code rn_search(v, top) to avoid overhead of extra
285 * subroutine call.
286 */
287 for (; t->rn_bit >= 0; ) {
288 if (t->rn_bmask & cp[t->rn_offset])
289 t = t->rn_right;
290 else
291 t = t->rn_left;
292 }
293 /*
294 * See if we match exactly as a host destination
295 * or at least learn how many bits match, for normal mask finesse.
296 *
297 * It doesn't hurt us to limit how many bytes to check
298 * to the length of the mask, since if it matches we had a genuine
299 * match and the leaf we have is the most specific one anyway;
300 * if it didn't match with a shorter length it would fail
301 * with a long one. This wins big for class B&C netmasks which
302 * are probably the most common case...
303 */
304 if (t->rn_mask)
305 vlen = *(u_char *)t->rn_mask;
306 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
307 for (; cp < cplim; cp++, cp2++)
308 if (*cp != *cp2)
309 goto on1;
310 /*
311 * This extra grot is in case we are explicitly asked
312 * to look up the default. Ugh!
313 *
314 * Never return the root node itself, it seems to cause a
315 * lot of confusion.
316 */
317 if (t->rn_flags & RNF_ROOT)
318 t = t->rn_dupedkey;
319 if (t == NULL || RN_MATCHF(t, f, w)) {
320 return (t);
321 } else {
322 /*
323 * Although we found an exact match on the key,
324 * f() is looking for some other criteria as well.
325 * Continue looking as if the exact match failed.
326 */
327 if (t->rn_parent->rn_flags & RNF_ROOT) {
328 /* Hit the top; have to give up */
329 return (NULL);
330 }
331 b = 0;
332 goto keeplooking;
333 }
334 on1:
335 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
336 for (b = 7; (test >>= 1) > 0;)
337 b--;
338 keeplooking:
339 matched_off = cp - v;
340 b += matched_off << 3;
341 rn_bit = -1 - b;
342 /*
343 * If there is a host route in a duped-key chain, it will be first.
344 */
345 if ((saved_t = t)->rn_mask == 0)
346 t = t->rn_dupedkey;
347 for (; t; t = t->rn_dupedkey) {
348 /*
349 * Even if we don't match exactly as a host,
350 * we may match if the leaf we wound up at is
351 * a route to a net.
352 */
353 if (t->rn_flags & RNF_NORMAL) {
354 if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w))
355 return (t);
356 } else if (rn_satisfies_leaf(v, t, matched_off, f, w)) {
357 return (t);
358 }
359 }
360 t = saved_t;
361 /* start searching up the tree */
362 do {
363 struct radix_mask *m;
364 t = t->rn_parent;
365 m = t->rn_mklist;
366 /*
367 * If non-contiguous masks ever become important
368 * we can restore the masking and open coding of
369 * the search and satisfaction test and put the
370 * calculation of "off" back before the "do".
371 */
372 while (m) {
373 if (m->rm_flags & RNF_NORMAL) {
374 if ((rn_bit <= m->rm_bit) &&
375 RN_MATCHF(m->rm_leaf, f, w))
376 return (m->rm_leaf);
377 } else {
378 off = min(t->rn_offset, matched_off);
379 x = rn_search_m(v, t, m->rm_mask);
380 while (x && x->rn_mask != m->rm_mask)
381 x = x->rn_dupedkey;
382 if (x && rn_satisfies_leaf(v, x, off, f, w))
383 return (x);
384 }
385 m = m->rm_mklist;
386 }
387 } while (t != top);
388 return (NULL);
389 }
390
391 #ifdef RN_DEBUG
392 int rn_nodenum;
393 struct radix_node *rn_clist;
394 int rn_saveinfo;
395 int rn_debug = 1;
396 #endif
397
398 static struct radix_node *
399 rn_newpair(void *v, int b, struct radix_node nodes[2])
400 {
401 struct radix_node *tt = nodes, *t = tt + 1;
402 t->rn_bit = b;
403 t->rn_bmask = 0x80 >> (b & 7);
404 t->rn_left = tt;
405 t->rn_offset = b >> 3;
406 tt->rn_bit = -1;
407 tt->rn_key = (caddr_t)v;
408 tt->rn_parent = t;
409 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
410 tt->rn_mklist = t->rn_mklist = NULL;
411 #ifdef RN_DEBUG
412 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
413 tt->rn_twin = t;
414 tt->rn_ybro = rn_clist;
415 rn_clist = tt;
416 #endif
417 return t;
418 }
419
420 static struct radix_node *
421 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
422 struct radix_node nodes[2])
423 {
424 caddr_t v = v_arg;
425 struct radix_node *top = head->rnh_treetop;
426 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
427 struct radix_node *t = rn_search(v_arg, top);
428 caddr_t cp = v + head_off;
429 int b;
430 struct radix_node *tt;
431 /*
432 * Find first bit at which v and t->rn_key differ
433 */
434 {
435 caddr_t cp2 = t->rn_key + head_off;
436 int cmp_res;
437 caddr_t cplim = v + vlen;
438
439 while (cp < cplim)
440 if (*cp2++ != *cp++)
441 goto on1;
442 *dupentry = 1;
443 return t;
444 on1:
445 *dupentry = 0;
446 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
447 for (b = (cp - v) << 3; cmp_res; b--)
448 cmp_res >>= 1;
449 }
450 {
451 struct radix_node *p, *x = top;
452 cp = v;
453 do {
454 p = x;
455 if (cp[x->rn_offset] & x->rn_bmask)
456 x = x->rn_right;
457 else
458 x = x->rn_left;
459 } while (b > (unsigned) x->rn_bit);
460 /* x->rn_bit < b && x->rn_bit >= 0 */
461 #ifdef RN_DEBUG
462 if (rn_debug)
463 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
464 #endif
465 t = rn_newpair(v_arg, b, nodes);
466 tt = t->rn_left;
467 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
468 p->rn_left = t;
469 else
470 p->rn_right = t;
471 x->rn_parent = t;
472 t->rn_parent = p; /* frees x, p as temp vars below */
473 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
474 t->rn_right = x;
475 } else {
476 t->rn_right = tt;
477 t->rn_left = x;
478 }
479 #ifdef RN_DEBUG
480 if (rn_debug)
481 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
482 #endif
483 }
484 return (tt);
485 }
486
487 struct radix_node *
488 rn_addmask(void *n_arg, int search, int skip)
489 {
490 caddr_t netmask = (caddr_t)n_arg;
491 struct radix_node *x;
492 caddr_t cp, cplim;
493 int b = 0, mlen, j;
494 int maskduplicated, m0, isnormal;
495 struct radix_node *saved_x;
496 static int last_zeroed = 0;
497
498 if ((mlen = *(u_char *)netmask) > max_keylen)
499 mlen = max_keylen;
500 if (skip == 0)
501 skip = 1;
502 if (mlen <= skip)
503 return (mask_rnhead->rnh_nodes);
504 if (skip > 1)
505 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
506 if ((m0 = mlen) > skip)
507 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508 /*
509 * Trim trailing zeroes.
510 */
511 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512 cp--;
513 mlen = cp - addmask_key;
514 if (mlen <= skip) {
515 if (m0 >= last_zeroed)
516 last_zeroed = mlen;
517 return (mask_rnhead->rnh_nodes);
518 }
519 if (m0 < last_zeroed)
520 Bzero(addmask_key + m0, last_zeroed - m0);
521 *addmask_key = last_zeroed = mlen;
522 x = rn_search(addmask_key, rn_masktop);
523 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
524 x = NULL;
525 if (x || search)
526 return (x);
527 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
528 if ((saved_x = x) == 0)
529 return (NULL);
530 Bzero(x, max_keylen + 2 * sizeof (*x));
531 netmask = cp = (caddr_t)(x + 2);
532 Bcopy(addmask_key, cp, mlen);
533 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
534 if (maskduplicated) {
535 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
536 R_Free(saved_x);
537 return (x);
538 }
539 mask_rnhead->rnh_cnt++;
540 /*
541 * Calculate index of mask, and check for normalcy.
542 */
543 cplim = netmask + mlen; isnormal = 1;
544 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
545 cp++;
546 if (cp != cplim) {
547 for (j = 0x80; (j & *cp) != 0; j >>= 1)
548 b++;
549 if (*cp != normal_chars[b] || cp != (cplim - 1))
550 isnormal = 0;
551 }
552 b += (cp - netmask) << 3;
553 x->rn_bit = -1 - b;
554 if (isnormal)
555 x->rn_flags |= RNF_NORMAL;
556 return (x);
557 }
558
559 static int /* XXX: arbitrary ordering for non-contiguous masks */
560 rn_lexobetter(void *m_arg, void *n_arg)
561 {
562 u_char *mp = m_arg, *np = n_arg, *lim;
563
564 if (*mp > *np)
565 return 1; /* not really, but need to check longer one first */
566 if (*mp == *np)
567 for (lim = mp + *mp; mp < lim;)
568 if (*mp++ > *np++)
569 return 1;
570 return 0;
571 }
572
573 static struct radix_mask *
574 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
575 {
576 struct radix_mask *m;
577
578 MKGet(m);
579 if (m == 0) {
580 log(LOG_ERR, "Mask for route not entered\n");
581 return (NULL);
582 }
583 Bzero(m, sizeof *m);
584 m->rm_bit = tt->rn_bit;
585 m->rm_flags = tt->rn_flags;
586 if (tt->rn_flags & RNF_NORMAL)
587 m->rm_leaf = tt;
588 else
589 m->rm_mask = tt->rn_mask;
590 m->rm_mklist = next;
591 tt->rn_mklist = m;
592 return m;
593 }
594
595 struct radix_node *
596 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
597 struct radix_node treenodes[2])
598 {
599 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
600 struct radix_node *t, *x = NULL, *tt;
601 struct radix_node *saved_tt, *top = head->rnh_treetop;
602 short b = 0, b_leaf = 0;
603 int keyduplicated;
604 caddr_t mmask;
605 struct radix_mask *m, **mp;
606
607 /*
608 * In dealing with non-contiguous masks, there may be
609 * many different routes which have the same mask.
610 * We will find it useful to have a unique pointer to
611 * the mask to speed avoiding duplicate references at
612 * nodes and possibly save time in calculating indices.
613 */
614 if (netmask) {
615 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
616 return (NULL);
617 b_leaf = x->rn_bit;
618 b = -1 - x->rn_bit;
619 netmask = x->rn_key;
620 }
621 /*
622 * Deal with duplicated keys: attach node to previous instance
623 */
624 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625 if (keyduplicated) {
626 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
627 if (tt->rn_mask == netmask)
628 return (NULL);
629 if (netmask == 0 ||
630 (tt->rn_mask &&
631 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
632 || rn_refines(netmask, tt->rn_mask)
633 || rn_lexobetter(netmask, tt->rn_mask))))
634 break;
635 }
636 /*
637 * If the mask is not duplicated, we wouldn't
638 * find it among possible duplicate key entries
639 * anyway, so the above test doesn't hurt.
640 *
641 * We sort the masks for a duplicated key the same way as
642 * in a masklist -- most specific to least specific.
643 * This may require the unfortunate nuisance of relocating
644 * the head of the list.
645 */
646 if (tt == saved_tt) {
647 struct radix_node *xx = x;
648 /* link in at head of list */
649 (tt = treenodes)->rn_dupedkey = t;
650 tt->rn_flags = t->rn_flags;
651 tt->rn_parent = x = t->rn_parent;
652 t->rn_parent = tt; /* parent */
653 if (x->rn_left == t)
654 x->rn_left = tt;
655 else
656 x->rn_right = tt;
657 saved_tt = tt; x = xx;
658 } else {
659 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
660 t->rn_dupedkey = tt;
661 tt->rn_parent = t; /* parent */
662 if (tt->rn_dupedkey) /* parent */
663 tt->rn_dupedkey->rn_parent = tt; /* parent */
664 }
665 #ifdef RN_DEBUG
666 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
667 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
668 #endif
669 tt->rn_key = (caddr_t) v;
670 tt->rn_bit = -1;
671 tt->rn_flags = RNF_ACTIVE;
672 }
673 head->rnh_cnt++;
674 /*
675 * Put mask in tree.
676 */
677 if (netmask) {
678 tt->rn_mask = netmask;
679 tt->rn_bit = x->rn_bit;
680 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
681 }
682 t = saved_tt->rn_parent;
683 if (keyduplicated)
684 goto on2;
685 b_leaf = -1 - t->rn_bit;
686 if (t->rn_right == saved_tt)
687 x = t->rn_left;
688 else
689 x = t->rn_right;
690 /* Promote general routes from below */
691 if (x->rn_bit < 0) {
692 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
693 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
694 *mp = m = rn_new_radix_mask(x, NULL);
695 if (m)
696 mp = &m->rm_mklist;
697 }
698 } else if (x->rn_mklist) {
699 /*
700 * Skip over masks whose index is > that of new node
701 */
702 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
703 if (m->rm_bit >= b_leaf)
704 break;
705 t->rn_mklist = m; *mp = NULL;
706 }
707 on2:
708 /* Add new route to highest possible ancestor's list */
709 if ((netmask == 0) || (b > t->rn_bit ))
710 return tt; /* can't lift at all */
711 b_leaf = tt->rn_bit;
712 do {
713 x = t;
714 t = t->rn_parent;
715 } while (b <= t->rn_bit && x != top);
716 /*
717 * Search through routes associated with node to
718 * insert new route according to index.
719 * Need same criteria as when sorting dupedkeys to avoid
720 * double loop on deletion.
721 */
722 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
723 if (m->rm_bit < b_leaf)
724 continue;
725 if (m->rm_bit > b_leaf)
726 break;
727 if (m->rm_flags & RNF_NORMAL) {
728 mmask = m->rm_leaf->rn_mask;
729 if (tt->rn_flags & RNF_NORMAL) {
730 log(LOG_ERR,
731 "Non-unique normal route, mask not entered");
732 return tt;
733 }
734 } else
735 mmask = m->rm_mask;
736 if (mmask == netmask) {
737 m->rm_refs++;
738 tt->rn_mklist = m;
739 return tt;
740 }
741 if (rn_refines(netmask, mmask)
742 || rn_lexobetter(netmask, mmask))
743 break;
744 }
745 *mp = rn_new_radix_mask(tt, *mp);
746 return tt;
747 }
748
749 struct radix_node *
750 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
751 {
752 struct radix_node *t, *p, *x, *tt;
753 struct radix_mask *m, *saved_m, **mp;
754 struct radix_node *dupedkey, *saved_tt, *top;
755 caddr_t v, netmask;
756 int b, head_off, vlen;
757
758 v = v_arg;
759 netmask = netmask_arg;
760 x = head->rnh_treetop;
761 tt = rn_search(v, x);
762 head_off = x->rn_offset;
763 vlen = *(u_char *)v;
764 saved_tt = tt;
765 top = x;
766 if (tt == 0 ||
767 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
768 return (NULL);
769 /*
770 * Delete our route from mask lists.
771 */
772 if (netmask) {
773 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
774 return (NULL);
775 netmask = x->rn_key;
776 while (tt->rn_mask != netmask)
777 if ((tt = tt->rn_dupedkey) == 0)
778 return (NULL);
779 }
780 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
781 goto on1;
782 if (tt->rn_flags & RNF_NORMAL) {
783 if (m->rm_leaf != tt || m->rm_refs > 0) {
784 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
785 return NULL; /* dangling ref could cause disaster */
786 }
787 } else {
788 if (m->rm_mask != tt->rn_mask) {
789 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
790 goto on1;
791 }
792 if (--m->rm_refs >= 0)
793 goto on1;
794 }
795 b = -1 - tt->rn_bit;
796 t = saved_tt->rn_parent;
797 if (b > t->rn_bit)
798 goto on1; /* Wasn't lifted at all */
799 do {
800 x = t;
801 t = t->rn_parent;
802 } while (b <= t->rn_bit && x != top);
803 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
804 if (m == saved_m) {
805 *mp = m->rm_mklist;
806 MKFree(m);
807 break;
808 }
809 if (m == 0) {
810 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
811 if (tt->rn_flags & RNF_NORMAL)
812 return (NULL); /* Dangling ref to us */
813 }
814 on1:
815 /*
816 * Eliminate us from tree
817 */
818 if (tt->rn_flags & RNF_ROOT)
819 return (NULL);
820 head->rnh_cnt--;
821 #ifdef RN_DEBUG
822 /* Get us out of the creation list */
823 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
824 if (t) t->rn_ybro = tt->rn_ybro;
825 #endif
826 t = tt->rn_parent;
827 dupedkey = saved_tt->rn_dupedkey;
828 if (dupedkey) {
829 /*
830 * at this point, tt is the deletion target and saved_tt
831 * is the head of the dupekey chain
832 */
833 if (tt == saved_tt) {
834 /* remove from head of chain */
835 x = dupedkey; x->rn_parent = t;
836 if (t->rn_left == tt)
837 t->rn_left = x;
838 else
839 t->rn_right = x;
840 } else {
841 /* find node in front of tt on the chain */
842 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
843 p = p->rn_dupedkey;
844 if (p) {
845 p->rn_dupedkey = tt->rn_dupedkey;
846 if (tt->rn_dupedkey) /* parent */
847 tt->rn_dupedkey->rn_parent = p;
848 /* parent */
849 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
850 }
851 t = tt + 1;
852 if (t->rn_flags & RNF_ACTIVE) {
853 #ifndef RN_DEBUG
854 *++x = *t;
855 p = t->rn_parent;
856 #else
857 b = t->rn_info;
858 *++x = *t;
859 t->rn_info = b;
860 p = t->rn_parent;
861 #endif
862 if (p->rn_left == t)
863 p->rn_left = x;
864 else
865 p->rn_right = x;
866 x->rn_left->rn_parent = x;
867 x->rn_right->rn_parent = x;
868 }
869 goto out;
870 }
871 if (t->rn_left == tt)
872 x = t->rn_right;
873 else
874 x = t->rn_left;
875 p = t->rn_parent;
876 if (p->rn_right == t)
877 p->rn_right = x;
878 else
879 p->rn_left = x;
880 x->rn_parent = p;
881 /*
882 * Demote routes attached to us.
883 */
884 if (t->rn_mklist) {
885 if (x->rn_bit >= 0) {
886 for (mp = &x->rn_mklist; (m = *mp);)
887 mp = &m->rm_mklist;
888 *mp = t->rn_mklist;
889 } else {
890 /* If there are any key,mask pairs in a sibling
891 duped-key chain, some subset will appear sorted
892 in the same order attached to our mklist */
893 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
894 if (m == x->rn_mklist) {
895 struct radix_mask *mm = m->rm_mklist;
896 x->rn_mklist = NULL;
897 if (--(m->rm_refs) < 0)
898 MKFree(m);
899 m = mm;
900 }
901 if (m)
902 log(LOG_ERR,
903 "rn_delete: Orphaned Mask %p at %p\n",
904 (void *)m, (void *)x);
905 }
906 }
907 /*
908 * We may be holding an active internal node in the tree.
909 */
910 x = tt + 1;
911 if (t != x) {
912 #ifndef RN_DEBUG
913 *t = *x;
914 #else
915 b = t->rn_info;
916 *t = *x;
917 t->rn_info = b;
918 #endif
919 t->rn_left->rn_parent = t;
920 t->rn_right->rn_parent = t;
921 p = x->rn_parent;
922 if (p->rn_left == x)
923 p->rn_left = t;
924 else
925 p->rn_right = t;
926 }
927 out:
928 tt->rn_flags &= ~RNF_ACTIVE;
929 tt[1].rn_flags &= ~RNF_ACTIVE;
930 return (tt);
931 }
932
933 /*
934 * This is the same as rn_walktree() except for the parameters and the
935 * exit.
936 */
937 static int
938 rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f,
939 void *w)
940 {
941 int error;
942 struct radix_node *base, *next;
943 u_char *xa = (u_char *)a;
944 u_char *xm = (u_char *)m;
945 struct radix_node *rn, *last;
946 int stopping;
947 int lastb;
948 int rnh_cnt;
949
950 /*
951 * This gets complicated because we may delete the node while
952 * applying the function f to it; we cannot simply use the next
953 * leaf as the successor node in advance, because that leaf may
954 * be removed as well during deletion when it is a clone of the
955 * current node. When that happens, we would end up referring
956 * to an already-freed radix node as the successor node. To get
957 * around this issue, if we detect that the radix tree has changed
958 * in dimension (smaller than before), we simply restart the walk
959 * from the top of tree.
960 */
961 restart:
962 last = NULL;
963 stopping = 0;
964 rnh_cnt = h->rnh_cnt;
965
966 /*
967 * rn_search_m is sort-of-open-coded here.
968 */
969 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
970 last = rn;
971 if (!(rn->rn_bmask & xm[rn->rn_offset]))
972 break;
973
974 if (rn->rn_bmask & xa[rn->rn_offset])
975 rn = rn->rn_right;
976 else
977 rn = rn->rn_left;
978 }
979
980 /*
981 * Two cases: either we stepped off the end of our mask,
982 * in which case last == rn, or we reached a leaf, in which
983 * case we want to start from the last node we looked at.
984 * Either way, last is the node we want to start from.
985 */
986 rn = last;
987 lastb = rn->rn_bit;
988
989 /* First time through node, go left */
990 while (rn->rn_bit >= 0)
991 rn = rn->rn_left;
992
993 while (!stopping) {
994 base = rn;
995 /* If at right child go back up, otherwise, go right */
996 while (rn->rn_parent->rn_right == rn
997 && !(rn->rn_flags & RNF_ROOT)) {
998 rn = rn->rn_parent;
999
1000 /* if went up beyond last, stop */
1001 if (rn->rn_bit <= lastb) {
1002 stopping = 1;
1003 /*
1004 * XXX we should jump to the 'Process leaves'
1005 * part, because the values of 'rn' and 'next'
1006 * we compute will not be used. Not a big deal
1007 * because this loop will terminate, but it is
1008 * inefficient and hard to understand!
1009 */
1010 }
1011 }
1012
1013 /*
1014 * The following code (bug fix) inherited from FreeBSD is
1015 * currently disabled, because our implementation uses the
1016 * RTF_PRCLONING scheme that has been abandoned in current
1017 * FreeBSD release. The scheme involves setting such a flag
1018 * for the default route entry, and therefore all off-link
1019 * destinations would become clones of that entry. Enabling
1020 * the following code would be problematic at this point,
1021 * because the removal of default route would cause only
1022 * the left-half of the tree to be traversed, leaving the
1023 * right-half untouched. If there are clones of the entry
1024 * that reside in that right-half, they would not be deleted
1025 * and would linger around until they expire or explicitly
1026 * deleted, which is a very bad thing.
1027 *
1028 * This code should be uncommented only after we get rid
1029 * of the RTF_PRCLONING scheme.
1030 */
1031 #if 0
1032 /*
1033 * At the top of the tree, no need to traverse the right
1034 * half, prevent the traversal of the entire tree in the
1035 * case of default route.
1036 */
1037 if (rn->rn_parent->rn_flags & RNF_ROOT)
1038 stopping = 1;
1039 #endif
1040
1041 /* Find the next *leaf* to start from */
1042 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1043 rn = rn->rn_left;
1044 next = rn;
1045 /* Process leaves */
1046 while ((rn = base) != 0) {
1047 base = rn->rn_dupedkey;
1048 if (!(rn->rn_flags & RNF_ROOT)
1049 && (error = (*f)(rn, w)))
1050 return (error);
1051 }
1052 /* If one or more nodes got deleted, restart from top */
1053 if (h->rnh_cnt < rnh_cnt)
1054 goto restart;
1055 rn = next;
1056 if (rn->rn_flags & RNF_ROOT)
1057 stopping = 1;
1058 }
1059 return 0;
1060 }
1061
1062 static int
1063 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1064 {
1065 int error;
1066 struct radix_node *base, *next;
1067 struct radix_node *rn;
1068 int rnh_cnt;
1069
1070 /*
1071 * This gets complicated because we may delete the node while
1072 * applying the function f to it; we cannot simply use the next
1073 * leaf as the successor node in advance, because that leaf may
1074 * be removed as well during deletion when it is a clone of the
1075 * current node. When that happens, we would end up referring
1076 * to an already-freed radix node as the successor node. To get
1077 * around this issue, if we detect that the radix tree has changed
1078 * in dimension (smaller than before), we simply restart the walk
1079 * from the top of tree.
1080 */
1081 restart:
1082 rn = h->rnh_treetop;
1083 rnh_cnt = h->rnh_cnt;
1084
1085 /* First time through node, go left */
1086 while (rn->rn_bit >= 0)
1087 rn = rn->rn_left;
1088 for (;;) {
1089 base = rn;
1090 /* If at right child go back up, otherwise, go right */
1091 while (rn->rn_parent->rn_right == rn &&
1092 (rn->rn_flags & RNF_ROOT) == 0)
1093 rn = rn->rn_parent;
1094 /* Find the next *leaf* to start from */
1095 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1096 rn = rn->rn_left;
1097 next = rn;
1098 /* Process leaves */
1099 while ((rn = base) != NULL) {
1100 base = rn->rn_dupedkey;
1101 if (!(rn->rn_flags & RNF_ROOT)
1102 && (error = (*f)(rn, w)))
1103 return (error);
1104 }
1105 /* If one or more nodes got deleted, restart from top */
1106 if (h->rnh_cnt < rnh_cnt)
1107 goto restart;
1108 rn = next;
1109 if (rn->rn_flags & RNF_ROOT)
1110 return (0);
1111 }
1112 /* NOTREACHED */
1113 }
1114
1115 int
1116 rn_inithead(void **head, int off)
1117 {
1118 struct radix_node_head *rnh;
1119 struct radix_node *t, *tt, *ttt;
1120 if (*head)
1121 return (1);
1122 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1123 if (rnh == 0)
1124 return (0);
1125 Bzero(rnh, sizeof (*rnh));
1126 *head = rnh;
1127 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1128 ttt = rnh->rnh_nodes + 2;
1129 t->rn_right = ttt;
1130 t->rn_parent = t;
1131 tt = t->rn_left;
1132 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1133 tt->rn_bit = -1 - off;
1134 *ttt = *tt;
1135 ttt->rn_key = rn_ones;
1136 rnh->rnh_addaddr = rn_addroute;
1137 rnh->rnh_deladdr = rn_delete;
1138 rnh->rnh_matchaddr = rn_match;
1139 rnh->rnh_matchaddr_args = rn_match_args;
1140 rnh->rnh_lookup = rn_lookup;
1141 rnh->rnh_lookup_args = rn_lookup_args;
1142 rnh->rnh_walktree = rn_walktree;
1143 rnh->rnh_walktree_from = rn_walktree_from;
1144 rnh->rnh_treetop = t;
1145 rnh->rnh_cnt = 3;
1146 return (1);
1147 }
1148
1149 void
1150 rn_init(void)
1151 {
1152 char *cp, *cplim;
1153 #ifdef KERNEL
1154 struct domain *dom;
1155
1156 /* lock already held when rn_init is called */
1157 for (dom = domains; dom; dom = dom->dom_next)
1158 if (dom->dom_maxrtkey > max_keylen)
1159 max_keylen = dom->dom_maxrtkey;
1160 #endif
1161 if (max_keylen == 0) {
1162 log(LOG_ERR,
1163 "rn_init: radix functions require max_keylen be set\n");
1164 return;
1165 }
1166 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1167 if (rn_zeros == NULL)
1168 panic("rn_init");
1169 Bzero(rn_zeros, 3 * max_keylen);
1170 rn_ones = cp = rn_zeros + max_keylen;
1171 addmask_key = cplim = rn_ones + max_keylen;
1172 while (cp < cplim)
1173 *cp++ = -1;
1174 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1175 panic("rn_init 2");
1176
1177 rn_mutex = lck_mtx_alloc_init(domain_proto_mtx_grp, domain_proto_mtx_attr);
1178 }