]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cluster.c
xnu-3248.30.4.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <miscfs/specfs/specdev.h>
75 #include <sys/uio_internal.h>
76 #include <libkern/libkern.h>
77 #include <machine/machine_routines.h>
78
79 #include <sys/ubc_internal.h>
80 #include <vm/vnode_pager.h>
81
82 #include <mach/mach_types.h>
83 #include <mach/memory_object_types.h>
84 #include <mach/vm_map.h>
85 #include <mach/upl.h>
86 #include <kern/task.h>
87
88 #include <vm/vm_kern.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_fault.h>
92
93 #include <sys/kdebug.h>
94 #include <libkern/OSAtomic.h>
95
96 #include <sys/sdt.h>
97
98 #include <stdbool.h>
99
100 #if 0
101 #undef KERNEL_DEBUG
102 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
103 #endif
104
105
106 #define CL_READ 0x01
107 #define CL_WRITE 0x02
108 #define CL_ASYNC 0x04
109 #define CL_COMMIT 0x08
110 #define CL_PAGEOUT 0x10
111 #define CL_AGE 0x20
112 #define CL_NOZERO 0x40
113 #define CL_PAGEIN 0x80
114 #define CL_DEV_MEMORY 0x100
115 #define CL_PRESERVE 0x200
116 #define CL_THROTTLE 0x400
117 #define CL_KEEPCACHED 0x800
118 #define CL_DIRECT_IO 0x1000
119 #define CL_PASSIVE 0x2000
120 #define CL_IOSTREAMING 0x4000
121 #define CL_CLOSE 0x8000
122 #define CL_ENCRYPTED 0x10000
123 #define CL_RAW_ENCRYPTED 0x20000
124 #define CL_NOCACHE 0x40000
125
126 #define MAX_VECTOR_UPL_ELEMENTS 8
127 #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
128
129 extern upl_t vector_upl_create(vm_offset_t);
130 extern boolean_t vector_upl_is_valid(upl_t);
131 extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
132 extern void vector_upl_set_pagelist(upl_t);
133 extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
134
135 struct clios {
136 lck_mtx_t io_mtxp;
137 u_int io_completed; /* amount of io that has currently completed */
138 u_int io_issued; /* amount of io that was successfully issued */
139 int io_error; /* error code of first error encountered */
140 int io_wanted; /* someone is sleeping waiting for a change in state */
141 };
142
143 struct cl_direct_read_lock {
144 LIST_ENTRY(cl_direct_read_lock) chain;
145 int32_t ref_count;
146 vnode_t vp;
147 lck_rw_t rw_lock;
148 };
149
150 #define CL_DIRECT_READ_LOCK_BUCKETS 61
151
152 static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
153 cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
154
155 static lck_spin_t cl_direct_read_spin_lock;
156
157 static lck_grp_t *cl_mtx_grp;
158 static lck_attr_t *cl_mtx_attr;
159 static lck_grp_attr_t *cl_mtx_grp_attr;
160 static lck_mtx_t *cl_transaction_mtxp;
161
162 #define IO_UNKNOWN 0
163 #define IO_DIRECT 1
164 #define IO_CONTIG 2
165 #define IO_COPY 3
166
167 #define PUSH_DELAY 0x01
168 #define PUSH_ALL 0x02
169 #define PUSH_SYNC 0x04
170
171
172 static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
173 static void cluster_wait_IO(buf_t cbp_head, int async);
174 static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
175
176 static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
177
178 static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
179 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
180 static int cluster_iodone(buf_t bp, void *callback_arg);
181 static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
182 static int cluster_is_throttled(vnode_t vp);
183
184 static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
185
186 static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
187
188 static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
189 static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
190
191 static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
192 int (*)(buf_t, void *), void *callback_arg);
193 static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
194 int flags, int (*)(buf_t, void *), void *callback_arg);
195 static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
196 int (*)(buf_t, void *), void *callback_arg, int flags);
197
198 static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
199 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
200 static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
201 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
202 static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
203 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
204
205 static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
206
207 static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
208 static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
209
210 static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
211
212 static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg);
213
214 static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
215 static void sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
216 static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
217
218 static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
219 static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
220 static kern_return_t vfs_drt_control(void **cmapp, int op_type);
221
222
223 /*
224 * For throttled IO to check whether
225 * a block is cached by the boot cache
226 * and thus it can avoid delaying the IO.
227 *
228 * bootcache_contains_block is initially
229 * NULL. The BootCache will set it while
230 * the cache is active and clear it when
231 * the cache is jettisoned.
232 *
233 * Returns 0 if the block is not
234 * contained in the cache, 1 if it is
235 * contained.
236 *
237 * The function pointer remains valid
238 * after the cache has been evicted even
239 * if bootcache_contains_block has been
240 * cleared.
241 *
242 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
243 */
244 int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
245
246
247 /*
248 * limit the internal I/O size so that we
249 * can represent it in a 32 bit int
250 */
251 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
252 #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
253 #define MAX_VECTS 16
254 /*
255 * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
256 * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
257 * we have not historically allowed the write to bypass the UBC.
258 */
259 #define MIN_DIRECT_WRITE_SIZE (16384)
260
261 #define WRITE_THROTTLE 6
262 #define WRITE_THROTTLE_SSD 2
263 #define WRITE_BEHIND 1
264 #define WRITE_BEHIND_SSD 1
265
266 #define PREFETCH 3
267 #define PREFETCH_SSD 2
268 uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
269 uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
270
271
272 #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
273 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
274 #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
275
276 int ignore_is_ssd = 0;
277 int speculative_reads_disabled = 0;
278
279 /*
280 * throttle the number of async writes that
281 * can be outstanding on a single vnode
282 * before we issue a synchronous write
283 */
284 #define THROTTLE_MAXCNT 0
285
286 uint32_t throttle_max_iosize = (128 * 1024);
287
288 #define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
289
290 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
291
292
293 void
294 cluster_init(void) {
295 /*
296 * allocate lock group attribute and group
297 */
298 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
299 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
300
301 /*
302 * allocate the lock attribute
303 */
304 cl_mtx_attr = lck_attr_alloc_init();
305
306 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
307
308 if (cl_transaction_mtxp == NULL)
309 panic("cluster_init: failed to allocate cl_transaction_mtxp");
310
311 lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
312
313 for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
314 LIST_INIT(&cl_direct_read_locks[i]);
315 }
316
317
318 uint32_t
319 cluster_max_io_size(mount_t mp, int type)
320 {
321 uint32_t max_io_size;
322 uint32_t segcnt;
323 uint32_t maxcnt;
324
325 switch(type) {
326
327 case CL_READ:
328 segcnt = mp->mnt_segreadcnt;
329 maxcnt = mp->mnt_maxreadcnt;
330 break;
331 case CL_WRITE:
332 segcnt = mp->mnt_segwritecnt;
333 maxcnt = mp->mnt_maxwritecnt;
334 break;
335 default:
336 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
337 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
338 break;
339 }
340 if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
341 /*
342 * don't allow a size beyond the max UPL size we can create
343 */
344 segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
345 }
346 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
347
348 if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
349 /*
350 * don't allow a size smaller than the old fixed limit
351 */
352 max_io_size = MAX_UPL_TRANSFER_BYTES;
353 } else {
354 /*
355 * make sure the size specified is a multiple of PAGE_SIZE
356 */
357 max_io_size &= ~PAGE_MASK;
358 }
359 return (max_io_size);
360 }
361
362
363
364
365 #define CLW_ALLOCATE 0x01
366 #define CLW_RETURNLOCKED 0x02
367 #define CLW_IONOCACHE 0x04
368 #define CLW_IOPASSIVE 0x08
369
370 /*
371 * if the read ahead context doesn't yet exist,
372 * allocate and initialize it...
373 * the vnode lock serializes multiple callers
374 * during the actual assignment... first one
375 * to grab the lock wins... the other callers
376 * will release the now unnecessary storage
377 *
378 * once the context is present, try to grab (but don't block on)
379 * the lock associated with it... if someone
380 * else currently owns it, than the read
381 * will run without read-ahead. this allows
382 * multiple readers to run in parallel and
383 * since there's only 1 read ahead context,
384 * there's no real loss in only allowing 1
385 * reader to have read-ahead enabled.
386 */
387 static struct cl_readahead *
388 cluster_get_rap(vnode_t vp)
389 {
390 struct ubc_info *ubc;
391 struct cl_readahead *rap;
392
393 ubc = vp->v_ubcinfo;
394
395 if ((rap = ubc->cl_rahead) == NULL) {
396 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
397
398 bzero(rap, sizeof *rap);
399 rap->cl_lastr = -1;
400 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
401
402 vnode_lock(vp);
403
404 if (ubc->cl_rahead == NULL)
405 ubc->cl_rahead = rap;
406 else {
407 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
408 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
409 rap = ubc->cl_rahead;
410 }
411 vnode_unlock(vp);
412 }
413 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
414 return(rap);
415
416 return ((struct cl_readahead *)NULL);
417 }
418
419
420 /*
421 * if the write behind context doesn't yet exist,
422 * and CLW_ALLOCATE is specified, allocate and initialize it...
423 * the vnode lock serializes multiple callers
424 * during the actual assignment... first one
425 * to grab the lock wins... the other callers
426 * will release the now unnecessary storage
427 *
428 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
429 * the lock associated with the write behind context before
430 * returning
431 */
432
433 static struct cl_writebehind *
434 cluster_get_wbp(vnode_t vp, int flags)
435 {
436 struct ubc_info *ubc;
437 struct cl_writebehind *wbp;
438
439 ubc = vp->v_ubcinfo;
440
441 if ((wbp = ubc->cl_wbehind) == NULL) {
442
443 if ( !(flags & CLW_ALLOCATE))
444 return ((struct cl_writebehind *)NULL);
445
446 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
447
448 bzero(wbp, sizeof *wbp);
449 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
450
451 vnode_lock(vp);
452
453 if (ubc->cl_wbehind == NULL)
454 ubc->cl_wbehind = wbp;
455 else {
456 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
457 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
458 wbp = ubc->cl_wbehind;
459 }
460 vnode_unlock(vp);
461 }
462 if (flags & CLW_RETURNLOCKED)
463 lck_mtx_lock(&wbp->cl_lockw);
464
465 return (wbp);
466 }
467
468
469 static void
470 cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
471 {
472 struct cl_writebehind *wbp;
473
474 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
475
476 if (wbp->cl_number) {
477 lck_mtx_lock(&wbp->cl_lockw);
478
479 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg);
480
481 lck_mtx_unlock(&wbp->cl_lockw);
482 }
483 }
484 }
485
486
487 static int
488 cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
489 {
490 daddr64_t blkno;
491 size_t io_size;
492 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
493
494 if (bootcache_check_fn) {
495 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ, NULL))
496 return(0);
497
498 if (io_size == 0)
499 return (0);
500
501 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
502 return(1);
503 }
504 return(0);
505 }
506
507
508 static int
509 cluster_is_throttled(vnode_t vp)
510 {
511 return (throttle_io_will_be_throttled(-1, vp->v_mount));
512 }
513
514
515 static void
516 cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
517 {
518
519 lck_mtx_lock(&iostate->io_mtxp);
520
521 while ((iostate->io_issued - iostate->io_completed) > target) {
522
523 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
524 iostate->io_issued, iostate->io_completed, target, 0, 0);
525
526 iostate->io_wanted = 1;
527 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
528
529 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
530 iostate->io_issued, iostate->io_completed, target, 0, 0);
531 }
532 lck_mtx_unlock(&iostate->io_mtxp);
533 }
534
535 static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
536 upl_offset_t upl_offset, upl_size_t size)
537 {
538 if (!size)
539 return;
540
541 upl_t associated_upl = upl_associated_upl(upl);
542
543 if (!associated_upl)
544 return;
545
546 #if 0
547 printf("1: %d %d\n", upl_offset, upl_offset + size);
548 #endif
549
550 /*
551 * The associated UPL is page aligned to file offsets whereas the
552 * UPL it's attached to has different alignment requirements. The
553 * upl_offset that we have refers to @upl. The code that follows
554 * has to deal with the first and last pages in this transaction
555 * which might straddle pages in the associated UPL. To keep
556 * track of these pages, we use the mark bits: if the mark bit is
557 * set, we know another transaction has completed its part of that
558 * page and so we can unlock that page here.
559 *
560 * The following illustrates what we have to deal with:
561 *
562 * MEM u <------------ 1 PAGE ------------> e
563 * +-------------+----------------------+-----------------
564 * | |######################|#################
565 * +-------------+----------------------+-----------------
566 * FILE | <--- a ---> o <------------ 1 PAGE ------------>
567 *
568 * So here we show a write to offset @o. The data that is to be
569 * written is in a buffer that is not page aligned; it has offset
570 * @a in the page. The upl that carries the data starts in memory
571 * at @u. The associated upl starts in the file at offset @o. A
572 * transaction will always end on a page boundary (like @e above)
573 * except for the very last transaction in the group. We cannot
574 * unlock the page at @o in the associated upl until both the
575 * transaction ending at @e and the following transaction (that
576 * starts at @e) has completed.
577 */
578
579 /*
580 * We record whether or not the two UPLs are aligned as the mark
581 * bit in the first page of @upl.
582 */
583 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
584 bool is_unaligned = upl_page_get_mark(pl, 0);
585
586 if (is_unaligned) {
587 upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
588
589 upl_offset_t upl_end = upl_offset + size;
590 assert(upl_end >= PAGE_SIZE);
591
592 upl_size_t assoc_upl_size = upl_get_size(associated_upl);
593
594 /*
595 * In the very first transaction in the group, upl_offset will
596 * not be page aligned, but after that it will be and in that
597 * case we want the preceding page in the associated UPL hence
598 * the minus one.
599 */
600 assert(upl_offset);
601 if (upl_offset)
602 upl_offset = trunc_page_32(upl_offset - 1);
603
604 lck_mtx_lock_spin(&iostate->io_mtxp);
605
606 // Look at the first page...
607 if (upl_offset
608 && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
609 /*
610 * The first page isn't marked so let another transaction
611 * completion handle it.
612 */
613 upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
614 upl_offset += PAGE_SIZE;
615 }
616
617 // And now the last page...
618
619 /*
620 * This needs to be > rather than >= because if it's equal, it
621 * means there's another transaction that is sharing the last
622 * page.
623 */
624 if (upl_end > assoc_upl_size)
625 upl_end = assoc_upl_size;
626 else {
627 upl_end = trunc_page_32(upl_end);
628 const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
629
630 if (!upl_page_get_mark(assoc_pl, last_pg)) {
631 /*
632 * The last page isn't marked so mark the page and let another
633 * transaction completion handle it.
634 */
635 upl_page_set_mark(assoc_pl, last_pg, true);
636 upl_end -= PAGE_SIZE;
637 }
638 }
639
640 lck_mtx_unlock(&iostate->io_mtxp);
641
642 #if 0
643 printf("2: %d %d\n", upl_offset, upl_end);
644 #endif
645
646 if (upl_end <= upl_offset)
647 return;
648
649 size = upl_end - upl_offset;
650 } else {
651 assert(!(upl_offset & PAGE_MASK));
652 assert(!(size & PAGE_MASK));
653 }
654
655 boolean_t empty;
656
657 /*
658 * We can unlock these pages now and as this is for a
659 * direct/uncached write, we want to dump the pages too.
660 */
661 kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
662 UPL_ABORT_DUMP_PAGES, &empty);
663
664 assert(!kr);
665
666 if (!kr && empty) {
667 upl_set_associated_upl(upl, NULL);
668 upl_deallocate(associated_upl);
669 }
670 }
671
672 static int
673 cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
674 {
675 int upl_abort_code = 0;
676 int page_in = 0;
677 int page_out = 0;
678
679 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
680 /*
681 * direct write of any flavor, or a direct read that wasn't aligned
682 */
683 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
684 else {
685 if (io_flags & B_PAGEIO) {
686 if (io_flags & B_READ)
687 page_in = 1;
688 else
689 page_out = 1;
690 }
691 if (io_flags & B_CACHE)
692 /*
693 * leave pages in the cache unchanged on error
694 */
695 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
696 else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
697 /*
698 * transient error... leave pages unchanged
699 */
700 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
701 else if (page_in)
702 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
703 else
704 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
705
706 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
707 }
708 return (upl_abort_code);
709 }
710
711
712 static int
713 cluster_iodone(buf_t bp, void *callback_arg)
714 {
715 int b_flags;
716 int error;
717 int total_size;
718 int total_resid;
719 int upl_offset;
720 int zero_offset;
721 int pg_offset = 0;
722 int commit_size = 0;
723 int upl_flags = 0;
724 int transaction_size = 0;
725 upl_t upl;
726 buf_t cbp;
727 buf_t cbp_head;
728 buf_t cbp_next;
729 buf_t real_bp;
730 vnode_t vp;
731 struct clios *iostate;
732 boolean_t transaction_complete = FALSE;
733
734 __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
735
736 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
737 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
738
739 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
740 boolean_t need_wakeup = FALSE;
741
742 lck_mtx_lock_spin(cl_transaction_mtxp);
743
744 bp->b_flags |= B_TDONE;
745
746 if (bp->b_flags & B_TWANTED) {
747 CLR(bp->b_flags, B_TWANTED);
748 need_wakeup = TRUE;
749 }
750 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
751 /*
752 * all I/O requests that are part of this transaction
753 * have to complete before we can process it
754 */
755 if ( !(cbp->b_flags & B_TDONE)) {
756
757 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
758 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
759
760 lck_mtx_unlock(cl_transaction_mtxp);
761
762 if (need_wakeup == TRUE)
763 wakeup(bp);
764
765 return 0;
766 }
767 if (cbp->b_flags & B_EOT)
768 transaction_complete = TRUE;
769 }
770 lck_mtx_unlock(cl_transaction_mtxp);
771
772 if (need_wakeup == TRUE)
773 wakeup(bp);
774
775 if (transaction_complete == FALSE) {
776 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
777 cbp_head, 0, 0, 0, 0);
778 return 0;
779 }
780 }
781 error = 0;
782 total_size = 0;
783 total_resid = 0;
784
785 cbp = cbp_head;
786 vp = cbp->b_vp;
787 upl_offset = cbp->b_uploffset;
788 upl = cbp->b_upl;
789 b_flags = cbp->b_flags;
790 real_bp = cbp->b_real_bp;
791 zero_offset= cbp->b_validend;
792 iostate = (struct clios *)cbp->b_iostate;
793
794 if (real_bp)
795 real_bp->b_dev = cbp->b_dev;
796
797 while (cbp) {
798 if ((cbp->b_flags & B_ERROR) && error == 0)
799 error = cbp->b_error;
800
801 total_resid += cbp->b_resid;
802 total_size += cbp->b_bcount;
803
804 cbp_next = cbp->b_trans_next;
805
806 if (cbp_next == NULL)
807 /*
808 * compute the overall size of the transaction
809 * in case we created one that has 'holes' in it
810 * 'total_size' represents the amount of I/O we
811 * did, not the span of the transaction w/r to the UPL
812 */
813 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
814
815 if (cbp != cbp_head)
816 free_io_buf(cbp);
817
818 cbp = cbp_next;
819 }
820
821 if (ISSET(b_flags, B_COMMIT_UPL)) {
822 cluster_handle_associated_upl(iostate,
823 cbp_head->b_upl,
824 upl_offset,
825 transaction_size);
826 }
827
828 if (error == 0 && total_resid)
829 error = EIO;
830
831 if (error == 0) {
832 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
833
834 if (cliodone_func != NULL) {
835 cbp_head->b_bcount = transaction_size;
836
837 error = (*cliodone_func)(cbp_head, callback_arg);
838 }
839 }
840 if (zero_offset)
841 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
842
843 free_io_buf(cbp_head);
844
845 if (iostate) {
846 int need_wakeup = 0;
847
848 /*
849 * someone has issued multiple I/Os asynchrounsly
850 * and is waiting for them to complete (streaming)
851 */
852 lck_mtx_lock_spin(&iostate->io_mtxp);
853
854 if (error && iostate->io_error == 0)
855 iostate->io_error = error;
856
857 iostate->io_completed += total_size;
858
859 if (iostate->io_wanted) {
860 /*
861 * someone is waiting for the state of
862 * this io stream to change
863 */
864 iostate->io_wanted = 0;
865 need_wakeup = 1;
866 }
867 lck_mtx_unlock(&iostate->io_mtxp);
868
869 if (need_wakeup)
870 wakeup((caddr_t)&iostate->io_wanted);
871 }
872
873 if (b_flags & B_COMMIT_UPL) {
874 pg_offset = upl_offset & PAGE_MASK;
875 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
876
877 if (error)
878 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
879 else {
880 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
881
882 if ((b_flags & B_PHYS) && (b_flags & B_READ))
883 upl_flags |= UPL_COMMIT_SET_DIRTY;
884
885 if (b_flags & B_AGE)
886 upl_flags |= UPL_COMMIT_INACTIVATE;
887
888 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
889 }
890 }
891 if (real_bp) {
892 if (error) {
893 real_bp->b_flags |= B_ERROR;
894 real_bp->b_error = error;
895 }
896 real_bp->b_resid = total_resid;
897
898 buf_biodone(real_bp);
899 }
900 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
901 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
902
903 return (error);
904 }
905
906
907 uint32_t
908 cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
909 {
910 if (cluster_is_throttled(vp)) {
911 *limit = THROTTLE_MAX_IOSIZE;
912 return 1;
913 }
914 return 0;
915 }
916
917
918 void
919 cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
920 {
921
922 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
923 upl_offset, size, bp, 0, 0);
924
925 if (bp == NULL || bp->b_datap == 0) {
926 upl_page_info_t *pl;
927 addr64_t zero_addr;
928
929 pl = ubc_upl_pageinfo(upl);
930
931 if (upl_device_page(pl) == TRUE) {
932 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
933
934 bzero_phys_nc(zero_addr, size);
935 } else {
936 while (size) {
937 int page_offset;
938 int page_index;
939 int zero_cnt;
940
941 page_index = upl_offset / PAGE_SIZE;
942 page_offset = upl_offset & PAGE_MASK;
943
944 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
945 zero_cnt = min(PAGE_SIZE - page_offset, size);
946
947 bzero_phys(zero_addr, zero_cnt);
948
949 size -= zero_cnt;
950 upl_offset += zero_cnt;
951 }
952 }
953 } else
954 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
955
956 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
957 upl_offset, size, 0, 0, 0);
958 }
959
960
961 static void
962 cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
963 {
964 cbp_head->b_validend = zero_offset;
965 cbp_tail->b_flags |= B_EOT;
966 }
967
968 static void
969 cluster_wait_IO(buf_t cbp_head, int async)
970 {
971 buf_t cbp;
972
973 if (async) {
974 /*
975 * async callback completion will not normally
976 * generate a wakeup upon I/O completion...
977 * by setting B_TWANTED, we will force a wakeup
978 * to occur as any outstanding I/Os complete...
979 * I/Os already completed will have B_TDONE already
980 * set and we won't cause us to block
981 * note that we're actually waiting for the bp to have
982 * completed the callback function... only then
983 * can we safely take back ownership of the bp
984 */
985 lck_mtx_lock_spin(cl_transaction_mtxp);
986
987 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
988 cbp->b_flags |= B_TWANTED;
989
990 lck_mtx_unlock(cl_transaction_mtxp);
991 }
992 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
993
994 if (async) {
995 while (!ISSET(cbp->b_flags, B_TDONE)) {
996
997 lck_mtx_lock_spin(cl_transaction_mtxp);
998
999 if (!ISSET(cbp->b_flags, B_TDONE)) {
1000 DTRACE_IO1(wait__start, buf_t, cbp);
1001 (void) msleep(cbp, cl_transaction_mtxp, PDROP | (PRIBIO+1), "cluster_wait_IO", NULL);
1002 DTRACE_IO1(wait__done, buf_t, cbp);
1003 } else
1004 lck_mtx_unlock(cl_transaction_mtxp);
1005 }
1006 } else
1007 buf_biowait(cbp);
1008 }
1009 }
1010
1011 static void
1012 cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
1013 {
1014 buf_t cbp;
1015 int error;
1016 boolean_t isswapout = FALSE;
1017
1018 /*
1019 * cluster_complete_transaction will
1020 * only be called if we've issued a complete chain in synchronous mode
1021 * or, we've already done a cluster_wait_IO on an incomplete chain
1022 */
1023 if (needwait) {
1024 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1025 buf_biowait(cbp);
1026 }
1027 /*
1028 * we've already waited on all of the I/Os in this transaction,
1029 * so mark all of the buf_t's in this transaction as B_TDONE
1030 * so that cluster_iodone sees the transaction as completed
1031 */
1032 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1033 cbp->b_flags |= B_TDONE;
1034 cbp = *cbp_head;
1035
1036 if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
1037 isswapout = TRUE;
1038
1039 error = cluster_iodone(cbp, callback_arg);
1040
1041 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
1042 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
1043 *retval = error;
1044 else if (isswapout == TRUE)
1045 *retval = error;
1046 }
1047 *cbp_head = (buf_t)NULL;
1048 }
1049
1050
1051 static int
1052 cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
1053 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1054 {
1055 buf_t cbp;
1056 u_int size;
1057 u_int io_size;
1058 int io_flags;
1059 int bmap_flags;
1060 int error = 0;
1061 int retval = 0;
1062 buf_t cbp_head = NULL;
1063 buf_t cbp_tail = NULL;
1064 int trans_count = 0;
1065 int max_trans_count;
1066 u_int pg_count;
1067 int pg_offset;
1068 u_int max_iosize;
1069 u_int max_vectors;
1070 int priv;
1071 int zero_offset = 0;
1072 int async_throttle = 0;
1073 mount_t mp;
1074 vm_offset_t upl_end_offset;
1075 boolean_t need_EOT = FALSE;
1076
1077 /*
1078 * we currently don't support buffers larger than a page
1079 */
1080 if (real_bp && non_rounded_size > PAGE_SIZE)
1081 panic("%s(): Called with real buffer of size %d bytes which "
1082 "is greater than the maximum allowed size of "
1083 "%d bytes (the system PAGE_SIZE).\n",
1084 __FUNCTION__, non_rounded_size, PAGE_SIZE);
1085
1086 mp = vp->v_mount;
1087
1088 /*
1089 * we don't want to do any funny rounding of the size for IO requests
1090 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
1091 * belong to us... we can't extend (nor do we need to) the I/O to fill
1092 * out a page
1093 */
1094 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
1095 /*
1096 * round the requested size up so that this I/O ends on a
1097 * page boundary in case this is a 'write'... if the filesystem
1098 * has blocks allocated to back the page beyond the EOF, we want to
1099 * make sure to write out the zero's that are sitting beyond the EOF
1100 * so that in case the filesystem doesn't explicitly zero this area
1101 * if a hole is created via a lseek/write beyond the current EOF,
1102 * it will return zeros when it's read back from the disk. If the
1103 * physical allocation doesn't extend for the whole page, we'll
1104 * only write/read from the disk up to the end of this allocation
1105 * via the extent info returned from the VNOP_BLOCKMAP call.
1106 */
1107 pg_offset = upl_offset & PAGE_MASK;
1108
1109 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
1110 } else {
1111 /*
1112 * anyone advertising a blocksize of 1 byte probably
1113 * can't deal with us rounding up the request size
1114 * AFP is one such filesystem/device
1115 */
1116 size = non_rounded_size;
1117 }
1118 upl_end_offset = upl_offset + size;
1119
1120 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
1121
1122 /*
1123 * Set the maximum transaction size to the maximum desired number of
1124 * buffers.
1125 */
1126 max_trans_count = 8;
1127 if (flags & CL_DEV_MEMORY)
1128 max_trans_count = 16;
1129
1130 if (flags & CL_READ) {
1131 io_flags = B_READ;
1132 bmap_flags = VNODE_READ;
1133
1134 max_iosize = mp->mnt_maxreadcnt;
1135 max_vectors = mp->mnt_segreadcnt;
1136 } else {
1137 io_flags = B_WRITE;
1138 bmap_flags = VNODE_WRITE;
1139
1140 max_iosize = mp->mnt_maxwritecnt;
1141 max_vectors = mp->mnt_segwritecnt;
1142 }
1143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
1144
1145 /*
1146 * make sure the maximum iosize is a
1147 * multiple of the page size
1148 */
1149 max_iosize &= ~PAGE_MASK;
1150
1151 /*
1152 * Ensure the maximum iosize is sensible.
1153 */
1154 if (!max_iosize)
1155 max_iosize = PAGE_SIZE;
1156
1157 if (flags & CL_THROTTLE) {
1158 if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
1159 if (max_iosize > THROTTLE_MAX_IOSIZE)
1160 max_iosize = THROTTLE_MAX_IOSIZE;
1161 async_throttle = THROTTLE_MAXCNT;
1162 } else {
1163 if ( (flags & CL_DEV_MEMORY) )
1164 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
1165 else {
1166 u_int max_cluster;
1167 u_int max_cluster_size;
1168 u_int scale;
1169
1170 max_cluster_size = MAX_CLUSTER_SIZE(vp);
1171
1172 if (max_iosize > max_cluster_size)
1173 max_cluster = max_cluster_size;
1174 else
1175 max_cluster = max_iosize;
1176
1177 if (size < max_cluster)
1178 max_cluster = size;
1179
1180 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd)
1181 scale = WRITE_THROTTLE_SSD;
1182 else
1183 scale = WRITE_THROTTLE;
1184
1185 if (flags & CL_CLOSE)
1186 scale += MAX_CLUSTERS;
1187
1188 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
1189 }
1190 }
1191 }
1192 if (flags & CL_AGE)
1193 io_flags |= B_AGE;
1194 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1195 io_flags |= B_PAGEIO;
1196 if (flags & (CL_IOSTREAMING))
1197 io_flags |= B_IOSTREAMING;
1198 if (flags & CL_COMMIT)
1199 io_flags |= B_COMMIT_UPL;
1200 if (flags & CL_DIRECT_IO)
1201 io_flags |= B_PHYS;
1202 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1203 io_flags |= B_CACHE;
1204 if (flags & CL_PASSIVE)
1205 io_flags |= B_PASSIVE;
1206 if (flags & CL_ENCRYPTED)
1207 io_flags |= B_ENCRYPTED_IO;
1208
1209 if (vp->v_flag & VSYSTEM)
1210 io_flags |= B_META;
1211
1212 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1213 /*
1214 * then we are going to end up
1215 * with a page that we can't complete (the file size wasn't a multiple
1216 * of PAGE_SIZE and we're trying to read to the end of the file
1217 * so we'll go ahead and zero out the portion of the page we can't
1218 * read in from the file
1219 */
1220 zero_offset = upl_offset + non_rounded_size;
1221 } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
1222 assert(ISSET(flags, CL_COMMIT));
1223
1224 // For a direct/uncached write, we need to lock pages...
1225
1226 upl_t cached_upl;
1227
1228 /*
1229 * Create a UPL to lock the pages in the cache whilst the
1230 * write is in progress.
1231 */
1232 ubc_create_upl(vp, f_offset, non_rounded_size, &cached_upl,
1233 NULL, UPL_SET_LITE);
1234
1235 /*
1236 * Attach this UPL to the other UPL so that we can find it
1237 * later.
1238 */
1239 upl_set_associated_upl(upl, cached_upl);
1240
1241 if (upl_offset & PAGE_MASK) {
1242 /*
1243 * The two UPLs are not aligned, so mark the first page in
1244 * @upl so that cluster_handle_associated_upl can handle
1245 * it accordingly.
1246 */
1247 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
1248 upl_page_set_mark(pl, 0, true);
1249 }
1250 }
1251
1252 while (size) {
1253 daddr64_t blkno;
1254 daddr64_t lblkno;
1255 u_int io_size_wanted;
1256 size_t io_size_tmp;
1257
1258 if (size > max_iosize)
1259 io_size = max_iosize;
1260 else
1261 io_size = size;
1262
1263 io_size_wanted = io_size;
1264 io_size_tmp = (size_t)io_size;
1265
1266 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1267 break;
1268
1269 if (io_size_tmp > io_size_wanted)
1270 io_size = io_size_wanted;
1271 else
1272 io_size = (u_int)io_size_tmp;
1273
1274 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1275 real_bp->b_blkno = blkno;
1276
1277 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
1278 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1279
1280 if (io_size == 0) {
1281 /*
1282 * vnop_blockmap didn't return an error... however, it did
1283 * return an extent size of 0 which means we can't
1284 * make forward progress on this I/O... a hole in the
1285 * file would be returned as a blkno of -1 with a non-zero io_size
1286 * a real extent is returned with a blkno != -1 and a non-zero io_size
1287 */
1288 error = EINVAL;
1289 break;
1290 }
1291 if ( !(flags & CL_READ) && blkno == -1) {
1292 off_t e_offset;
1293 int pageout_flags;
1294
1295 if (upl_get_internal_vectorupl(upl))
1296 panic("Vector UPLs should not take this code-path\n");
1297 /*
1298 * we're writing into a 'hole'
1299 */
1300 if (flags & CL_PAGEOUT) {
1301 /*
1302 * if we got here via cluster_pageout
1303 * then just error the request and return
1304 * the 'hole' should already have been covered
1305 */
1306 error = EINVAL;
1307 break;
1308 }
1309 /*
1310 * we can get here if the cluster code happens to
1311 * pick up a page that was dirtied via mmap vs
1312 * a 'write' and the page targets a 'hole'...
1313 * i.e. the writes to the cluster were sparse
1314 * and the file was being written for the first time
1315 *
1316 * we can also get here if the filesystem supports
1317 * 'holes' that are less than PAGE_SIZE.... because
1318 * we can't know if the range in the page that covers
1319 * the 'hole' has been dirtied via an mmap or not,
1320 * we have to assume the worst and try to push the
1321 * entire page to storage.
1322 *
1323 * Try paging out the page individually before
1324 * giving up entirely and dumping it (the pageout
1325 * path will insure that the zero extent accounting
1326 * has been taken care of before we get back into cluster_io)
1327 *
1328 * go direct to vnode_pageout so that we don't have to
1329 * unbusy the page from the UPL... we used to do this
1330 * so that we could call ubc_msync, but that results
1331 * in a potential deadlock if someone else races us to acquire
1332 * that page and wins and in addition needs one of the pages
1333 * we're continuing to hold in the UPL
1334 */
1335 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
1336
1337 if ( !(flags & CL_ASYNC))
1338 pageout_flags |= UPL_IOSYNC;
1339 if ( !(flags & CL_COMMIT))
1340 pageout_flags |= UPL_NOCOMMIT;
1341
1342 if (cbp_head) {
1343 buf_t last_cbp;
1344
1345 /*
1346 * first we have to wait for the the current outstanding I/Os
1347 * to complete... EOT hasn't been set yet on this transaction
1348 * so the pages won't be released just because all of the current
1349 * I/O linked to this transaction has completed...
1350 */
1351 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1352
1353 /*
1354 * we've got a transcation that
1355 * includes the page we're about to push out through vnode_pageout...
1356 * find the last bp in the list which will be the one that
1357 * includes the head of this page and round it's iosize down
1358 * to a page boundary...
1359 */
1360 for (last_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1361 last_cbp = cbp;
1362
1363 cbp->b_bcount &= ~PAGE_MASK;
1364
1365 if (cbp->b_bcount == 0) {
1366 /*
1367 * this buf no longer has any I/O associated with it
1368 */
1369 free_io_buf(cbp);
1370
1371 if (cbp == cbp_head) {
1372 /*
1373 * the buf we just freed was the only buf in
1374 * this transaction... so there's no I/O to do
1375 */
1376 cbp_head = NULL;
1377 } else {
1378 /*
1379 * remove the buf we just freed from
1380 * the transaction list
1381 */
1382 last_cbp->b_trans_next = NULL;
1383 cbp_tail = last_cbp;
1384 }
1385 }
1386 if (cbp_head) {
1387 /*
1388 * there was more to the current transaction
1389 * than just the page we are pushing out via vnode_pageout...
1390 * mark it as finished and complete it... we've already
1391 * waited for the I/Os to complete above in the call to cluster_wait_IO
1392 */
1393 cluster_EOT(cbp_head, cbp_tail, 0);
1394
1395 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1396
1397 trans_count = 0;
1398 }
1399 }
1400 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1401 error = EINVAL;
1402 }
1403 e_offset = round_page_64(f_offset + 1);
1404 io_size = e_offset - f_offset;
1405
1406 f_offset += io_size;
1407 upl_offset += io_size;
1408
1409 if (size >= io_size)
1410 size -= io_size;
1411 else
1412 size = 0;
1413 /*
1414 * keep track of how much of the original request
1415 * that we've actually completed... non_rounded_size
1416 * may go negative due to us rounding the request
1417 * to a page size multiple (i.e. size > non_rounded_size)
1418 */
1419 non_rounded_size -= io_size;
1420
1421 if (non_rounded_size <= 0) {
1422 /*
1423 * we've transferred all of the data in the original
1424 * request, but we were unable to complete the tail
1425 * of the last page because the file didn't have
1426 * an allocation to back that portion... this is ok.
1427 */
1428 size = 0;
1429 }
1430 if (error) {
1431 if (size == 0)
1432 flags &= ~CL_COMMIT;
1433 break;
1434 }
1435 continue;
1436 }
1437 lblkno = (daddr64_t)(f_offset / 0x1000);
1438 /*
1439 * we have now figured out how much I/O we can do - this is in 'io_size'
1440 * pg_offset is the starting point in the first page for the I/O
1441 * pg_count is the number of full and partial pages that 'io_size' encompasses
1442 */
1443 pg_offset = upl_offset & PAGE_MASK;
1444
1445 if (flags & CL_DEV_MEMORY) {
1446 /*
1447 * treat physical requests as one 'giant' page
1448 */
1449 pg_count = 1;
1450 } else
1451 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1452
1453 if ((flags & CL_READ) && blkno == -1) {
1454 vm_offset_t commit_offset;
1455 int bytes_to_zero;
1456 int complete_transaction_now = 0;
1457
1458 /*
1459 * if we're reading and blkno == -1, then we've got a
1460 * 'hole' in the file that we need to deal with by zeroing
1461 * out the affected area in the upl
1462 */
1463 if (io_size >= (u_int)non_rounded_size) {
1464 /*
1465 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1466 * than 'zero_offset' will be non-zero
1467 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1468 * (indicated by the io_size finishing off the I/O request for this UPL)
1469 * than we're not going to issue an I/O for the
1470 * last page in this upl... we need to zero both the hole and the tail
1471 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1472 */
1473 bytes_to_zero = non_rounded_size;
1474 if (!(flags & CL_NOZERO))
1475 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1476
1477 zero_offset = 0;
1478 } else
1479 bytes_to_zero = io_size;
1480
1481 pg_count = 0;
1482
1483 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1484
1485 if (cbp_head) {
1486 int pg_resid;
1487
1488 /*
1489 * if there is a current I/O chain pending
1490 * then the first page of the group we just zero'd
1491 * will be handled by the I/O completion if the zero
1492 * fill started in the middle of the page
1493 */
1494 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1495
1496 pg_resid = commit_offset - upl_offset;
1497
1498 if (bytes_to_zero >= pg_resid) {
1499 /*
1500 * the last page of the current I/O
1501 * has been completed...
1502 * compute the number of fully zero'd
1503 * pages that are beyond it
1504 * plus the last page if its partial
1505 * and we have no more I/O to issue...
1506 * otherwise a partial page is left
1507 * to begin the next I/O
1508 */
1509 if ((int)io_size >= non_rounded_size)
1510 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1511 else
1512 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1513
1514 complete_transaction_now = 1;
1515 }
1516 } else {
1517 /*
1518 * no pending I/O to deal with
1519 * so, commit all of the fully zero'd pages
1520 * plus the last page if its partial
1521 * and we have no more I/O to issue...
1522 * otherwise a partial page is left
1523 * to begin the next I/O
1524 */
1525 if ((int)io_size >= non_rounded_size)
1526 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1527 else
1528 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1529
1530 commit_offset = upl_offset & ~PAGE_MASK;
1531 }
1532
1533 // Associated UPL is currently only used in the direct write path
1534 assert(!upl_associated_upl(upl));
1535
1536 if ( (flags & CL_COMMIT) && pg_count) {
1537 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1538 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1539 }
1540 upl_offset += io_size;
1541 f_offset += io_size;
1542 size -= io_size;
1543
1544 /*
1545 * keep track of how much of the original request
1546 * that we've actually completed... non_rounded_size
1547 * may go negative due to us rounding the request
1548 * to a page size multiple (i.e. size > non_rounded_size)
1549 */
1550 non_rounded_size -= io_size;
1551
1552 if (non_rounded_size <= 0) {
1553 /*
1554 * we've transferred all of the data in the original
1555 * request, but we were unable to complete the tail
1556 * of the last page because the file didn't have
1557 * an allocation to back that portion... this is ok.
1558 */
1559 size = 0;
1560 }
1561 if (cbp_head && (complete_transaction_now || size == 0)) {
1562 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1563
1564 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1565
1566 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1567
1568 trans_count = 0;
1569 }
1570 continue;
1571 }
1572 if (pg_count > max_vectors) {
1573 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1574 io_size = PAGE_SIZE - pg_offset;
1575 pg_count = 1;
1576 } else {
1577 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1578 pg_count = max_vectors;
1579 }
1580 }
1581 /*
1582 * If the transaction is going to reach the maximum number of
1583 * desired elements, truncate the i/o to the nearest page so
1584 * that the actual i/o is initiated after this buffer is
1585 * created and added to the i/o chain.
1586 *
1587 * I/O directed to physically contiguous memory
1588 * doesn't have a requirement to make sure we 'fill' a page
1589 */
1590 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1591 ((upl_offset + io_size) & PAGE_MASK)) {
1592 vm_offset_t aligned_ofs;
1593
1594 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1595 /*
1596 * If the io_size does not actually finish off even a
1597 * single page we have to keep adding buffers to the
1598 * transaction despite having reached the desired limit.
1599 *
1600 * Eventually we get here with the page being finished
1601 * off (and exceeded) and then we truncate the size of
1602 * this i/o request so that it is page aligned so that
1603 * we can finally issue the i/o on the transaction.
1604 */
1605 if (aligned_ofs > upl_offset) {
1606 io_size = aligned_ofs - upl_offset;
1607 pg_count--;
1608 }
1609 }
1610
1611 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1612 /*
1613 * if we're not targeting a virtual device i.e. a disk image
1614 * it's safe to dip into the reserve pool since real devices
1615 * can complete this I/O request without requiring additional
1616 * bufs from the alloc_io_buf pool
1617 */
1618 priv = 1;
1619 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1620 /*
1621 * Throttle the speculative IO
1622 */
1623 priv = 0;
1624 else
1625 priv = 1;
1626
1627 cbp = alloc_io_buf(vp, priv);
1628
1629 if (flags & CL_PAGEOUT) {
1630 u_int i;
1631
1632 /*
1633 * since blocks are in offsets of 0x1000, scale
1634 * iteration to (PAGE_SIZE * pg_count) of blks.
1635 */
1636 for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
1637 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1638 panic("BUSY bp found in cluster_io");
1639 }
1640 }
1641 if (flags & CL_ASYNC) {
1642 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1643 panic("buf_setcallback failed\n");
1644 }
1645 cbp->b_cliodone = (void *)callback;
1646 cbp->b_flags |= io_flags;
1647 if (flags & CL_NOCACHE)
1648 cbp->b_attr.ba_flags |= BA_NOCACHE;
1649
1650 cbp->b_lblkno = lblkno;
1651 cbp->b_blkno = blkno;
1652 cbp->b_bcount = io_size;
1653
1654 if (buf_setupl(cbp, upl, upl_offset))
1655 panic("buf_setupl failed\n");
1656 #if CONFIG_IOSCHED
1657 upl_set_blkno(upl, upl_offset, io_size, blkno);
1658 #endif
1659 cbp->b_trans_next = (buf_t)NULL;
1660
1661 if ((cbp->b_iostate = (void *)iostate))
1662 /*
1663 * caller wants to track the state of this
1664 * io... bump the amount issued against this stream
1665 */
1666 iostate->io_issued += io_size;
1667
1668 if (flags & CL_READ) {
1669 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1670 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1671 }
1672 else {
1673 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1674 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1675 }
1676
1677 if (cbp_head) {
1678 cbp_tail->b_trans_next = cbp;
1679 cbp_tail = cbp;
1680 } else {
1681 cbp_head = cbp;
1682 cbp_tail = cbp;
1683
1684 if ( (cbp_head->b_real_bp = real_bp) )
1685 real_bp = (buf_t)NULL;
1686 }
1687 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1688
1689 trans_count++;
1690
1691 upl_offset += io_size;
1692 f_offset += io_size;
1693 size -= io_size;
1694 /*
1695 * keep track of how much of the original request
1696 * that we've actually completed... non_rounded_size
1697 * may go negative due to us rounding the request
1698 * to a page size multiple (i.e. size > non_rounded_size)
1699 */
1700 non_rounded_size -= io_size;
1701
1702 if (non_rounded_size <= 0) {
1703 /*
1704 * we've transferred all of the data in the original
1705 * request, but we were unable to complete the tail
1706 * of the last page because the file didn't have
1707 * an allocation to back that portion... this is ok.
1708 */
1709 size = 0;
1710 }
1711 if (size == 0) {
1712 /*
1713 * we have no more I/O to issue, so go
1714 * finish the final transaction
1715 */
1716 need_EOT = TRUE;
1717 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1718 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1719 /*
1720 * I/O directed to physically contiguous memory...
1721 * which doesn't have a requirement to make sure we 'fill' a page
1722 * or...
1723 * the current I/O we've prepared fully
1724 * completes the last page in this request
1725 * and ...
1726 * it's either an ASYNC request or
1727 * we've already accumulated more than 8 I/O's into
1728 * this transaction so mark it as complete so that
1729 * it can finish asynchronously or via the cluster_complete_transaction
1730 * below if the request is synchronous
1731 */
1732 need_EOT = TRUE;
1733 }
1734 if (need_EOT == TRUE)
1735 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1736
1737 if (flags & CL_THROTTLE)
1738 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1739
1740 if ( !(io_flags & B_READ))
1741 vnode_startwrite(vp);
1742
1743 if (flags & CL_RAW_ENCRYPTED) {
1744 /*
1745 * User requested raw encrypted bytes.
1746 * Twiddle the bit in the ba_flags for the buffer
1747 */
1748 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1749 }
1750
1751 (void) VNOP_STRATEGY(cbp);
1752
1753 if (need_EOT == TRUE) {
1754 if ( !(flags & CL_ASYNC))
1755 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1756
1757 need_EOT = FALSE;
1758 trans_count = 0;
1759 cbp_head = NULL;
1760 }
1761 }
1762 if (error) {
1763 int abort_size;
1764
1765 io_size = 0;
1766
1767 if (cbp_head) {
1768 /*
1769 * Wait until all of the outstanding I/O
1770 * for this partial transaction has completed
1771 */
1772 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1773
1774 /*
1775 * Rewind the upl offset to the beginning of the
1776 * transaction.
1777 */
1778 upl_offset = cbp_head->b_uploffset;
1779 }
1780
1781 if (ISSET(flags, CL_COMMIT)) {
1782 cluster_handle_associated_upl(iostate, upl, upl_offset,
1783 upl_end_offset - upl_offset);
1784 }
1785
1786 // Free all the IO buffers in this transaction
1787 for (cbp = cbp_head; cbp;) {
1788 buf_t cbp_next;
1789
1790 size += cbp->b_bcount;
1791 io_size += cbp->b_bcount;
1792
1793 cbp_next = cbp->b_trans_next;
1794 free_io_buf(cbp);
1795 cbp = cbp_next;
1796 }
1797
1798 if (iostate) {
1799 int need_wakeup = 0;
1800
1801 /*
1802 * update the error condition for this stream
1803 * since we never really issued the io
1804 * just go ahead and adjust it back
1805 */
1806 lck_mtx_lock_spin(&iostate->io_mtxp);
1807
1808 if (iostate->io_error == 0)
1809 iostate->io_error = error;
1810 iostate->io_issued -= io_size;
1811
1812 if (iostate->io_wanted) {
1813 /*
1814 * someone is waiting for the state of
1815 * this io stream to change
1816 */
1817 iostate->io_wanted = 0;
1818 need_wakeup = 1;
1819 }
1820 lck_mtx_unlock(&iostate->io_mtxp);
1821
1822 if (need_wakeup)
1823 wakeup((caddr_t)&iostate->io_wanted);
1824 }
1825
1826 if (flags & CL_COMMIT) {
1827 int upl_flags;
1828
1829 pg_offset = upl_offset & PAGE_MASK;
1830 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1831
1832 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
1833
1834 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1835 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1836 }
1837 if (retval == 0)
1838 retval = error;
1839 } else if (cbp_head)
1840 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1841
1842 if (real_bp) {
1843 /*
1844 * can get here if we either encountered an error
1845 * or we completely zero-filled the request and
1846 * no I/O was issued
1847 */
1848 if (error) {
1849 real_bp->b_flags |= B_ERROR;
1850 real_bp->b_error = error;
1851 }
1852 buf_biodone(real_bp);
1853 }
1854 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1855
1856 return (retval);
1857 }
1858
1859 #define reset_vector_run_state() \
1860 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1861
1862 static int
1863 vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1864 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1865 {
1866 vector_upl_set_pagelist(vector_upl);
1867
1868 if(io_flag & CL_READ) {
1869 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1870 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1871 else
1872 io_flag |= CL_PRESERVE; /*zero fill*/
1873 }
1874 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1875
1876 }
1877
1878 static int
1879 cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1880 {
1881 int pages_in_prefetch;
1882
1883 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1884 (int)f_offset, size, (int)filesize, 0, 0);
1885
1886 if (f_offset >= filesize) {
1887 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1888 (int)f_offset, 0, 0, 0, 0);
1889 return(0);
1890 }
1891 if ((off_t)size > (filesize - f_offset))
1892 size = filesize - f_offset;
1893 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1894
1895 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1896
1897 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1898 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1899
1900 return (pages_in_prefetch);
1901 }
1902
1903
1904
1905 static void
1906 cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1907 int bflag)
1908 {
1909 daddr64_t r_addr;
1910 off_t f_offset;
1911 int size_of_prefetch;
1912 u_int max_prefetch;
1913
1914
1915 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1916 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1917
1918 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1919 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1920 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1921 return;
1922 }
1923 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1924 rap->cl_ralen = 0;
1925 rap->cl_maxra = 0;
1926
1927 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1928 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1929
1930 return;
1931 }
1932 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), (vp->v_mount->mnt_kern_flag & MNTK_SSD));
1933
1934 if (max_prefetch > speculative_prefetch_max)
1935 max_prefetch = speculative_prefetch_max;
1936
1937 if (max_prefetch <= PAGE_SIZE) {
1938 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1939 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1940 return;
1941 }
1942 if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
1943 if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
1944
1945 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1946 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1947 return;
1948 }
1949 }
1950 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
1951 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
1952
1953 size_of_prefetch = 0;
1954
1955 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
1956
1957 if (size_of_prefetch) {
1958 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1959 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
1960 return;
1961 }
1962 if (f_offset < filesize) {
1963 daddr64_t read_size;
1964
1965 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
1966
1967 read_size = (extent->e_addr + 1) - extent->b_addr;
1968
1969 if (read_size > rap->cl_ralen) {
1970 if (read_size > max_prefetch / PAGE_SIZE)
1971 rap->cl_ralen = max_prefetch / PAGE_SIZE;
1972 else
1973 rap->cl_ralen = read_size;
1974 }
1975 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
1976
1977 if (size_of_prefetch)
1978 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
1979 }
1980 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1981 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
1982 }
1983
1984
1985 int
1986 cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1987 int size, off_t filesize, int flags)
1988 {
1989 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
1990
1991 }
1992
1993
1994 int
1995 cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
1996 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
1997 {
1998 int io_size;
1999 int rounded_size;
2000 off_t max_size;
2001 int local_flags;
2002
2003 local_flags = CL_PAGEOUT | CL_THROTTLE;
2004
2005 if ((flags & UPL_IOSYNC) == 0)
2006 local_flags |= CL_ASYNC;
2007 if ((flags & UPL_NOCOMMIT) == 0)
2008 local_flags |= CL_COMMIT;
2009 if ((flags & UPL_KEEPCACHED))
2010 local_flags |= CL_KEEPCACHED;
2011 if (flags & UPL_PAGING_ENCRYPTED)
2012 local_flags |= CL_ENCRYPTED;
2013
2014
2015 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
2016 (int)f_offset, size, (int)filesize, local_flags, 0);
2017
2018 /*
2019 * If they didn't specify any I/O, then we are done...
2020 * we can't issue an abort because we don't know how
2021 * big the upl really is
2022 */
2023 if (size <= 0)
2024 return (EINVAL);
2025
2026 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
2027 if (local_flags & CL_COMMIT)
2028 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2029 return (EROFS);
2030 }
2031 /*
2032 * can't page-in from a negative offset
2033 * or if we're starting beyond the EOF
2034 * or if the file offset isn't page aligned
2035 * or the size requested isn't a multiple of PAGE_SIZE
2036 */
2037 if (f_offset < 0 || f_offset >= filesize ||
2038 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
2039 if (local_flags & CL_COMMIT)
2040 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2041 return (EINVAL);
2042 }
2043 max_size = filesize - f_offset;
2044
2045 if (size < max_size)
2046 io_size = size;
2047 else
2048 io_size = max_size;
2049
2050 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2051
2052 if (size > rounded_size) {
2053 if (local_flags & CL_COMMIT)
2054 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
2055 UPL_ABORT_FREE_ON_EMPTY);
2056 }
2057 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
2058 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
2059 }
2060
2061
2062 int
2063 cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2064 int size, off_t filesize, int flags)
2065 {
2066 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
2067 }
2068
2069
2070 int
2071 cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2072 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2073 {
2074 u_int io_size;
2075 int rounded_size;
2076 off_t max_size;
2077 int retval;
2078 int local_flags = 0;
2079
2080 if (upl == NULL || size < 0)
2081 panic("cluster_pagein: NULL upl passed in");
2082
2083 if ((flags & UPL_IOSYNC) == 0)
2084 local_flags |= CL_ASYNC;
2085 if ((flags & UPL_NOCOMMIT) == 0)
2086 local_flags |= CL_COMMIT;
2087 if (flags & UPL_IOSTREAMING)
2088 local_flags |= CL_IOSTREAMING;
2089 if (flags & UPL_PAGING_ENCRYPTED)
2090 local_flags |= CL_ENCRYPTED;
2091
2092
2093 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
2094 (int)f_offset, size, (int)filesize, local_flags, 0);
2095
2096 /*
2097 * can't page-in from a negative offset
2098 * or if we're starting beyond the EOF
2099 * or if the file offset isn't page aligned
2100 * or the size requested isn't a multiple of PAGE_SIZE
2101 */
2102 if (f_offset < 0 || f_offset >= filesize ||
2103 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
2104 if (local_flags & CL_COMMIT)
2105 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2106 return (EINVAL);
2107 }
2108 max_size = filesize - f_offset;
2109
2110 if (size < max_size)
2111 io_size = size;
2112 else
2113 io_size = max_size;
2114
2115 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2116
2117 if (size > rounded_size && (local_flags & CL_COMMIT))
2118 ubc_upl_abort_range(upl, upl_offset + rounded_size,
2119 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2120
2121 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
2122 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2123
2124 return (retval);
2125 }
2126
2127
2128 int
2129 cluster_bp(buf_t bp)
2130 {
2131 return cluster_bp_ext(bp, NULL, NULL);
2132 }
2133
2134
2135 int
2136 cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
2137 {
2138 off_t f_offset;
2139 int flags;
2140
2141 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
2142 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
2143
2144 if (bp->b_flags & B_READ)
2145 flags = CL_ASYNC | CL_READ;
2146 else
2147 flags = CL_ASYNC;
2148 if (bp->b_flags & B_PASSIVE)
2149 flags |= CL_PASSIVE;
2150
2151 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
2152
2153 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
2154 }
2155
2156
2157
2158 int
2159 cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
2160 {
2161 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
2162 }
2163
2164
2165 int
2166 cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
2167 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
2168 {
2169 user_ssize_t cur_resid;
2170 int retval = 0;
2171 int flags;
2172 int zflags;
2173 int bflag;
2174 int write_type = IO_COPY;
2175 u_int32_t write_length;
2176
2177 flags = xflags;
2178
2179 if (flags & IO_PASSIVE)
2180 bflag = CL_PASSIVE;
2181 else
2182 bflag = 0;
2183
2184 if (vp->v_flag & VNOCACHE_DATA){
2185 flags |= IO_NOCACHE;
2186 bflag |= CL_NOCACHE;
2187 }
2188 if (uio == NULL) {
2189 /*
2190 * no user data...
2191 * this call is being made to zero-fill some range in the file
2192 */
2193 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
2194
2195 return(retval);
2196 }
2197 /*
2198 * do a write through the cache if one of the following is true....
2199 * NOCACHE is not true or NODIRECT is true
2200 * the uio request doesn't target USERSPACE
2201 * otherwise, find out if we want the direct or contig variant for
2202 * the first vector in the uio request
2203 */
2204 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
2205 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2206
2207 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
2208 /*
2209 * must go through the cached variant in this case
2210 */
2211 write_type = IO_COPY;
2212
2213 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
2214
2215 switch (write_type) {
2216
2217 case IO_COPY:
2218 /*
2219 * make sure the uio_resid isn't too big...
2220 * internally, we want to handle all of the I/O in
2221 * chunk sizes that fit in a 32 bit int
2222 */
2223 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
2224 /*
2225 * we're going to have to call cluster_write_copy
2226 * more than once...
2227 *
2228 * only want the last call to cluster_write_copy to
2229 * have the IO_TAILZEROFILL flag set and only the
2230 * first call should have IO_HEADZEROFILL
2231 */
2232 zflags = flags & ~IO_TAILZEROFILL;
2233 flags &= ~IO_HEADZEROFILL;
2234
2235 write_length = MAX_IO_REQUEST_SIZE;
2236 } else {
2237 /*
2238 * last call to cluster_write_copy
2239 */
2240 zflags = flags;
2241
2242 write_length = (u_int32_t)cur_resid;
2243 }
2244 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2245 break;
2246
2247 case IO_CONTIG:
2248 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
2249
2250 if (flags & IO_HEADZEROFILL) {
2251 /*
2252 * only do this once per request
2253 */
2254 flags &= ~IO_HEADZEROFILL;
2255
2256 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2257 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2258 if (retval)
2259 break;
2260 }
2261 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2262
2263 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2264 /*
2265 * we're done with the data from the user specified buffer(s)
2266 * and we've been requested to zero fill at the tail
2267 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2268 * by rearranging the args and passing in IO_HEADZEROFILL
2269 */
2270 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2271 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2272 }
2273 break;
2274
2275 case IO_DIRECT:
2276 /*
2277 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2278 */
2279 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2280 break;
2281
2282 case IO_UNKNOWN:
2283 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2284 break;
2285 }
2286 /*
2287 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2288 * multiple times to service a multi-vector request that is not aligned properly
2289 * we need to update the oldEOF so that we
2290 * don't zero-fill the head of a page if we've successfully written
2291 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2292 * page that is beyond the oldEOF if the write is unaligned... we only
2293 * want that to happen for the very first page of the cluster_write,
2294 * NOT the first page of each vector making up a multi-vector write.
2295 */
2296 if (uio->uio_offset > oldEOF)
2297 oldEOF = uio->uio_offset;
2298 }
2299 return (retval);
2300 }
2301
2302
2303 static int
2304 cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2305 int flags, int (*callback)(buf_t, void *), void *callback_arg)
2306 {
2307 upl_t upl;
2308 upl_page_info_t *pl;
2309 vm_offset_t upl_offset;
2310 vm_offset_t vector_upl_offset = 0;
2311 u_int32_t io_req_size;
2312 u_int32_t offset_in_file;
2313 u_int32_t offset_in_iovbase;
2314 u_int32_t io_size;
2315 int io_flag = 0;
2316 upl_size_t upl_size, vector_upl_size = 0;
2317 vm_size_t upl_needed_size;
2318 mach_msg_type_number_t pages_in_pl;
2319 upl_control_flags_t upl_flags;
2320 kern_return_t kret;
2321 mach_msg_type_number_t i;
2322 int force_data_sync;
2323 int retval = 0;
2324 int first_IO = 1;
2325 struct clios iostate;
2326 user_addr_t iov_base;
2327 u_int32_t mem_alignment_mask;
2328 u_int32_t devblocksize;
2329 u_int32_t max_io_size;
2330 u_int32_t max_upl_size;
2331 u_int32_t max_vector_size;
2332 boolean_t io_throttled = FALSE;
2333
2334 u_int32_t vector_upl_iosize = 0;
2335 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2336 off_t v_upl_uio_offset = 0;
2337 int vector_upl_index=0;
2338 upl_t vector_upl = NULL;
2339
2340
2341 /*
2342 * When we enter this routine, we know
2343 * -- the resid will not exceed iov_len
2344 */
2345 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2346 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2347
2348 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2349
2350 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2351
2352 if (flags & IO_PASSIVE)
2353 io_flag |= CL_PASSIVE;
2354
2355 if (flags & IO_NOCACHE)
2356 io_flag |= CL_NOCACHE;
2357
2358 if (flags & IO_SKIP_ENCRYPTION)
2359 io_flag |= CL_ENCRYPTED;
2360
2361 iostate.io_completed = 0;
2362 iostate.io_issued = 0;
2363 iostate.io_error = 0;
2364 iostate.io_wanted = 0;
2365
2366 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2367
2368 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2369 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2370
2371 if (devblocksize == 1) {
2372 /*
2373 * the AFP client advertises a devblocksize of 1
2374 * however, its BLOCKMAP routine maps to physical
2375 * blocks that are PAGE_SIZE in size...
2376 * therefore we can't ask for I/Os that aren't page aligned
2377 * or aren't multiples of PAGE_SIZE in size
2378 * by setting devblocksize to PAGE_SIZE, we re-instate
2379 * the old behavior we had before the mem_alignment_mask
2380 * changes went in...
2381 */
2382 devblocksize = PAGE_SIZE;
2383 }
2384
2385 next_dwrite:
2386 io_req_size = *write_length;
2387 iov_base = uio_curriovbase(uio);
2388
2389 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2390 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
2391
2392 if (offset_in_file || offset_in_iovbase) {
2393 /*
2394 * one of the 2 important offsets is misaligned
2395 * so fire an I/O through the cache for this entire vector
2396 */
2397 goto wait_for_dwrites;
2398 }
2399 if (iov_base & (devblocksize - 1)) {
2400 /*
2401 * the offset in memory must be on a device block boundary
2402 * so that we can guarantee that we can generate an
2403 * I/O that ends on a page boundary in cluster_io
2404 */
2405 goto wait_for_dwrites;
2406 }
2407
2408 task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE);
2409 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
2410 int throttle_type;
2411
2412 if ( (throttle_type = cluster_is_throttled(vp)) ) {
2413 /*
2414 * we're in the throttle window, at the very least
2415 * we want to limit the size of the I/O we're about
2416 * to issue
2417 */
2418 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
2419 /*
2420 * we're in the throttle window and at least 1 I/O
2421 * has already been issued by a throttleable thread
2422 * in this window, so return with EAGAIN to indicate
2423 * to the FS issuing the cluster_write call that it
2424 * should now throttle after dropping any locks
2425 */
2426 throttle_info_update_by_mount(vp->v_mount);
2427
2428 io_throttled = TRUE;
2429 goto wait_for_dwrites;
2430 }
2431 max_vector_size = THROTTLE_MAX_IOSIZE;
2432 max_io_size = THROTTLE_MAX_IOSIZE;
2433 } else {
2434 max_vector_size = MAX_VECTOR_UPL_SIZE;
2435 max_io_size = max_upl_size;
2436 }
2437
2438 if (first_IO) {
2439 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2440 first_IO = 0;
2441 }
2442 io_size = io_req_size & ~PAGE_MASK;
2443 iov_base = uio_curriovbase(uio);
2444
2445 if (io_size > max_io_size)
2446 io_size = max_io_size;
2447
2448 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2449 /*
2450 * We have an iov_base that's not page-aligned.
2451 * Issue all I/O's that have been collected within
2452 * this Vectored UPL.
2453 */
2454 if(vector_upl_index) {
2455 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2456 reset_vector_run_state();
2457 }
2458
2459 /*
2460 * After this point, if we are using the Vector UPL path and the base is
2461 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2462 */
2463 }
2464
2465 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2466 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2467
2468 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
2469 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
2470
2471 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2472 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2473 pages_in_pl = 0;
2474 upl_size = upl_needed_size;
2475 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2476 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
2477 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
2478
2479 kret = vm_map_get_upl(map,
2480 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2481 &upl_size,
2482 &upl,
2483 NULL,
2484 &pages_in_pl,
2485 &upl_flags,
2486 force_data_sync);
2487
2488 if (kret != KERN_SUCCESS) {
2489 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2490 0, 0, 0, kret, 0);
2491 /*
2492 * failed to get pagelist
2493 *
2494 * we may have already spun some portion of this request
2495 * off as async requests... we need to wait for the I/O
2496 * to complete before returning
2497 */
2498 goto wait_for_dwrites;
2499 }
2500 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2501 pages_in_pl = upl_size / PAGE_SIZE;
2502
2503 for (i = 0; i < pages_in_pl; i++) {
2504 if (!upl_valid_page(pl, i))
2505 break;
2506 }
2507 if (i == pages_in_pl)
2508 break;
2509
2510 /*
2511 * didn't get all the pages back that we
2512 * needed... release this upl and try again
2513 */
2514 ubc_upl_abort(upl, 0);
2515 }
2516 if (force_data_sync >= 3) {
2517 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2518 i, pages_in_pl, upl_size, kret, 0);
2519 /*
2520 * for some reason, we couldn't acquire a hold on all
2521 * the pages needed in the user's address space
2522 *
2523 * we may have already spun some portion of this request
2524 * off as async requests... we need to wait for the I/O
2525 * to complete before returning
2526 */
2527 goto wait_for_dwrites;
2528 }
2529
2530 /*
2531 * Consider the possibility that upl_size wasn't satisfied.
2532 */
2533 if (upl_size < upl_needed_size) {
2534 if (upl_size && upl_offset == 0)
2535 io_size = upl_size;
2536 else
2537 io_size = 0;
2538 }
2539 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2540 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2541
2542 if (io_size == 0) {
2543 ubc_upl_abort(upl, 0);
2544 /*
2545 * we may have already spun some portion of this request
2546 * off as async requests... we need to wait for the I/O
2547 * to complete before returning
2548 */
2549 goto wait_for_dwrites;
2550 }
2551
2552 if(useVectorUPL) {
2553 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2554 if(end_off)
2555 issueVectorUPL = 1;
2556 /*
2557 * After this point, if we are using a vector UPL, then
2558 * either all the UPL elements end on a page boundary OR
2559 * this UPL is the last element because it does not end
2560 * on a page boundary.
2561 */
2562 }
2563
2564 /*
2565 * we want push out these writes asynchronously so that we can overlap
2566 * the preparation of the next I/O
2567 * if there are already too many outstanding writes
2568 * wait until some complete before issuing the next
2569 */
2570 cluster_iostate_wait(&iostate, max_upl_size * IO_SCALE(vp, 2), "cluster_write_direct");
2571
2572 if (iostate.io_error) {
2573 /*
2574 * one of the earlier writes we issued ran into a hard error
2575 * don't issue any more writes, cleanup the UPL
2576 * that was just created but not used, then
2577 * go wait for all writes that are part of this stream
2578 * to complete before returning the error to the caller
2579 */
2580 ubc_upl_abort(upl, 0);
2581
2582 goto wait_for_dwrites;
2583 }
2584
2585 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2586 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2587
2588 if(!useVectorUPL)
2589 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2590 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2591
2592 else {
2593 if(!vector_upl_index) {
2594 vector_upl = vector_upl_create(upl_offset);
2595 v_upl_uio_offset = uio->uio_offset;
2596 vector_upl_offset = upl_offset;
2597 }
2598
2599 vector_upl_set_subupl(vector_upl,upl,upl_size);
2600 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2601 vector_upl_index++;
2602 vector_upl_iosize += io_size;
2603 vector_upl_size += upl_size;
2604
2605 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
2606 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2607 reset_vector_run_state();
2608 }
2609 }
2610
2611 /*
2612 * update the uio structure to
2613 * reflect the I/O that we just issued
2614 */
2615 uio_update(uio, (user_size_t)io_size);
2616
2617 /*
2618 * in case we end up calling through to cluster_write_copy to finish
2619 * the tail of this request, we need to update the oldEOF so that we
2620 * don't zero-fill the head of a page if we've successfully written
2621 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2622 * page that is beyond the oldEOF if the write is unaligned... we only
2623 * want that to happen for the very first page of the cluster_write,
2624 * NOT the first page of each vector making up a multi-vector write.
2625 */
2626 if (uio->uio_offset > oldEOF)
2627 oldEOF = uio->uio_offset;
2628
2629 io_req_size -= io_size;
2630
2631 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2632 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2633
2634 } /* end while */
2635
2636 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2637
2638 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2639
2640 if (retval == 0 && *write_type == IO_DIRECT) {
2641
2642 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2643 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2644
2645 goto next_dwrite;
2646 }
2647 }
2648
2649 wait_for_dwrites:
2650
2651 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
2652 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2653 reset_vector_run_state();
2654 }
2655 /*
2656 * make sure all async writes issued as part of this stream
2657 * have completed before we return
2658 */
2659 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2660
2661 if (iostate.io_error)
2662 retval = iostate.io_error;
2663
2664 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2665
2666 if (io_throttled == TRUE && retval == 0)
2667 retval = EAGAIN;
2668
2669 if (io_req_size && retval == 0) {
2670 /*
2671 * we couldn't handle the tail of this request in DIRECT mode
2672 * so fire it through the copy path
2673 *
2674 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2675 * so we can just pass 0 in for the headOff and tailOff
2676 */
2677 if (uio->uio_offset > oldEOF)
2678 oldEOF = uio->uio_offset;
2679
2680 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2681
2682 *write_type = IO_UNKNOWN;
2683 }
2684 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2685 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2686
2687 return (retval);
2688 }
2689
2690
2691 static int
2692 cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2693 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2694 {
2695 upl_page_info_t *pl;
2696 addr64_t src_paddr = 0;
2697 upl_t upl[MAX_VECTS];
2698 vm_offset_t upl_offset;
2699 u_int32_t tail_size = 0;
2700 u_int32_t io_size;
2701 u_int32_t xsize;
2702 upl_size_t upl_size;
2703 vm_size_t upl_needed_size;
2704 mach_msg_type_number_t pages_in_pl;
2705 upl_control_flags_t upl_flags;
2706 kern_return_t kret;
2707 struct clios iostate;
2708 int error = 0;
2709 int cur_upl = 0;
2710 int num_upl = 0;
2711 int n;
2712 user_addr_t iov_base;
2713 u_int32_t devblocksize;
2714 u_int32_t mem_alignment_mask;
2715
2716 /*
2717 * When we enter this routine, we know
2718 * -- the io_req_size will not exceed iov_len
2719 * -- the target address is physically contiguous
2720 */
2721 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2722
2723 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2724 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2725
2726 iostate.io_completed = 0;
2727 iostate.io_issued = 0;
2728 iostate.io_error = 0;
2729 iostate.io_wanted = 0;
2730
2731 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2732
2733 next_cwrite:
2734 io_size = *write_length;
2735
2736 iov_base = uio_curriovbase(uio);
2737
2738 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2739 upl_needed_size = upl_offset + io_size;
2740
2741 pages_in_pl = 0;
2742 upl_size = upl_needed_size;
2743 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2744 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
2745 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
2746
2747 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2748 kret = vm_map_get_upl(map,
2749 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2750 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
2751
2752 if (kret != KERN_SUCCESS) {
2753 /*
2754 * failed to get pagelist
2755 */
2756 error = EINVAL;
2757 goto wait_for_cwrites;
2758 }
2759 num_upl++;
2760
2761 /*
2762 * Consider the possibility that upl_size wasn't satisfied.
2763 */
2764 if (upl_size < upl_needed_size) {
2765 /*
2766 * This is a failure in the physical memory case.
2767 */
2768 error = EINVAL;
2769 goto wait_for_cwrites;
2770 }
2771 pl = ubc_upl_pageinfo(upl[cur_upl]);
2772
2773 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
2774
2775 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2776 u_int32_t head_size;
2777
2778 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2779
2780 if (head_size > io_size)
2781 head_size = io_size;
2782
2783 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2784
2785 if (error)
2786 goto wait_for_cwrites;
2787
2788 upl_offset += head_size;
2789 src_paddr += head_size;
2790 io_size -= head_size;
2791
2792 iov_base += head_size;
2793 }
2794 if ((u_int32_t)iov_base & mem_alignment_mask) {
2795 /*
2796 * request doesn't set up on a memory boundary
2797 * the underlying DMA engine can handle...
2798 * return an error instead of going through
2799 * the slow copy path since the intent of this
2800 * path is direct I/O from device memory
2801 */
2802 error = EINVAL;
2803 goto wait_for_cwrites;
2804 }
2805
2806 tail_size = io_size & (devblocksize - 1);
2807 io_size -= tail_size;
2808
2809 while (io_size && error == 0) {
2810
2811 if (io_size > MAX_IO_CONTIG_SIZE)
2812 xsize = MAX_IO_CONTIG_SIZE;
2813 else
2814 xsize = io_size;
2815 /*
2816 * request asynchronously so that we can overlap
2817 * the preparation of the next I/O... we'll do
2818 * the commit after all the I/O has completed
2819 * since its all issued against the same UPL
2820 * if there are already too many outstanding writes
2821 * wait until some have completed before issuing the next
2822 */
2823 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2824
2825 if (iostate.io_error) {
2826 /*
2827 * one of the earlier writes we issued ran into a hard error
2828 * don't issue any more writes...
2829 * go wait for all writes that are part of this stream
2830 * to complete before returning the error to the caller
2831 */
2832 goto wait_for_cwrites;
2833 }
2834 /*
2835 * issue an asynchronous write to cluster_io
2836 */
2837 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2838 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2839
2840 if (error == 0) {
2841 /*
2842 * The cluster_io write completed successfully,
2843 * update the uio structure
2844 */
2845 uio_update(uio, (user_size_t)xsize);
2846
2847 upl_offset += xsize;
2848 src_paddr += xsize;
2849 io_size -= xsize;
2850 }
2851 }
2852 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2853
2854 error = cluster_io_type(uio, write_type, write_length, 0);
2855
2856 if (error == 0 && *write_type == IO_CONTIG) {
2857 cur_upl++;
2858 goto next_cwrite;
2859 }
2860 } else
2861 *write_type = IO_UNKNOWN;
2862
2863 wait_for_cwrites:
2864 /*
2865 * make sure all async writes that are part of this stream
2866 * have completed before we proceed
2867 */
2868 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
2869
2870 if (iostate.io_error)
2871 error = iostate.io_error;
2872
2873 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2874
2875 if (error == 0 && tail_size)
2876 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2877
2878 for (n = 0; n < num_upl; n++)
2879 /*
2880 * just release our hold on each physically contiguous
2881 * region without changing any state
2882 */
2883 ubc_upl_abort(upl[n], 0);
2884
2885 return (error);
2886 }
2887
2888
2889 /*
2890 * need to avoid a race between an msync of a range of pages dirtied via mmap
2891 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2892 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2893 *
2894 * we should never force-zero-fill pages that are already valid in the cache...
2895 * the entire page contains valid data (either from disk, zero-filled or dirtied
2896 * via an mmap) so we can only do damage by trying to zero-fill
2897 *
2898 */
2899 static int
2900 cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2901 {
2902 int zero_pg_index;
2903 boolean_t need_cluster_zero = TRUE;
2904
2905 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2906
2907 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2908 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2909
2910 if (upl_valid_page(pl, zero_pg_index)) {
2911 /*
2912 * never force zero valid pages - dirty or clean
2913 * we'll leave these in the UPL for cluster_write_copy to deal with
2914 */
2915 need_cluster_zero = FALSE;
2916 }
2917 }
2918 if (need_cluster_zero == TRUE)
2919 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2920
2921 return (bytes_to_zero);
2922 }
2923
2924
2925 static int
2926 cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2927 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2928 {
2929 upl_page_info_t *pl;
2930 upl_t upl;
2931 vm_offset_t upl_offset = 0;
2932 vm_size_t upl_size;
2933 off_t upl_f_offset;
2934 int pages_in_upl;
2935 int start_offset;
2936 int xfer_resid;
2937 int io_size;
2938 int io_offset;
2939 int bytes_to_zero;
2940 int bytes_to_move;
2941 kern_return_t kret;
2942 int retval = 0;
2943 int io_resid;
2944 long long total_size;
2945 long long zero_cnt;
2946 off_t zero_off;
2947 long long zero_cnt1;
2948 off_t zero_off1;
2949 off_t write_off = 0;
2950 int write_cnt = 0;
2951 boolean_t first_pass = FALSE;
2952 struct cl_extent cl;
2953 struct cl_writebehind *wbp;
2954 int bflag;
2955 u_int max_cluster_pgcount;
2956 u_int max_io_size;
2957
2958 if (uio) {
2959 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2960 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
2961
2962 io_resid = io_req_size;
2963 } else {
2964 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
2965 0, 0, (int)oldEOF, (int)newEOF, 0);
2966
2967 io_resid = 0;
2968 }
2969 if (flags & IO_PASSIVE)
2970 bflag = CL_PASSIVE;
2971 else
2972 bflag = 0;
2973 if (flags & IO_NOCACHE)
2974 bflag |= CL_NOCACHE;
2975
2976 if (flags & IO_SKIP_ENCRYPTION)
2977 bflag |= CL_ENCRYPTED;
2978
2979 zero_cnt = 0;
2980 zero_cnt1 = 0;
2981 zero_off = 0;
2982 zero_off1 = 0;
2983
2984 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
2985 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2986
2987 if (flags & IO_HEADZEROFILL) {
2988 /*
2989 * some filesystems (HFS is one) don't support unallocated holes within a file...
2990 * so we zero fill the intervening space between the old EOF and the offset
2991 * where the next chunk of real data begins.... ftruncate will also use this
2992 * routine to zero fill to the new EOF when growing a file... in this case, the
2993 * uio structure will not be provided
2994 */
2995 if (uio) {
2996 if (headOff < uio->uio_offset) {
2997 zero_cnt = uio->uio_offset - headOff;
2998 zero_off = headOff;
2999 }
3000 } else if (headOff < newEOF) {
3001 zero_cnt = newEOF - headOff;
3002 zero_off = headOff;
3003 }
3004 } else {
3005 if (uio && uio->uio_offset > oldEOF) {
3006 zero_off = uio->uio_offset & ~PAGE_MASK_64;
3007
3008 if (zero_off >= oldEOF) {
3009 zero_cnt = uio->uio_offset - zero_off;
3010
3011 flags |= IO_HEADZEROFILL;
3012 }
3013 }
3014 }
3015 if (flags & IO_TAILZEROFILL) {
3016 if (uio) {
3017 zero_off1 = uio->uio_offset + io_req_size;
3018
3019 if (zero_off1 < tailOff)
3020 zero_cnt1 = tailOff - zero_off1;
3021 }
3022 } else {
3023 if (uio && newEOF > oldEOF) {
3024 zero_off1 = uio->uio_offset + io_req_size;
3025
3026 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
3027 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
3028
3029 flags |= IO_TAILZEROFILL;
3030 }
3031 }
3032 }
3033 if (zero_cnt == 0 && uio == (struct uio *) 0) {
3034 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
3035 retval, 0, 0, 0, 0);
3036 return (0);
3037 }
3038 if (uio) {
3039 write_off = uio->uio_offset;
3040 write_cnt = uio_resid(uio);
3041 /*
3042 * delay updating the sequential write info
3043 * in the control block until we've obtained
3044 * the lock for it
3045 */
3046 first_pass = TRUE;
3047 }
3048 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
3049 /*
3050 * for this iteration of the loop, figure out where our starting point is
3051 */
3052 if (zero_cnt) {
3053 start_offset = (int)(zero_off & PAGE_MASK_64);
3054 upl_f_offset = zero_off - start_offset;
3055 } else if (io_resid) {
3056 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3057 upl_f_offset = uio->uio_offset - start_offset;
3058 } else {
3059 start_offset = (int)(zero_off1 & PAGE_MASK_64);
3060 upl_f_offset = zero_off1 - start_offset;
3061 }
3062 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
3063 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
3064
3065 if (total_size > max_io_size)
3066 total_size = max_io_size;
3067
3068 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
3069
3070 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
3071 /*
3072 * assumption... total_size <= io_resid
3073 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
3074 */
3075 if ((start_offset + total_size) > max_io_size)
3076 total_size = max_io_size - start_offset;
3077 xfer_resid = total_size;
3078
3079 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
3080
3081 if (retval)
3082 break;
3083
3084 io_resid -= (total_size - xfer_resid);
3085 total_size = xfer_resid;
3086 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3087 upl_f_offset = uio->uio_offset - start_offset;
3088
3089 if (total_size == 0) {
3090 if (start_offset) {
3091 /*
3092 * the write did not finish on a page boundary
3093 * which will leave upl_f_offset pointing to the
3094 * beginning of the last page written instead of
3095 * the page beyond it... bump it in this case
3096 * so that the cluster code records the last page
3097 * written as dirty
3098 */
3099 upl_f_offset += PAGE_SIZE_64;
3100 }
3101 upl_size = 0;
3102
3103 goto check_cluster;
3104 }
3105 }
3106 /*
3107 * compute the size of the upl needed to encompass
3108 * the requested write... limit each call to cluster_io
3109 * to the maximum UPL size... cluster_io will clip if
3110 * this exceeds the maximum io_size for the device,
3111 * make sure to account for
3112 * a starting offset that's not page aligned
3113 */
3114 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3115
3116 if (upl_size > max_io_size)
3117 upl_size = max_io_size;
3118
3119 pages_in_upl = upl_size / PAGE_SIZE;
3120 io_size = upl_size - start_offset;
3121
3122 if ((long long)io_size > total_size)
3123 io_size = total_size;
3124
3125 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
3126
3127
3128 /*
3129 * Gather the pages from the buffer cache.
3130 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
3131 * that we intend to modify these pages.
3132 */
3133 kret = ubc_create_upl(vp,
3134 upl_f_offset,
3135 upl_size,
3136 &upl,
3137 &pl,
3138 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY));
3139 if (kret != KERN_SUCCESS)
3140 panic("cluster_write_copy: failed to get pagelist");
3141
3142 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
3143 upl, (int)upl_f_offset, start_offset, 0, 0);
3144
3145 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
3146 int read_size;
3147
3148 /*
3149 * we're starting in the middle of the first page of the upl
3150 * and the page isn't currently valid, so we're going to have
3151 * to read it in first... this is a synchronous operation
3152 */
3153 read_size = PAGE_SIZE;
3154
3155 if ((upl_f_offset + read_size) > oldEOF)
3156 read_size = oldEOF - upl_f_offset;
3157
3158 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
3159 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3160 if (retval) {
3161 /*
3162 * we had an error during the read which causes us to abort
3163 * the current cluster_write request... before we do, we need
3164 * to release the rest of the pages in the upl without modifying
3165 * there state and mark the failed page in error
3166 */
3167 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3168
3169 if (upl_size > PAGE_SIZE)
3170 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3171
3172 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3173 upl, 0, 0, retval, 0);
3174 break;
3175 }
3176 }
3177 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
3178 /*
3179 * the last offset we're writing to in this upl does not end on a page
3180 * boundary... if it's not beyond the old EOF, then we'll also need to
3181 * pre-read this page in if it isn't already valid
3182 */
3183 upl_offset = upl_size - PAGE_SIZE;
3184
3185 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
3186 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
3187 int read_size;
3188
3189 read_size = PAGE_SIZE;
3190
3191 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
3192 read_size = oldEOF - (upl_f_offset + upl_offset);
3193
3194 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
3195 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3196 if (retval) {
3197 /*
3198 * we had an error during the read which causes us to abort
3199 * the current cluster_write request... before we do, we
3200 * need to release the rest of the pages in the upl without
3201 * modifying there state and mark the failed page in error
3202 */
3203 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3204
3205 if (upl_size > PAGE_SIZE)
3206 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3207
3208 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3209 upl, 0, 0, retval, 0);
3210 break;
3211 }
3212 }
3213 }
3214 xfer_resid = io_size;
3215 io_offset = start_offset;
3216
3217 while (zero_cnt && xfer_resid) {
3218
3219 if (zero_cnt < (long long)xfer_resid)
3220 bytes_to_zero = zero_cnt;
3221 else
3222 bytes_to_zero = xfer_resid;
3223
3224 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
3225
3226 xfer_resid -= bytes_to_zero;
3227 zero_cnt -= bytes_to_zero;
3228 zero_off += bytes_to_zero;
3229 io_offset += bytes_to_zero;
3230 }
3231 if (xfer_resid && io_resid) {
3232 u_int32_t io_requested;
3233
3234 bytes_to_move = min(io_resid, xfer_resid);
3235 io_requested = bytes_to_move;
3236
3237 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
3238
3239 if (retval) {
3240 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3241
3242 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3243 upl, 0, 0, retval, 0);
3244 } else {
3245 io_resid -= bytes_to_move;
3246 xfer_resid -= bytes_to_move;
3247 io_offset += bytes_to_move;
3248 }
3249 }
3250 while (xfer_resid && zero_cnt1 && retval == 0) {
3251
3252 if (zero_cnt1 < (long long)xfer_resid)
3253 bytes_to_zero = zero_cnt1;
3254 else
3255 bytes_to_zero = xfer_resid;
3256
3257 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3258
3259 xfer_resid -= bytes_to_zero;
3260 zero_cnt1 -= bytes_to_zero;
3261 zero_off1 += bytes_to_zero;
3262 io_offset += bytes_to_zero;
3263 }
3264 if (retval == 0) {
3265 int cl_index;
3266 int ret_cluster_try_push;
3267
3268 io_size += start_offset;
3269
3270 if ((upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
3271 /*
3272 * if we're extending the file with this write
3273 * we'll zero fill the rest of the page so that
3274 * if the file gets extended again in such a way as to leave a
3275 * hole starting at this EOF, we'll have zero's in the correct spot
3276 */
3277 cluster_zero(upl, io_size, upl_size - io_size, NULL);
3278 }
3279 /*
3280 * release the upl now if we hold one since...
3281 * 1) pages in it may be present in the sparse cluster map
3282 * and may span 2 separate buckets there... if they do and
3283 * we happen to have to flush a bucket to make room and it intersects
3284 * this upl, a deadlock may result on page BUSY
3285 * 2) we're delaying the I/O... from this point forward we're just updating
3286 * the cluster state... no need to hold the pages, so commit them
3287 * 3) IO_SYNC is set...
3288 * because we had to ask for a UPL that provides currenty non-present pages, the
3289 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3290 * upon committing it... this is not the behavior we want since it's possible for
3291 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3292 * we'll pick these pages back up later with the correct behavior specified.
3293 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3294 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3295 * we hold since the flushing context is holding the cluster lock.
3296 */
3297 ubc_upl_commit_range(upl, 0, upl_size,
3298 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3299 check_cluster:
3300 /*
3301 * calculate the last logical block number
3302 * that this delayed I/O encompassed
3303 */
3304 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3305
3306 if (flags & IO_SYNC) {
3307 /*
3308 * if the IO_SYNC flag is set than we need to
3309 * bypass any clusters and immediately issue
3310 * the I/O
3311 */
3312 goto issue_io;
3313 }
3314 /*
3315 * take the lock to protect our accesses
3316 * of the writebehind and sparse cluster state
3317 */
3318 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3319
3320 if (wbp->cl_scmap) {
3321
3322 if ( !(flags & IO_NOCACHE)) {
3323 /*
3324 * we've fallen into the sparse
3325 * cluster method of delaying dirty pages
3326 */
3327 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3328
3329 lck_mtx_unlock(&wbp->cl_lockw);
3330
3331 continue;
3332 }
3333 /*
3334 * must have done cached writes that fell into
3335 * the sparse cluster mechanism... we've switched
3336 * to uncached writes on the file, so go ahead
3337 * and push whatever's in the sparse map
3338 * and switch back to normal clustering
3339 */
3340 wbp->cl_number = 0;
3341
3342 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
3343 /*
3344 * no clusters of either type present at this point
3345 * so just go directly to start_new_cluster since
3346 * we know we need to delay this I/O since we've
3347 * already released the pages back into the cache
3348 * to avoid the deadlock with sparse_cluster_push
3349 */
3350 goto start_new_cluster;
3351 }
3352 if (first_pass) {
3353 if (write_off == wbp->cl_last_write)
3354 wbp->cl_seq_written += write_cnt;
3355 else
3356 wbp->cl_seq_written = write_cnt;
3357
3358 wbp->cl_last_write = write_off + write_cnt;
3359
3360 first_pass = FALSE;
3361 }
3362 if (wbp->cl_number == 0)
3363 /*
3364 * no clusters currently present
3365 */
3366 goto start_new_cluster;
3367
3368 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
3369 /*
3370 * check each cluster that we currently hold
3371 * try to merge some or all of this write into
3372 * one or more of the existing clusters... if
3373 * any portion of the write remains, start a
3374 * new cluster
3375 */
3376 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
3377 /*
3378 * the current write starts at or after the current cluster
3379 */
3380 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3381 /*
3382 * we have a write that fits entirely
3383 * within the existing cluster limits
3384 */
3385 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
3386 /*
3387 * update our idea of where the cluster ends
3388 */
3389 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3390 break;
3391 }
3392 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3393 /*
3394 * we have a write that starts in the middle of the current cluster
3395 * but extends beyond the cluster's limit... we know this because
3396 * of the previous checks
3397 * we'll extend the current cluster to the max
3398 * and update the b_addr for the current write to reflect that
3399 * the head of it was absorbed into this cluster...
3400 * note that we'll always have a leftover tail in this case since
3401 * full absorbtion would have occurred in the clause above
3402 */
3403 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
3404
3405 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
3406 }
3407 /*
3408 * we come here for the case where the current write starts
3409 * beyond the limit of the existing cluster or we have a leftover
3410 * tail after a partial absorbtion
3411 *
3412 * in either case, we'll check the remaining clusters before
3413 * starting a new one
3414 */
3415 } else {
3416 /*
3417 * the current write starts in front of the cluster we're currently considering
3418 */
3419 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
3420 /*
3421 * we can just merge the new request into
3422 * this cluster and leave it in the cache
3423 * since the resulting cluster is still
3424 * less than the maximum allowable size
3425 */
3426 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
3427
3428 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
3429 /*
3430 * the current write completely
3431 * envelops the existing cluster and since
3432 * each write is limited to at most max_cluster_pgcount pages
3433 * we can just use the start and last blocknos of the write
3434 * to generate the cluster limits
3435 */
3436 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3437 }
3438 break;
3439 }
3440
3441 /*
3442 * if we were to combine this write with the current cluster
3443 * we would exceed the cluster size limit.... so,
3444 * let's see if there's any overlap of the new I/O with
3445 * the cluster we're currently considering... in fact, we'll
3446 * stretch the cluster out to it's full limit and see if we
3447 * get an intersection with the current write
3448 *
3449 */
3450 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
3451 /*
3452 * the current write extends into the proposed cluster
3453 * clip the length of the current write after first combining it's
3454 * tail with the newly shaped cluster
3455 */
3456 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
3457
3458 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
3459 }
3460 /*
3461 * if we get here, there was no way to merge
3462 * any portion of this write with this cluster
3463 * or we could only merge part of it which
3464 * will leave a tail...
3465 * we'll check the remaining clusters before starting a new one
3466 */
3467 }
3468 }
3469 if (cl_index < wbp->cl_number)
3470 /*
3471 * we found an existing cluster(s) that we
3472 * could entirely merge this I/O into
3473 */
3474 goto delay_io;
3475
3476 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3477 wbp->cl_number == MAX_CLUSTERS &&
3478 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3479 uint32_t n;
3480
3481 if (vp->v_mount->mnt_kern_flag & MNTK_SSD)
3482 n = WRITE_BEHIND_SSD;
3483 else
3484 n = WRITE_BEHIND;
3485
3486 while (n--)
3487 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg);
3488 }
3489 if (wbp->cl_number < MAX_CLUSTERS) {
3490 /*
3491 * we didn't find an existing cluster to
3492 * merge into, but there's room to start
3493 * a new one
3494 */
3495 goto start_new_cluster;
3496 }
3497 /*
3498 * no exisitng cluster to merge with and no
3499 * room to start a new one... we'll try
3500 * pushing one of the existing ones... if none of
3501 * them are able to be pushed, we'll switch
3502 * to the sparse cluster mechanism
3503 * cluster_try_push updates cl_number to the
3504 * number of remaining clusters... and
3505 * returns the number of currently unused clusters
3506 */
3507 ret_cluster_try_push = 0;
3508
3509 /*
3510 * if writes are not deferred, call cluster push immediately
3511 */
3512 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
3513
3514 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg);
3515 }
3516
3517 /*
3518 * execute following regardless of writes being deferred or not
3519 */
3520 if (ret_cluster_try_push == 0) {
3521 /*
3522 * no more room in the normal cluster mechanism
3523 * so let's switch to the more expansive but expensive
3524 * sparse mechanism....
3525 */
3526 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
3527 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3528
3529 lck_mtx_unlock(&wbp->cl_lockw);
3530
3531 continue;
3532 }
3533 start_new_cluster:
3534 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3535 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3536
3537 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3538
3539 if (flags & IO_NOCACHE)
3540 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3541
3542 if (bflag & CL_PASSIVE)
3543 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3544
3545 wbp->cl_number++;
3546 delay_io:
3547 lck_mtx_unlock(&wbp->cl_lockw);
3548
3549 continue;
3550 issue_io:
3551 /*
3552 * we don't hold the lock at this point
3553 *
3554 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3555 * so that we correctly deal with a change in state of the hardware modify bit...
3556 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3557 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3558 * responsible for generating the correct sized I/O(s)
3559 */
3560 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3561 }
3562 }
3563 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3564
3565 return (retval);
3566 }
3567
3568
3569
3570 int
3571 cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3572 {
3573 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3574 }
3575
3576
3577 int
3578 cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3579 {
3580 int retval = 0;
3581 int flags;
3582 user_ssize_t cur_resid;
3583 u_int32_t io_size;
3584 u_int32_t read_length = 0;
3585 int read_type = IO_COPY;
3586
3587 flags = xflags;
3588
3589 if (vp->v_flag & VNOCACHE_DATA)
3590 flags |= IO_NOCACHE;
3591 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3592 flags |= IO_RAOFF;
3593
3594 if (flags & IO_SKIP_ENCRYPTION)
3595 flags |= IO_ENCRYPTED;
3596 /*
3597 * If we're doing an encrypted IO, then first check to see
3598 * if the IO requested was page aligned. If not, then bail
3599 * out immediately.
3600 */
3601 if (flags & IO_ENCRYPTED) {
3602 if (read_length & PAGE_MASK) {
3603 retval = EINVAL;
3604 return retval;
3605 }
3606 }
3607
3608 /*
3609 * do a read through the cache if one of the following is true....
3610 * NOCACHE is not true
3611 * the uio request doesn't target USERSPACE
3612 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3613 * Reading encrypted data from a CP filesystem should never result in the data touching
3614 * the UBC.
3615 *
3616 * otherwise, find out if we want the direct or contig variant for
3617 * the first vector in the uio request
3618 */
3619 if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
3620
3621 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3622 }
3623
3624 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3625
3626 switch (read_type) {
3627
3628 case IO_COPY:
3629 /*
3630 * make sure the uio_resid isn't too big...
3631 * internally, we want to handle all of the I/O in
3632 * chunk sizes that fit in a 32 bit int
3633 */
3634 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3635 io_size = MAX_IO_REQUEST_SIZE;
3636 else
3637 io_size = (u_int32_t)cur_resid;
3638
3639 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3640 break;
3641
3642 case IO_DIRECT:
3643 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3644 break;
3645
3646 case IO_CONTIG:
3647 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3648 break;
3649
3650 case IO_UNKNOWN:
3651 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3652 break;
3653 }
3654 }
3655 return (retval);
3656 }
3657
3658
3659
3660 static void
3661 cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
3662 {
3663 int range;
3664 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3665
3666 if ((range = last_pg - start_pg)) {
3667 if (take_reference)
3668 abort_flags |= UPL_ABORT_REFERENCE;
3669
3670 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3671 }
3672 }
3673
3674
3675 static int
3676 cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3677 {
3678 upl_page_info_t *pl;
3679 upl_t upl;
3680 vm_offset_t upl_offset;
3681 u_int32_t upl_size;
3682 off_t upl_f_offset;
3683 int start_offset;
3684 int start_pg;
3685 int last_pg;
3686 int uio_last = 0;
3687 int pages_in_upl;
3688 off_t max_size;
3689 off_t last_ioread_offset;
3690 off_t last_request_offset;
3691 kern_return_t kret;
3692 int error = 0;
3693 int retval = 0;
3694 u_int32_t size_of_prefetch;
3695 u_int32_t xsize;
3696 u_int32_t io_size;
3697 u_int32_t max_rd_size;
3698 u_int32_t max_io_size;
3699 u_int32_t max_prefetch;
3700 u_int rd_ahead_enabled = 1;
3701 u_int prefetch_enabled = 1;
3702 struct cl_readahead * rap;
3703 struct clios iostate;
3704 struct cl_extent extent;
3705 int bflag;
3706 int take_reference = 1;
3707 int policy = IOPOL_DEFAULT;
3708 boolean_t iolock_inited = FALSE;
3709
3710 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3711 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3712
3713 if (flags & IO_ENCRYPTED) {
3714 panic ("encrypted blocks will hit UBC!");
3715 }
3716
3717 policy = throttle_get_io_policy(NULL);
3718
3719 if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
3720 take_reference = 0;
3721
3722 if (flags & IO_PASSIVE)
3723 bflag = CL_PASSIVE;
3724 else
3725 bflag = 0;
3726
3727 if (flags & IO_NOCACHE)
3728 bflag |= CL_NOCACHE;
3729
3730 if (flags & IO_SKIP_ENCRYPTION)
3731 bflag |= CL_ENCRYPTED;
3732
3733 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3734 max_prefetch = MAX_PREFETCH(vp, max_io_size, (vp->v_mount->mnt_kern_flag & MNTK_SSD));
3735 max_rd_size = max_prefetch;
3736
3737 last_request_offset = uio->uio_offset + io_req_size;
3738
3739 if (last_request_offset > filesize)
3740 last_request_offset = filesize;
3741
3742 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3743 rd_ahead_enabled = 0;
3744 rap = NULL;
3745 } else {
3746 if (cluster_is_throttled(vp)) {
3747 /*
3748 * we're in the throttle window, at the very least
3749 * we want to limit the size of the I/O we're about
3750 * to issue
3751 */
3752 rd_ahead_enabled = 0;
3753 prefetch_enabled = 0;
3754
3755 max_rd_size = THROTTLE_MAX_IOSIZE;
3756 }
3757 if ((rap = cluster_get_rap(vp)) == NULL)
3758 rd_ahead_enabled = 0;
3759 else {
3760 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3761 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3762 }
3763 }
3764 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3765 /*
3766 * determine if we already have a read-ahead in the pipe courtesy of the
3767 * last read systemcall that was issued...
3768 * if so, pick up it's extent to determine where we should start
3769 * with respect to any read-ahead that might be necessary to
3770 * garner all the data needed to complete this read systemcall
3771 */
3772 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3773
3774 if (last_ioread_offset < uio->uio_offset)
3775 last_ioread_offset = (off_t)0;
3776 else if (last_ioread_offset > last_request_offset)
3777 last_ioread_offset = last_request_offset;
3778 } else
3779 last_ioread_offset = (off_t)0;
3780
3781 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3782
3783 max_size = filesize - uio->uio_offset;
3784
3785 if ((off_t)(io_req_size) < max_size)
3786 io_size = io_req_size;
3787 else
3788 io_size = max_size;
3789
3790 if (!(flags & IO_NOCACHE)) {
3791
3792 while (io_size) {
3793 u_int32_t io_resid;
3794 u_int32_t io_requested;
3795
3796 /*
3797 * if we keep finding the pages we need already in the cache, then
3798 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3799 * to determine that we have all the pages we need... once we miss in
3800 * the cache and have issued an I/O, than we'll assume that we're likely
3801 * to continue to miss in the cache and it's to our advantage to try and prefetch
3802 */
3803 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3804 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3805 /*
3806 * we've already issued I/O for this request and
3807 * there's still work to do and
3808 * our prefetch stream is running dry, so issue a
3809 * pre-fetch I/O... the I/O latency will overlap
3810 * with the copying of the data
3811 */
3812 if (size_of_prefetch > max_rd_size)
3813 size_of_prefetch = max_rd_size;
3814
3815 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3816
3817 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3818
3819 if (last_ioread_offset > last_request_offset)
3820 last_ioread_offset = last_request_offset;
3821 }
3822 }
3823 /*
3824 * limit the size of the copy we're about to do so that
3825 * we can notice that our I/O pipe is running dry and
3826 * get the next I/O issued before it does go dry
3827 */
3828 if (last_ioread_offset && io_size > (max_io_size / 4))
3829 io_resid = (max_io_size / 4);
3830 else
3831 io_resid = io_size;
3832
3833 io_requested = io_resid;
3834
3835 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3836
3837 xsize = io_requested - io_resid;
3838
3839 io_size -= xsize;
3840 io_req_size -= xsize;
3841
3842 if (retval || io_resid)
3843 /*
3844 * if we run into a real error or
3845 * a page that is not in the cache
3846 * we need to leave streaming mode
3847 */
3848 break;
3849
3850 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
3851 /*
3852 * we're already finished the I/O for this read request
3853 * let's see if we should do a read-ahead
3854 */
3855 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3856 }
3857 }
3858 if (retval)
3859 break;
3860 if (io_size == 0) {
3861 if (rap != NULL) {
3862 if (extent.e_addr < rap->cl_lastr)
3863 rap->cl_maxra = 0;
3864 rap->cl_lastr = extent.e_addr;
3865 }
3866 break;
3867 }
3868 /*
3869 * recompute max_size since cluster_copy_ubc_data_internal
3870 * may have advanced uio->uio_offset
3871 */
3872 max_size = filesize - uio->uio_offset;
3873 }
3874
3875 iostate.io_completed = 0;
3876 iostate.io_issued = 0;
3877 iostate.io_error = 0;
3878 iostate.io_wanted = 0;
3879
3880 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3881 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
3882 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3883 /*
3884 * we're in the throttle window and at least 1 I/O
3885 * has already been issued by a throttleable thread
3886 * in this window, so return with EAGAIN to indicate
3887 * to the FS issuing the cluster_read call that it
3888 * should now throttle after dropping any locks
3889 */
3890 throttle_info_update_by_mount(vp->v_mount);
3891
3892 retval = EAGAIN;
3893 break;
3894 }
3895 }
3896 }
3897
3898 /*
3899 * compute the size of the upl needed to encompass
3900 * the requested read... limit each call to cluster_io
3901 * to the maximum UPL size... cluster_io will clip if
3902 * this exceeds the maximum io_size for the device,
3903 * make sure to account for
3904 * a starting offset that's not page aligned
3905 */
3906 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3907 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3908
3909 if (io_size > max_rd_size)
3910 io_size = max_rd_size;
3911
3912 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3913
3914 if (flags & IO_NOCACHE) {
3915 if (upl_size > max_io_size)
3916 upl_size = max_io_size;
3917 } else {
3918 if (upl_size > max_io_size / 4) {
3919 upl_size = max_io_size / 4;
3920 upl_size &= ~PAGE_MASK;
3921
3922 if (upl_size == 0)
3923 upl_size = PAGE_SIZE;
3924 }
3925 }
3926 pages_in_upl = upl_size / PAGE_SIZE;
3927
3928 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3929 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3930
3931 kret = ubc_create_upl(vp,
3932 upl_f_offset,
3933 upl_size,
3934 &upl,
3935 &pl,
3936 UPL_FILE_IO | UPL_SET_LITE);
3937 if (kret != KERN_SUCCESS)
3938 panic("cluster_read_copy: failed to get pagelist");
3939
3940 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
3941 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3942
3943 /*
3944 * scan from the beginning of the upl looking for the first
3945 * non-valid page.... this will become the first page in
3946 * the request we're going to make to 'cluster_io'... if all
3947 * of the pages are valid, we won't call through to 'cluster_io'
3948 */
3949 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
3950 if (!upl_valid_page(pl, start_pg))
3951 break;
3952 }
3953
3954 /*
3955 * scan from the starting invalid page looking for a valid
3956 * page before the end of the upl is reached, if we
3957 * find one, then it will be the last page of the request to
3958 * 'cluster_io'
3959 */
3960 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
3961 if (upl_valid_page(pl, last_pg))
3962 break;
3963 }
3964
3965 if (start_pg < last_pg) {
3966 /*
3967 * we found a range of 'invalid' pages that must be filled
3968 * if the last page in this range is the last page of the file
3969 * we may have to clip the size of it to keep from reading past
3970 * the end of the last physical block associated with the file
3971 */
3972 if (iolock_inited == FALSE) {
3973 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
3974
3975 iolock_inited = TRUE;
3976 }
3977 upl_offset = start_pg * PAGE_SIZE;
3978 io_size = (last_pg - start_pg) * PAGE_SIZE;
3979
3980 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
3981 io_size = filesize - (upl_f_offset + upl_offset);
3982
3983 /*
3984 * issue an asynchronous read to cluster_io
3985 */
3986
3987 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
3988 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
3989
3990 if (rap) {
3991 if (extent.e_addr < rap->cl_maxra) {
3992 /*
3993 * we've just issued a read for a block that should have been
3994 * in the cache courtesy of the read-ahead engine... something
3995 * has gone wrong with the pipeline, so reset the read-ahead
3996 * logic which will cause us to restart from scratch
3997 */
3998 rap->cl_maxra = 0;
3999 }
4000 }
4001 }
4002 if (error == 0) {
4003 /*
4004 * if the read completed successfully, or there was no I/O request
4005 * issued, than copy the data into user land via 'cluster_upl_copy_data'
4006 * we'll first add on any 'valid'
4007 * pages that were present in the upl when we acquired it.
4008 */
4009 u_int val_size;
4010
4011 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
4012 if (!upl_valid_page(pl, uio_last))
4013 break;
4014 }
4015 if (uio_last < pages_in_upl) {
4016 /*
4017 * there were some invalid pages beyond the valid pages
4018 * that we didn't issue an I/O for, just release them
4019 * unchanged now, so that any prefetch/readahed can
4020 * include them
4021 */
4022 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
4023 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
4024 }
4025
4026 /*
4027 * compute size to transfer this round, if io_req_size is
4028 * still non-zero after this attempt, we'll loop around and
4029 * set up for another I/O.
4030 */
4031 val_size = (uio_last * PAGE_SIZE) - start_offset;
4032
4033 if (val_size > max_size)
4034 val_size = max_size;
4035
4036 if (val_size > io_req_size)
4037 val_size = io_req_size;
4038
4039 if ((uio->uio_offset + val_size) > last_ioread_offset)
4040 last_ioread_offset = uio->uio_offset + val_size;
4041
4042 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
4043
4044 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
4045 /*
4046 * if there's still I/O left to do for this request, and...
4047 * we're not in hard throttle mode, and...
4048 * we're close to using up the previous prefetch, then issue a
4049 * new pre-fetch I/O... the I/O latency will overlap
4050 * with the copying of the data
4051 */
4052 if (size_of_prefetch > max_rd_size)
4053 size_of_prefetch = max_rd_size;
4054
4055 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
4056
4057 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
4058
4059 if (last_ioread_offset > last_request_offset)
4060 last_ioread_offset = last_request_offset;
4061 }
4062
4063 } else if ((uio->uio_offset + val_size) == last_request_offset) {
4064 /*
4065 * this transfer will finish this request, so...
4066 * let's try to read ahead if we're in
4067 * a sequential access pattern and we haven't
4068 * explicitly disabled it
4069 */
4070 if (rd_ahead_enabled)
4071 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
4072
4073 if (rap != NULL) {
4074 if (extent.e_addr < rap->cl_lastr)
4075 rap->cl_maxra = 0;
4076 rap->cl_lastr = extent.e_addr;
4077 }
4078 }
4079 if (iolock_inited == TRUE)
4080 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4081
4082 if (iostate.io_error)
4083 error = iostate.io_error;
4084 else {
4085 u_int32_t io_requested;
4086
4087 io_requested = val_size;
4088
4089 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
4090
4091 io_req_size -= (val_size - io_requested);
4092 }
4093 } else {
4094 if (iolock_inited == TRUE)
4095 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4096 }
4097 if (start_pg < last_pg) {
4098 /*
4099 * compute the range of pages that we actually issued an I/O for
4100 * and either commit them as valid if the I/O succeeded
4101 * or abort them if the I/O failed or we're not supposed to
4102 * keep them in the cache
4103 */
4104 io_size = (last_pg - start_pg) * PAGE_SIZE;
4105
4106 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4107
4108 if (error || (flags & IO_NOCACHE))
4109 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
4110 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
4111 else {
4112 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
4113
4114 if (take_reference)
4115 commit_flags |= UPL_COMMIT_INACTIVATE;
4116 else
4117 commit_flags |= UPL_COMMIT_SPECULATE;
4118
4119 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
4120 }
4121 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4122 }
4123 if ((last_pg - start_pg) < pages_in_upl) {
4124 /*
4125 * the set of pages that we issued an I/O for did not encompass
4126 * the entire upl... so just release these without modifying
4127 * their state
4128 */
4129 if (error)
4130 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
4131 else {
4132
4133 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
4134 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
4135
4136 /*
4137 * handle any valid pages at the beginning of
4138 * the upl... release these appropriately
4139 */
4140 cluster_read_upl_release(upl, 0, start_pg, take_reference);
4141
4142 /*
4143 * handle any valid pages immediately after the
4144 * pages we issued I/O for... ... release these appropriately
4145 */
4146 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
4147
4148 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
4149 }
4150 }
4151 if (retval == 0)
4152 retval = error;
4153
4154 if (io_req_size) {
4155 if (cluster_is_throttled(vp)) {
4156 /*
4157 * we're in the throttle window, at the very least
4158 * we want to limit the size of the I/O we're about
4159 * to issue
4160 */
4161 rd_ahead_enabled = 0;
4162 prefetch_enabled = 0;
4163 max_rd_size = THROTTLE_MAX_IOSIZE;
4164 } else {
4165 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
4166 /*
4167 * coming out of throttled state
4168 */
4169 if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
4170 if (rap != NULL)
4171 rd_ahead_enabled = 1;
4172 prefetch_enabled = 1;
4173 }
4174 max_rd_size = max_prefetch;
4175 last_ioread_offset = 0;
4176 }
4177 }
4178 }
4179 }
4180 if (iolock_inited == TRUE) {
4181 /*
4182 * cluster_io returned an error after it
4183 * had already issued some I/O. we need
4184 * to wait for that I/O to complete before
4185 * we can destroy the iostate mutex...
4186 * 'retval' already contains the early error
4187 * so no need to pick it up from iostate.io_error
4188 */
4189 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4190
4191 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4192 }
4193 if (rap != NULL) {
4194 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4195 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
4196
4197 lck_mtx_unlock(&rap->cl_lockr);
4198 } else {
4199 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4200 (int)uio->uio_offset, io_req_size, 0, retval, 0);
4201 }
4202
4203 return (retval);
4204 }
4205
4206 /*
4207 * We don't want another read/write lock for every vnode in the system
4208 * so we keep a hash of them here. There should never be very many of
4209 * these around at any point in time.
4210 */
4211 cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
4212 {
4213 struct cl_direct_read_locks *head
4214 = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
4215 % CL_DIRECT_READ_LOCK_BUCKETS];
4216
4217 struct cl_direct_read_lock *lck, *new_lck = NULL;
4218
4219 for (;;) {
4220 lck_spin_lock(&cl_direct_read_spin_lock);
4221
4222 LIST_FOREACH(lck, head, chain) {
4223 if (lck->vp == vp) {
4224 ++lck->ref_count;
4225 lck_spin_unlock(&cl_direct_read_spin_lock);
4226 if (new_lck) {
4227 // Someone beat us to it, ditch the allocation
4228 lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
4229 FREE(new_lck, M_TEMP);
4230 }
4231 lck_rw_lock(&lck->rw_lock, type);
4232 return lck;
4233 }
4234 }
4235
4236 if (new_lck) {
4237 // Use the lock we allocated
4238 LIST_INSERT_HEAD(head, new_lck, chain);
4239 lck_spin_unlock(&cl_direct_read_spin_lock);
4240 lck_rw_lock(&new_lck->rw_lock, type);
4241 return new_lck;
4242 }
4243
4244 lck_spin_unlock(&cl_direct_read_spin_lock);
4245
4246 // Allocate a new lock
4247 MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
4248 M_TEMP, M_WAITOK);
4249 lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
4250 new_lck->vp = vp;
4251 new_lck->ref_count = 1;
4252
4253 // Got to go round again
4254 }
4255 }
4256
4257 void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
4258 {
4259 lck_rw_done(&lck->rw_lock);
4260
4261 lck_spin_lock(&cl_direct_read_spin_lock);
4262 if (lck->ref_count == 1) {
4263 LIST_REMOVE(lck, chain);
4264 lck_spin_unlock(&cl_direct_read_spin_lock);
4265 lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
4266 FREE(lck, M_TEMP);
4267 } else {
4268 --lck->ref_count;
4269 lck_spin_unlock(&cl_direct_read_spin_lock);
4270 }
4271 }
4272
4273 static int
4274 cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4275 int flags, int (*callback)(buf_t, void *), void *callback_arg)
4276 {
4277 upl_t upl;
4278 upl_page_info_t *pl;
4279 off_t max_io_size;
4280 vm_offset_t upl_offset, vector_upl_offset = 0;
4281 upl_size_t upl_size, vector_upl_size = 0;
4282 vm_size_t upl_needed_size;
4283 unsigned int pages_in_pl;
4284 upl_control_flags_t upl_flags;
4285 kern_return_t kret;
4286 unsigned int i;
4287 int force_data_sync;
4288 int retval = 0;
4289 int no_zero_fill = 0;
4290 int io_flag = 0;
4291 int misaligned = 0;
4292 struct clios iostate;
4293 user_addr_t iov_base;
4294 u_int32_t io_req_size;
4295 u_int32_t offset_in_file;
4296 u_int32_t offset_in_iovbase;
4297 u_int32_t io_size;
4298 u_int32_t io_min;
4299 u_int32_t xsize;
4300 u_int32_t devblocksize;
4301 u_int32_t mem_alignment_mask;
4302 u_int32_t max_upl_size;
4303 u_int32_t max_rd_size;
4304 u_int32_t max_rd_ahead;
4305 u_int32_t max_vector_size;
4306 boolean_t strict_uncached_IO = FALSE;
4307 boolean_t io_throttled = FALSE;
4308
4309 u_int32_t vector_upl_iosize = 0;
4310 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4311 off_t v_upl_uio_offset = 0;
4312 int vector_upl_index=0;
4313 upl_t vector_upl = NULL;
4314 cl_direct_read_lock_t *lock = NULL;
4315
4316 user_addr_t orig_iov_base = 0;
4317 user_addr_t last_iov_base = 0;
4318 user_addr_t next_iov_base = 0;
4319
4320 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4321 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4322
4323 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
4324
4325 max_rd_size = max_upl_size;
4326 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4327
4328 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
4329
4330 if (flags & IO_PASSIVE)
4331 io_flag |= CL_PASSIVE;
4332
4333 if (flags & IO_ENCRYPTED) {
4334 io_flag |= CL_RAW_ENCRYPTED;
4335 }
4336
4337 if (flags & IO_NOCACHE) {
4338 io_flag |= CL_NOCACHE;
4339 }
4340
4341 if (flags & IO_SKIP_ENCRYPTION)
4342 io_flag |= CL_ENCRYPTED;
4343
4344 iostate.io_completed = 0;
4345 iostate.io_issued = 0;
4346 iostate.io_error = 0;
4347 iostate.io_wanted = 0;
4348
4349 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4350
4351 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4352 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4353
4354 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4355 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4356
4357 if (devblocksize == 1) {
4358 /*
4359 * the AFP client advertises a devblocksize of 1
4360 * however, its BLOCKMAP routine maps to physical
4361 * blocks that are PAGE_SIZE in size...
4362 * therefore we can't ask for I/Os that aren't page aligned
4363 * or aren't multiples of PAGE_SIZE in size
4364 * by setting devblocksize to PAGE_SIZE, we re-instate
4365 * the old behavior we had before the mem_alignment_mask
4366 * changes went in...
4367 */
4368 devblocksize = PAGE_SIZE;
4369 }
4370
4371 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4372
4373 orig_iov_base = uio_curriovbase(uio);
4374 last_iov_base = orig_iov_base;
4375
4376 next_dread:
4377 io_req_size = *read_length;
4378 iov_base = uio_curriovbase(uio);
4379
4380 max_io_size = filesize - uio->uio_offset;
4381
4382 if ((off_t)io_req_size > max_io_size)
4383 io_req_size = max_io_size;
4384
4385 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4386 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4387
4388 if (offset_in_file || offset_in_iovbase) {
4389 /*
4390 * one of the 2 important offsets is misaligned
4391 * so fire an I/O through the cache for this entire vector
4392 */
4393 misaligned = 1;
4394 }
4395 if (iov_base & (devblocksize - 1)) {
4396 /*
4397 * the offset in memory must be on a device block boundary
4398 * so that we can guarantee that we can generate an
4399 * I/O that ends on a page boundary in cluster_io
4400 */
4401 misaligned = 1;
4402 }
4403
4404 /*
4405 * The user must request IO in aligned chunks. If the
4406 * offset into the file is bad, or the userland pointer
4407 * is non-aligned, then we cannot service the encrypted IO request.
4408 */
4409 if ((flags & IO_ENCRYPTED) && (misaligned)) {
4410 retval = EINVAL;
4411 }
4412
4413 /*
4414 * When we get to this point, we know...
4415 * -- the offset into the file is on a devblocksize boundary
4416 */
4417
4418 while (io_req_size && retval == 0) {
4419 u_int32_t io_start;
4420
4421 if (cluster_is_throttled(vp)) {
4422 /*
4423 * we're in the throttle window, at the very least
4424 * we want to limit the size of the I/O we're about
4425 * to issue
4426 */
4427 max_rd_size = THROTTLE_MAX_IOSIZE;
4428 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4429 max_vector_size = THROTTLE_MAX_IOSIZE;
4430 } else {
4431 max_rd_size = max_upl_size;
4432 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4433 max_vector_size = MAX_VECTOR_UPL_SIZE;
4434 }
4435 io_start = io_size = io_req_size;
4436
4437 /*
4438 * First look for pages already in the cache
4439 * and move them to user space. But only do this
4440 * check if we are not retrieving encrypted data directly
4441 * from the filesystem; those blocks should never
4442 * be in the UBC.
4443 *
4444 * cluster_copy_ubc_data returns the resid
4445 * in io_size
4446 */
4447 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4448 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4449 }
4450 /*
4451 * calculate the number of bytes actually copied
4452 * starting size - residual
4453 */
4454 xsize = io_start - io_size;
4455
4456 io_req_size -= xsize;
4457
4458 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4459 /*
4460 * We found something in the cache or we have an iov_base that's not
4461 * page-aligned.
4462 *
4463 * Issue all I/O's that have been collected within this Vectored UPL.
4464 */
4465 if(vector_upl_index) {
4466 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4467 reset_vector_run_state();
4468 }
4469
4470 if(xsize)
4471 useVectorUPL = 0;
4472
4473 /*
4474 * After this point, if we are using the Vector UPL path and the base is
4475 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4476 */
4477 }
4478
4479 /*
4480 * check to see if we are finished with this request.
4481 *
4482 * If we satisfied this IO already, then io_req_size will be 0.
4483 * Otherwise, see if the IO was mis-aligned and needs to go through
4484 * the UBC to deal with the 'tail'.
4485 *
4486 */
4487 if (io_req_size == 0 || (misaligned)) {
4488 /*
4489 * see if there's another uio vector to
4490 * process that's of type IO_DIRECT
4491 *
4492 * break out of while loop to get there
4493 */
4494 break;
4495 }
4496 /*
4497 * assume the request ends on a device block boundary
4498 */
4499 io_min = devblocksize;
4500
4501 /*
4502 * we can handle I/O's in multiples of the device block size
4503 * however, if io_size isn't a multiple of devblocksize we
4504 * want to clip it back to the nearest page boundary since
4505 * we are going to have to go through cluster_read_copy to
4506 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4507 * multiple, we avoid asking the drive for the same physical
4508 * blocks twice.. once for the partial page at the end of the
4509 * request and a 2nd time for the page we read into the cache
4510 * (which overlaps the end of the direct read) in order to
4511 * get at the overhang bytes
4512 */
4513 if (io_size & (devblocksize - 1)) {
4514 if (flags & IO_ENCRYPTED) {
4515 /*
4516 * Normally, we'd round down to the previous page boundary to
4517 * let the UBC manage the zero-filling of the file past the EOF.
4518 * But if we're doing encrypted IO, we can't let any of
4519 * the data hit the UBC. This means we have to do the full
4520 * IO to the upper block boundary of the device block that
4521 * contains the EOF. The user will be responsible for not
4522 * interpreting data PAST the EOF in its buffer.
4523 *
4524 * So just bump the IO back up to a multiple of devblocksize
4525 */
4526 io_size = ((io_size + devblocksize) & ~(devblocksize - 1));
4527 io_min = io_size;
4528 }
4529 else {
4530 /*
4531 * Clip the request to the previous page size boundary
4532 * since request does NOT end on a device block boundary
4533 */
4534 io_size &= ~PAGE_MASK;
4535 io_min = PAGE_SIZE;
4536 }
4537
4538 }
4539 if (retval || io_size < io_min) {
4540 /*
4541 * either an error or we only have the tail left to
4542 * complete via the copy path...
4543 * we may have already spun some portion of this request
4544 * off as async requests... we need to wait for the I/O
4545 * to complete before returning
4546 */
4547 goto wait_for_dreads;
4548 }
4549
4550 /*
4551 * Don't re-check the UBC data if we are looking for uncached IO
4552 * or asking for encrypted blocks.
4553 */
4554 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4555
4556 if ((xsize = io_size) > max_rd_size)
4557 xsize = max_rd_size;
4558
4559 io_size = 0;
4560
4561 if (!lock) {
4562 /*
4563 * We hold a lock here between the time we check the
4564 * cache and the time we issue I/O. This saves us
4565 * from having to lock the pages in the cache. Not
4566 * all clients will care about this lock but some
4567 * clients may want to guarantee stability between
4568 * here and when the I/O is issued in which case they
4569 * will take the lock exclusively.
4570 */
4571 lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
4572 }
4573
4574 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4575
4576 if (io_size == 0) {
4577 /*
4578 * a page must have just come into the cache
4579 * since the first page in this range is no
4580 * longer absent, go back and re-evaluate
4581 */
4582 continue;
4583 }
4584 }
4585 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4586 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
4587 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4588 /*
4589 * we're in the throttle window and at least 1 I/O
4590 * has already been issued by a throttleable thread
4591 * in this window, so return with EAGAIN to indicate
4592 * to the FS issuing the cluster_read call that it
4593 * should now throttle after dropping any locks
4594 */
4595 throttle_info_update_by_mount(vp->v_mount);
4596
4597 io_throttled = TRUE;
4598 goto wait_for_dreads;
4599 }
4600 }
4601 }
4602 if (io_size > max_rd_size)
4603 io_size = max_rd_size;
4604
4605 iov_base = uio_curriovbase(uio);
4606
4607 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4608 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
4609
4610 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
4611 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
4612
4613 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
4614 no_zero_fill = 1;
4615 else
4616 no_zero_fill = 0;
4617
4618 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4619 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4620 pages_in_pl = 0;
4621 upl_size = upl_needed_size;
4622 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
4623 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
4624 if (no_zero_fill)
4625 upl_flags |= UPL_NOZEROFILL;
4626 if (force_data_sync)
4627 upl_flags |= UPL_FORCE_DATA_SYNC;
4628
4629 kret = vm_map_create_upl(map,
4630 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4631 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags);
4632
4633 if (kret != KERN_SUCCESS) {
4634 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4635 (int)upl_offset, upl_size, io_size, kret, 0);
4636 /*
4637 * failed to get pagelist
4638 *
4639 * we may have already spun some portion of this request
4640 * off as async requests... we need to wait for the I/O
4641 * to complete before returning
4642 */
4643 goto wait_for_dreads;
4644 }
4645 pages_in_pl = upl_size / PAGE_SIZE;
4646 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
4647
4648 for (i = 0; i < pages_in_pl; i++) {
4649 if (!upl_page_present(pl, i))
4650 break;
4651 }
4652 if (i == pages_in_pl)
4653 break;
4654
4655 ubc_upl_abort(upl, 0);
4656 }
4657 if (force_data_sync >= 3) {
4658 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4659 (int)upl_offset, upl_size, io_size, kret, 0);
4660
4661 goto wait_for_dreads;
4662 }
4663 /*
4664 * Consider the possibility that upl_size wasn't satisfied.
4665 */
4666 if (upl_size < upl_needed_size) {
4667 if (upl_size && upl_offset == 0)
4668 io_size = upl_size;
4669 else
4670 io_size = 0;
4671 }
4672 if (io_size == 0) {
4673 ubc_upl_abort(upl, 0);
4674 goto wait_for_dreads;
4675 }
4676 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4677 (int)upl_offset, upl_size, io_size, kret, 0);
4678
4679 if(useVectorUPL) {
4680 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4681 if(end_off)
4682 issueVectorUPL = 1;
4683 /*
4684 * After this point, if we are using a vector UPL, then
4685 * either all the UPL elements end on a page boundary OR
4686 * this UPL is the last element because it does not end
4687 * on a page boundary.
4688 */
4689 }
4690
4691 /*
4692 * request asynchronously so that we can overlap
4693 * the preparation of the next I/O
4694 * if there are already too many outstanding reads
4695 * wait until some have completed before issuing the next read
4696 */
4697 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
4698
4699 if (iostate.io_error) {
4700 /*
4701 * one of the earlier reads we issued ran into a hard error
4702 * don't issue any more reads, cleanup the UPL
4703 * that was just created but not used, then
4704 * go wait for any other reads to complete before
4705 * returning the error to the caller
4706 */
4707 ubc_upl_abort(upl, 0);
4708
4709 goto wait_for_dreads;
4710 }
4711 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
4712 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
4713
4714 if(!useVectorUPL) {
4715 if (no_zero_fill)
4716 io_flag &= ~CL_PRESERVE;
4717 else
4718 io_flag |= CL_PRESERVE;
4719
4720 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4721
4722 } else {
4723
4724 if(!vector_upl_index) {
4725 vector_upl = vector_upl_create(upl_offset);
4726 v_upl_uio_offset = uio->uio_offset;
4727 vector_upl_offset = upl_offset;
4728 }
4729
4730 vector_upl_set_subupl(vector_upl,upl, upl_size);
4731 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4732 vector_upl_index++;
4733 vector_upl_size += upl_size;
4734 vector_upl_iosize += io_size;
4735
4736 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
4737 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4738 reset_vector_run_state();
4739 }
4740 }
4741 last_iov_base = iov_base + io_size;
4742
4743 if (lock) {
4744 // We don't need to wait for the I/O to complete
4745 cluster_unlock_direct_read(lock);
4746 lock = NULL;
4747 }
4748
4749 /*
4750 * update the uio structure
4751 */
4752 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4753 uio_update(uio, (user_size_t)max_io_size);
4754 }
4755 else {
4756 uio_update(uio, (user_size_t)io_size);
4757 }
4758 /*
4759 * Under normal circumstances, the io_size should not be
4760 * bigger than the io_req_size, but we may have had to round up
4761 * to the end of the page in the encrypted IO case. In that case only,
4762 * ensure that we only decrement io_req_size to 0.
4763 */
4764 if ((flags & IO_ENCRYPTED) && (io_size > io_req_size)) {
4765 io_req_size = 0;
4766 }
4767 else {
4768 io_req_size -= io_size;
4769 }
4770
4771 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
4772 upl, (int)uio->uio_offset, io_req_size, retval, 0);
4773
4774 } /* end while */
4775
4776 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
4777
4778 retval = cluster_io_type(uio, read_type, read_length, 0);
4779
4780 if (retval == 0 && *read_type == IO_DIRECT) {
4781
4782 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4783 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4784
4785 goto next_dread;
4786 }
4787 }
4788
4789 wait_for_dreads:
4790
4791 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4792 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4793 reset_vector_run_state();
4794 }
4795
4796 // We don't need to wait for the I/O to complete
4797 if (lock)
4798 cluster_unlock_direct_read(lock);
4799
4800 /*
4801 * make sure all async reads that are part of this stream
4802 * have completed before we return
4803 */
4804 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
4805
4806 if (iostate.io_error)
4807 retval = iostate.io_error;
4808
4809 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4810
4811 if (io_throttled == TRUE && retval == 0)
4812 retval = EAGAIN;
4813
4814 for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
4815 /*
4816 * This is specifically done for pmap accounting purposes.
4817 * vm_pre_fault() will call vm_fault() to enter the page into
4818 * the pmap if there isn't _a_ physical page for that VA already.
4819 */
4820 vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
4821 }
4822
4823 if (io_req_size && retval == 0) {
4824 /*
4825 * we couldn't handle the tail of this request in DIRECT mode
4826 * so fire it through the copy path
4827 */
4828 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
4829
4830 *read_type = IO_UNKNOWN;
4831 }
4832 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
4833 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
4834
4835 return (retval);
4836 }
4837
4838
4839 static int
4840 cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4841 int (*callback)(buf_t, void *), void *callback_arg, int flags)
4842 {
4843 upl_page_info_t *pl;
4844 upl_t upl[MAX_VECTS];
4845 vm_offset_t upl_offset;
4846 addr64_t dst_paddr = 0;
4847 user_addr_t iov_base;
4848 off_t max_size;
4849 upl_size_t upl_size;
4850 vm_size_t upl_needed_size;
4851 mach_msg_type_number_t pages_in_pl;
4852 upl_control_flags_t upl_flags;
4853 kern_return_t kret;
4854 struct clios iostate;
4855 int error= 0;
4856 int cur_upl = 0;
4857 int num_upl = 0;
4858 int n;
4859 u_int32_t xsize;
4860 u_int32_t io_size;
4861 u_int32_t devblocksize;
4862 u_int32_t mem_alignment_mask;
4863 u_int32_t tail_size = 0;
4864 int bflag;
4865
4866 if (flags & IO_PASSIVE)
4867 bflag = CL_PASSIVE;
4868 else
4869 bflag = 0;
4870
4871 if (flags & IO_NOCACHE)
4872 bflag |= CL_NOCACHE;
4873
4874 /*
4875 * When we enter this routine, we know
4876 * -- the read_length will not exceed the current iov_len
4877 * -- the target address is physically contiguous for read_length
4878 */
4879 cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
4880
4881 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4882 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4883
4884 iostate.io_completed = 0;
4885 iostate.io_issued = 0;
4886 iostate.io_error = 0;
4887 iostate.io_wanted = 0;
4888
4889 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4890
4891 next_cread:
4892 io_size = *read_length;
4893
4894 max_size = filesize - uio->uio_offset;
4895
4896 if (io_size > max_size)
4897 io_size = max_size;
4898
4899 iov_base = uio_curriovbase(uio);
4900
4901 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4902 upl_needed_size = upl_offset + io_size;
4903
4904 pages_in_pl = 0;
4905 upl_size = upl_needed_size;
4906 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE
4907 | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
4908
4909
4910 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4911 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4912
4913 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4914 kret = vm_map_get_upl(map,
4915 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4916 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, 0);
4917
4918 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4919 (int)upl_offset, upl_size, io_size, kret, 0);
4920
4921 if (kret != KERN_SUCCESS) {
4922 /*
4923 * failed to get pagelist
4924 */
4925 error = EINVAL;
4926 goto wait_for_creads;
4927 }
4928 num_upl++;
4929
4930 if (upl_size < upl_needed_size) {
4931 /*
4932 * The upl_size wasn't satisfied.
4933 */
4934 error = EINVAL;
4935 goto wait_for_creads;
4936 }
4937 pl = ubc_upl_pageinfo(upl[cur_upl]);
4938
4939 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
4940
4941 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4942 u_int32_t head_size;
4943
4944 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4945
4946 if (head_size > io_size)
4947 head_size = io_size;
4948
4949 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4950
4951 if (error)
4952 goto wait_for_creads;
4953
4954 upl_offset += head_size;
4955 dst_paddr += head_size;
4956 io_size -= head_size;
4957
4958 iov_base += head_size;
4959 }
4960 if ((u_int32_t)iov_base & mem_alignment_mask) {
4961 /*
4962 * request doesn't set up on a memory boundary
4963 * the underlying DMA engine can handle...
4964 * return an error instead of going through
4965 * the slow copy path since the intent of this
4966 * path is direct I/O to device memory
4967 */
4968 error = EINVAL;
4969 goto wait_for_creads;
4970 }
4971
4972 tail_size = io_size & (devblocksize - 1);
4973
4974 io_size -= tail_size;
4975
4976 while (io_size && error == 0) {
4977
4978 if (io_size > MAX_IO_CONTIG_SIZE)
4979 xsize = MAX_IO_CONTIG_SIZE;
4980 else
4981 xsize = io_size;
4982 /*
4983 * request asynchronously so that we can overlap
4984 * the preparation of the next I/O... we'll do
4985 * the commit after all the I/O has completed
4986 * since its all issued against the same UPL
4987 * if there are already too many outstanding reads
4988 * wait until some have completed before issuing the next
4989 */
4990 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
4991
4992 if (iostate.io_error) {
4993 /*
4994 * one of the earlier reads we issued ran into a hard error
4995 * don't issue any more reads...
4996 * go wait for any other reads to complete before
4997 * returning the error to the caller
4998 */
4999 goto wait_for_creads;
5000 }
5001 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
5002 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
5003 (buf_t)NULL, &iostate, callback, callback_arg);
5004 /*
5005 * The cluster_io read was issued successfully,
5006 * update the uio structure
5007 */
5008 if (error == 0) {
5009 uio_update(uio, (user_size_t)xsize);
5010
5011 dst_paddr += xsize;
5012 upl_offset += xsize;
5013 io_size -= xsize;
5014 }
5015 }
5016 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
5017
5018 error = cluster_io_type(uio, read_type, read_length, 0);
5019
5020 if (error == 0 && *read_type == IO_CONTIG) {
5021 cur_upl++;
5022 goto next_cread;
5023 }
5024 } else
5025 *read_type = IO_UNKNOWN;
5026
5027 wait_for_creads:
5028 /*
5029 * make sure all async reads that are part of this stream
5030 * have completed before we proceed
5031 */
5032 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
5033
5034 if (iostate.io_error)
5035 error = iostate.io_error;
5036
5037 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
5038
5039 if (error == 0 && tail_size)
5040 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
5041
5042 for (n = 0; n < num_upl; n++)
5043 /*
5044 * just release our hold on each physically contiguous
5045 * region without changing any state
5046 */
5047 ubc_upl_abort(upl[n], 0);
5048
5049 return (error);
5050 }
5051
5052
5053 static int
5054 cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
5055 {
5056 user_size_t iov_len;
5057 user_addr_t iov_base = 0;
5058 upl_t upl;
5059 upl_size_t upl_size;
5060 upl_control_flags_t upl_flags;
5061 int retval = 0;
5062
5063 /*
5064 * skip over any emtpy vectors
5065 */
5066 uio_update(uio, (user_size_t)0);
5067
5068 iov_len = uio_curriovlen(uio);
5069
5070 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
5071
5072 if (iov_len) {
5073 iov_base = uio_curriovbase(uio);
5074 /*
5075 * make sure the size of the vector isn't too big...
5076 * internally, we want to handle all of the I/O in
5077 * chunk sizes that fit in a 32 bit int
5078 */
5079 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
5080 upl_size = MAX_IO_REQUEST_SIZE;
5081 else
5082 upl_size = (u_int32_t)iov_len;
5083
5084 upl_flags = UPL_QUERY_OBJECT_TYPE | UPL_MEMORY_TAG_MAKE(VM_KERN_MEMORY_FILE);
5085
5086 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
5087 if ((vm_map_get_upl(map,
5088 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
5089 &upl_size, &upl, NULL, NULL, &upl_flags, 0)) != KERN_SUCCESS) {
5090 /*
5091 * the user app must have passed in an invalid address
5092 */
5093 retval = EFAULT;
5094 }
5095 if (upl_size == 0)
5096 retval = EFAULT;
5097
5098 *io_length = upl_size;
5099
5100 if (upl_flags & UPL_PHYS_CONTIG)
5101 *io_type = IO_CONTIG;
5102 else if (iov_len >= min_length)
5103 *io_type = IO_DIRECT;
5104 else
5105 *io_type = IO_COPY;
5106 } else {
5107 /*
5108 * nothing left to do for this uio
5109 */
5110 *io_length = 0;
5111 *io_type = IO_UNKNOWN;
5112 }
5113 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
5114
5115 return (retval);
5116 }
5117
5118
5119 /*
5120 * generate advisory I/O's in the largest chunks possible
5121 * the completed pages will be released into the VM cache
5122 */
5123 int
5124 advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
5125 {
5126 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
5127 }
5128
5129 int
5130 advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
5131 {
5132 upl_page_info_t *pl;
5133 upl_t upl;
5134 vm_offset_t upl_offset;
5135 int upl_size;
5136 off_t upl_f_offset;
5137 int start_offset;
5138 int start_pg;
5139 int last_pg;
5140 int pages_in_upl;
5141 off_t max_size;
5142 int io_size;
5143 kern_return_t kret;
5144 int retval = 0;
5145 int issued_io;
5146 int skip_range;
5147 uint32_t max_io_size;
5148
5149
5150 if ( !UBCINFOEXISTS(vp))
5151 return(EINVAL);
5152
5153 if (resid < 0)
5154 return(EINVAL);
5155
5156 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
5157
5158 if ((vp->v_mount->mnt_kern_flag & MNTK_SSD) && !ignore_is_ssd) {
5159 if (max_io_size > speculative_prefetch_max_iosize)
5160 max_io_size = speculative_prefetch_max_iosize;
5161 }
5162
5163 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
5164 (int)f_offset, resid, (int)filesize, 0, 0);
5165
5166 while (resid && f_offset < filesize && retval == 0) {
5167 /*
5168 * compute the size of the upl needed to encompass
5169 * the requested read... limit each call to cluster_io
5170 * to the maximum UPL size... cluster_io will clip if
5171 * this exceeds the maximum io_size for the device,
5172 * make sure to account for
5173 * a starting offset that's not page aligned
5174 */
5175 start_offset = (int)(f_offset & PAGE_MASK_64);
5176 upl_f_offset = f_offset - (off_t)start_offset;
5177 max_size = filesize - f_offset;
5178
5179 if (resid < max_size)
5180 io_size = resid;
5181 else
5182 io_size = max_size;
5183
5184 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5185 if ((uint32_t)upl_size > max_io_size)
5186 upl_size = max_io_size;
5187
5188 skip_range = 0;
5189 /*
5190 * return the number of contiguously present pages in the cache
5191 * starting at upl_f_offset within the file
5192 */
5193 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
5194
5195 if (skip_range) {
5196 /*
5197 * skip over pages already present in the cache
5198 */
5199 io_size = skip_range - start_offset;
5200
5201 f_offset += io_size;
5202 resid -= io_size;
5203
5204 if (skip_range == upl_size)
5205 continue;
5206 /*
5207 * have to issue some real I/O
5208 * at this point, we know it's starting on a page boundary
5209 * because we've skipped over at least the first page in the request
5210 */
5211 start_offset = 0;
5212 upl_f_offset += skip_range;
5213 upl_size -= skip_range;
5214 }
5215 pages_in_upl = upl_size / PAGE_SIZE;
5216
5217 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
5218 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5219
5220 kret = ubc_create_upl(vp,
5221 upl_f_offset,
5222 upl_size,
5223 &upl,
5224 &pl,
5225 UPL_RET_ONLY_ABSENT | UPL_SET_LITE);
5226 if (kret != KERN_SUCCESS)
5227 return(retval);
5228 issued_io = 0;
5229
5230 /*
5231 * before we start marching forward, we must make sure we end on
5232 * a present page, otherwise we will be working with a freed
5233 * upl
5234 */
5235 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5236 if (upl_page_present(pl, last_pg))
5237 break;
5238 }
5239 pages_in_upl = last_pg + 1;
5240
5241
5242 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
5243 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5244
5245
5246 for (last_pg = 0; last_pg < pages_in_upl; ) {
5247 /*
5248 * scan from the beginning of the upl looking for the first
5249 * page that is present.... this will become the first page in
5250 * the request we're going to make to 'cluster_io'... if all
5251 * of the pages are absent, we won't call through to 'cluster_io'
5252 */
5253 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5254 if (upl_page_present(pl, start_pg))
5255 break;
5256 }
5257
5258 /*
5259 * scan from the starting present page looking for an absent
5260 * page before the end of the upl is reached, if we
5261 * find one, then it will terminate the range of pages being
5262 * presented to 'cluster_io'
5263 */
5264 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5265 if (!upl_page_present(pl, last_pg))
5266 break;
5267 }
5268
5269 if (last_pg > start_pg) {
5270 /*
5271 * we found a range of pages that must be filled
5272 * if the last page in this range is the last page of the file
5273 * we may have to clip the size of it to keep from reading past
5274 * the end of the last physical block associated with the file
5275 */
5276 upl_offset = start_pg * PAGE_SIZE;
5277 io_size = (last_pg - start_pg) * PAGE_SIZE;
5278
5279 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
5280 io_size = filesize - (upl_f_offset + upl_offset);
5281
5282 /*
5283 * issue an asynchronous read to cluster_io
5284 */
5285 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5286 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5287
5288 issued_io = 1;
5289 }
5290 }
5291 if (issued_io == 0)
5292 ubc_upl_abort(upl, 0);
5293
5294 io_size = upl_size - start_offset;
5295
5296 if (io_size > resid)
5297 io_size = resid;
5298 f_offset += io_size;
5299 resid -= io_size;
5300 }
5301
5302 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
5303 (int)f_offset, resid, retval, 0, 0);
5304
5305 return(retval);
5306 }
5307
5308
5309 int
5310 cluster_push(vnode_t vp, int flags)
5311 {
5312 return cluster_push_ext(vp, flags, NULL, NULL);
5313 }
5314
5315
5316 int
5317 cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5318 {
5319 int retval;
5320 int my_sparse_wait = 0;
5321 struct cl_writebehind *wbp;
5322
5323 if ( !UBCINFOEXISTS(vp)) {
5324 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -1, 0);
5325 return (0);
5326 }
5327 /* return if deferred write is set */
5328 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
5329 return (0);
5330 }
5331 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
5332 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -2, 0);
5333 return (0);
5334 }
5335 if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5336 lck_mtx_unlock(&wbp->cl_lockw);
5337
5338 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, vp, flags, 0, -3, 0);
5339 return(0);
5340 }
5341 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
5342 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5343
5344 /*
5345 * if we have an fsync in progress, we don't want to allow any additional
5346 * sync/fsync/close(s) to occur until it finishes.
5347 * note that its possible for writes to continue to occur to this file
5348 * while we're waiting and also once the fsync starts to clean if we're
5349 * in the sparse map case
5350 */
5351 while (wbp->cl_sparse_wait) {
5352 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5353
5354 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5355
5356 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5357 }
5358 if (flags & IO_SYNC) {
5359 my_sparse_wait = 1;
5360 wbp->cl_sparse_wait = 1;
5361
5362 /*
5363 * this is an fsync (or equivalent)... we must wait for any existing async
5364 * cleaning operations to complete before we evaulate the current state
5365 * and finish cleaning... this insures that all writes issued before this
5366 * fsync actually get cleaned to the disk before this fsync returns
5367 */
5368 while (wbp->cl_sparse_pushes) {
5369 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, vp, 0, 0, 0, 0);
5370
5371 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5372
5373 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, vp, 0, 0, 0, 0);
5374 }
5375 }
5376 if (wbp->cl_scmap) {
5377 void *scmap;
5378
5379 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5380
5381 scmap = wbp->cl_scmap;
5382 wbp->cl_scmap = NULL;
5383
5384 wbp->cl_sparse_pushes++;
5385
5386 lck_mtx_unlock(&wbp->cl_lockw);
5387
5388 sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5389
5390 lck_mtx_lock(&wbp->cl_lockw);
5391
5392 wbp->cl_sparse_pushes--;
5393
5394 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5395 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5396 } else {
5397 sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5398 }
5399 retval = 1;
5400 } else {
5401 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5402 }
5403 lck_mtx_unlock(&wbp->cl_lockw);
5404
5405 if (flags & IO_SYNC)
5406 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
5407
5408 if (my_sparse_wait) {
5409 /*
5410 * I'm the owner of the serialization token
5411 * clear it and wakeup anyone that is waiting
5412 * for me to finish
5413 */
5414 lck_mtx_lock(&wbp->cl_lockw);
5415
5416 wbp->cl_sparse_wait = 0;
5417 wakeup((caddr_t)&wbp->cl_sparse_wait);
5418
5419 lck_mtx_unlock(&wbp->cl_lockw);
5420 }
5421 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
5422 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
5423
5424 return (retval);
5425 }
5426
5427
5428 __private_extern__ void
5429 cluster_release(struct ubc_info *ubc)
5430 {
5431 struct cl_writebehind *wbp;
5432 struct cl_readahead *rap;
5433
5434 if ((wbp = ubc->cl_wbehind)) {
5435
5436 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
5437
5438 if (wbp->cl_scmap)
5439 vfs_drt_control(&(wbp->cl_scmap), 0);
5440 } else {
5441 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
5442 }
5443
5444 rap = ubc->cl_rahead;
5445
5446 if (wbp != NULL) {
5447 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5448 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5449 }
5450 if ((rap = ubc->cl_rahead)) {
5451 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5452 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
5453 }
5454 ubc->cl_rahead = NULL;
5455 ubc->cl_wbehind = NULL;
5456
5457 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
5458 }
5459
5460
5461 static int
5462 cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5463 {
5464 int cl_index;
5465 int cl_index1;
5466 int min_index;
5467 int cl_len;
5468 int cl_pushed = 0;
5469 struct cl_wextent l_clusters[MAX_CLUSTERS];
5470 u_int max_cluster_pgcount;
5471
5472
5473 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
5474 /*
5475 * the write behind context exists and has
5476 * already been locked...
5477 */
5478 if (wbp->cl_number == 0)
5479 /*
5480 * no clusters to push
5481 * return number of empty slots
5482 */
5483 return (MAX_CLUSTERS);
5484
5485 /*
5486 * make a local 'sorted' copy of the clusters
5487 * and clear wbp->cl_number so that new clusters can
5488 * be developed
5489 */
5490 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5491 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5492 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
5493 continue;
5494 if (min_index == -1)
5495 min_index = cl_index1;
5496 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
5497 min_index = cl_index1;
5498 }
5499 if (min_index == -1)
5500 break;
5501
5502 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5503 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
5504 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
5505
5506 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
5507 }
5508 wbp->cl_number = 0;
5509
5510 cl_len = cl_index;
5511
5512 if ( (push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) {
5513 int i;
5514
5515 /*
5516 * determine if we appear to be writing the file sequentially
5517 * if not, by returning without having pushed any clusters
5518 * we will cause this vnode to be pushed into the sparse cluster mechanism
5519 * used for managing more random I/O patterns
5520 *
5521 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5522 * that's why we're in try_push with PUSH_DELAY...
5523 *
5524 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5525 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5526 * so we can just make a simple pass through, up to, but not including the last one...
5527 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5528 * are sequential
5529 *
5530 * we let the last one be partial as long as it was adjacent to the previous one...
5531 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5532 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5533 */
5534 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
5535 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
5536 goto dont_try;
5537 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
5538 goto dont_try;
5539 }
5540 }
5541 for (cl_index = 0; cl_index < cl_len; cl_index++) {
5542 int flags;
5543 struct cl_extent cl;
5544
5545 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5546
5547 /*
5548 * try to push each cluster in turn...
5549 */
5550 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
5551 flags |= IO_NOCACHE;
5552
5553 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
5554 flags |= IO_PASSIVE;
5555
5556 if (push_flag & PUSH_SYNC)
5557 flags |= IO_SYNC;
5558
5559 cl.b_addr = l_clusters[cl_index].b_addr;
5560 cl.e_addr = l_clusters[cl_index].e_addr;
5561
5562 cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
5563
5564 l_clusters[cl_index].b_addr = 0;
5565 l_clusters[cl_index].e_addr = 0;
5566
5567 cl_pushed++;
5568
5569 if ( !(push_flag & PUSH_ALL) )
5570 break;
5571 }
5572 dont_try:
5573 if (cl_len > cl_pushed) {
5574 /*
5575 * we didn't push all of the clusters, so
5576 * lets try to merge them back in to the vnode
5577 */
5578 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
5579 /*
5580 * we picked up some new clusters while we were trying to
5581 * push the old ones... this can happen because I've dropped
5582 * the vnode lock... the sum of the
5583 * leftovers plus the new cluster count exceeds our ability
5584 * to represent them, so switch to the sparse cluster mechanism
5585 *
5586 * collect the active public clusters...
5587 */
5588 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5589
5590 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
5591 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5592 continue;
5593 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5594 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5595 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5596
5597 cl_index1++;
5598 }
5599 /*
5600 * update the cluster count
5601 */
5602 wbp->cl_number = cl_index1;
5603
5604 /*
5605 * and collect the original clusters that were moved into the
5606 * local storage for sorting purposes
5607 */
5608 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5609
5610 } else {
5611 /*
5612 * we've got room to merge the leftovers back in
5613 * just append them starting at the next 'hole'
5614 * represented by wbp->cl_number
5615 */
5616 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5617 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5618 continue;
5619
5620 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5621 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5622 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5623
5624 cl_index1++;
5625 }
5626 /*
5627 * update the cluster count
5628 */
5629 wbp->cl_number = cl_index1;
5630 }
5631 }
5632 return (MAX_CLUSTERS - wbp->cl_number);
5633 }
5634
5635
5636
5637 static int
5638 cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5639 {
5640 upl_page_info_t *pl;
5641 upl_t upl;
5642 vm_offset_t upl_offset;
5643 int upl_size;
5644 off_t upl_f_offset;
5645 int pages_in_upl;
5646 int start_pg;
5647 int last_pg;
5648 int io_size;
5649 int io_flags;
5650 int upl_flags;
5651 int bflag;
5652 int size;
5653 int error = 0;
5654 int retval;
5655 kern_return_t kret;
5656
5657 if (flags & IO_PASSIVE)
5658 bflag = CL_PASSIVE;
5659 else
5660 bflag = 0;
5661
5662 if (flags & IO_SKIP_ENCRYPTION)
5663 bflag |= CL_ENCRYPTED;
5664
5665 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
5666 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
5667
5668 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
5669 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
5670
5671 return (0);
5672 }
5673 upl_size = pages_in_upl * PAGE_SIZE;
5674 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5675
5676 if (upl_f_offset + upl_size >= EOF) {
5677
5678 if (upl_f_offset >= EOF) {
5679 /*
5680 * must have truncated the file and missed
5681 * clearing a dangling cluster (i.e. it's completely
5682 * beyond the new EOF
5683 */
5684 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5685
5686 return(0);
5687 }
5688 size = EOF - upl_f_offset;
5689
5690 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5691 pages_in_upl = upl_size / PAGE_SIZE;
5692 } else
5693 size = upl_size;
5694
5695 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5696
5697 /*
5698 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5699 *
5700 * - only pages that are currently dirty are returned... these are the ones we need to clean
5701 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5702 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5703 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5704 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5705 *
5706 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5707 */
5708
5709 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
5710 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5711 else
5712 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5713
5714 kret = ubc_create_upl(vp,
5715 upl_f_offset,
5716 upl_size,
5717 &upl,
5718 &pl,
5719 upl_flags);
5720 if (kret != KERN_SUCCESS)
5721 panic("cluster_push: failed to get pagelist");
5722
5723 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
5724
5725 /*
5726 * since we only asked for the dirty pages back
5727 * it's possible that we may only get a few or even none, so...
5728 * before we start marching forward, we must make sure we know
5729 * where the last present page is in the UPL, otherwise we could
5730 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5731 * employed by commit_range and abort_range.
5732 */
5733 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5734 if (upl_page_present(pl, last_pg))
5735 break;
5736 }
5737 pages_in_upl = last_pg + 1;
5738
5739 if (pages_in_upl == 0) {
5740 ubc_upl_abort(upl, 0);
5741
5742 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
5743 return(0);
5744 }
5745
5746 for (last_pg = 0; last_pg < pages_in_upl; ) {
5747 /*
5748 * find the next dirty page in the UPL
5749 * this will become the first page in the
5750 * next I/O to generate
5751 */
5752 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5753 if (upl_dirty_page(pl, start_pg))
5754 break;
5755 if (upl_page_present(pl, start_pg))
5756 /*
5757 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5758 * just release these unchanged since we're not going
5759 * to steal them or change their state
5760 */
5761 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
5762 }
5763 if (start_pg >= pages_in_upl)
5764 /*
5765 * done... no more dirty pages to push
5766 */
5767 break;
5768 if (start_pg > last_pg)
5769 /*
5770 * skipped over some non-dirty pages
5771 */
5772 size -= ((start_pg - last_pg) * PAGE_SIZE);
5773
5774 /*
5775 * find a range of dirty pages to write
5776 */
5777 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5778 if (!upl_dirty_page(pl, last_pg))
5779 break;
5780 }
5781 upl_offset = start_pg * PAGE_SIZE;
5782
5783 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5784
5785 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
5786
5787 if ( !(flags & IO_SYNC))
5788 io_flags |= CL_ASYNC;
5789
5790 if (flags & IO_CLOSE)
5791 io_flags |= CL_CLOSE;
5792
5793 if (flags & IO_NOCACHE)
5794 io_flags |= CL_NOCACHE;
5795
5796 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5797 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5798
5799 if (error == 0 && retval)
5800 error = retval;
5801
5802 size -= io_size;
5803 }
5804 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5805
5806 return(error);
5807 }
5808
5809
5810 /*
5811 * sparse_cluster_switch is called with the write behind lock held
5812 */
5813 static void
5814 sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5815 {
5816 int cl_index;
5817
5818 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, vp, wbp->cl_scmap, 0, 0, 0);
5819
5820 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5821 int flags;
5822 struct cl_extent cl;
5823
5824 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
5825
5826 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
5827 if (flags & UPL_POP_DIRTY) {
5828 cl.e_addr = cl.b_addr + 1;
5829
5830 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
5831 }
5832 }
5833 }
5834 }
5835 wbp->cl_number = 0;
5836
5837 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, vp, wbp->cl_scmap, 0, 0, 0);
5838 }
5839
5840
5841 /*
5842 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5843 * still associated with the write-behind context... however, if the scmap has been disassociated
5844 * from the write-behind context (the cluster_push case), the wb lock is not held
5845 */
5846 static void
5847 sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5848 {
5849 struct cl_extent cl;
5850 off_t offset;
5851 u_int length;
5852
5853 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, vp, (*scmap), 0, push_flag, 0);
5854
5855 if (push_flag & PUSH_ALL)
5856 vfs_drt_control(scmap, 1);
5857
5858 for (;;) {
5859 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
5860 break;
5861
5862 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5863 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5864
5865 cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
5866
5867 if ( !(push_flag & PUSH_ALL) )
5868 break;
5869 }
5870 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5871 }
5872
5873
5874 /*
5875 * sparse_cluster_add is called with the write behind lock held
5876 */
5877 static void
5878 sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5879 {
5880 u_int new_dirty;
5881 u_int length;
5882 off_t offset;
5883
5884 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
5885
5886 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5887 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
5888
5889 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
5890 /*
5891 * no room left in the map
5892 * only a partial update was done
5893 * push out some pages and try again
5894 */
5895 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
5896
5897 offset += (new_dirty * PAGE_SIZE_64);
5898 length -= (new_dirty * PAGE_SIZE);
5899 }
5900 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, vp, (*scmap), 0, 0, 0);
5901 }
5902
5903
5904 static int
5905 cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5906 {
5907 upl_page_info_t *pl;
5908 upl_t upl;
5909 addr64_t ubc_paddr;
5910 kern_return_t kret;
5911 int error = 0;
5912 int did_read = 0;
5913 int abort_flags;
5914 int upl_flags;
5915 int bflag;
5916
5917 if (flags & IO_PASSIVE)
5918 bflag = CL_PASSIVE;
5919 else
5920 bflag = 0;
5921
5922 if (flags & IO_NOCACHE)
5923 bflag |= CL_NOCACHE;
5924
5925 upl_flags = UPL_SET_LITE;
5926
5927 if ( !(flags & CL_READ) ) {
5928 /*
5929 * "write" operation: let the UPL subsystem know
5930 * that we intend to modify the buffer cache pages
5931 * we're gathering.
5932 */
5933 upl_flags |= UPL_WILL_MODIFY;
5934 } else {
5935 /*
5936 * indicate that there is no need to pull the
5937 * mapping for this page... we're only going
5938 * to read from it, not modify it.
5939 */
5940 upl_flags |= UPL_FILE_IO;
5941 }
5942 kret = ubc_create_upl(vp,
5943 uio->uio_offset & ~PAGE_MASK_64,
5944 PAGE_SIZE,
5945 &upl,
5946 &pl,
5947 upl_flags);
5948
5949 if (kret != KERN_SUCCESS)
5950 return(EINVAL);
5951
5952 if (!upl_valid_page(pl, 0)) {
5953 /*
5954 * issue a synchronous read to cluster_io
5955 */
5956 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5957 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5958 if (error) {
5959 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
5960
5961 return(error);
5962 }
5963 did_read = 1;
5964 }
5965 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
5966
5967 /*
5968 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5969 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5970 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5971 * way to do so without exporting them to kexts as well.
5972 */
5973 if (flags & CL_READ)
5974 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5975 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
5976 else
5977 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5978 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
5979
5980 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
5981 /*
5982 * issue a synchronous write to cluster_io
5983 */
5984 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
5985 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5986 }
5987 if (error == 0)
5988 uio_update(uio, (user_size_t)xsize);
5989
5990 if (did_read)
5991 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
5992 else
5993 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
5994
5995 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
5996
5997 return (error);
5998 }
5999
6000
6001
6002 int
6003 cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
6004 {
6005 int pg_offset;
6006 int pg_index;
6007 int csize;
6008 int segflg;
6009 int retval = 0;
6010 int xsize;
6011 upl_page_info_t *pl;
6012 int dirty_count;
6013
6014 xsize = *io_resid;
6015
6016 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6017 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
6018
6019 segflg = uio->uio_segflg;
6020
6021 switch(segflg) {
6022
6023 case UIO_USERSPACE32:
6024 case UIO_USERISPACE32:
6025 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6026 break;
6027
6028 case UIO_USERSPACE:
6029 case UIO_USERISPACE:
6030 uio->uio_segflg = UIO_PHYS_USERSPACE;
6031 break;
6032
6033 case UIO_USERSPACE64:
6034 case UIO_USERISPACE64:
6035 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6036 break;
6037
6038 case UIO_SYSSPACE:
6039 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6040 break;
6041
6042 }
6043 pl = ubc_upl_pageinfo(upl);
6044
6045 pg_index = upl_offset / PAGE_SIZE;
6046 pg_offset = upl_offset & PAGE_MASK;
6047 csize = min(PAGE_SIZE - pg_offset, xsize);
6048
6049 dirty_count = 0;
6050 while (xsize && retval == 0) {
6051 addr64_t paddr;
6052
6053 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
6054 if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE))
6055 dirty_count++;
6056
6057 retval = uiomove64(paddr, csize, uio);
6058
6059 pg_index += 1;
6060 pg_offset = 0;
6061 xsize -= csize;
6062 csize = min(PAGE_SIZE, xsize);
6063 }
6064 *io_resid = xsize;
6065
6066 uio->uio_segflg = segflg;
6067
6068 task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED);
6069 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6070 (int)uio->uio_offset, xsize, retval, segflg, 0);
6071
6072 return (retval);
6073 }
6074
6075
6076 int
6077 cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
6078 {
6079
6080 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
6081 }
6082
6083
6084 static int
6085 cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
6086 {
6087 int segflg;
6088 int io_size;
6089 int xsize;
6090 int start_offset;
6091 int retval = 0;
6092 memory_object_control_t control;
6093
6094 io_size = *io_resid;
6095
6096 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6097 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
6098
6099 control = ubc_getobject(vp, UBC_FLAGS_NONE);
6100
6101 if (control == MEMORY_OBJECT_CONTROL_NULL) {
6102 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6103 (int)uio->uio_offset, io_size, retval, 3, 0);
6104
6105 return(0);
6106 }
6107 segflg = uio->uio_segflg;
6108
6109 switch(segflg) {
6110
6111 case UIO_USERSPACE32:
6112 case UIO_USERISPACE32:
6113 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6114 break;
6115
6116 case UIO_USERSPACE64:
6117 case UIO_USERISPACE64:
6118 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6119 break;
6120
6121 case UIO_USERSPACE:
6122 case UIO_USERISPACE:
6123 uio->uio_segflg = UIO_PHYS_USERSPACE;
6124 break;
6125
6126 case UIO_SYSSPACE:
6127 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6128 break;
6129 }
6130
6131 if ( (io_size = *io_resid) ) {
6132 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
6133 xsize = uio_resid(uio);
6134
6135 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
6136 start_offset, io_size, mark_dirty, take_reference);
6137 xsize -= uio_resid(uio);
6138 io_size -= xsize;
6139 }
6140 uio->uio_segflg = segflg;
6141 *io_resid = io_size;
6142
6143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6144 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
6145
6146 return(retval);
6147 }
6148
6149
6150 int
6151 is_file_clean(vnode_t vp, off_t filesize)
6152 {
6153 off_t f_offset;
6154 int flags;
6155 int total_dirty = 0;
6156
6157 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
6158 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
6159 if (flags & UPL_POP_DIRTY) {
6160 total_dirty++;
6161 }
6162 }
6163 }
6164 if (total_dirty)
6165 return(EINVAL);
6166
6167 return (0);
6168 }
6169
6170
6171
6172 /*
6173 * Dirty region tracking/clustering mechanism.
6174 *
6175 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
6176 * dirty regions within a larger space (file). It is primarily intended to
6177 * support clustering in large files with many dirty areas.
6178 *
6179 * The implementation assumes that the dirty regions are pages.
6180 *
6181 * To represent dirty pages within the file, we store bit vectors in a
6182 * variable-size circular hash.
6183 */
6184
6185 /*
6186 * Bitvector size. This determines the number of pages we group in a
6187 * single hashtable entry. Each hashtable entry is aligned to this
6188 * size within the file.
6189 */
6190 #define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE)
6191
6192 /*
6193 * File offset handling.
6194 *
6195 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
6196 * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6197 */
6198 #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6199 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
6200
6201 /*
6202 * Hashtable address field handling.
6203 *
6204 * The low-order bits of the hashtable address are used to conserve
6205 * space.
6206 *
6207 * DRT_HASH_COUNT_MASK must be large enough to store the range
6208 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
6209 * to indicate that the bucket is actually unoccupied.
6210 */
6211 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
6212 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
6213 do { \
6214 (scm)->scm_hashtable[(i)].dhe_control = \
6215 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
6216 } while (0)
6217 #define DRT_HASH_COUNT_MASK 0x1ff
6218 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
6219 #define DRT_HASH_SET_COUNT(scm, i, c) \
6220 do { \
6221 (scm)->scm_hashtable[(i)].dhe_control = \
6222 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
6223 } while (0)
6224 #define DRT_HASH_CLEAR(scm, i) \
6225 do { \
6226 (scm)->scm_hashtable[(i)].dhe_control = 0; \
6227 } while (0)
6228 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
6229 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
6230 #define DRT_HASH_COPY(oscm, oi, scm, i) \
6231 do { \
6232 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
6233 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
6234 } while(0);
6235
6236
6237 /*
6238 * Hash table moduli.
6239 *
6240 * Since the hashtable entry's size is dependent on the size of
6241 * the bitvector, and since the hashtable size is constrained to
6242 * both being prime and fitting within the desired allocation
6243 * size, these values need to be manually determined.
6244 *
6245 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
6246 *
6247 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
6248 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
6249 */
6250 #define DRT_HASH_SMALL_MODULUS 23
6251 #define DRT_HASH_LARGE_MODULUS 401
6252
6253 /*
6254 * Physical memory required before the large hash modulus is permitted.
6255 *
6256 * On small memory systems, the large hash modulus can lead to phsyical
6257 * memory starvation, so we avoid using it there.
6258 */
6259 #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
6260
6261 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
6262 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
6263
6264 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
6265
6266 /*
6267 * Hashtable bitvector handling.
6268 *
6269 * Bitvector fields are 32 bits long.
6270 */
6271
6272 #define DRT_HASH_SET_BIT(scm, i, bit) \
6273 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
6274
6275 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
6276 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
6277
6278 #define DRT_HASH_TEST_BIT(scm, i, bit) \
6279 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
6280
6281 #define DRT_BITVECTOR_CLEAR(scm, i) \
6282 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6283
6284 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
6285 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
6286 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
6287 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6288
6289
6290
6291 /*
6292 * Hashtable entry.
6293 */
6294 struct vfs_drt_hashentry {
6295 u_int64_t dhe_control;
6296 /*
6297 * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
6298 * DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
6299 * Since PAGE_SIZE is only known at boot time,
6300 * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
6301 * -declare dhe_bitvector array for largest possible length
6302 */
6303 #define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
6304 u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
6305 };
6306
6307 /*
6308 * Dirty Region Tracking structure.
6309 *
6310 * The hashtable is allocated entirely inside the DRT structure.
6311 *
6312 * The hash is a simple circular prime modulus arrangement, the structure
6313 * is resized from small to large if it overflows.
6314 */
6315
6316 struct vfs_drt_clustermap {
6317 u_int32_t scm_magic; /* sanity/detection */
6318 #define DRT_SCM_MAGIC 0x12020003
6319 u_int32_t scm_modulus; /* current ring size */
6320 u_int32_t scm_buckets; /* number of occupied buckets */
6321 u_int32_t scm_lastclean; /* last entry we cleaned */
6322 u_int32_t scm_iskips; /* number of slot skips */
6323
6324 struct vfs_drt_hashentry scm_hashtable[0];
6325 };
6326
6327
6328 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6329 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6330
6331 /*
6332 * Debugging codes and arguments.
6333 */
6334 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6335 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6336 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6337 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6338 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6339 * dirty */
6340 /* 0, setcount */
6341 /* 1 (clean, no map) */
6342 /* 2 (map alloc fail) */
6343 /* 3, resid (partial) */
6344 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6345 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6346 * lastclean, iskips */
6347
6348
6349 static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6350 static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6351 static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6352 u_int64_t offset, int *indexp);
6353 static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6354 u_int64_t offset,
6355 int *indexp,
6356 int recursed);
6357 static kern_return_t vfs_drt_do_mark_pages(
6358 void **cmapp,
6359 u_int64_t offset,
6360 u_int length,
6361 u_int *setcountp,
6362 int dirty);
6363 static void vfs_drt_trace(
6364 struct vfs_drt_clustermap *cmap,
6365 int code,
6366 int arg1,
6367 int arg2,
6368 int arg3,
6369 int arg4);
6370
6371
6372 /*
6373 * Allocate and initialise a sparse cluster map.
6374 *
6375 * Will allocate a new map, resize or compact an existing map.
6376 *
6377 * XXX we should probably have at least one intermediate map size,
6378 * as the 1:16 ratio seems a bit drastic.
6379 */
6380 static kern_return_t
6381 vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6382 {
6383 struct vfs_drt_clustermap *cmap, *ocmap;
6384 kern_return_t kret;
6385 u_int64_t offset;
6386 u_int32_t i;
6387 int nsize, active_buckets, index, copycount;
6388
6389 ocmap = NULL;
6390 if (cmapp != NULL)
6391 ocmap = *cmapp;
6392
6393 /*
6394 * Decide on the size of the new map.
6395 */
6396 if (ocmap == NULL) {
6397 nsize = DRT_HASH_SMALL_MODULUS;
6398 } else {
6399 /* count the number of active buckets in the old map */
6400 active_buckets = 0;
6401 for (i = 0; i < ocmap->scm_modulus; i++) {
6402 if (!DRT_HASH_VACANT(ocmap, i) &&
6403 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6404 active_buckets++;
6405 }
6406 /*
6407 * If we're currently using the small allocation, check to
6408 * see whether we should grow to the large one.
6409 */
6410 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
6411 /*
6412 * If the ring is nearly full and we are allowed to
6413 * use the large modulus, upgrade.
6414 */
6415 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6416 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
6417 nsize = DRT_HASH_LARGE_MODULUS;
6418 } else {
6419 nsize = DRT_HASH_SMALL_MODULUS;
6420 }
6421 } else {
6422 /* already using the large modulus */
6423 nsize = DRT_HASH_LARGE_MODULUS;
6424 /*
6425 * If the ring is completely full, there's
6426 * nothing useful for us to do. Behave as
6427 * though we had compacted into the new
6428 * array and return.
6429 */
6430 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6431 return(KERN_SUCCESS);
6432 }
6433 }
6434
6435 /*
6436 * Allocate and initialise the new map.
6437 */
6438
6439 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6440 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
6441 if (kret != KERN_SUCCESS)
6442 return(kret);
6443 cmap->scm_magic = DRT_SCM_MAGIC;
6444 cmap->scm_modulus = nsize;
6445 cmap->scm_buckets = 0;
6446 cmap->scm_lastclean = 0;
6447 cmap->scm_iskips = 0;
6448 for (i = 0; i < cmap->scm_modulus; i++) {
6449 DRT_HASH_CLEAR(cmap, i);
6450 DRT_HASH_VACATE(cmap, i);
6451 DRT_BITVECTOR_CLEAR(cmap, i);
6452 }
6453
6454 /*
6455 * If there's an old map, re-hash entries from it into the new map.
6456 */
6457 copycount = 0;
6458 if (ocmap != NULL) {
6459 for (i = 0; i < ocmap->scm_modulus; i++) {
6460 /* skip empty buckets */
6461 if (DRT_HASH_VACANT(ocmap, i) ||
6462 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6463 continue;
6464 /* get new index */
6465 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6466 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6467 if (kret != KERN_SUCCESS) {
6468 /* XXX need to bail out gracefully here */
6469 panic("vfs_drt: new cluster map mysteriously too small");
6470 index = 0;
6471 }
6472 /* copy */
6473 DRT_HASH_COPY(ocmap, i, cmap, index);
6474 copycount++;
6475 }
6476 }
6477
6478 /* log what we've done */
6479 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6480
6481 /*
6482 * It's important to ensure that *cmapp always points to
6483 * a valid map, so we must overwrite it before freeing
6484 * the old map.
6485 */
6486 *cmapp = cmap;
6487 if (ocmap != NULL) {
6488 /* emit stats into trace buffer */
6489 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6490 ocmap->scm_modulus,
6491 ocmap->scm_buckets,
6492 ocmap->scm_lastclean,
6493 ocmap->scm_iskips);
6494
6495 vfs_drt_free_map(ocmap);
6496 }
6497 return(KERN_SUCCESS);
6498 }
6499
6500
6501 /*
6502 * Free a sparse cluster map.
6503 */
6504 static kern_return_t
6505 vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6506 {
6507 kmem_free(kernel_map, (vm_offset_t)cmap,
6508 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6509 return(KERN_SUCCESS);
6510 }
6511
6512
6513 /*
6514 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6515 */
6516 static kern_return_t
6517 vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6518 {
6519 int index;
6520 u_int32_t i;
6521
6522 offset = DRT_ALIGN_ADDRESS(offset);
6523 index = DRT_HASH(cmap, offset);
6524
6525 /* traverse the hashtable */
6526 for (i = 0; i < cmap->scm_modulus; i++) {
6527
6528 /*
6529 * If the slot is vacant, we can stop.
6530 */
6531 if (DRT_HASH_VACANT(cmap, index))
6532 break;
6533
6534 /*
6535 * If the address matches our offset, we have success.
6536 */
6537 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6538 *indexp = index;
6539 return(KERN_SUCCESS);
6540 }
6541
6542 /*
6543 * Move to the next slot, try again.
6544 */
6545 index = DRT_HASH_NEXT(cmap, index);
6546 }
6547 /*
6548 * It's not there.
6549 */
6550 return(KERN_FAILURE);
6551 }
6552
6553 /*
6554 * Find the hashtable slot for the supplied offset. If we haven't allocated
6555 * one yet, allocate one and populate the address field. Note that it will
6556 * not have a nonzero page count and thus will still technically be free, so
6557 * in the case where we are called to clean pages, the slot will remain free.
6558 */
6559 static kern_return_t
6560 vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6561 {
6562 struct vfs_drt_clustermap *cmap;
6563 kern_return_t kret;
6564 u_int32_t index;
6565 u_int32_t i;
6566
6567 cmap = *cmapp;
6568
6569 /* look for an existing entry */
6570 kret = vfs_drt_search_index(cmap, offset, indexp);
6571 if (kret == KERN_SUCCESS)
6572 return(kret);
6573
6574 /* need to allocate an entry */
6575 offset = DRT_ALIGN_ADDRESS(offset);
6576 index = DRT_HASH(cmap, offset);
6577
6578 /* scan from the index forwards looking for a vacant slot */
6579 for (i = 0; i < cmap->scm_modulus; i++) {
6580 /* slot vacant? */
6581 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6582 cmap->scm_buckets++;
6583 if (index < cmap->scm_lastclean)
6584 cmap->scm_lastclean = index;
6585 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6586 DRT_HASH_SET_COUNT(cmap, index, 0);
6587 DRT_BITVECTOR_CLEAR(cmap, index);
6588 *indexp = index;
6589 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6590 return(KERN_SUCCESS);
6591 }
6592 cmap->scm_iskips += i;
6593 index = DRT_HASH_NEXT(cmap, index);
6594 }
6595
6596 /*
6597 * We haven't found a vacant slot, so the map is full. If we're not
6598 * already recursed, try reallocating/compacting it.
6599 */
6600 if (recursed)
6601 return(KERN_FAILURE);
6602 kret = vfs_drt_alloc_map(cmapp);
6603 if (kret == KERN_SUCCESS) {
6604 /* now try to insert again */
6605 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6606 }
6607 return(kret);
6608 }
6609
6610 /*
6611 * Implementation of set dirty/clean.
6612 *
6613 * In the 'clean' case, not finding a map is OK.
6614 */
6615 static kern_return_t
6616 vfs_drt_do_mark_pages(
6617 void **private,
6618 u_int64_t offset,
6619 u_int length,
6620 u_int *setcountp,
6621 int dirty)
6622 {
6623 struct vfs_drt_clustermap *cmap, **cmapp;
6624 kern_return_t kret;
6625 int i, index, pgoff, pgcount, setcount, ecount;
6626
6627 cmapp = (struct vfs_drt_clustermap **)private;
6628 cmap = *cmapp;
6629
6630 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6631
6632 if (setcountp != NULL)
6633 *setcountp = 0;
6634
6635 /* allocate a cluster map if we don't already have one */
6636 if (cmap == NULL) {
6637 /* no cluster map, nothing to clean */
6638 if (!dirty) {
6639 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6640 return(KERN_SUCCESS);
6641 }
6642 kret = vfs_drt_alloc_map(cmapp);
6643 if (kret != KERN_SUCCESS) {
6644 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6645 return(kret);
6646 }
6647 }
6648 setcount = 0;
6649
6650 /*
6651 * Iterate over the length of the region.
6652 */
6653 while (length > 0) {
6654 /*
6655 * Get the hashtable index for this offset.
6656 *
6657 * XXX this will add blank entries if we are clearing a range
6658 * that hasn't been dirtied.
6659 */
6660 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6661 cmap = *cmapp; /* may have changed! */
6662 /* this may be a partial-success return */
6663 if (kret != KERN_SUCCESS) {
6664 if (setcountp != NULL)
6665 *setcountp = setcount;
6666 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6667
6668 return(kret);
6669 }
6670
6671 /*
6672 * Work out how many pages we're modifying in this
6673 * hashtable entry.
6674 */
6675 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6676 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6677
6678 /*
6679 * Iterate over pages, dirty/clearing as we go.
6680 */
6681 ecount = DRT_HASH_GET_COUNT(cmap, index);
6682 for (i = 0; i < pgcount; i++) {
6683 if (dirty) {
6684 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6685 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6686 ecount++;
6687 setcount++;
6688 }
6689 } else {
6690 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6691 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6692 ecount--;
6693 setcount++;
6694 }
6695 }
6696 }
6697 DRT_HASH_SET_COUNT(cmap, index, ecount);
6698
6699 offset += pgcount * PAGE_SIZE;
6700 length -= pgcount * PAGE_SIZE;
6701 }
6702 if (setcountp != NULL)
6703 *setcountp = setcount;
6704
6705 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6706
6707 return(KERN_SUCCESS);
6708 }
6709
6710 /*
6711 * Mark a set of pages as dirty/clean.
6712 *
6713 * This is a public interface.
6714 *
6715 * cmapp
6716 * Pointer to storage suitable for holding a pointer. Note that
6717 * this must either be NULL or a value set by this function.
6718 *
6719 * size
6720 * Current file size in bytes.
6721 *
6722 * offset
6723 * Offset of the first page to be marked as dirty, in bytes. Must be
6724 * page-aligned.
6725 *
6726 * length
6727 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6728 *
6729 * setcountp
6730 * Number of pages newly marked dirty by this call (optional).
6731 *
6732 * Returns KERN_SUCCESS if all the pages were successfully marked.
6733 */
6734 static kern_return_t
6735 vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
6736 {
6737 /* XXX size unused, drop from interface */
6738 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6739 }
6740
6741 #if 0
6742 static kern_return_t
6743 vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6744 {
6745 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6746 }
6747 #endif
6748
6749 /*
6750 * Get a cluster of dirty pages.
6751 *
6752 * This is a public interface.
6753 *
6754 * cmapp
6755 * Pointer to storage managed by drt_mark_pages. Note that this must
6756 * be NULL or a value set by drt_mark_pages.
6757 *
6758 * offsetp
6759 * Returns the byte offset into the file of the first page in the cluster.
6760 *
6761 * lengthp
6762 * Returns the length in bytes of the cluster of dirty pages.
6763 *
6764 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6765 * are no dirty pages meeting the minmum size criteria. Private storage will
6766 * be released if there are no more dirty pages left in the map
6767 *
6768 */
6769 static kern_return_t
6770 vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6771 {
6772 struct vfs_drt_clustermap *cmap;
6773 u_int64_t offset;
6774 u_int length;
6775 u_int32_t j;
6776 int index, i, fs, ls;
6777
6778 /* sanity */
6779 if ((cmapp == NULL) || (*cmapp == NULL))
6780 return(KERN_FAILURE);
6781 cmap = *cmapp;
6782
6783 /* walk the hashtable */
6784 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6785 index = DRT_HASH(cmap, offset);
6786
6787 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6788 continue;
6789
6790 /* scan the bitfield for a string of bits */
6791 fs = -1;
6792
6793 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6794 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6795 fs = i;
6796 break;
6797 }
6798 }
6799 if (fs == -1) {
6800 /* didn't find any bits set */
6801 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6802 }
6803 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6804 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6805 break;
6806 }
6807
6808 /* compute offset and length, mark pages clean */
6809 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6810 length = ls * PAGE_SIZE;
6811 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6812 cmap->scm_lastclean = index;
6813
6814 /* return successful */
6815 *offsetp = (off_t)offset;
6816 *lengthp = length;
6817
6818 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6819 return(KERN_SUCCESS);
6820 }
6821 /*
6822 * We didn't find anything... hashtable is empty
6823 * emit stats into trace buffer and
6824 * then free it
6825 */
6826 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6827 cmap->scm_modulus,
6828 cmap->scm_buckets,
6829 cmap->scm_lastclean,
6830 cmap->scm_iskips);
6831
6832 vfs_drt_free_map(cmap);
6833 *cmapp = NULL;
6834
6835 return(KERN_FAILURE);
6836 }
6837
6838
6839 static kern_return_t
6840 vfs_drt_control(void **cmapp, int op_type)
6841 {
6842 struct vfs_drt_clustermap *cmap;
6843
6844 /* sanity */
6845 if ((cmapp == NULL) || (*cmapp == NULL))
6846 return(KERN_FAILURE);
6847 cmap = *cmapp;
6848
6849 switch (op_type) {
6850 case 0:
6851 /* emit stats into trace buffer */
6852 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6853 cmap->scm_modulus,
6854 cmap->scm_buckets,
6855 cmap->scm_lastclean,
6856 cmap->scm_iskips);
6857
6858 vfs_drt_free_map(cmap);
6859 *cmapp = NULL;
6860 break;
6861
6862 case 1:
6863 cmap->scm_lastclean = 0;
6864 break;
6865 }
6866 return(KERN_SUCCESS);
6867 }
6868
6869
6870
6871 /*
6872 * Emit a summary of the state of the clustermap into the trace buffer
6873 * along with some caller-provided data.
6874 */
6875 #if KDEBUG
6876 static void
6877 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
6878 {
6879 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6880 }
6881 #else
6882 static void
6883 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6884 __unused int arg1, __unused int arg2, __unused int arg3,
6885 __unused int arg4)
6886 {
6887 }
6888 #endif
6889
6890 #if 0
6891 /*
6892 * Perform basic sanity check on the hash entry summary count
6893 * vs. the actual bits set in the entry.
6894 */
6895 static void
6896 vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6897 {
6898 int index, i;
6899 int bits_on;
6900
6901 for (index = 0; index < cmap->scm_modulus; index++) {
6902 if (DRT_HASH_VACANT(cmap, index))
6903 continue;
6904
6905 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6906 if (DRT_HASH_TEST_BIT(cmap, index, i))
6907 bits_on++;
6908 }
6909 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6910 panic("bits_on = %d, index = %d\n", bits_on, index);
6911 }
6912 }
6913 #endif