]> git.saurik.com Git - apple/xnu.git/blob - osfmk/x86_64/pmap.c
xnu-3248.30.4.tar.gz
[apple/xnu.git] / osfmk / x86_64 / pmap.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * File: pmap.c
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
63 *
64 * Physical Map management code for Intel i386, i486, and i860.
65 *
66 * Manages physical address maps.
67 *
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
74 *
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
80 * requested.
81 *
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
89 */
90
91 #include <string.h>
92 #include <mach_ldebug.h>
93
94 #include <libkern/OSAtomic.h>
95
96 #include <mach/machine/vm_types.h>
97
98 #include <mach/boolean.h>
99 #include <kern/thread.h>
100 #include <kern/zalloc.h>
101 #include <kern/queue.h>
102 #include <kern/ledger.h>
103 #include <kern/mach_param.h>
104
105 #include <kern/kalloc.h>
106 #include <kern/spl.h>
107
108 #include <vm/pmap.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_kern.h>
111 #include <mach/vm_param.h>
112 #include <mach/vm_prot.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115
116 #include <mach/machine/vm_param.h>
117 #include <machine/thread.h>
118
119 #include <kern/misc_protos.h> /* prototyping */
120 #include <i386/misc_protos.h>
121 #include <i386/i386_lowmem.h>
122 #include <x86_64/lowglobals.h>
123
124 #include <i386/cpuid.h>
125 #include <i386/cpu_data.h>
126 #include <i386/cpu_number.h>
127 #include <i386/machine_cpu.h>
128 #include <i386/seg.h>
129 #include <i386/serial_io.h>
130 #include <i386/cpu_capabilities.h>
131 #include <i386/machine_routines.h>
132 #include <i386/proc_reg.h>
133 #include <i386/tsc.h>
134 #include <i386/pmap_internal.h>
135 #include <i386/pmap_pcid.h>
136 #if CONFIG_VMX
137 #include <i386/vmx/vmx_cpu.h>
138 #endif
139
140 #include <vm/vm_protos.h>
141
142 #include <i386/mp.h>
143 #include <i386/mp_desc.h>
144 #include <libkern/kernel_mach_header.h>
145
146 #include <pexpert/i386/efi.h>
147
148
149 #ifdef IWANTTODEBUG
150 #undef DEBUG
151 #define DEBUG 1
152 #define POSTCODE_DELAY 1
153 #include <i386/postcode.h>
154 #endif /* IWANTTODEBUG */
155
156 #ifdef PMAP_DEBUG
157 #define DBG(x...) kprintf("DBG: " x)
158 #else
159 #define DBG(x...)
160 #endif
161 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
162 * in the trampolines for kernel/user boundary TLB coherency.
163 */
164 char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1];
165 boolean_t pmap_trace = FALSE;
166
167 boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */
168
169 int nx_enabled = 1; /* enable no-execute protection */
170 int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */
171 int allow_stack_exec = 0; /* No apps may execute from the stack by default */
172
173 const boolean_t cpu_64bit = TRUE; /* Mais oui! */
174
175 uint64_t max_preemption_latency_tsc = 0;
176
177 pv_hashed_entry_t *pv_hash_table; /* hash lists */
178
179 uint32_t npvhashmask = 0, npvhashbuckets = 0;
180
181 pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
182 pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
183 decl_simple_lock_data(,pv_hashed_free_list_lock)
184 decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
185 decl_simple_lock_data(,pv_hash_table_lock)
186
187 decl_simple_lock_data(,phys_backup_lock)
188
189 zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */
190
191 /*
192 * First and last physical addresses that we maintain any information
193 * for. Initialized to zero so that pmap operations done before
194 * pmap_init won't touch any non-existent structures.
195 */
196 boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */
197
198 static struct vm_object kptobj_object_store;
199 static struct vm_object kpml4obj_object_store;
200 static struct vm_object kpdptobj_object_store;
201
202 /*
203 * Array of physical page attribites for managed pages.
204 * One byte per physical page.
205 */
206 char *pmap_phys_attributes;
207 ppnum_t last_managed_page = 0;
208
209 /*
210 * Amount of virtual memory mapped by one
211 * page-directory entry.
212 */
213
214 uint64_t pde_mapped_size = PDE_MAPPED_SIZE;
215
216 unsigned pmap_memory_region_count;
217 unsigned pmap_memory_region_current;
218
219 pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
220
221 /*
222 * Other useful macros.
223 */
224 #define current_pmap() (vm_map_pmap(current_thread()->map))
225
226 struct pmap kernel_pmap_store;
227 pmap_t kernel_pmap;
228
229 struct zone *pmap_zone; /* zone of pmap structures */
230
231 struct zone *pmap_anchor_zone;
232 int pmap_debug = 0; /* flag for debugging prints */
233
234 unsigned int inuse_ptepages_count = 0;
235 long long alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */
236 unsigned int bootstrap_wired_pages = 0;
237 int pt_fake_zone_index = -1;
238
239 extern long NMIPI_acks;
240
241 boolean_t kernel_text_ps_4K = TRUE;
242 boolean_t wpkernel = TRUE;
243
244 extern char end;
245
246 static int nkpt;
247
248 pt_entry_t *DMAP1, *DMAP2;
249 caddr_t DADDR1;
250 caddr_t DADDR2;
251
252 boolean_t pmap_disable_kheap_nx = FALSE;
253 boolean_t pmap_disable_kstack_nx = FALSE;
254 extern boolean_t doconstro_override;
255
256 extern long __stack_chk_guard[];
257
258 boolean_t pmap_ept_support_ad = FALSE;
259
260
261 /*
262 * Map memory at initialization. The physical addresses being
263 * mapped are not managed and are never unmapped.
264 *
265 * For now, VM is already on, we only need to map the
266 * specified memory.
267 */
268 vm_offset_t
269 pmap_map(
270 vm_offset_t virt,
271 vm_map_offset_t start_addr,
272 vm_map_offset_t end_addr,
273 vm_prot_t prot,
274 unsigned int flags)
275 {
276 int ps;
277
278 ps = PAGE_SIZE;
279 while (start_addr < end_addr) {
280 pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
281 (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, TRUE);
282 virt += ps;
283 start_addr += ps;
284 }
285 return(virt);
286 }
287
288 extern char *first_avail;
289 extern vm_offset_t virtual_avail, virtual_end;
290 extern pmap_paddr_t avail_start, avail_end;
291 extern vm_offset_t sHIB;
292 extern vm_offset_t eHIB;
293 extern vm_offset_t stext;
294 extern vm_offset_t etext;
295 extern vm_offset_t sdata, edata;
296 extern vm_offset_t sconstdata, econstdata;
297
298 extern void *KPTphys;
299
300 boolean_t pmap_smep_enabled = FALSE;
301 boolean_t pmap_smap_enabled = FALSE;
302
303 void
304 pmap_cpu_init(void)
305 {
306 cpu_data_t *cdp = current_cpu_datap();
307 /*
308 * Here early in the life of a processor (from cpu_mode_init()).
309 * Ensure global page feature is disabled at this point.
310 */
311
312 set_cr4(get_cr4() &~ CR4_PGE);
313
314 /*
315 * Initialize the per-cpu, TLB-related fields.
316 */
317 cdp->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
318 cdp->cpu_active_cr3 = kernel_pmap->pm_cr3;
319 cdp->cpu_tlb_invalid = FALSE;
320 cdp->cpu_task_map = TASK_MAP_64BIT;
321 pmap_pcid_configure();
322 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP) {
323 boolean_t nsmep;
324 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep, sizeof(nsmep))) {
325 set_cr4(get_cr4() | CR4_SMEP);
326 pmap_smep_enabled = TRUE;
327 }
328 }
329 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMAP) {
330 boolean_t nsmap;
331 if (!PE_parse_boot_argn("-pmap_smap_disable", &nsmap, sizeof(nsmap))) {
332 set_cr4(get_cr4() | CR4_SMAP);
333 pmap_smap_enabled = TRUE;
334 }
335 }
336
337 if (cdp->cpu_fixed_pmcs_enabled) {
338 boolean_t enable = TRUE;
339 cpu_pmc_control(&enable);
340 }
341 }
342
343 static uint32_t pmap_scale_shift(void) {
344 uint32_t scale = 0;
345
346 if (sane_size <= 8*GB) {
347 scale = (uint32_t)(sane_size / (2 * GB));
348 } else if (sane_size <= 32*GB) {
349 scale = 4 + (uint32_t)((sane_size - (8 * GB))/ (4 * GB));
350 } else {
351 scale = 10 + (uint32_t)MIN(4, ((sane_size - (32 * GB))/ (8 * GB)));
352 }
353 return scale;
354 }
355
356 /*
357 * Bootstrap the system enough to run with virtual memory.
358 * Map the kernel's code and data, and allocate the system page table.
359 * Called with mapping OFF. Page_size must already be set.
360 */
361
362 void
363 pmap_bootstrap(
364 __unused vm_offset_t load_start,
365 __unused boolean_t IA32e)
366 {
367 #if NCOPY_WINDOWS > 0
368 vm_offset_t va;
369 int i;
370 #endif
371 assert(IA32e);
372
373 vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address
374 * known to VM */
375 /*
376 * The kernel's pmap is statically allocated so we don't
377 * have to use pmap_create, which is unlikely to work
378 * correctly at this part of the boot sequence.
379 */
380
381 kernel_pmap = &kernel_pmap_store;
382 kernel_pmap->ref_count = 1;
383 kernel_pmap->nx_enabled = TRUE;
384 kernel_pmap->pm_task_map = TASK_MAP_64BIT;
385 kernel_pmap->pm_obj = (vm_object_t) NULL;
386 kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD);
387 kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT);
388 kernel_pmap->pm_pml4 = IdlePML4;
389 kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4);
390 kernel_pmap->pm_eptp = 0;
391 pmap_pcid_initialize_kernel(kernel_pmap);
392
393
394
395 current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3;
396
397 nkpt = NKPT;
398 OSAddAtomic(NKPT, &inuse_ptepages_count);
399 OSAddAtomic64(NKPT, &alloc_ptepages_count);
400 bootstrap_wired_pages = NKPT;
401
402 virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail;
403 virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
404
405 #if NCOPY_WINDOWS > 0
406 /*
407 * Reserve some special page table entries/VA space for temporary
408 * mapping of pages.
409 */
410 #define SYSMAP(c, p, v, n) \
411 v = (c)va; va += ((n)*INTEL_PGBYTES);
412
413 va = virtual_avail;
414
415 for (i=0; i<PMAP_NWINDOWS; i++) {
416 #if 1
417 kprintf("trying to do SYSMAP idx %d %p\n", i,
418 current_cpu_datap());
419 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap);
420 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow);
421 kprintf("two stuff %p %p\n",
422 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
423 (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR));
424 #endif
425 SYSMAP(caddr_t,
426 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
427 (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR),
428 1);
429 current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP =
430 &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store);
431 *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
432 }
433
434 /* DMAP user for debugger */
435 SYSMAP(caddr_t, DMAP1, DADDR1, 1);
436 SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */
437
438 virtual_avail = va;
439 #endif
440 if (!PE_parse_boot_argn("npvhash", &npvhashmask, sizeof (npvhashmask))) {
441 npvhashmask = ((NPVHASHBUCKETS) << pmap_scale_shift()) - 1;
442
443 }
444
445 npvhashbuckets = npvhashmask + 1;
446
447 if (0 != ((npvhashbuckets) & npvhashmask)) {
448 panic("invalid hash %d, must be ((2^N)-1), "
449 "using default %d\n", npvhashmask, NPVHASHMASK);
450 }
451
452 simple_lock_init(&kernel_pmap->lock, 0);
453 simple_lock_init(&pv_hashed_free_list_lock, 0);
454 simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
455 simple_lock_init(&pv_hash_table_lock,0);
456 simple_lock_init(&phys_backup_lock, 0);
457
458 pmap_cpu_init();
459
460 if (pmap_pcid_ncpus)
461 printf("PMAP: PCID enabled\n");
462
463 if (pmap_smep_enabled)
464 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
465 if (pmap_smap_enabled)
466 printf("PMAP: Supervisor Mode Access Protection enabled\n");
467
468 #if DEBUG
469 printf("Stack canary: 0x%lx\n", __stack_chk_guard[0]);
470 printf("early_random(): 0x%qx\n", early_random());
471 #endif
472 boolean_t ptmp;
473 /* Check if the user has requested disabling stack or heap no-execute
474 * enforcement. These are "const" variables; that qualifier is cast away
475 * when altering them. The TEXT/DATA const sections are marked
476 * write protected later in the kernel startup sequence, so altering
477 * them is possible at this point, in pmap_bootstrap().
478 */
479 if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp, sizeof(ptmp))) {
480 boolean_t *pdknxp = (boolean_t *) &pmap_disable_kheap_nx;
481 *pdknxp = TRUE;
482 }
483
484 if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp, sizeof(ptmp))) {
485 boolean_t *pdknhp = (boolean_t *) &pmap_disable_kstack_nx;
486 *pdknhp = TRUE;
487 }
488
489 boot_args *args = (boot_args *)PE_state.bootArgs;
490 if (args->efiMode == kBootArgsEfiMode32) {
491 printf("EFI32: kernel virtual space limited to 4GB\n");
492 virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32;
493 }
494 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
495 (long)KERNEL_BASE, (long)virtual_end);
496 kprintf("Available physical space from 0x%llx to 0x%llx\n",
497 avail_start, avail_end);
498
499 /*
500 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
501 * in the DEBUG kernel) to force the kernel to switch to its own map
502 * (and cr3) when control is in kernelspace. The kernel's map does not
503 * include (i.e. share) userspace so wild references will cause
504 * a panic. Only copyin and copyout are exempt from this.
505 */
506 (void) PE_parse_boot_argn("-no_shared_cr3",
507 &no_shared_cr3, sizeof (no_shared_cr3));
508 if (no_shared_cr3)
509 kprintf("Kernel not sharing user map\n");
510
511 #ifdef PMAP_TRACES
512 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) {
513 kprintf("Kernel traces for pmap operations enabled\n");
514 }
515 #endif /* PMAP_TRACES */
516 }
517
518 void
519 pmap_virtual_space(
520 vm_offset_t *startp,
521 vm_offset_t *endp)
522 {
523 *startp = virtual_avail;
524 *endp = virtual_end;
525 }
526
527
528
529
530 #if HIBERNATION
531
532 #include <IOKit/IOHibernatePrivate.h>
533
534 int32_t pmap_npages;
535 int32_t pmap_teardown_last_valid_compact_indx = -1;
536
537
538 void hibernate_rebuild_pmap_structs(void);
539 void hibernate_teardown_pmap_structs(addr64_t *, addr64_t *);
540 void pmap_pack_index(uint32_t);
541 int32_t pmap_unpack_index(pv_rooted_entry_t);
542
543
544 int32_t
545 pmap_unpack_index(pv_rooted_entry_t pv_h)
546 {
547 int32_t indx = 0;
548
549 indx = (int32_t)(*((uint64_t *)(&pv_h->qlink.next)) >> 48);
550 indx = indx << 16;
551 indx |= (int32_t)(*((uint64_t *)(&pv_h->qlink.prev)) >> 48);
552
553 *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)0xffff << 48);
554 *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)0xffff << 48);
555
556 return (indx);
557 }
558
559
560 void
561 pmap_pack_index(uint32_t indx)
562 {
563 pv_rooted_entry_t pv_h;
564
565 pv_h = &pv_head_table[indx];
566
567 *((uint64_t *)(&pv_h->qlink.next)) &= ~((uint64_t)0xffff << 48);
568 *((uint64_t *)(&pv_h->qlink.prev)) &= ~((uint64_t)0xffff << 48);
569
570 *((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)(indx >> 16)) << 48;
571 *((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)(indx & 0xffff)) << 48;
572 }
573
574
575 void
576 hibernate_teardown_pmap_structs(addr64_t *unneeded_start, addr64_t *unneeded_end)
577 {
578 int32_t i;
579 int32_t compact_target_indx;
580
581 compact_target_indx = 0;
582
583 for (i = 0; i < pmap_npages; i++) {
584 if (pv_head_table[i].pmap == PMAP_NULL) {
585
586 if (pv_head_table[compact_target_indx].pmap != PMAP_NULL)
587 compact_target_indx = i;
588 } else {
589 pmap_pack_index((uint32_t)i);
590
591 if (pv_head_table[compact_target_indx].pmap == PMAP_NULL) {
592 /*
593 * we've got a hole to fill, so
594 * move this pv_rooted_entry_t to it's new home
595 */
596 pv_head_table[compact_target_indx] = pv_head_table[i];
597 pv_head_table[i].pmap = PMAP_NULL;
598
599 pmap_teardown_last_valid_compact_indx = compact_target_indx;
600 compact_target_indx++;
601 } else
602 pmap_teardown_last_valid_compact_indx = i;
603 }
604 }
605 *unneeded_start = (addr64_t)&pv_head_table[pmap_teardown_last_valid_compact_indx+1];
606 *unneeded_end = (addr64_t)&pv_head_table[pmap_npages-1];
607
608 HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
609 }
610
611
612 void
613 hibernate_rebuild_pmap_structs(void)
614 {
615 int32_t cindx, eindx, rindx;
616 pv_rooted_entry_t pv_h;
617
618 eindx = (int32_t)pmap_npages;
619
620 for (cindx = pmap_teardown_last_valid_compact_indx; cindx >= 0; cindx--) {
621
622 pv_h = &pv_head_table[cindx];
623
624 rindx = pmap_unpack_index(pv_h);
625 assert(rindx < pmap_npages);
626
627 if (rindx != cindx) {
628 /*
629 * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
630 * so move it back to its real location
631 */
632 pv_head_table[rindx] = pv_head_table[cindx];
633 }
634 if (rindx+1 != eindx) {
635 /*
636 * the 'hole' between this vm_rooted_entry_t and the previous
637 * vm_rooted_entry_t we moved needs to be initialized as
638 * a range of zero'd vm_rooted_entry_t's
639 */
640 bzero((char *)&pv_head_table[rindx+1], (eindx - rindx - 1) * sizeof (struct pv_rooted_entry));
641 }
642 eindx = rindx;
643 }
644 if (rindx)
645 bzero ((char *)&pv_head_table[0], rindx * sizeof (struct pv_rooted_entry));
646
647 HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
648 }
649
650 #endif
651
652 /*
653 * Initialize the pmap module.
654 * Called by vm_init, to initialize any structures that the pmap
655 * system needs to map virtual memory.
656 */
657 void
658 pmap_init(void)
659 {
660 long npages;
661 vm_offset_t addr;
662 vm_size_t s, vsize;
663 vm_map_offset_t vaddr;
664 ppnum_t ppn;
665
666
667 kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store;
668 _vm_object_allocate((vm_object_size_t)NPML4PGS * PAGE_SIZE, &kpml4obj_object_store);
669
670 kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store;
671 _vm_object_allocate((vm_object_size_t)NPDPTPGS * PAGE_SIZE, &kpdptobj_object_store);
672
673 kernel_pmap->pm_obj = &kptobj_object_store;
674 _vm_object_allocate((vm_object_size_t)NPDEPGS * PAGE_SIZE, &kptobj_object_store);
675
676 /*
677 * Allocate memory for the pv_head_table and its lock bits,
678 * the modify bit array, and the pte_page table.
679 */
680
681 /*
682 * zero bias all these arrays now instead of off avail_start
683 * so we cover all memory
684 */
685
686 npages = i386_btop(avail_end);
687 #if HIBERNATION
688 pmap_npages = (uint32_t)npages;
689 #endif
690 s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
691 + (sizeof (struct pv_hashed_entry_t *) * (npvhashbuckets))
692 + pv_lock_table_size(npages)
693 + pv_hash_lock_table_size((npvhashbuckets))
694 + npages);
695 s = round_page(s);
696 if (kernel_memory_allocate(kernel_map, &addr, s, 0,
697 KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_PMAP)
698 != KERN_SUCCESS)
699 panic("pmap_init");
700
701 memset((char *)addr, 0, s);
702
703 vaddr = addr;
704 vsize = s;
705
706 #if PV_DEBUG
707 if (0 == npvhashmask) panic("npvhashmask not initialized");
708 #endif
709
710 /*
711 * Allocate the structures first to preserve word-alignment.
712 */
713 pv_head_table = (pv_rooted_entry_t) addr;
714 addr = (vm_offset_t) (pv_head_table + npages);
715
716 pv_hash_table = (pv_hashed_entry_t *)addr;
717 addr = (vm_offset_t) (pv_hash_table + (npvhashbuckets));
718
719 pv_lock_table = (char *) addr;
720 addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
721
722 pv_hash_lock_table = (char *) addr;
723 addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhashbuckets)));
724
725 pmap_phys_attributes = (char *) addr;
726
727 ppnum_t last_pn = i386_btop(avail_end);
728 unsigned int i;
729 pmap_memory_region_t *pmptr = pmap_memory_regions;
730 for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
731 if (pmptr->type != kEfiConventionalMemory)
732 continue;
733 ppnum_t pn;
734 for (pn = pmptr->base; pn <= pmptr->end; pn++) {
735 if (pn < last_pn) {
736 pmap_phys_attributes[pn] |= PHYS_MANAGED;
737
738 if (pn > last_managed_page)
739 last_managed_page = pn;
740
741 if (pn >= lowest_hi && pn <= highest_hi)
742 pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
743 }
744 }
745 }
746 while (vsize) {
747 ppn = pmap_find_phys(kernel_pmap, vaddr);
748
749 pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT;
750
751 vaddr += PAGE_SIZE;
752 vsize -= PAGE_SIZE;
753 }
754 /*
755 * Create the zone of physical maps,
756 * and of the physical-to-virtual entries.
757 */
758 s = (vm_size_t) sizeof(struct pmap);
759 pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */
760 zone_change(pmap_zone, Z_NOENCRYPT, TRUE);
761
762 pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors");
763 zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE);
764
765 /* The anchor is required to be page aligned. Zone debugging adds
766 * padding which may violate that requirement. Tell the zone
767 * subsystem that alignment is required.
768 */
769
770 zone_change(pmap_anchor_zone, Z_ALIGNMENT_REQUIRED, TRUE);
771
772 s = (vm_size_t) sizeof(struct pv_hashed_entry);
773 pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
774 4096 * 3 /* LCM x86_64*/, "pv_list");
775 zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE);
776
777 /* create pv entries for kernel pages mapped by low level
778 startup code. these have to exist so we can pmap_remove()
779 e.g. kext pages from the middle of our addr space */
780
781 vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS;
782 for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) {
783 pv_rooted_entry_t pv_e;
784
785 pv_e = pai_to_pvh(ppn);
786 pv_e->va = vaddr;
787 vaddr += PAGE_SIZE;
788 pv_e->pmap = kernel_pmap;
789 queue_init(&pv_e->qlink);
790 }
791 pmap_initialized = TRUE;
792
793 max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t);
794
795 /*
796 * Ensure the kernel's PML4 entry exists for the basement
797 * before this is shared with any user.
798 */
799 pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT, PMAP_EXPAND_OPTIONS_NONE);
800
801 #if CONFIG_VMX
802 pmap_ept_support_ad = vmx_hv_support() && (VMX_CAP(MSR_IA32_VMX_EPT_VPID_CAP, MSR_IA32_VMX_EPT_VPID_CAP_AD_SHIFT, 1) ? TRUE : FALSE);
803 #else
804 pmap_ept_support_ad = FALSE;
805 #endif /* CONFIG_VMX */
806 }
807
808 static
809 void pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX, boolean_t ro) {
810 uint64_t ev = sv + nxrosz, cv = sv;
811 pd_entry_t *pdep;
812 pt_entry_t *ptep = NULL;
813
814 assert(!is_ept_pmap(npmap));
815
816 assert(((sv & 0xFFFULL) | (nxrosz & 0xFFFULL)) == 0);
817
818 for (pdep = pmap_pde(npmap, cv); pdep != NULL && (cv < ev);) {
819 uint64_t pdev = (cv & ~((uint64_t)PDEMASK));
820
821 if (*pdep & INTEL_PTE_PS) {
822 if (NX)
823 *pdep |= INTEL_PTE_NX;
824 if (ro)
825 *pdep &= ~INTEL_PTE_WRITE;
826 cv += NBPD;
827 cv &= ~((uint64_t) PDEMASK);
828 pdep = pmap_pde(npmap, cv);
829 continue;
830 }
831
832 for (ptep = pmap_pte(npmap, cv); ptep != NULL && (cv < (pdev + NBPD)) && (cv < ev);) {
833 if (NX)
834 *ptep |= INTEL_PTE_NX;
835 if (ro)
836 *ptep &= ~INTEL_PTE_WRITE;
837 cv += NBPT;
838 ptep = pmap_pte(npmap, cv);
839 }
840 }
841 DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__, sv, nxrosz, NX, ro, cv, ptep ? *ptep: 0);
842 }
843
844 /*
845 * Called once VM is fully initialized so that we can release unused
846 * sections of low memory to the general pool.
847 * Also complete the set-up of identity-mapped sections of the kernel:
848 * 1) write-protect kernel text
849 * 2) map kernel text using large pages if possible
850 * 3) read and write-protect page zero (for K32)
851 * 4) map the global page at the appropriate virtual address.
852 *
853 * Use of large pages
854 * ------------------
855 * To effectively map and write-protect all kernel text pages, the text
856 * must be 2M-aligned at the base, and the data section above must also be
857 * 2M-aligned. That is, there's padding below and above. This is achieved
858 * through linker directives. Large pages are used only if this alignment
859 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
860 * memory layout is:
861 *
862 * : :
863 * | __DATA |
864 * sdata: ================== 2Meg
865 * | |
866 * | zero-padding |
867 * | |
868 * etext: ------------------
869 * | |
870 * : :
871 * | |
872 * | __TEXT |
873 * | |
874 * : :
875 * | |
876 * stext: ================== 2Meg
877 * | |
878 * | zero-padding |
879 * | |
880 * eHIB: ------------------
881 * | __HIB |
882 * : :
883 *
884 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
885 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
886 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
887 * The now unused level-1 PTE pages are also freed.
888 */
889 extern ppnum_t vm_kernel_base_page;
890 void
891 pmap_lowmem_finalize(void)
892 {
893 spl_t spl;
894 int i;
895
896 /*
897 * Update wired memory statistics for early boot pages
898 */
899 PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE);
900
901 /*
902 * Free pages in pmap regions below the base:
903 * rdar://6332712
904 * We can't free all the pages to VM that EFI reports available.
905 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
906 * There's also a size miscalculation here: pend is one page less
907 * than it should be but this is not fixed to be backwards
908 * compatible.
909 * This is important for KASLR because up to 256*2MB = 512MB of space
910 * needs has to be released to VM.
911 */
912 for (i = 0;
913 pmap_memory_regions[i].end < vm_kernel_base_page;
914 i++) {
915 vm_offset_t pbase = i386_ptob(pmap_memory_regions[i].base);
916 vm_offset_t pend = i386_ptob(pmap_memory_regions[i].end+1);
917
918 DBG("pmap region %d [%p..[%p\n",
919 i, (void *) pbase, (void *) pend);
920
921 if (pmap_memory_regions[i].attribute & EFI_MEMORY_KERN_RESERVED)
922 continue;
923 /*
924 * rdar://6332712
925 * Adjust limits not to free pages in range 0xc0000-0xff000.
926 */
927 if (pbase >= 0xc0000 && pend <= 0x100000)
928 continue;
929 if (pbase < 0xc0000 && pend > 0x100000) {
930 /* page range entirely within region, free lower part */
931 DBG("- ml_static_mfree(%p,%p)\n",
932 (void *) ml_static_ptovirt(pbase),
933 (void *) (0xc0000-pbase));
934 ml_static_mfree(ml_static_ptovirt(pbase),0xc0000-pbase);
935 pbase = 0x100000;
936 }
937 if (pbase < 0xc0000)
938 pend = MIN(pend, 0xc0000);
939 if (pend > 0x100000)
940 pbase = MAX(pbase, 0x100000);
941 DBG("- ml_static_mfree(%p,%p)\n",
942 (void *) ml_static_ptovirt(pbase),
943 (void *) (pend - pbase));
944 ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
945 }
946
947 /* A final pass to get rid of all initial identity mappings to
948 * low pages.
949 */
950 DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__, vm_kernel_base);
951
952 /*
953 * Remove all mappings past the boot-cpu descriptor aliases and low globals.
954 * Non-boot-cpu GDT aliases will be remapped later as needed.
955 */
956 pmap_remove(kernel_pmap, LOWGLOBAL_ALIAS + PAGE_SIZE, vm_kernel_base);
957
958 /*
959 * If text and data are both 2MB-aligned,
960 * we can map text with large-pages,
961 * unless the -kernel_text_ps_4K boot-arg overrides.
962 */
963 if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
964 kprintf("Kernel text is 2MB aligned");
965 kernel_text_ps_4K = FALSE;
966 if (PE_parse_boot_argn("-kernel_text_ps_4K",
967 &kernel_text_ps_4K,
968 sizeof (kernel_text_ps_4K)))
969 kprintf(" but will be mapped with 4K pages\n");
970 else
971 kprintf(" and will be mapped with 2M pages\n");
972 }
973
974 (void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
975 if (wpkernel)
976 kprintf("Kernel text %p-%p to be write-protected\n",
977 (void *) stext, (void *) etext);
978
979 spl = splhigh();
980
981 /*
982 * Scan over text if mappings are to be changed:
983 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
984 * - Change to large-pages if possible and not overriden.
985 */
986 if (kernel_text_ps_4K && wpkernel) {
987 vm_offset_t myva;
988 for (myva = stext; myva < etext; myva += PAGE_SIZE) {
989 pt_entry_t *ptep;
990
991 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
992 if (ptep)
993 pmap_store_pte(ptep, *ptep & ~INTEL_PTE_WRITE);
994 }
995 }
996
997 if (!kernel_text_ps_4K) {
998 vm_offset_t myva;
999
1000 /*
1001 * Release zero-filled page padding used for 2M-alignment.
1002 */
1003 DBG("ml_static_mfree(%p,%p) for padding below text\n",
1004 (void *) eHIB, (void *) (stext - eHIB));
1005 ml_static_mfree(eHIB, stext - eHIB);
1006 DBG("ml_static_mfree(%p,%p) for padding above text\n",
1007 (void *) etext, (void *) (sdata - etext));
1008 ml_static_mfree(etext, sdata - etext);
1009
1010 /*
1011 * Coalesce text pages into large pages.
1012 */
1013 for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
1014 pt_entry_t *ptep;
1015 vm_offset_t pte_phys;
1016 pt_entry_t *pdep;
1017 pt_entry_t pde;
1018
1019 pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
1020 ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
1021 DBG("myva: %p pdep: %p ptep: %p\n",
1022 (void *) myva, (void *) pdep, (void *) ptep);
1023 if ((*ptep & INTEL_PTE_VALID) == 0)
1024 continue;
1025 pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
1026 pde = *pdep & PTMASK; /* page attributes from pde */
1027 pde |= INTEL_PTE_PS; /* make it a 2M entry */
1028 pde |= pte_phys; /* take page frame from pte */
1029
1030 if (wpkernel)
1031 pde &= ~INTEL_PTE_WRITE;
1032 DBG("pmap_store_pte(%p,0x%llx)\n",
1033 (void *)pdep, pde);
1034 pmap_store_pte(pdep, pde);
1035
1036 /*
1037 * Free the now-unused level-1 pte.
1038 * Note: ptep is a virtual address to the pte in the
1039 * recursive map. We can't use this address to free
1040 * the page. Instead we need to compute its address
1041 * in the Idle PTEs in "low memory".
1042 */
1043 vm_offset_t vm_ptep = (vm_offset_t) KPTphys
1044 + (pte_phys >> PTPGSHIFT);
1045 DBG("ml_static_mfree(%p,0x%x) for pte\n",
1046 (void *) vm_ptep, PAGE_SIZE);
1047 ml_static_mfree(vm_ptep, PAGE_SIZE);
1048 }
1049
1050 /* Change variable read by sysctl machdep.pmap */
1051 pmap_kernel_text_ps = I386_LPGBYTES;
1052 }
1053
1054 boolean_t doconstro = TRUE;
1055
1056 (void) PE_parse_boot_argn("dataconstro", &doconstro, sizeof(doconstro));
1057
1058 if ((sconstdata | econstdata) & PAGE_MASK) {
1059 kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata, econstdata);
1060 if ((sconstdata & PAGE_MASK) || (doconstro_override == FALSE))
1061 doconstro = FALSE;
1062 }
1063
1064 if ((sconstdata > edata) || (sconstdata < sdata) || ((econstdata - sconstdata) >= (edata - sdata))) {
1065 kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata, econstdata, sdata, edata);
1066 doconstro = FALSE;
1067 }
1068
1069 if (doconstro)
1070 kprintf("Marking const DATA read-only\n");
1071
1072 vm_offset_t dva;
1073
1074 for (dva = sdata; dva < edata; dva += I386_PGBYTES) {
1075 assert(((sdata | edata) & PAGE_MASK) == 0);
1076 if ( (sdata | edata) & PAGE_MASK) {
1077 kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata, edata);
1078 break;
1079 }
1080
1081 pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva);
1082
1083 dpte = *dptep;
1084
1085 assert((dpte & INTEL_PTE_VALID));
1086 if ((dpte & INTEL_PTE_VALID) == 0) {
1087 kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva, sdata, edata);
1088 continue;
1089 }
1090
1091 dpte |= INTEL_PTE_NX;
1092 if (doconstro && (dva >= sconstdata) && (dva < econstdata)) {
1093 dpte &= ~INTEL_PTE_WRITE;
1094 }
1095 pmap_store_pte(dptep, dpte);
1096 }
1097 kernel_segment_command_t * seg;
1098 kernel_section_t * sec;
1099
1100 for (seg = firstseg(); seg != NULL; seg = nextsegfromheader(&_mh_execute_header, seg)) {
1101 if (!strcmp(seg->segname, "__TEXT") ||
1102 !strcmp(seg->segname, "__DATA")) {
1103 continue;
1104 }
1105 //XXX
1106 if (!strcmp(seg->segname, "__KLD")) {
1107 continue;
1108 }
1109 if (!strcmp(seg->segname, "__HIB")) {
1110 for (sec = firstsect(seg); sec != NULL; sec = nextsect(seg, sec)) {
1111 if (sec->addr & PAGE_MASK)
1112 panic("__HIB segment's sections misaligned");
1113 if (!strcmp(sec->sectname, "__text")) {
1114 pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), FALSE, TRUE);
1115 } else {
1116 pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), TRUE, FALSE);
1117 }
1118 }
1119 } else {
1120 pmap_mark_range(kernel_pmap, seg->vmaddr, round_page_64(seg->vmsize), TRUE, FALSE);
1121 }
1122 }
1123
1124 /*
1125 * If we're debugging, map the low global vector page at the fixed
1126 * virtual address. Otherwise, remove the mapping for this.
1127 */
1128 if (debug_boot_arg) {
1129 pt_entry_t *pte = NULL;
1130 if (0 == (pte = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS)))
1131 panic("lowmem pte");
1132 /* make sure it is defined on page boundary */
1133 assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
1134 pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
1135 | INTEL_PTE_REF
1136 | INTEL_PTE_MOD
1137 | INTEL_PTE_WIRED
1138 | INTEL_PTE_VALID
1139 | INTEL_PTE_WRITE
1140 | INTEL_PTE_NX);
1141 } else {
1142 pmap_remove(kernel_pmap,
1143 LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE);
1144 }
1145
1146 splx(spl);
1147 if (pmap_pcid_ncpus)
1148 tlb_flush_global();
1149 else
1150 flush_tlb_raw();
1151 }
1152
1153 /*
1154 * this function is only used for debugging fron the vm layer
1155 */
1156 boolean_t
1157 pmap_verify_free(
1158 ppnum_t pn)
1159 {
1160 pv_rooted_entry_t pv_h;
1161 int pai;
1162 boolean_t result;
1163
1164 assert(pn != vm_page_fictitious_addr);
1165
1166 if (!pmap_initialized)
1167 return(TRUE);
1168
1169 if (pn == vm_page_guard_addr)
1170 return TRUE;
1171
1172 pai = ppn_to_pai(pn);
1173 if (!IS_MANAGED_PAGE(pai))
1174 return(FALSE);
1175 pv_h = pai_to_pvh(pn);
1176 result = (pv_h->pmap == PMAP_NULL);
1177 return(result);
1178 }
1179
1180 boolean_t
1181 pmap_is_empty(
1182 pmap_t pmap,
1183 vm_map_offset_t va_start,
1184 vm_map_offset_t va_end)
1185 {
1186 vm_map_offset_t offset;
1187 ppnum_t phys_page;
1188
1189 if (pmap == PMAP_NULL) {
1190 return TRUE;
1191 }
1192
1193 /*
1194 * Check the resident page count
1195 * - if it's zero, the pmap is completely empty.
1196 * This short-circuit test prevents a virtual address scan which is
1197 * painfully slow for 64-bit spaces.
1198 * This assumes the count is correct
1199 * .. the debug kernel ought to be checking perhaps by page table walk.
1200 */
1201 if (pmap->stats.resident_count == 0)
1202 return TRUE;
1203
1204 for (offset = va_start;
1205 offset < va_end;
1206 offset += PAGE_SIZE_64) {
1207 phys_page = pmap_find_phys(pmap, offset);
1208 if (phys_page) {
1209 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1210 "page %d at 0x%llx\n",
1211 pmap, va_start, va_end, phys_page, offset);
1212 return FALSE;
1213 }
1214 }
1215
1216 return TRUE;
1217 }
1218
1219 void
1220 hv_ept_pmap_create(void **ept_pmap, void **eptp)
1221 {
1222 pmap_t p;
1223
1224 if ((ept_pmap == NULL) || (eptp == NULL)) {
1225 return;
1226 }
1227
1228 p = pmap_create_options(get_task_ledger(current_task()), 0, (PMAP_CREATE_64BIT | PMAP_CREATE_EPT));
1229 if (p == PMAP_NULL) {
1230 *ept_pmap = NULL;
1231 *eptp = NULL;
1232 return;
1233 }
1234
1235 assert(is_ept_pmap(p));
1236
1237 *ept_pmap = (void*)p;
1238 *eptp = (void*)(p->pm_eptp);
1239 return;
1240 }
1241
1242 /*
1243 * Create and return a physical map.
1244 *
1245 * If the size specified for the map
1246 * is zero, the map is an actual physical
1247 * map, and may be referenced by the
1248 * hardware.
1249 *
1250 * If the size specified is non-zero,
1251 * the map will be used in software only, and
1252 * is bounded by that size.
1253 */
1254 pmap_t
1255 pmap_create_options(
1256 ledger_t ledger,
1257 vm_map_size_t sz,
1258 int flags)
1259 {
1260 pmap_t p;
1261 vm_size_t size;
1262 pml4_entry_t *pml4;
1263 pml4_entry_t *kpml4;
1264
1265 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1266 (uint32_t) (sz>>32), (uint32_t) sz, flags, 0, 0);
1267
1268 size = (vm_size_t) sz;
1269
1270 /*
1271 * A software use-only map doesn't even need a map.
1272 */
1273
1274 if (size != 0) {
1275 return(PMAP_NULL);
1276 }
1277
1278 /*
1279 * Return error when unrecognized flags are passed.
1280 */
1281 if ((flags & ~(PMAP_CREATE_KNOWN_FLAGS)) != 0) {
1282 return(PMAP_NULL);
1283 }
1284
1285 p = (pmap_t) zalloc(pmap_zone);
1286 if (PMAP_NULL == p)
1287 panic("pmap_create zalloc");
1288 /* Zero all fields */
1289 bzero(p, sizeof(*p));
1290 /* init counts now since we'll be bumping some */
1291 simple_lock_init(&p->lock, 0);
1292 #if 00
1293 p->stats.resident_count = 0;
1294 p->stats.resident_max = 0;
1295 p->stats.wired_count = 0;
1296 #else
1297 bzero(&p->stats, sizeof (p->stats));
1298 #endif
1299 p->ref_count = 1;
1300 p->nx_enabled = 1;
1301 p->pm_shared = FALSE;
1302 ledger_reference(ledger);
1303 p->ledger = ledger;
1304
1305 p->pm_task_map = ((flags & PMAP_CREATE_64BIT) ? TASK_MAP_64BIT : TASK_MAP_32BIT);
1306 if (pmap_pcid_ncpus)
1307 pmap_pcid_initialize(p);
1308
1309 p->pm_pml4 = zalloc(pmap_anchor_zone);
1310
1311 pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0);
1312
1313 memset((char *)p->pm_pml4, 0, PAGE_SIZE);
1314
1315 if (flags & PMAP_CREATE_EPT) {
1316 p->pm_eptp = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
1317 p->pm_cr3 = 0;
1318 } else {
1319 p->pm_eptp = 0;
1320 p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
1321 }
1322
1323 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
1324
1325 p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS) * PAGE_SIZE);
1326 if (NULL == p->pm_obj_pml4)
1327 panic("pmap_create pdpt obj");
1328
1329 p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS) * PAGE_SIZE);
1330 if (NULL == p->pm_obj_pdpt)
1331 panic("pmap_create pdpt obj");
1332
1333 p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS) * PAGE_SIZE);
1334 if (NULL == p->pm_obj)
1335 panic("pmap_create pte obj");
1336
1337 /* All pmaps share the kernel's pml4 */
1338 pml4 = pmap64_pml4(p, 0ULL);
1339 kpml4 = kernel_pmap->pm_pml4;
1340 pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX];
1341 pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX];
1342 pml4[KERNEL_PHYSMAP_PML4_INDEX] = kpml4[KERNEL_PHYSMAP_PML4_INDEX];
1343
1344 PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1345 p, flags, 0, 0, 0);
1346
1347 return(p);
1348 }
1349
1350 pmap_t
1351 pmap_create(
1352 ledger_t ledger,
1353 vm_map_size_t sz,
1354 boolean_t is_64bit)
1355 {
1356 return pmap_create_options(ledger, sz, ((is_64bit) ? PMAP_CREATE_64BIT : 0));
1357 }
1358
1359 /*
1360 * Retire the given physical map from service.
1361 * Should only be called if the map contains
1362 * no valid mappings.
1363 */
1364 extern int vm_wired_objects_page_count;
1365
1366 void
1367 pmap_destroy(pmap_t p)
1368 {
1369 int c;
1370
1371 if (p == PMAP_NULL)
1372 return;
1373
1374 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START,
1375 p, 0, 0, 0, 0);
1376
1377 PMAP_LOCK(p);
1378
1379 c = --p->ref_count;
1380
1381 pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE);
1382
1383 if (c == 0) {
1384 /*
1385 * If some cpu is not using the physical pmap pointer that it
1386 * is supposed to be (see set_dirbase), we might be using the
1387 * pmap that is being destroyed! Make sure we are
1388 * physically on the right pmap:
1389 */
1390 PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL);
1391 if (pmap_pcid_ncpus)
1392 pmap_destroy_pcid_sync(p);
1393 }
1394
1395 PMAP_UNLOCK(p);
1396
1397 if (c != 0) {
1398 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1399 p, 1, 0, 0, 0);
1400 pmap_assert(p == kernel_pmap);
1401 return; /* still in use */
1402 }
1403
1404 /*
1405 * Free the memory maps, then the
1406 * pmap structure.
1407 */
1408 int inuse_ptepages = 0;
1409
1410 zfree(pmap_anchor_zone, p->pm_pml4);
1411
1412 inuse_ptepages += p->pm_obj_pml4->resident_page_count;
1413 vm_object_deallocate(p->pm_obj_pml4);
1414
1415 inuse_ptepages += p->pm_obj_pdpt->resident_page_count;
1416 vm_object_deallocate(p->pm_obj_pdpt);
1417
1418 inuse_ptepages += p->pm_obj->resident_page_count;
1419 vm_object_deallocate(p->pm_obj);
1420
1421 OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count);
1422 PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE);
1423 ledger_dereference(p->ledger);
1424 zfree(pmap_zone, p);
1425
1426 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1427 0, 0, 0, 0, 0);
1428 }
1429
1430 /*
1431 * Add a reference to the specified pmap.
1432 */
1433
1434 void
1435 pmap_reference(pmap_t p)
1436 {
1437 if (p != PMAP_NULL) {
1438 PMAP_LOCK(p);
1439 p->ref_count++;
1440 PMAP_UNLOCK(p);;
1441 }
1442 }
1443
1444 /*
1445 * Remove phys addr if mapped in specified map
1446 *
1447 */
1448 void
1449 pmap_remove_some_phys(
1450 __unused pmap_t map,
1451 __unused ppnum_t pn)
1452 {
1453
1454 /* Implement to support working set code */
1455
1456 }
1457
1458
1459 void
1460 pmap_protect(
1461 pmap_t map,
1462 vm_map_offset_t sva,
1463 vm_map_offset_t eva,
1464 vm_prot_t prot)
1465 {
1466 pmap_protect_options(map, sva, eva, prot, 0, NULL);
1467 }
1468
1469
1470 /*
1471 * Set the physical protection on the
1472 * specified range of this map as requested.
1473 * Will not increase permissions.
1474 */
1475 void
1476 pmap_protect_options(
1477 pmap_t map,
1478 vm_map_offset_t sva,
1479 vm_map_offset_t eva,
1480 vm_prot_t prot,
1481 unsigned int options,
1482 void *arg)
1483 {
1484 pt_entry_t *pde;
1485 pt_entry_t *spte, *epte;
1486 vm_map_offset_t lva;
1487 vm_map_offset_t orig_sva;
1488 boolean_t set_NX;
1489 int num_found = 0;
1490 boolean_t is_ept;
1491
1492 pmap_intr_assert();
1493
1494 if (map == PMAP_NULL)
1495 return;
1496
1497 if (prot == VM_PROT_NONE) {
1498 pmap_remove_options(map, sva, eva, options);
1499 return;
1500 }
1501 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
1502 map,
1503 (uint32_t) (sva >> 32), (uint32_t) sva,
1504 (uint32_t) (eva >> 32), (uint32_t) eva);
1505
1506 if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled)
1507 set_NX = FALSE;
1508 else
1509 set_NX = TRUE;
1510
1511 is_ept = is_ept_pmap(map);
1512
1513
1514 PMAP_LOCK(map);
1515
1516 orig_sva = sva;
1517 while (sva < eva) {
1518 lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1);
1519 if (lva > eva)
1520 lva = eva;
1521 pde = pmap_pde(map, sva);
1522 if (pde && (*pde & PTE_VALID_MASK(is_ept))) {
1523 if (*pde & PTE_PS) {
1524 /* superpage */
1525 spte = pde;
1526 epte = spte+1; /* excluded */
1527 } else {
1528 spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1)));
1529 spte = &spte[ptenum(sva)];
1530 epte = &spte[intel_btop(lva - sva)];
1531 }
1532
1533 for (; spte < epte; spte++) {
1534 if (!(*spte & PTE_VALID_MASK(is_ept)))
1535 continue;
1536
1537 if (is_ept) {
1538 if (prot & VM_PROT_READ)
1539 pmap_update_pte(spte, 0, PTE_READ(is_ept));
1540 else
1541 pmap_update_pte(spte, PTE_READ(is_ept), 0);
1542 }
1543 if (prot & VM_PROT_WRITE)
1544 pmap_update_pte(spte, 0, PTE_WRITE(is_ept));
1545 else
1546 pmap_update_pte(spte, PTE_WRITE(is_ept), 0);
1547
1548 if (set_NX) {
1549 if (!is_ept)
1550 pmap_update_pte(spte, 0, INTEL_PTE_NX);
1551 else
1552 pmap_update_pte(spte, INTEL_EPT_EX, 0);
1553 } else {
1554 if (!is_ept)
1555 pmap_update_pte(spte, INTEL_PTE_NX, 0);
1556 else
1557 pmap_update_pte(spte, 0, INTEL_EPT_EX);
1558 }
1559 num_found++;
1560 }
1561 }
1562 sva = lva;
1563 }
1564 if (num_found) {
1565 if (options & PMAP_OPTIONS_NOFLUSH)
1566 PMAP_UPDATE_TLBS_DELAYED(map, orig_sva, eva, (pmap_flush_context *)arg);
1567 else
1568 PMAP_UPDATE_TLBS(map, orig_sva, eva);
1569 }
1570 PMAP_UNLOCK(map);
1571
1572 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
1573 0, 0, 0, 0, 0);
1574
1575 }
1576
1577 /* Map a (possibly) autogenned block */
1578 void
1579 pmap_map_block(
1580 pmap_t pmap,
1581 addr64_t va,
1582 ppnum_t pa,
1583 uint32_t size,
1584 vm_prot_t prot,
1585 int attr,
1586 __unused unsigned int flags)
1587 {
1588 uint32_t page;
1589 int cur_page_size;
1590
1591 if (attr & VM_MEM_SUPERPAGE)
1592 cur_page_size = SUPERPAGE_SIZE;
1593 else
1594 cur_page_size = PAGE_SIZE;
1595
1596 for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) {
1597 pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE);
1598 va += cur_page_size;
1599 pa+=cur_page_size/PAGE_SIZE;
1600 }
1601 }
1602
1603 kern_return_t
1604 pmap_expand_pml4(
1605 pmap_t map,
1606 vm_map_offset_t vaddr,
1607 unsigned int options)
1608 {
1609 vm_page_t m;
1610 pmap_paddr_t pa;
1611 uint64_t i;
1612 ppnum_t pn;
1613 pml4_entry_t *pml4p;
1614 boolean_t is_ept = is_ept_pmap(map);
1615
1616 DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr);
1617
1618 /*
1619 * Allocate a VM page for the pml4 page
1620 */
1621 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1622 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1623 return KERN_RESOURCE_SHORTAGE;
1624 VM_PAGE_WAIT();
1625 }
1626 /*
1627 * put the page into the pmap's obj list so it
1628 * can be found later.
1629 */
1630 pn = m->phys_page;
1631 pa = i386_ptob(pn);
1632 i = pml4idx(map, vaddr);
1633
1634 /*
1635 * Zero the page.
1636 */
1637 pmap_zero_page(pn);
1638
1639 vm_page_lockspin_queues();
1640 vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
1641 vm_page_unlock_queues();
1642
1643 OSAddAtomic(1, &inuse_ptepages_count);
1644 OSAddAtomic64(1, &alloc_ptepages_count);
1645 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1646
1647 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1648 vm_object_lock(map->pm_obj_pml4);
1649
1650 PMAP_LOCK(map);
1651 /*
1652 * See if someone else expanded us first
1653 */
1654 if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) {
1655 PMAP_UNLOCK(map);
1656 vm_object_unlock(map->pm_obj_pml4);
1657
1658 VM_PAGE_FREE(m);
1659
1660 OSAddAtomic(-1, &inuse_ptepages_count);
1661 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1662 return KERN_SUCCESS;
1663 }
1664
1665 #if 0 /* DEBUG */
1666 if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE)) {
1667 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1668 map, map->pm_obj_pml4, vaddr, i);
1669 }
1670 #endif
1671 vm_page_insert_wired(m, map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
1672 vm_object_unlock(map->pm_obj_pml4);
1673
1674 /*
1675 * Set the page directory entry for this page table.
1676 */
1677 pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
1678
1679 pmap_store_pte(pml4p, pa_to_pte(pa)
1680 | PTE_READ(is_ept)
1681 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1682 | PTE_WRITE(is_ept));
1683
1684 PMAP_UNLOCK(map);
1685
1686 return KERN_SUCCESS;
1687 }
1688
1689 kern_return_t
1690 pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, unsigned int options)
1691 {
1692 vm_page_t m;
1693 pmap_paddr_t pa;
1694 uint64_t i;
1695 ppnum_t pn;
1696 pdpt_entry_t *pdptp;
1697 boolean_t is_ept = is_ept_pmap(map);
1698
1699 DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr);
1700
1701 while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
1702 kern_return_t pep4kr = pmap_expand_pml4(map, vaddr, options);
1703 if (pep4kr != KERN_SUCCESS)
1704 return pep4kr;
1705 }
1706
1707 /*
1708 * Allocate a VM page for the pdpt page
1709 */
1710 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1711 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1712 return KERN_RESOURCE_SHORTAGE;
1713 VM_PAGE_WAIT();
1714 }
1715
1716 /*
1717 * put the page into the pmap's obj list so it
1718 * can be found later.
1719 */
1720 pn = m->phys_page;
1721 pa = i386_ptob(pn);
1722 i = pdptidx(map, vaddr);
1723
1724 /*
1725 * Zero the page.
1726 */
1727 pmap_zero_page(pn);
1728
1729 vm_page_lockspin_queues();
1730 vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
1731 vm_page_unlock_queues();
1732
1733 OSAddAtomic(1, &inuse_ptepages_count);
1734 OSAddAtomic64(1, &alloc_ptepages_count);
1735 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1736
1737 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1738 vm_object_lock(map->pm_obj_pdpt);
1739
1740 PMAP_LOCK(map);
1741 /*
1742 * See if someone else expanded us first
1743 */
1744 if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) {
1745 PMAP_UNLOCK(map);
1746 vm_object_unlock(map->pm_obj_pdpt);
1747
1748 VM_PAGE_FREE(m);
1749
1750 OSAddAtomic(-1, &inuse_ptepages_count);
1751 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1752 return KERN_SUCCESS;
1753 }
1754
1755 #if 0 /* DEBUG */
1756 if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE)) {
1757 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1758 map, map->pm_obj_pdpt, vaddr, i);
1759 }
1760 #endif
1761 vm_page_insert_wired(m, map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
1762 vm_object_unlock(map->pm_obj_pdpt);
1763
1764 /*
1765 * Set the page directory entry for this page table.
1766 */
1767 pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
1768
1769 pmap_store_pte(pdptp, pa_to_pte(pa)
1770 | PTE_READ(is_ept)
1771 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1772 | PTE_WRITE(is_ept));
1773
1774 PMAP_UNLOCK(map);
1775
1776 return KERN_SUCCESS;
1777
1778 }
1779
1780
1781
1782 /*
1783 * Routine: pmap_expand
1784 *
1785 * Expands a pmap to be able to map the specified virtual address.
1786 *
1787 * Allocates new virtual memory for the P0 or P1 portion of the
1788 * pmap, then re-maps the physical pages that were in the old
1789 * pmap to be in the new pmap.
1790 *
1791 * Must be called with the pmap system and the pmap unlocked,
1792 * since these must be unlocked to use vm_allocate or vm_deallocate.
1793 * Thus it must be called in a loop that checks whether the map
1794 * has been expanded enough.
1795 * (We won't loop forever, since page tables aren't shrunk.)
1796 */
1797 kern_return_t
1798 pmap_expand(
1799 pmap_t map,
1800 vm_map_offset_t vaddr,
1801 unsigned int options)
1802 {
1803 pt_entry_t *pdp;
1804 register vm_page_t m;
1805 register pmap_paddr_t pa;
1806 uint64_t i;
1807 ppnum_t pn;
1808 boolean_t is_ept = is_ept_pmap(map);
1809
1810
1811 /*
1812 * For the kernel, the virtual address must be in or above the basement
1813 * which is for kexts and is in the 512GB immediately below the kernel..
1814 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1815 */
1816 if (map == kernel_pmap &&
1817 !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS))
1818 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr);
1819
1820
1821 while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
1822 kern_return_t pepkr = pmap_expand_pdpt(map, vaddr, options);
1823 if (pepkr != KERN_SUCCESS)
1824 return pepkr;
1825 }
1826
1827 /*
1828 * Allocate a VM page for the pde entries.
1829 */
1830 while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1831 if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1832 return KERN_RESOURCE_SHORTAGE;
1833 VM_PAGE_WAIT();
1834 }
1835
1836 /*
1837 * put the page into the pmap's obj list so it
1838 * can be found later.
1839 */
1840 pn = m->phys_page;
1841 pa = i386_ptob(pn);
1842 i = pdeidx(map, vaddr);
1843
1844 /*
1845 * Zero the page.
1846 */
1847 pmap_zero_page(pn);
1848
1849 vm_page_lockspin_queues();
1850 vm_page_wire(m, VM_KERN_MEMORY_PTE, TRUE);
1851 vm_page_unlock_queues();
1852
1853 OSAddAtomic(1, &inuse_ptepages_count);
1854 OSAddAtomic64(1, &alloc_ptepages_count);
1855 PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1856
1857 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1858 vm_object_lock(map->pm_obj);
1859
1860 PMAP_LOCK(map);
1861
1862 /*
1863 * See if someone else expanded us first
1864 */
1865 if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) {
1866 PMAP_UNLOCK(map);
1867 vm_object_unlock(map->pm_obj);
1868
1869 VM_PAGE_FREE(m);
1870
1871 OSAddAtomic(-1, &inuse_ptepages_count);
1872 PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1873 return KERN_SUCCESS;
1874 }
1875
1876 #if 0 /* DEBUG */
1877 if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE)) {
1878 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1879 map, map->pm_obj, vaddr, i);
1880 }
1881 #endif
1882 vm_page_insert_wired(m, map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE, VM_KERN_MEMORY_PTE);
1883 vm_object_unlock(map->pm_obj);
1884
1885 /*
1886 * Set the page directory entry for this page table.
1887 */
1888 pdp = pmap_pde(map, vaddr);
1889 pmap_store_pte(pdp, pa_to_pte(pa)
1890 | PTE_READ(is_ept)
1891 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1892 | PTE_WRITE(is_ept));
1893
1894 PMAP_UNLOCK(map);
1895
1896 return KERN_SUCCESS;
1897 }
1898
1899 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1900 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1901 * function allocates all the page tables using memory from the same pool
1902 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1903 * isn't available yet). */
1904 void
1905 pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr)
1906 {
1907 ppnum_t pn;
1908 pt_entry_t *pte;
1909 boolean_t is_ept = is_ept_pmap(pmap);
1910
1911 PMAP_LOCK(pmap);
1912
1913 if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) {
1914 if (!pmap_next_page_hi(&pn))
1915 panic("pmap_pre_expand");
1916
1917 pmap_zero_page(pn);
1918
1919 pte = pmap64_pml4(pmap, vaddr);
1920
1921 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1922 | PTE_READ(is_ept)
1923 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1924 | PTE_WRITE(is_ept));
1925 }
1926
1927 if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) {
1928 if (!pmap_next_page_hi(&pn))
1929 panic("pmap_pre_expand");
1930
1931 pmap_zero_page(pn);
1932
1933 pte = pmap64_pdpt(pmap, vaddr);
1934
1935 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1936 | PTE_READ(is_ept)
1937 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1938 | PTE_WRITE(is_ept));
1939 }
1940
1941 if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) {
1942 if (!pmap_next_page_hi(&pn))
1943 panic("pmap_pre_expand");
1944
1945 pmap_zero_page(pn);
1946
1947 pte = pmap64_pde(pmap, vaddr);
1948
1949 pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1950 | PTE_READ(is_ept)
1951 | (is_ept ? INTEL_EPT_EX : INTEL_PTE_USER)
1952 | PTE_WRITE(is_ept));
1953 }
1954
1955 PMAP_UNLOCK(pmap);
1956 }
1957
1958 /*
1959 * pmap_sync_page_data_phys(ppnum_t pa)
1960 *
1961 * Invalidates all of the instruction cache on a physical page and
1962 * pushes any dirty data from the data cache for the same physical page
1963 * Not required in i386.
1964 */
1965 void
1966 pmap_sync_page_data_phys(__unused ppnum_t pa)
1967 {
1968 return;
1969 }
1970
1971 /*
1972 * pmap_sync_page_attributes_phys(ppnum_t pa)
1973 *
1974 * Write back and invalidate all cachelines on a physical page.
1975 */
1976 void
1977 pmap_sync_page_attributes_phys(ppnum_t pa)
1978 {
1979 cache_flush_page_phys(pa);
1980 }
1981
1982
1983
1984 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1985
1986 int collect_ref;
1987 int collect_unref;
1988
1989 /*
1990 * Routine: pmap_collect
1991 * Function:
1992 * Garbage collects the physical map system for
1993 * pages which are no longer used.
1994 * Success need not be guaranteed -- that is, there
1995 * may well be pages which are not referenced, but
1996 * others may be collected.
1997 * Usage:
1998 * Called by the pageout daemon when pages are scarce.
1999 */
2000 void
2001 pmap_collect(
2002 pmap_t p)
2003 {
2004 register pt_entry_t *pdp, *ptp;
2005 pt_entry_t *eptp;
2006 int wired;
2007 boolean_t is_ept;
2008
2009 if (p == PMAP_NULL)
2010 return;
2011
2012 if (p == kernel_pmap)
2013 return;
2014
2015 is_ept = is_ept_pmap(p);
2016
2017 /*
2018 * Garbage collect map.
2019 */
2020 PMAP_LOCK(p);
2021
2022 for (pdp = (pt_entry_t *)p->dirbase;
2023 pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
2024 pdp++)
2025 {
2026 if (*pdp & PTE_VALID_MASK(is_ept)) {
2027 if (*pdp & PTE_REF(is_ept)) {
2028 pmap_store_pte(pdp, *pdp & ~PTE_REF(is_ept));
2029 collect_ref++;
2030 } else {
2031 collect_unref++;
2032 ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
2033 eptp = ptp + NPTEPG;
2034
2035 /*
2036 * If the pte page has any wired mappings, we cannot
2037 * free it.
2038 */
2039 wired = 0;
2040 {
2041 register pt_entry_t *ptep;
2042 for (ptep = ptp; ptep < eptp; ptep++) {
2043 if (iswired(*ptep)) {
2044 wired = 1;
2045 break;
2046 }
2047 }
2048 }
2049 if (!wired) {
2050 /*
2051 * Remove the virtual addresses mapped by this pte page.
2052 */
2053 pmap_remove_range(p,
2054 pdetova(pdp - (pt_entry_t *)p->dirbase),
2055 ptp,
2056 eptp);
2057
2058 /*
2059 * Invalidate the page directory pointer.
2060 */
2061 pmap_store_pte(pdp, 0x0);
2062
2063 PMAP_UNLOCK(p);
2064
2065 /*
2066 * And free the pte page itself.
2067 */
2068 {
2069 register vm_page_t m;
2070
2071 vm_object_lock(p->pm_obj);
2072
2073 m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]) * PAGE_SIZE);
2074 if (m == VM_PAGE_NULL)
2075 panic("pmap_collect: pte page not in object");
2076
2077 vm_object_unlock(p->pm_obj);
2078
2079 VM_PAGE_FREE(m);
2080
2081 OSAddAtomic(-1, &inuse_ptepages_count);
2082 PMAP_ZINFO_PFREE(p, PAGE_SIZE);
2083 }
2084
2085 PMAP_LOCK(p);
2086 }
2087 }
2088 }
2089 }
2090
2091 PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
2092 PMAP_UNLOCK(p);
2093 return;
2094 }
2095 #endif
2096
2097
2098 void
2099 pmap_copy_page(ppnum_t src, ppnum_t dst)
2100 {
2101 bcopy_phys((addr64_t)i386_ptob(src),
2102 (addr64_t)i386_ptob(dst),
2103 PAGE_SIZE);
2104 }
2105
2106
2107 /*
2108 * Routine: pmap_pageable
2109 * Function:
2110 * Make the specified pages (by pmap, offset)
2111 * pageable (or not) as requested.
2112 *
2113 * A page which is not pageable may not take
2114 * a fault; therefore, its page table entry
2115 * must remain valid for the duration.
2116 *
2117 * This routine is merely advisory; pmap_enter
2118 * will specify that these pages are to be wired
2119 * down (or not) as appropriate.
2120 */
2121 void
2122 pmap_pageable(
2123 __unused pmap_t pmap,
2124 __unused vm_map_offset_t start_addr,
2125 __unused vm_map_offset_t end_addr,
2126 __unused boolean_t pageable)
2127 {
2128 #ifdef lint
2129 pmap++; start_addr++; end_addr++; pageable++;
2130 #endif /* lint */
2131 }
2132
2133 void
2134 invalidate_icache(__unused vm_offset_t addr,
2135 __unused unsigned cnt,
2136 __unused int phys)
2137 {
2138 return;
2139 }
2140
2141 void
2142 flush_dcache(__unused vm_offset_t addr,
2143 __unused unsigned count,
2144 __unused int phys)
2145 {
2146 return;
2147 }
2148
2149 #if CONFIG_DTRACE
2150 /*
2151 * Constrain DTrace copyin/copyout actions
2152 */
2153 extern kern_return_t dtrace_copyio_preflight(addr64_t);
2154 extern kern_return_t dtrace_copyio_postflight(addr64_t);
2155
2156 kern_return_t dtrace_copyio_preflight(__unused addr64_t va)
2157 {
2158 thread_t thread = current_thread();
2159 uint64_t ccr3;
2160 if (current_map() == kernel_map)
2161 return KERN_FAILURE;
2162 else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE))
2163 return KERN_FAILURE;
2164 else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3))
2165 return KERN_FAILURE;
2166 else
2167 return KERN_SUCCESS;
2168 }
2169
2170 kern_return_t dtrace_copyio_postflight(__unused addr64_t va)
2171 {
2172 return KERN_SUCCESS;
2173 }
2174 #endif /* CONFIG_DTRACE */
2175
2176 #include <mach_vm_debug.h>
2177 #if MACH_VM_DEBUG
2178 #include <vm/vm_debug.h>
2179
2180 int
2181 pmap_list_resident_pages(
2182 __unused pmap_t pmap,
2183 __unused vm_offset_t *listp,
2184 __unused int space)
2185 {
2186 return 0;
2187 }
2188 #endif /* MACH_VM_DEBUG */
2189
2190
2191
2192 /* temporary workaround */
2193 boolean_t
2194 coredumpok(__unused vm_map_t map, __unused vm_offset_t va)
2195 {
2196 #if 0
2197 pt_entry_t *ptep;
2198
2199 ptep = pmap_pte(map->pmap, va);
2200 if (0 == ptep)
2201 return FALSE;
2202 return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED));
2203 #else
2204 return TRUE;
2205 #endif
2206 }
2207
2208
2209 boolean_t
2210 phys_page_exists(ppnum_t pn)
2211 {
2212 assert(pn != vm_page_fictitious_addr);
2213
2214 if (!pmap_initialized)
2215 return TRUE;
2216
2217 if (pn == vm_page_guard_addr)
2218 return FALSE;
2219
2220 if (!IS_MANAGED_PAGE(ppn_to_pai(pn)))
2221 return FALSE;
2222
2223 return TRUE;
2224 }
2225
2226
2227
2228 void
2229 pmap_switch(pmap_t tpmap)
2230 {
2231 spl_t s;
2232
2233 s = splhigh(); /* Make sure interruptions are disabled */
2234 set_dirbase(tpmap, current_thread(), cpu_number());
2235 splx(s);
2236 }
2237
2238
2239 /*
2240 * disable no-execute capability on
2241 * the specified pmap
2242 */
2243 void
2244 pmap_disable_NX(pmap_t pmap)
2245 {
2246 pmap->nx_enabled = 0;
2247 }
2248
2249 void
2250 pt_fake_zone_init(int zone_index)
2251 {
2252 pt_fake_zone_index = zone_index;
2253 }
2254
2255 void
2256 pt_fake_zone_info(
2257 int *count,
2258 vm_size_t *cur_size,
2259 vm_size_t *max_size,
2260 vm_size_t *elem_size,
2261 vm_size_t *alloc_size,
2262 uint64_t *sum_size,
2263 int *collectable,
2264 int *exhaustable,
2265 int *caller_acct)
2266 {
2267 *count = inuse_ptepages_count;
2268 *cur_size = PAGE_SIZE * inuse_ptepages_count;
2269 *max_size = PAGE_SIZE * (inuse_ptepages_count +
2270 vm_page_inactive_count +
2271 vm_page_active_count +
2272 vm_page_free_count);
2273 *elem_size = PAGE_SIZE;
2274 *alloc_size = PAGE_SIZE;
2275 *sum_size = alloc_ptepages_count * PAGE_SIZE;
2276
2277 *collectable = 1;
2278 *exhaustable = 0;
2279 *caller_acct = 1;
2280 }
2281
2282
2283 void
2284 pmap_flush_context_init(pmap_flush_context *pfc)
2285 {
2286 pfc->pfc_cpus = 0;
2287 pfc->pfc_invalid_global = 0;
2288 }
2289
2290 extern unsigned TLBTimeOut;
2291 void
2292 pmap_flush(
2293 pmap_flush_context *pfc)
2294 {
2295 unsigned int my_cpu;
2296 unsigned int cpu;
2297 unsigned int cpu_bit;
2298 cpumask_t cpus_to_respond = 0;
2299 cpumask_t cpus_to_signal = 0;
2300 cpumask_t cpus_signaled = 0;
2301 boolean_t flush_self = FALSE;
2302 uint64_t deadline;
2303
2304 mp_disable_preemption();
2305
2306 my_cpu = cpu_number();
2307 cpus_to_signal = pfc->pfc_cpus;
2308
2309 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_START,
2310 NULL, cpus_to_signal, 0, 0, 0);
2311
2312 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus && cpus_to_signal; cpu++, cpu_bit <<= 1) {
2313
2314 if (cpus_to_signal & cpu_bit) {
2315
2316 cpus_to_signal &= ~cpu_bit;
2317
2318 if (!cpu_datap(cpu)->cpu_running)
2319 continue;
2320
2321 if (pfc->pfc_invalid_global & cpu_bit)
2322 cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2323 else
2324 cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2325 mfence();
2326
2327 if (cpu == my_cpu) {
2328 flush_self = TRUE;
2329 continue;
2330 }
2331 if (CPU_CR3_IS_ACTIVE(cpu)) {
2332 cpus_to_respond |= cpu_bit;
2333 i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2334 }
2335 }
2336 }
2337 cpus_signaled = cpus_to_respond;
2338
2339 /*
2340 * Flush local tlb if required.
2341 * Do this now to overlap with other processors responding.
2342 */
2343 if (flush_self && cpu_datap(my_cpu)->cpu_tlb_invalid != FALSE)
2344 process_pmap_updates();
2345
2346 if (cpus_to_respond) {
2347
2348 deadline = mach_absolute_time() +
2349 (TLBTimeOut ? TLBTimeOut : LockTimeOut);
2350 boolean_t is_timeout_traced = FALSE;
2351
2352 /*
2353 * Wait for those other cpus to acknowledge
2354 */
2355 while (cpus_to_respond != 0) {
2356 long orig_acks = 0;
2357
2358 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2359 /* Consider checking local/global invalidity
2360 * as appropriate in the PCID case.
2361 */
2362 if ((cpus_to_respond & cpu_bit) != 0) {
2363 if (!cpu_datap(cpu)->cpu_running ||
2364 cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2365 !CPU_CR3_IS_ACTIVE(cpu)) {
2366 cpus_to_respond &= ~cpu_bit;
2367 }
2368 cpu_pause();
2369 }
2370 if (cpus_to_respond == 0)
2371 break;
2372 }
2373 if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2374 if (machine_timeout_suspended())
2375 continue;
2376 if (TLBTimeOut == 0) {
2377 if (is_timeout_traced)
2378 continue;
2379 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS_TO),
2380 NULL, cpus_to_signal, cpus_to_respond, 0, 0);
2381 is_timeout_traced = TRUE;
2382 continue;
2383 }
2384 pmap_tlb_flush_timeout = TRUE;
2385 orig_acks = NMIPI_acks;
2386 mp_cpus_NMIPI(cpus_to_respond);
2387
2388 panic("TLB invalidation IPI timeout: "
2389 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%llx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2390 cpus_to_respond, orig_acks, NMIPI_acks);
2391 }
2392 }
2393 }
2394 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_END,
2395 NULL, cpus_signaled, flush_self, 0, 0);
2396
2397 mp_enable_preemption();
2398 }
2399
2400
2401 static void
2402 invept(void *eptp)
2403 {
2404 struct {
2405 uint64_t eptp;
2406 uint64_t reserved;
2407 } __attribute__((aligned(16), packed)) invept_descriptor = {(uint64_t)eptp, 0};
2408
2409 __asm__ volatile("invept (%%rax), %%rcx"
2410 : : "c" (PMAP_INVEPT_SINGLE_CONTEXT), "a" (&invept_descriptor)
2411 : "cc", "memory");
2412 }
2413
2414 /*
2415 * Called with pmap locked, we:
2416 * - scan through per-cpu data to see which other cpus need to flush
2417 * - send an IPI to each non-idle cpu to be flushed
2418 * - wait for all to signal back that they are inactive or we see that
2419 * they are at a safe point (idle).
2420 * - flush the local tlb if active for this pmap
2421 * - return ... the caller will unlock the pmap
2422 */
2423
2424 void
2425 pmap_flush_tlbs(pmap_t pmap, vm_map_offset_t startv, vm_map_offset_t endv, int options, pmap_flush_context *pfc)
2426 {
2427 unsigned int cpu;
2428 unsigned int cpu_bit;
2429 cpumask_t cpus_to_signal;
2430 unsigned int my_cpu = cpu_number();
2431 pmap_paddr_t pmap_cr3 = pmap->pm_cr3;
2432 boolean_t flush_self = FALSE;
2433 uint64_t deadline;
2434 boolean_t pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap));
2435 boolean_t need_global_flush = FALSE;
2436 uint32_t event_code;
2437 vm_map_offset_t event_startv, event_endv;
2438 boolean_t is_ept = is_ept_pmap(pmap);
2439
2440 assert((processor_avail_count < 2) ||
2441 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2442
2443 if (pmap == kernel_pmap) {
2444 event_code = PMAP_CODE(PMAP__FLUSH_KERN_TLBS);
2445 event_startv = VM_KERNEL_UNSLIDE_OR_PERM(startv);
2446 event_endv = VM_KERNEL_UNSLIDE_OR_PERM(endv);
2447 } else if (is_ept) {
2448 event_code = PMAP_CODE(PMAP__FLUSH_EPT);
2449 event_startv = startv;
2450 event_endv = endv;
2451 } else {
2452 event_code = PMAP_CODE(PMAP__FLUSH_TLBS);
2453 event_startv = startv;
2454 event_endv = endv;
2455 }
2456
2457 PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_START,
2458 VM_KERNEL_UNSLIDE_OR_PERM(pmap), options, event_startv, event_endv, 0);
2459
2460 if (is_ept) {
2461 mp_cpus_call(CPUMASK_ALL, ASYNC, invept, (void*)pmap->pm_eptp);
2462 goto out;
2463 }
2464
2465 /*
2466 * Scan other cpus for matching active or task CR3.
2467 * For idle cpus (with no active map) we mark them invalid but
2468 * don't signal -- they'll check as they go busy.
2469 */
2470 cpus_to_signal = 0;
2471
2472 if (pmap_pcid_ncpus) {
2473 if (pmap_is_shared)
2474 need_global_flush = TRUE;
2475 pmap_pcid_invalidate_all_cpus(pmap);
2476 mfence();
2477 }
2478 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2479 if (!cpu_datap(cpu)->cpu_running)
2480 continue;
2481 uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu);
2482 uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu);
2483
2484 if ((pmap_cr3 == cpu_task_cr3) ||
2485 (pmap_cr3 == cpu_active_cr3) ||
2486 (pmap_is_shared)) {
2487
2488 if (options & PMAP_DELAY_TLB_FLUSH) {
2489 if (need_global_flush == TRUE)
2490 pfc->pfc_invalid_global |= cpu_bit;
2491 pfc->pfc_cpus |= cpu_bit;
2492
2493 continue;
2494 }
2495 if (cpu == my_cpu) {
2496 flush_self = TRUE;
2497 continue;
2498 }
2499 if (need_global_flush == TRUE)
2500 cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2501 else
2502 cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2503 mfence();
2504
2505 /*
2506 * We don't need to signal processors which will flush
2507 * lazily at the idle state or kernel boundary.
2508 * For example, if we're invalidating the kernel pmap,
2509 * processors currently in userspace don't need to flush
2510 * their TLBs until the next time they enter the kernel.
2511 * Alterations to the address space of a task active
2512 * on a remote processor result in a signal, to
2513 * account for copy operations. (There may be room
2514 * for optimization in such cases).
2515 * The order of the loads below with respect
2516 * to the store to the "cpu_tlb_invalid" field above
2517 * is important--hence the barrier.
2518 */
2519 if (CPU_CR3_IS_ACTIVE(cpu) &&
2520 (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) ||
2521 pmap->pm_shared ||
2522 (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
2523 cpus_to_signal |= cpu_bit;
2524 i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2525 }
2526 }
2527 }
2528 if ((options & PMAP_DELAY_TLB_FLUSH))
2529 goto out;
2530
2531 /*
2532 * Flush local tlb if required.
2533 * Do this now to overlap with other processors responding.
2534 */
2535 if (flush_self) {
2536 if (pmap_pcid_ncpus) {
2537 pmap_pcid_validate_cpu(pmap, my_cpu);
2538 if (pmap_is_shared)
2539 tlb_flush_global();
2540 else
2541 flush_tlb_raw();
2542 }
2543 else
2544 flush_tlb_raw();
2545 }
2546
2547 if (cpus_to_signal) {
2548 cpumask_t cpus_to_respond = cpus_to_signal;
2549
2550 deadline = mach_absolute_time() +
2551 (TLBTimeOut ? TLBTimeOut : LockTimeOut);
2552 boolean_t is_timeout_traced = FALSE;
2553
2554 /*
2555 * Wait for those other cpus to acknowledge
2556 */
2557 while (cpus_to_respond != 0) {
2558 long orig_acks = 0;
2559
2560 for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2561 /* Consider checking local/global invalidity
2562 * as appropriate in the PCID case.
2563 */
2564 if ((cpus_to_respond & cpu_bit) != 0) {
2565 if (!cpu_datap(cpu)->cpu_running ||
2566 cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2567 !CPU_CR3_IS_ACTIVE(cpu)) {
2568 cpus_to_respond &= ~cpu_bit;
2569 }
2570 cpu_pause();
2571 }
2572 if (cpus_to_respond == 0)
2573 break;
2574 }
2575 if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2576 if (machine_timeout_suspended())
2577 continue;
2578 if (TLBTimeOut == 0) {
2579 /* cut tracepoint but don't panic */
2580 if (is_timeout_traced)
2581 continue;
2582 PMAP_TRACE_CONSTANT(
2583 PMAP_CODE(PMAP__FLUSH_TLBS_TO),
2584 VM_KERNEL_UNSLIDE_OR_PERM(pmap), cpus_to_signal, cpus_to_respond, 0, 0);
2585 is_timeout_traced = TRUE;
2586 continue;
2587 }
2588 pmap_tlb_flush_timeout = TRUE;
2589 orig_acks = NMIPI_acks;
2590 mp_cpus_NMIPI(cpus_to_respond);
2591
2592 panic("TLB invalidation IPI timeout: "
2593 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%llx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2594 cpus_to_respond, orig_acks, NMIPI_acks);
2595 }
2596 }
2597 }
2598
2599 if (__improbable((pmap == kernel_pmap) && (flush_self != TRUE))) {
2600 panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, pmap_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
2601 }
2602
2603 out:
2604 PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_END,
2605 VM_KERNEL_UNSLIDE_OR_PERM(pmap), cpus_to_signal, event_startv, event_endv, 0);
2606
2607 }
2608
2609 void
2610 process_pmap_updates(void)
2611 {
2612 int ccpu = cpu_number();
2613 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2614 if (pmap_pcid_ncpus) {
2615 pmap_pcid_validate_current();
2616 if (cpu_datap(ccpu)->cpu_tlb_invalid_global) {
2617 cpu_datap(ccpu)->cpu_tlb_invalid = FALSE;
2618 tlb_flush_global();
2619 }
2620 else {
2621 cpu_datap(ccpu)->cpu_tlb_invalid_local = FALSE;
2622 flush_tlb_raw();
2623 }
2624 }
2625 else {
2626 current_cpu_datap()->cpu_tlb_invalid = FALSE;
2627 flush_tlb_raw();
2628 }
2629
2630 mfence();
2631 }
2632
2633 void
2634 pmap_update_interrupt(void)
2635 {
2636 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
2637 0, 0, 0, 0, 0);
2638
2639 if (current_cpu_datap()->cpu_tlb_invalid)
2640 process_pmap_updates();
2641
2642 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
2643 0, 0, 0, 0, 0);
2644 }
2645
2646 #include <mach/mach_vm.h> /* mach_vm_region_recurse() */
2647 /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2648 * and identify ranges with mismatched VM permissions and PTE permissions
2649 */
2650 kern_return_t
2651 pmap_permissions_verify(pmap_t ipmap, vm_map_t ivmmap, vm_offset_t sv, vm_offset_t ev) {
2652 vm_offset_t cv = sv;
2653 kern_return_t rv = KERN_SUCCESS;
2654 uint64_t skip4 = 0, skip2 = 0;
2655
2656 assert(!is_ept_pmap(ipmap));
2657
2658 sv &= ~PAGE_MASK_64;
2659 ev &= ~PAGE_MASK_64;
2660 while (cv < ev) {
2661 if (__improbable((cv > 0x00007FFFFFFFFFFFULL) &&
2662 (cv < 0xFFFF800000000000ULL))) {
2663 cv = 0xFFFF800000000000ULL;
2664 }
2665 /* Potential inconsistencies from not holding pmap lock
2666 * but harmless for the moment.
2667 */
2668 if (((cv & PML4MASK) == 0) && (pmap64_pml4(ipmap, cv) == 0)) {
2669 if ((cv + NBPML4) > cv)
2670 cv += NBPML4;
2671 else
2672 break;
2673 skip4++;
2674 continue;
2675 }
2676 if (((cv & PDMASK) == 0) && (pmap_pde(ipmap, cv) == 0)) {
2677 if ((cv + NBPD) > cv)
2678 cv += NBPD;
2679 else
2680 break;
2681 skip2++;
2682 continue;
2683 }
2684
2685 pt_entry_t *ptep = pmap_pte(ipmap, cv);
2686 if (ptep && (*ptep & INTEL_PTE_VALID)) {
2687 if (*ptep & INTEL_PTE_WRITE) {
2688 if (!(*ptep & INTEL_PTE_NX)) {
2689 kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv, *pmap64_pml4(ipmap, cv), *pmap64_pdpt(ipmap, cv), *pmap64_pde(ipmap, cv), *ptep, pmap_valid_page((ppnum_t)(i386_btop(pte_to_pa(*ptep)))));
2690 rv = KERN_FAILURE;
2691 }
2692 }
2693 }
2694 cv += PAGE_SIZE;
2695 }
2696 kprintf("Completed pmap scan\n");
2697 cv = sv;
2698
2699 struct vm_region_submap_info_64 vbr;
2700 mach_msg_type_number_t vbrcount = 0;
2701 mach_vm_size_t vmsize;
2702 vm_prot_t prot;
2703 uint32_t nesting_depth = 0;
2704 kern_return_t kret;
2705
2706 while (cv < ev) {
2707
2708 for (;;) {
2709 vbrcount = VM_REGION_SUBMAP_INFO_COUNT_64;
2710 if((kret = mach_vm_region_recurse(ivmmap,
2711 (mach_vm_address_t *) &cv, &vmsize, &nesting_depth,
2712 (vm_region_recurse_info_t)&vbr,
2713 &vbrcount)) != KERN_SUCCESS) {
2714 break;
2715 }
2716
2717 if(vbr.is_submap) {
2718 nesting_depth++;
2719 continue;
2720 } else {
2721 break;
2722 }
2723 }
2724
2725 if(kret != KERN_SUCCESS)
2726 break;
2727
2728 prot = vbr.protection;
2729
2730 if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2731 kprintf("W+X map entry at address 0x%lx\n", cv);
2732 rv = KERN_FAILURE;
2733 }
2734
2735 if (prot) {
2736 vm_offset_t pcv;
2737 for (pcv = cv; pcv < cv + vmsize; pcv += PAGE_SIZE) {
2738 pt_entry_t *ptep = pmap_pte(ipmap, pcv);
2739 vm_prot_t tprot;
2740
2741 if ((ptep == NULL) || !(*ptep & INTEL_PTE_VALID))
2742 continue;
2743 tprot = VM_PROT_READ;
2744 if (*ptep & INTEL_PTE_WRITE)
2745 tprot |= VM_PROT_WRITE;
2746 if ((*ptep & INTEL_PTE_NX) == 0)
2747 tprot |= VM_PROT_EXECUTE;
2748 if (tprot != prot) {
2749 kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv, *ptep, prot);
2750 rv = KERN_FAILURE;
2751 }
2752 }
2753 }
2754 cv += vmsize;
2755 }
2756 return rv;
2757 }