2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Copyright (c) 1982, 1986, 1988, 1990, 1993
60 * The Regents of the University of California. All rights reserved.
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 * notice, this list of conditions and the following disclaimer in the
69 * documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 * must display the following acknowledgement:
72 * This product includes software developed by the University of
73 * California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
93 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
94 * support for mandatory and extensible security protections. This notice
95 * is included in support of clause 2.2 (b) of the Apple Public License,
99 #include <sys/param.h>
100 #include <sys/malloc.h>
101 #include <sys/mbuf.h>
102 #include <sys/errno.h>
103 #include <sys/protosw.h>
104 #include <sys/socket.h>
105 #include <sys/socketvar.h>
106 #include <sys/systm.h>
107 #include <sys/kernel.h>
108 #include <sys/proc.h>
109 #include <sys/kauth.h>
110 #include <sys/mcache.h>
111 #include <sys/sysctl.h>
112 #include <kern/zalloc.h>
113 #include <libkern/OSByteOrder.h>
115 #include <pexpert/pexpert.h>
116 #include <mach/sdt.h>
119 #include <net/route.h>
120 #include <net/dlil.h>
121 #include <net/net_osdep.h>
122 #include <net/net_perf.h>
124 #include <netinet/in.h>
125 #include <netinet/in_var.h>
126 #include <netinet/ip_var.h>
127 #include <netinet6/in6_var.h>
128 #include <netinet/ip6.h>
129 #include <netinet/kpi_ipfilter_var.h>
131 #include <netinet6/ip6protosw.h>
132 #include <netinet/icmp6.h>
133 #include <netinet6/ip6_var.h>
134 #include <netinet/in_pcb.h>
135 #include <netinet6/nd6.h>
136 #include <netinet6/scope6_var.h>
138 #include <netinet6/ipsec.h>
139 #include <netinet6/ipsec6.h>
140 #include <netkey/key.h>
141 extern int ipsec_bypass
;
145 #include <net/necp.h>
149 #include <security/mac.h>
150 #endif /* CONFIG_MACF_NET */
153 #include <netinet6/ip6_fw.h>
154 #include <netinet/ip_fw.h>
155 #include <netinet/ip_dummynet.h>
156 #endif /* DUMMYNET */
159 #include <net/pfvar.h>
162 static int sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
;
163 static int sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
;
164 static int sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
;
165 static int ip6_copyexthdr(struct mbuf
**, caddr_t
, int);
166 static void ip6_out_cksum_stats(int, u_int32_t
);
167 static int ip6_insert_jumboopt(struct ip6_exthdrs
*, u_int32_t
);
168 static int ip6_insertfraghdr(struct mbuf
*, struct mbuf
*, int,
170 static int ip6_getpmtu(struct route_in6
*, struct route_in6
*,
171 struct ifnet
*, struct in6_addr
*, u_int32_t
*, boolean_t
*);
172 static int ip6_pcbopts(struct ip6_pktopts
**, struct mbuf
*, struct socket
*,
173 struct sockopt
*sopt
);
174 static int ip6_pcbopt(int, u_char
*, int, struct ip6_pktopts
**, int);
175 static int ip6_getpcbopt(struct ip6_pktopts
*, int, struct sockopt
*);
176 static int copypktopts(struct ip6_pktopts
*, struct ip6_pktopts
*, int);
177 static void im6o_trace(struct ip6_moptions
*, int);
178 static int ip6_setpktopt(int, u_char
*, int, struct ip6_pktopts
*, int,
180 static int ip6_splithdr(struct mbuf
*, struct ip6_exthdrs
*);
181 static void ip6_output_checksum(struct ifnet
*, uint32_t, struct mbuf
*,
182 int, uint32_t, uint32_t);
183 extern int udp_ctloutput(struct socket
*, struct sockopt
*);
184 static int ip6_do_fragmentation(struct mbuf
**morig
,
185 uint32_t optlen
, struct ifnet
*ifp
, uint32_t unfragpartlen
,
186 struct ip6_hdr
*ip6
, struct ip6_exthdrs
*exthdrsp
, uint32_t mtu
,
188 static int ip6_fragment_packet(struct mbuf
**m
,
189 struct ip6_pktopts
*opt
, struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
,
190 uint32_t mtu
, boolean_t alwaysfrag
, uint32_t unfragpartlen
,
191 struct route_in6
*ro_pmtu
, int nxt0
, uint32_t optlen
);
193 SYSCTL_DECL(_net_inet6_ip6
);
195 static int ip6_output_measure
= 0;
196 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf
,
197 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ip6_output_measure
, 0, sysctl_reset_ip6_output_stats
, "I", "Do time measurement");
200 static uint64_t ip6_output_measure_bins
= 0;
201 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_bins
,
202 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip6_output_measure_bins
, 0,
203 sysctl_ip6_output_measure_bins
, "I",
204 "bins for chaining performance data histogram");
206 static net_perf_t net_perf
;
207 SYSCTL_PROC(_net_inet6_ip6
, OID_AUTO
, output_perf_data
,
208 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
209 0, 0, sysctl_ip6_output_getperf
, "S,net_perf",
210 "IP6 output performance data (struct net_perf, net/net_perf.h)");
212 #define IM6O_TRACE_HIST_SIZE 32 /* size of trace history */
215 __private_extern__
unsigned int im6o_trace_hist_size
= IM6O_TRACE_HIST_SIZE
;
217 struct ip6_moptions_dbg
{
218 struct ip6_moptions im6o
; /* ip6_moptions */
219 u_int16_t im6o_refhold_cnt
; /* # of IM6O_ADDREF */
220 u_int16_t im6o_refrele_cnt
; /* # of IM6O_REMREF */
222 * Alloc and free callers.
227 * Circular lists of IM6O_ADDREF and IM6O_REMREF callers.
229 ctrace_t im6o_refhold
[IM6O_TRACE_HIST_SIZE
];
230 ctrace_t im6o_refrele
[IM6O_TRACE_HIST_SIZE
];
234 static unsigned int im6o_debug
= 1; /* debugging (enabled) */
236 static unsigned int im6o_debug
; /* debugging (disabled) */
239 static unsigned int im6o_size
; /* size of zone element */
240 static struct zone
*im6o_zone
; /* zone for ip6_moptions */
242 #define IM6O_ZONE_MAX 64 /* maximum elements in zone */
243 #define IM6O_ZONE_NAME "ip6_moptions" /* zone name */
246 * ip6_output() calls ip6_output_list() to do the work
249 ip6_output(struct mbuf
*m0
, struct ip6_pktopts
*opt
,
250 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
251 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
253 return ip6_output_list(m0
, 0, opt
, ro
, flags
, im6o
, ifpp
, ip6oa
);
257 * IP6 output. Each packet in mbuf chain m contains a skeletal IP6
258 * header (with pri, len, nxt, hlim, src, dst).
259 * This function may modify ver and hlim only.
260 * The mbuf chain containing the packet will be freed.
261 * The mbuf opt, if present, will not be freed.
263 * If ro is non-NULL and has valid ro->ro_rt, route lookup would be
264 * skipped and ro->ro_rt would be used. Otherwise the result of route
265 * lookup is stored in ro->ro_rt.
267 * type of "mtu": rt_rmx.rmx_mtu is u_int32_t, ifnet.ifr_mtu is int, and
268 * nd_ifinfo.linkmtu is u_int32_t. so we use u_int32_t to hold largest one,
269 * which is rt_rmx.rmx_mtu.
272 ip6_output_list(struct mbuf
*m0
, int packetchain
, struct ip6_pktopts
*opt
,
273 struct route_in6
*ro
, int flags
, struct ip6_moptions
*im6o
,
274 struct ifnet
**ifpp
, struct ip6_out_args
*ip6oa
)
278 struct ifnet
*ifp
= NULL
, *origifp
= NULL
; /* refcnt'd */
279 struct ifnet
**ifpp_save
= ifpp
;
280 struct mbuf
*m
, *mprev
;
281 struct mbuf
*sendchain
= NULL
, *sendchain_last
= NULL
;
282 struct mbuf
*inputchain
= NULL
;
284 struct route_in6
*ro_pmtu
= NULL
;
285 struct rtentry
*rt
= NULL
;
286 struct sockaddr_in6
*dst
, src_sa
, dst_sa
;
288 struct in6_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
290 boolean_t alwaysfrag
= FALSE
;
291 u_int32_t optlen
= 0, plen
= 0, unfragpartlen
= 0;
292 struct ip6_rthdr
*rh
;
293 struct in6_addr finaldst
;
294 ipfilter_t inject_filter_ref
;
295 struct ipf_pktopts
*ippo
= NULL
;
296 struct flowadv
*adv
= NULL
;
298 uint32_t packets_processed
= 0;
299 struct timeval start_tv
;
302 struct ip6_out_args saved_ip6oa
;
303 struct sockaddr_in6 dst_buf
;
304 #endif /* DUMMYNET */
306 struct socket
*so
= NULL
;
307 struct secpolicy
*sp
= NULL
;
308 struct route_in6
*ipsec_saved_route
= NULL
;
309 boolean_t needipsectun
= FALSE
;
312 necp_kernel_policy_result necp_result
= 0;
313 necp_kernel_policy_result_parameter necp_result_parameter
;
314 necp_kernel_policy_id necp_matched_policy_id
= 0;
317 struct ipf_pktopts ipf_pktopts
;
318 struct ip6_exthdrs exthdrs
;
319 struct route_in6 ip6route
;
321 struct ipsec_output_state ipsec_state
;
324 struct route_in6 necp_route
;
327 struct route_in6 saved_route
;
328 struct route_in6 saved_ro_pmtu
;
329 struct ip_fw_args args
;
330 #endif /* DUMMYNET */
332 #define ipf_pktopts ip6obz.ipf_pktopts
333 #define exthdrs ip6obz.exthdrs
334 #define ip6route ip6obz.ip6route
335 #define ipsec_state ip6obz.ipsec_state
336 #define necp_route ip6obz.necp_route
337 #define saved_route ip6obz.saved_route
338 #define saved_ro_pmtu ip6obz.saved_ro_pmtu
339 #define args ip6obz.args
342 boolean_t select_srcif
: 1;
343 boolean_t hdrsplit
: 1;
344 boolean_t route_selected
: 1;
345 boolean_t dontfrag
: 1;
347 boolean_t needipsec
: 1;
348 boolean_t noipsec
: 1;
352 } ip6obf
= { .raw
= 0 };
354 if (ip6_output_measure
)
355 net_perf_start_time(&net_perf
, &start_tv
);
357 VERIFY(m0
->m_flags
& M_PKTHDR
);
359 /* zero out {saved_route, saved_ro_pmtu, ip6route, exthdrs, args} */
360 bzero(&ip6obz
, sizeof (ip6obz
));
363 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
366 /* Grab info from mtags prepended to the chain */
367 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
368 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
369 struct dn_pkt_tag
*dn_tag
;
372 * ip6_output_list() cannot handle chains of packets reinjected
373 * by dummynet. The same restriction applies to
376 VERIFY(0 == packetchain
);
378 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
379 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
381 bcopy(&dn_tag
->dn_dst6
, &dst_buf
, sizeof (dst_buf
));
383 ifp
= dn_tag
->dn_ifp
;
385 ifnet_reference(ifp
);
386 flags
= dn_tag
->dn_flags
;
387 if (dn_tag
->dn_flags
& IPV6_OUTARGS
) {
388 saved_ip6oa
= dn_tag
->dn_ip6oa
;
389 ip6oa
= &saved_ip6oa
;
392 saved_route
= dn_tag
->dn_ro6
;
394 saved_ro_pmtu
= dn_tag
->dn_ro6_pmtu
;
395 ro_pmtu
= &saved_ro_pmtu
;
396 origifp
= dn_tag
->dn_origifp
;
398 ifnet_reference(origifp
);
399 mtu
= dn_tag
->dn_mtu
;
400 alwaysfrag
= (dn_tag
->dn_alwaysfrag
!= 0);
401 unfragpartlen
= dn_tag
->dn_unfragpartlen
;
403 bcopy(&dn_tag
->dn_exthdrs
, &exthdrs
, sizeof (exthdrs
));
405 m_tag_delete(m0
, tag
);
409 #endif /* DUMMYNET */
414 if (ipsec_bypass
== 0) {
415 so
= ipsec_getsocket(m
);
417 (void) ipsec_setsocket(m
, NULL
);
419 /* If packet is bound to an interface, check bound policies */
420 if ((flags
& IPV6_OUTARGS
) &&
421 (ip6oa
->ip6oa_flags
& IPOAF_BOUND_IF
) &&
422 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
423 /* ip6obf.noipsec is a bitfield, use temp integer */
426 if (ipsec6_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
427 flags
, ip6oa
, &noipsec
, &sp
) != 0)
430 ip6obf
.noipsec
= (noipsec
!= 0);
437 if (ip6_doscopedroute
&& (flags
& IPV6_OUTARGS
)) {
439 * In the forwarding case, only the ifscope value is used,
440 * as source interface selection doesn't take place.
442 if ((ip6obf
.select_srcif
= (!(flags
& (IPV6_FORWARDING
|
443 IPV6_UNSPECSRC
| IPV6_FLAG_NOSRCIFSEL
)) &&
444 (ip6oa
->ip6oa_flags
& IP6OAF_SELECT_SRCIF
))))
445 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
447 if ((ip6oa
->ip6oa_flags
& IP6OAF_BOUND_IF
) &&
448 ip6oa
->ip6oa_boundif
!= IFSCOPE_NONE
) {
449 ipf_pktopts
.ippo_flags
|= (IPPOF_BOUND_IF
|
450 (ip6oa
->ip6oa_boundif
<< IPPOF_SHIFT_IFSCOPE
));
453 if (ip6oa
->ip6oa_flags
& IP6OAF_BOUND_SRCADDR
)
454 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
456 ip6obf
.select_srcif
= FALSE
;
457 if (flags
& IPV6_OUTARGS
) {
458 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
459 ip6oa
->ip6oa_flags
&= ~(IP6OAF_SELECT_SRCIF
|
460 IP6OAF_BOUND_IF
| IP6OAF_BOUND_SRCADDR
);
464 if (flags
& IPV6_OUTARGS
) {
465 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_CELLULAR
)
466 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
467 if (ip6oa
->ip6oa_flags
& IP6OAF_NO_EXPENSIVE
)
468 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
469 adv
= &ip6oa
->ip6oa_flowadv
;
470 adv
->code
= FADV_SUCCESS
;
471 ip6oa
->ip6oa_retflags
= 0;
475 * Clear out ifpp to be filled in after determining route. ifpp_save is
476 * used to keep old value to release reference properly and dtrace
477 * ipsec tunnel traffic properly.
479 if (ifpp
!= NULL
&& *ifpp
!= NULL
)
483 if (args
.fwa_pf_rule
) {
484 ip6
= mtod(m
, struct ip6_hdr
*);
485 VERIFY(ro
!= NULL
); /* ro == saved_route */
488 #endif /* DUMMYNET */
492 * Since all packets are assumed to come from same socket, necp lookup
493 * only needs to happen once per function entry.
495 necp_matched_policy_id
= necp_ip6_output_find_policy_match(m
, flags
,
496 (flags
& IPV6_OUTARGS
) ? ip6oa
: NULL
, &necp_result
,
497 &necp_result_parameter
);
501 * If a chain was passed in, prepare for ther first iteration. For all
502 * other iterations, this work will be done at evaluateloop: label.
506 * Remove m from the chain during processing to avoid
507 * accidental frees on entire list.
509 inputchain
= m
->m_nextpkt
;
515 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
516 ip6
= mtod(m
, struct ip6_hdr
*);
518 finaldst
= ip6
->ip6_dst
;
519 ip6obf
.hdrsplit
= FALSE
;
522 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
523 inject_filter_ref
= ipf_get_inject_filter(m
);
525 inject_filter_ref
= NULL
;
527 #define MAKE_EXTHDR(hp, mp) do { \
529 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
530 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
531 ((eh)->ip6e_len + 1) << 3); \
538 /* Hop-by-Hop options header */
539 MAKE_EXTHDR(opt
->ip6po_hbh
, &exthdrs
.ip6e_hbh
);
540 /* Destination options header(1st part) */
541 if (opt
->ip6po_rthdr
) {
543 * Destination options header(1st part)
544 * This only makes sense with a routing header.
545 * See Section 9.2 of RFC 3542.
546 * Disabling this part just for MIP6 convenience is
547 * a bad idea. We need to think carefully about a
548 * way to make the advanced API coexist with MIP6
549 * options, which might automatically be inserted in
552 MAKE_EXTHDR(opt
->ip6po_dest1
, &exthdrs
.ip6e_dest1
);
555 MAKE_EXTHDR(opt
->ip6po_rthdr
, &exthdrs
.ip6e_rthdr
);
556 /* Destination options header(2nd part) */
557 MAKE_EXTHDR(opt
->ip6po_dest2
, &exthdrs
.ip6e_dest2
);
563 if (necp_matched_policy_id
) {
564 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
566 switch (necp_result
) {
567 case NECP_KERNEL_POLICY_RESULT_PASS
:
569 case NECP_KERNEL_POLICY_RESULT_DROP
:
570 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
572 * Flow divert packets should be blocked at the IP
575 error
= EHOSTUNREACH
;
577 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
579 * Verify that the packet is being routed to the tunnel
581 struct ifnet
*policy_ifp
=
582 necp_get_ifnet_from_result_parameter(
583 &necp_result_parameter
);
585 if (policy_ifp
== ifp
) {
588 if (necp_packet_can_rebind_to_ifnet(m
,
589 policy_ifp
, (struct route
*)&necp_route
,
592 * Set scoped index to the tunnel
593 * interface, since it is compatible
594 * with the packet. This will only work
595 * for callers who pass IPV6_OUTARGS,
596 * but that covers all of the clients
597 * we care about today.
599 if (flags
& IPV6_OUTARGS
) {
600 ip6oa
->ip6oa_boundif
=
601 policy_ifp
->if_index
;
602 ip6oa
->ip6oa_flags
|=
606 && opt
->ip6po_pktinfo
!= NULL
) {
609 policy_ifp
->if_index
;
627 if (ipsec_bypass
!= 0 || ip6obf
.noipsec
)
631 /* get a security policy for this packet */
633 sp
= ipsec6_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
636 sp
= ipsec6_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
640 IPSEC_STAT_INCREMENT(ipsec6stat
.out_inval
);
648 switch (sp
->policy
) {
649 case IPSEC_POLICY_DISCARD
:
650 case IPSEC_POLICY_GENERATE
:
652 * This packet is just discarded.
654 IPSEC_STAT_INCREMENT(ipsec6stat
.out_polvio
);
657 case IPSEC_POLICY_BYPASS
:
658 case IPSEC_POLICY_NONE
:
659 /* no need to do IPsec. */
660 ip6obf
.needipsec
= FALSE
;
663 case IPSEC_POLICY_IPSEC
:
664 if (sp
->req
== NULL
) {
665 /* acquire a policy */
666 error
= key_spdacquire(sp
);
672 ip6obf
.needipsec
= TRUE
;
676 case IPSEC_POLICY_ENTRUST
:
678 printf("%s: Invalid policy found: %d\n", __func__
, sp
->policy
);
685 * Calculate the total length of the extension header chain.
686 * Keep the length of the unfragmentable part for fragmentation.
689 if (exthdrs
.ip6e_hbh
!= NULL
)
690 optlen
+= exthdrs
.ip6e_hbh
->m_len
;
691 if (exthdrs
.ip6e_dest1
!= NULL
)
692 optlen
+= exthdrs
.ip6e_dest1
->m_len
;
693 if (exthdrs
.ip6e_rthdr
!= NULL
)
694 optlen
+= exthdrs
.ip6e_rthdr
->m_len
;
695 unfragpartlen
= optlen
+ sizeof (struct ip6_hdr
);
697 /* NOTE: we don't add AH/ESP length here. do that later. */
698 if (exthdrs
.ip6e_dest2
!= NULL
)
699 optlen
+= exthdrs
.ip6e_dest2
->m_len
;
702 * If we need IPsec, or there is at least one extension header,
703 * separate IP6 header from the payload.
709 optlen
) && !ip6obf
.hdrsplit
) {
710 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
714 m
= exthdrs
.ip6e_ip6
;
715 ip6obf
.hdrsplit
= TRUE
;
719 ip6
= mtod(m
, struct ip6_hdr
*);
721 /* adjust mbuf packet header length */
722 m
->m_pkthdr
.len
+= optlen
;
723 plen
= m
->m_pkthdr
.len
- sizeof (*ip6
);
725 /* If this is a jumbo payload, insert a jumbo payload option. */
726 if (plen
> IPV6_MAXPACKET
) {
727 if (!ip6obf
.hdrsplit
) {
728 if ((error
= ip6_splithdr(m
, &exthdrs
)) != 0) {
732 m
= exthdrs
.ip6e_ip6
;
733 ip6obf
.hdrsplit
= TRUE
;
736 ip6
= mtod(m
, struct ip6_hdr
*);
737 if ((error
= ip6_insert_jumboopt(&exthdrs
, plen
)) != 0)
741 ip6
->ip6_plen
= htons(plen
);
744 * Concatenate headers and fill in next header fields.
745 * Here we have, on "m"
747 * and we insert headers accordingly. Finally, we should be getting:
748 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
750 * during the header composing process, "m" points to IPv6 header.
751 * "mprev" points to an extension header prior to esp.
753 nexthdrp
= &ip6
->ip6_nxt
;
757 * we treat dest2 specially. this makes IPsec processing
758 * much easier. the goal here is to make mprev point the
759 * mbuf prior to dest2.
761 * result: IPv6 dest2 payload
762 * m and mprev will point to IPv6 header.
764 if (exthdrs
.ip6e_dest2
!= NULL
) {
765 if (!ip6obf
.hdrsplit
) {
766 panic("assumption failed: hdr not split");
769 exthdrs
.ip6e_dest2
->m_next
= m
->m_next
;
770 m
->m_next
= exthdrs
.ip6e_dest2
;
771 *mtod(exthdrs
.ip6e_dest2
, u_char
*) = ip6
->ip6_nxt
;
772 ip6
->ip6_nxt
= IPPROTO_DSTOPTS
;
775 #define MAKE_CHAIN(m, mp, p, i) do { \
777 if (!ip6obf.hdrsplit) { \
778 panic("assumption failed: hdr not split"); \
781 *mtod((m), u_char *) = *(p); \
783 p = mtod((m), u_char *); \
784 (m)->m_next = (mp)->m_next; \
785 (mp)->m_next = (m); \
790 * result: IPv6 hbh dest1 rthdr dest2 payload
791 * m will point to IPv6 header. mprev will point to the
792 * extension header prior to dest2 (rthdr in the above case).
794 MAKE_CHAIN(exthdrs
.ip6e_hbh
, mprev
, nexthdrp
, IPPROTO_HOPOPTS
);
795 MAKE_CHAIN(exthdrs
.ip6e_dest1
, mprev
, nexthdrp
, IPPROTO_DSTOPTS
);
796 MAKE_CHAIN(exthdrs
.ip6e_rthdr
, mprev
, nexthdrp
, IPPROTO_ROUTING
);
798 /* It is no longer safe to free the pointers in exthdrs. */
799 exthdrs
.merged
= TRUE
;
804 if (ip6obf
.needipsec
&& (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
))
805 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
808 if (!TAILQ_EMPTY(&ipv6_filters
)) {
809 struct ipfilter
*filter
;
810 int seen
= (inject_filter_ref
== NULL
);
813 if (im6o
!= NULL
&& IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
814 ippo
->ippo_flags
|= IPPOF_MCAST_OPTS
;
816 ippo
->ippo_mcast_ifnet
= im6o
->im6o_multicast_ifp
;
817 ippo
->ippo_mcast_ttl
= im6o
->im6o_multicast_hlim
;
818 ippo
->ippo_mcast_loop
= im6o
->im6o_multicast_loop
;
822 /* Hack: embed the scope_id in the destination */
823 if (IN6_IS_SCOPE_LINKLOCAL(&ip6
->ip6_dst
) &&
824 (ip6
->ip6_dst
.s6_addr16
[1] == 0) && (ro
!= NULL
)) {
826 ip6
->ip6_dst
.s6_addr16
[1] =
827 htons(ro
->ro_dst
.sin6_scope_id
);
831 TAILQ_FOREACH(filter
, &ipv6_filters
, ipf_link
) {
833 * Don't process packet twice if we've already seen it.
836 if ((struct ipfilter
*)inject_filter_ref
==
839 } else if (filter
->ipf_filter
.ipf_output
!= NULL
) {
842 result
= filter
->ipf_filter
.ipf_output(
843 filter
->ipf_filter
.cookie
,
845 if (result
== EJUSTRETURN
) {
858 ip6
= mtod(m
, struct ip6_hdr
*);
859 /* Hack: cleanup embedded scope_id if we put it there */
861 ip6
->ip6_dst
.s6_addr16
[1] = 0;
865 if (ip6obf
.needipsec
) {
869 * pointers after IPsec headers are not valid any more.
870 * other pointers need a great care too.
871 * (IPsec routines should not mangle mbufs prior to AH/ESP)
873 exthdrs
.ip6e_dest2
= NULL
;
875 if (exthdrs
.ip6e_rthdr
!= NULL
) {
876 rh
= mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*);
877 segleft_org
= rh
->ip6r_segleft
;
878 rh
->ip6r_segleft
= 0;
885 error
= ipsec6_output_trans(&ipsec_state
, nexthdrp
, mprev
,
886 sp
, flags
, &needipsectun
);
889 /* mbuf is already reclaimed in ipsec6_output_trans. */
899 printf("ip6_output (ipsec): error code %d\n",
903 /* don't show these error codes to the user */
909 if (exthdrs
.ip6e_rthdr
!= NULL
) {
910 /* ah6_output doesn't modify mbuf chain */
911 rh
->ip6r_segleft
= segleft_org
;
917 * If there is a routing header, replace the destination address field
918 * with the first hop of the routing header.
920 if (exthdrs
.ip6e_rthdr
!= NULL
) {
921 struct ip6_rthdr0
*rh0
;
922 struct in6_addr
*addr
;
923 struct sockaddr_in6 sa
;
925 rh
= (struct ip6_rthdr
*)
926 (mtod(exthdrs
.ip6e_rthdr
, struct ip6_rthdr
*));
927 switch (rh
->ip6r_type
) {
928 case IPV6_RTHDR_TYPE_0
:
929 rh0
= (struct ip6_rthdr0
*)rh
;
930 addr
= (struct in6_addr
*)(void *)(rh0
+ 1);
933 * construct a sockaddr_in6 form of
936 * XXX: we may not have enough
937 * information about its scope zone;
938 * there is no standard API to pass
939 * the information from the
942 bzero(&sa
, sizeof (sa
));
943 sa
.sin6_family
= AF_INET6
;
944 sa
.sin6_len
= sizeof (sa
);
945 sa
.sin6_addr
= addr
[0];
946 if ((error
= sa6_embedscope(&sa
,
947 ip6_use_defzone
)) != 0) {
950 ip6
->ip6_dst
= sa
.sin6_addr
;
951 bcopy(&addr
[1], &addr
[0], sizeof (struct in6_addr
) *
952 (rh0
->ip6r0_segleft
- 1));
953 addr
[rh0
->ip6r0_segleft
- 1] = finaldst
;
955 in6_clearscope(addr
+ rh0
->ip6r0_segleft
- 1);
957 default: /* is it possible? */
963 /* Source address validation */
964 if (IN6_IS_ADDR_UNSPECIFIED(&ip6
->ip6_src
) &&
965 !(flags
& IPV6_UNSPECSRC
)) {
967 ip6stat
.ip6s_badscope
++;
970 if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_src
)) {
972 ip6stat
.ip6s_badscope
++;
976 ip6stat
.ip6s_localout
++;
983 bzero((caddr_t
)ro
, sizeof (*ro
));
986 if (opt
!= NULL
&& opt
->ip6po_rthdr
)
987 ro
= &opt
->ip6po_route
;
988 dst
= SIN6(&ro
->ro_dst
);
990 if (ro
->ro_rt
!= NULL
)
991 RT_LOCK_ASSERT_NOTHELD(ro
->ro_rt
);
993 * if specified, try to fill in the traffic class field.
994 * do not override if a non-zero value is already set.
995 * we check the diffserv field and the ecn field separately.
997 if (opt
!= NULL
&& opt
->ip6po_tclass
>= 0) {
1000 if ((ip6
->ip6_flow
& htonl(0xfc << 20)) == 0)
1002 if ((ip6
->ip6_flow
& htonl(0x03 << 20)) == 0)
1006 htonl((opt
->ip6po_tclass
& mask
) << 20);
1010 /* fill in or override the hop limit field, if necessary. */
1011 if (opt
&& opt
->ip6po_hlim
!= -1) {
1012 ip6
->ip6_hlim
= opt
->ip6po_hlim
& 0xff;
1013 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1016 ip6
->ip6_hlim
= im6o
->im6o_multicast_hlim
;
1019 ip6
->ip6_hlim
= ip6_defmcasthlim
;
1024 * If there is a cached route, check that it is to the same
1025 * destination and is still up. If not, free it and try again.
1026 * Test rt_flags without holding rt_lock for performance reasons;
1027 * if the route is down it will hopefully be caught by the layer
1028 * below (since it uses this route as a hint) or during the
1031 if (ROUTE_UNUSABLE(ro
) || dst
->sin6_family
!= AF_INET6
||
1032 !IN6_ARE_ADDR_EQUAL(&dst
->sin6_addr
, &ip6
->ip6_dst
))
1035 if (ro
->ro_rt
== NULL
) {
1036 bzero(dst
, sizeof (*dst
));
1037 dst
->sin6_family
= AF_INET6
;
1038 dst
->sin6_len
= sizeof (struct sockaddr_in6
);
1039 dst
->sin6_addr
= ip6
->ip6_dst
;
1042 if (ip6obf
.needipsec
&& needipsectun
) {
1044 struct ifnet
*trace_ifp
= (ifpp_save
!= NULL
) ? (*ifpp_save
) : NULL
;
1045 #endif /* CONFIG_DTRACE */
1047 * All the extension headers will become inaccessible
1048 * (since they can be encrypted).
1049 * Don't panic, we need no more updates to extension headers
1050 * on inner IPv6 packet (since they are now encapsulated).
1052 * IPv6 [ESP|AH] IPv6 [extension headers] payload
1054 bzero(&exthdrs
, sizeof (exthdrs
));
1055 exthdrs
.ip6e_ip6
= m
;
1058 route_copyout(&ipsec_state
.ro
, (struct route
*)ro
,
1059 sizeof (ipsec_state
.ro
));
1060 ipsec_state
.dst
= SA(dst
);
1062 /* So that we can see packets inside the tunnel */
1063 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1064 struct ip6_hdr
*, ip6
, struct ifnet
*, trace_ifp
,
1065 struct ip
*, NULL
, struct ip6_hdr
*, ip6
);
1067 error
= ipsec6_output_tunnel(&ipsec_state
, sp
, flags
);
1068 /* tunneled in IPv4? packet is gone */
1069 if (ipsec_state
.tunneled
== 4) {
1074 ipsec_saved_route
= ro
;
1075 ro
= (struct route_in6
*)&ipsec_state
.ro
;
1076 dst
= SIN6(ipsec_state
.dst
);
1078 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
1088 printf("ip6_output (ipsec): error code %d\n",
1092 /* don't show these error codes to the user */
1099 * The packet has been encapsulated so the ifscope
1100 * is no longer valid since it does not apply to the
1101 * outer address: ignore the ifscope.
1103 if (flags
& IPV6_OUTARGS
) {
1104 ip6oa
->ip6oa_boundif
= IFSCOPE_NONE
;
1105 ip6oa
->ip6oa_flags
&= ~IP6OAF_BOUND_IF
;
1107 if (opt
!= NULL
&& opt
->ip6po_pktinfo
!= NULL
) {
1108 if (opt
->ip6po_pktinfo
->ipi6_ifindex
!= IFSCOPE_NONE
)
1109 opt
->ip6po_pktinfo
->ipi6_ifindex
= IFSCOPE_NONE
;
1111 exthdrs
.ip6e_ip6
= m
;
1116 * ifp should only be filled in for dummy net packets which will jump
1117 * to check_with_pf label.
1120 VERIFY(ip6obf
.route_selected
);
1123 /* adjust pointer */
1124 ip6
= mtod(m
, struct ip6_hdr
*);
1126 if (ip6obf
.select_srcif
) {
1127 bzero(&src_sa
, sizeof (src_sa
));
1128 src_sa
.sin6_family
= AF_INET6
;
1129 src_sa
.sin6_len
= sizeof (src_sa
);
1130 src_sa
.sin6_addr
= ip6
->ip6_src
;
1132 bzero(&dst_sa
, sizeof (dst_sa
));
1133 dst_sa
.sin6_family
= AF_INET6
;
1134 dst_sa
.sin6_len
= sizeof (dst_sa
);
1135 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1138 * Only call in6_selectroute() on first iteration to avoid taking
1139 * multiple references on ifp and rt.
1141 * in6_selectroute() might return an ifp with its reference held
1142 * even in the error case, so make sure to release its reference.
1143 * ip6oa may be NULL if IPV6_OUTARGS isn't set.
1145 if (!ip6obf
.route_selected
) {
1146 error
= in6_selectroute( ip6obf
.select_srcif
? &src_sa
: NULL
,
1147 &dst_sa
, opt
, im6o
, &src_ia
, ro
, &ifp
, &rt
, 0, ip6oa
);
1152 ip6stat
.ip6s_noroute
++;
1156 break; /* XXX statistics? */
1159 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1160 /* ifp (if non-NULL) will be released at the end */
1163 ip6obf
.route_selected
= TRUE
;
1167 * If in6_selectroute() does not return a route entry,
1168 * dst may not have been updated.
1170 *dst
= dst_sa
; /* XXX */
1174 /* Catch-all to check if the interface is allowed */
1175 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1176 error
= EHOSTUNREACH
;
1182 * then rt (for unicast) and ifp must be non-NULL valid values.
1184 if (!(flags
& IPV6_FORWARDING
)) {
1185 in6_ifstat_inc_na(ifp
, ifs6_out_request
);
1190 ia
= (struct in6_ifaddr
*)(rt
->rt_ifa
);
1192 IFA_ADDREF(&ia
->ia_ifa
);
1199 * The outgoing interface must be in the zone of source and
1200 * destination addresses (except local/loopback). We should
1201 * use ia_ifp to support the case of sending packets to an
1202 * address of our own.
1204 if (ia
!= NULL
&& ia
->ia_ifp
) {
1205 ifnet_reference(ia
->ia_ifp
); /* for origifp */
1206 if (origifp
!= NULL
)
1207 ifnet_release(origifp
);
1208 origifp
= ia
->ia_ifp
;
1211 ifnet_reference(ifp
); /* for origifp */
1212 if (origifp
!= NULL
)
1213 ifnet_release(origifp
);
1217 /* skip scope enforcements for local/loopback route */
1218 if (rt
== NULL
|| !(rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1219 struct in6_addr src0
, dst0
;
1222 src0
= ip6
->ip6_src
;
1223 if (in6_setscope(&src0
, origifp
, &zone
))
1225 bzero(&src_sa
, sizeof (src_sa
));
1226 src_sa
.sin6_family
= AF_INET6
;
1227 src_sa
.sin6_len
= sizeof (src_sa
);
1228 src_sa
.sin6_addr
= ip6
->ip6_src
;
1229 if ((sa6_recoverscope(&src_sa
, TRUE
) ||
1230 zone
!= src_sa
.sin6_scope_id
))
1233 dst0
= ip6
->ip6_dst
;
1234 if ((in6_setscope(&dst0
, origifp
, &zone
)))
1236 /* re-initialize to be sure */
1237 bzero(&dst_sa
, sizeof (dst_sa
));
1238 dst_sa
.sin6_family
= AF_INET6
;
1239 dst_sa
.sin6_len
= sizeof (dst_sa
);
1240 dst_sa
.sin6_addr
= ip6
->ip6_dst
;
1241 if ((sa6_recoverscope(&dst_sa
, TRUE
) ||
1242 zone
!= dst_sa
.sin6_scope_id
))
1245 /* scope check is done. */
1249 ip6stat
.ip6s_badscope
++;
1250 in6_ifstat_inc(origifp
, ifs6_out_discard
);
1252 error
= EHOSTUNREACH
; /* XXX */
1257 if (rt
!= NULL
&& !IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1258 if (opt
!= NULL
&& opt
->ip6po_nextroute
.ro_rt
) {
1260 * The nexthop is explicitly specified by the
1261 * application. We assume the next hop is an IPv6
1264 dst
= SIN6(opt
->ip6po_nexthop
);
1265 } else if ((rt
->rt_flags
& RTF_GATEWAY
)) {
1266 dst
= SIN6(rt
->rt_gateway
);
1269 * For packets destined to local/loopback, record the
1270 * source the source interface (which owns the source
1271 * address), as well as the output interface. This is
1272 * needed to reconstruct the embedded zone for the
1273 * link-local address case in ip6_input().
1275 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
)) {
1279 srcidx
= src_ia
->ia_ifp
->if_index
;
1280 else if (ro
->ro_srcia
!= NULL
)
1281 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
1285 ip6_setsrcifaddr_info(m
, srcidx
, NULL
);
1286 ip6_setdstifaddr_info(m
, 0, ia
);
1290 if (!IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
)) {
1291 m
->m_flags
&= ~(M_BCAST
| M_MCAST
); /* just in case */
1293 struct in6_multi
*in6m
;
1295 m
->m_flags
= (m
->m_flags
& ~M_BCAST
) | M_MCAST
;
1296 in6_ifstat_inc_na(ifp
, ifs6_out_mcast
);
1299 * Confirm that the outgoing interface supports multicast.
1301 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
1302 ip6stat
.ip6s_noroute
++;
1303 in6_ifstat_inc(ifp
, ifs6_out_discard
);
1304 error
= ENETUNREACH
;
1307 in6_multihead_lock_shared();
1308 IN6_LOOKUP_MULTI(&ip6
->ip6_dst
, ifp
, in6m
);
1309 in6_multihead_lock_done();
1313 (im6o
== NULL
|| im6o
->im6o_multicast_loop
)) {
1317 * If we belong to the destination multicast group
1318 * on the outgoing interface, and the caller did not
1319 * forbid loopback, loop back a copy.
1321 ip6_mloopback(NULL
, ifp
, m
, dst
, optlen
, nxt0
);
1322 } else if (im6o
!= NULL
)
1327 * Multicasts with a hoplimit of zero may be looped back,
1328 * above, but must not be transmitted on a network.
1329 * Also, multicasts addressed to the loopback interface
1330 * are not sent -- the above call to ip6_mloopback() will
1331 * loop back a copy if this host actually belongs to the
1332 * destination group on the loopback interface.
1334 if (ip6
->ip6_hlim
== 0 || (ifp
->if_flags
& IFF_LOOPBACK
) ||
1335 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6
->ip6_dst
)) {
1336 /* remove m from the packetchain and continue looping */
1345 * Fill the outgoing inteface to tell the upper layer
1346 * to increment per-interface statistics.
1348 if (ifpp
!= NULL
&& *ifpp
== NULL
) {
1349 ifnet_reference(ifp
); /* for caller */
1353 /* Determine path MTU. */
1354 if ((error
= ip6_getpmtu(ro_pmtu
, ro
, ifp
, &finaldst
, &mtu
,
1359 * The caller of this function may specify to use the minimum MTU
1361 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
1362 * setting. The logic is a bit complicated; by default, unicast
1363 * packets will follow path MTU while multicast packets will be sent at
1364 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
1365 * including unicast ones will be sent at the minimum MTU. Multicast
1366 * packets will always be sent at the minimum MTU unless
1367 * IP6PO_MINMTU_DISABLE is explicitly specified.
1368 * See RFC 3542 for more details.
1370 if (mtu
> IPV6_MMTU
) {
1371 if ((flags
& IPV6_MINMTU
)) {
1373 } else if (opt
&& opt
->ip6po_minmtu
== IP6PO_MINMTU_ALL
) {
1375 } else if (IN6_IS_ADDR_MULTICAST(&ip6
->ip6_dst
) &&
1377 opt
->ip6po_minmtu
!= IP6PO_MINMTU_DISABLE
)) {
1383 * clear embedded scope identifiers if necessary.
1384 * in6_clearscope will touch the addresses only when necessary.
1386 in6_clearscope(&ip6
->ip6_src
);
1387 in6_clearscope(&ip6
->ip6_dst
);
1391 * Check with the firewall...
1393 if (ip6_fw_enable
&& ip6_fw_chk_ptr
) {
1395 m
->m_pkthdr
.rcvif
= NULL
; /* XXX */
1396 /* If ipfw says divert, we have to just drop packet */
1397 if (ip6_fw_chk_ptr(&ip6
, ifp
, &port
, &m
) || m
== NULL
) {
1411 * If the outgoing packet contains a hop-by-hop options header,
1412 * it must be examined and processed even by the source node.
1413 * (RFC 2460, section 4.)
1415 if (exthdrs
.ip6e_hbh
!= NULL
) {
1416 struct ip6_hbh
*hbh
= mtod(exthdrs
.ip6e_hbh
, struct ip6_hbh
*);
1417 u_int32_t dummy
; /* XXX unused */
1418 uint32_t oplen
= 0; /* for ip6_process_hopopts() */
1420 if ((hbh
->ip6h_len
+ 1) << 3 > exthdrs
.ip6e_hbh
->m_len
)
1421 panic("ip6e_hbh is not continuous");
1424 * XXX: If we have to send an ICMPv6 error to the sender,
1425 * we need the M_LOOP flag since icmp6_error() expects
1426 * the IPv6 and the hop-by-hop options header are
1427 * continuous unless the flag is set.
1429 m
->m_flags
|= M_LOOP
;
1430 m
->m_pkthdr
.rcvif
= ifp
;
1431 if (ip6_process_hopopts(m
, (u_int8_t
*)(hbh
+ 1),
1432 ((hbh
->ip6h_len
+ 1) << 3) - sizeof (struct ip6_hbh
),
1433 &dummy
, &oplen
) < 0) {
1435 * m was already freed at this point. Set to NULL so it
1436 * is not re-freed at end of ip6_output_list.
1439 error
= EINVAL
; /* better error? */
1442 m
->m_flags
&= ~M_LOOP
; /* XXX */
1443 m
->m_pkthdr
.rcvif
= NULL
;
1448 #endif /* DUMMYNET */
1450 if (PF_IS_ENABLED
) {
1454 * TODO: Need to save opt->ip6po_flags for reinjection
1459 args
.fwa_oflags
= flags
;
1460 if (flags
& IPV6_OUTARGS
)
1461 args
.fwa_ip6oa
= ip6oa
;
1463 args
.fwa_dst6
= dst
;
1464 args
.fwa_ro6_pmtu
= ro_pmtu
;
1465 args
.fwa_origifp
= origifp
;
1467 args
.fwa_alwaysfrag
= alwaysfrag
;
1468 args
.fwa_unfragpartlen
= unfragpartlen
;
1469 args
.fwa_exthdrs
= &exthdrs
;
1470 /* Invoke outbound packet filter */
1471 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, &args
);
1472 #else /* !DUMMYNET */
1473 error
= pf_af_hook(ifp
, NULL
, &m
, AF_INET6
, FALSE
, NULL
);
1474 #endif /* !DUMMYNET */
1476 if (error
!= 0 || m
== NULL
) {
1478 panic("%s: unexpected packet %p\n",
1482 /* m was already freed by callee and is now NULL. */
1485 ip6
= mtod(m
, struct ip6_hdr
*);
1490 /* clean ipsec history before fragmentation */
1495 * Determine whether fragmentation is necessary. If so, m is passed
1496 * back as a chain of packets and original mbuf is freed. Otherwise, m
1499 error
= ip6_fragment_packet(&m
, opt
,
1500 &exthdrs
, ifp
, mtu
, alwaysfrag
, unfragpartlen
, ro_pmtu
, nxt0
,
1507 * The evaluateloop label is where we decide whether to continue looping over
1508 * packets or call into nd code to send.
1513 * m may be NULL when we jump to the evaluateloop label from PF or
1514 * other code that can drop packets.
1518 * If we already have a chain to send, tack m onto the end.
1519 * Otherwise make m the start and end of the to-be-sent chain.
1521 if (sendchain
!= NULL
) {
1522 sendchain_last
->m_nextpkt
= m
;
1527 /* Fragmentation may mean m is a chain. Find the last packet. */
1528 while (m
->m_nextpkt
)
1534 /* Fill in next m from inputchain as appropriate. */
1537 /* Isolate m from rest of input chain. */
1538 inputchain
= m
->m_nextpkt
;
1539 m
->m_nextpkt
= NULL
;
1542 * Clear exthdrs and ipsec_state so stale contents are not
1543 * reused. Note this also clears the exthdrs.merged flag.
1545 bzero(&exthdrs
, sizeof(exthdrs
));
1546 bzero(&ipsec_state
, sizeof(ipsec_state
));
1548 /* Continue looping. */
1553 * If we get here, there's no more mbufs in inputchain, so send the
1554 * sendchain if there is one.
1557 error
= nd6_output_list(ifp
, origifp
, sendchain
, dst
,
1560 * Fall through to done label even in error case because
1561 * nd6_output_list frees packetchain in both success and
1567 if (ifpp_save
!= NULL
&& *ifpp_save
!= NULL
) {
1568 ifnet_release(*ifpp_save
);
1571 ROUTE_RELEASE(&ip6route
);
1573 ROUTE_RELEASE(&ipsec_state
.ro
);
1575 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1578 ROUTE_RELEASE(&necp_route
);
1581 ROUTE_RELEASE(&saved_route
);
1582 ROUTE_RELEASE(&saved_ro_pmtu
);
1583 #endif /* DUMMYNET */
1586 IFA_REMREF(&ia
->ia_ifa
);
1588 IFA_REMREF(&src_ia
->ia_ifa
);
1591 if (origifp
!= NULL
)
1592 ifnet_release(origifp
);
1593 if (ip6_output_measure
) {
1594 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
1595 net_perf_histogram(&net_perf
, packets_processed
);
1600 if (exthdrs
.ip6e_hbh
!= NULL
) {
1602 panic("Double free of ip6e_hbh");
1603 m_freem(exthdrs
.ip6e_hbh
);
1605 if (exthdrs
.ip6e_dest1
!= NULL
) {
1607 panic("Double free of ip6e_dest1");
1608 m_freem(exthdrs
.ip6e_dest1
);
1610 if (exthdrs
.ip6e_rthdr
!= NULL
) {
1612 panic("Double free of ip6e_rthdr");
1613 m_freem(exthdrs
.ip6e_rthdr
);
1615 if (exthdrs
.ip6e_dest2
!= NULL
) {
1617 panic("Double free of ip6e_dest2");
1618 m_freem(exthdrs
.ip6e_dest2
);
1622 if (inputchain
!= NULL
)
1623 m_freem_list(inputchain
);
1624 if (sendchain
!= NULL
)
1625 m_freem_list(sendchain
);
1636 #undef saved_ro_pmtu
1640 /* ip6_fragment_packet
1642 * The fragmentation logic is rather complex:
1643 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
1644 * 1-a: send as is if tlen <= path mtu
1645 * 1-b: fragment if tlen > path mtu
1647 * 2: if user asks us not to fragment (dontfrag == 1)
1648 * 2-a: send as is if tlen <= interface mtu
1649 * 2-b: error if tlen > interface mtu
1651 * 3: if we always need to attach fragment header (alwaysfrag == 1)
1654 * 4: if dontfrag == 1 && alwaysfrag == 1
1655 * error, as we cannot handle this conflicting request
1659 ip6_fragment_packet(struct mbuf
**mptr
, struct ip6_pktopts
*opt
,
1660 struct ip6_exthdrs
*exthdrsp
, struct ifnet
*ifp
, uint32_t mtu
,
1661 boolean_t alwaysfrag
, uint32_t unfragpartlen
, struct route_in6
*ro_pmtu
,
1662 int nxt0
, uint32_t optlen
)
1664 VERIFY(NULL
!= mptr
);
1665 struct mbuf
*m
= *mptr
;
1667 size_t tlen
= m
->m_pkthdr
.len
;
1668 boolean_t dontfrag
= (opt
!= NULL
&& (opt
->ip6po_flags
& IP6PO_DONTFRAG
));
1670 if (dontfrag
&& alwaysfrag
) { /* case 4 */
1671 /* conflicting request - can't transmit */
1675 /* Access without acquiring nd_ifinfo lock for performance */
1676 if (dontfrag
&& tlen
> IN6_LINKMTU(ifp
)) { /* case 2-b */
1678 * Even if the DONTFRAG option is specified, we cannot send the
1679 * packet when the data length is larger than the MTU of the
1680 * outgoing interface.
1681 * Notify the error by sending IPV6_PATHMTU ancillary data as
1682 * well as returning an error code (the latter is not described
1686 struct ip6ctlparam ip6cp
;
1688 mtu32
= (u_int32_t
)mtu
;
1689 bzero(&ip6cp
, sizeof (ip6cp
));
1690 ip6cp
.ip6c_cmdarg
= (void *)&mtu32
;
1691 pfctlinput2(PRC_MSGSIZE
, SA(&ro_pmtu
->ro_dst
), (void *)&ip6cp
);
1696 * transmit packet without fragmentation
1698 if (dontfrag
|| (!alwaysfrag
&& /* case 1-a and 2-a */
1699 (tlen
<= mtu
|| TSO_IPV6_OK(ifp
, m
) ||
1700 (ifp
->if_hwassist
& CSUM_FRAGMENT_IPV6
)))) {
1702 * mppn not updated in this case because no new chain is formed
1705 ip6_output_checksum(ifp
, mtu
, m
, nxt0
, tlen
, optlen
);
1708 * time to fragment - cases 1-b and 3 are handled inside
1709 * ip6_do_fragmentation().
1710 * mppn is passed down to be updated to point at fragment chain.
1712 error
= ip6_do_fragmentation(mptr
, optlen
, ifp
,
1713 unfragpartlen
, mtod(m
, struct ip6_hdr
*), exthdrsp
, mtu
, nxt0
);
1720 * ip6_do_fragmentation() is called by ip6_fragment_packet() after determining
1721 * the packet needs to be fragmented. on success, morig is freed and a chain
1722 * of fragments is linked into the packet chain where morig existed. Otherwise,
1723 * an errno is returned.
1726 ip6_do_fragmentation(struct mbuf
**mptr
, uint32_t optlen
, struct ifnet
*ifp
,
1727 uint32_t unfragpartlen
, struct ip6_hdr
*ip6
, struct ip6_exthdrs
*exthdrsp
,
1728 uint32_t mtu
, int nxt0
)
1730 VERIFY(NULL
!= mptr
);
1733 struct mbuf
*morig
= *mptr
;
1734 struct mbuf
*first_mbufp
= NULL
;
1735 struct mbuf
*last_mbufp
= NULL
;
1737 size_t tlen
= morig
->m_pkthdr
.len
;
1740 * try to fragment the packet. case 1-b and 3
1742 if ((morig
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV6
)) {
1743 /* TSO and fragment aren't compatible */
1744 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1746 } else if (mtu
< IPV6_MMTU
) {
1747 /* path MTU cannot be less than IPV6_MMTU */
1748 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1750 } else if (ip6
->ip6_plen
== 0) {
1751 /* jumbo payload cannot be fragmented */
1752 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1755 size_t hlen
, len
, off
;
1756 struct mbuf
**mnext
= NULL
;
1757 struct ip6_frag
*ip6f
;
1758 u_int32_t id
= htonl(ip6_randomid());
1762 * Too large for the destination or interface;
1763 * fragment if possible.
1764 * Must be able to put at least 8 bytes per fragment.
1766 hlen
= unfragpartlen
;
1767 if (mtu
> IPV6_MAXPACKET
)
1768 mtu
= IPV6_MAXPACKET
;
1770 len
= (mtu
- hlen
- sizeof (struct ip6_frag
)) & ~7;
1772 in6_ifstat_inc(ifp
, ifs6_out_fragfail
);
1777 * Change the next header field of the last header in the
1778 * unfragmentable part.
1780 if (exthdrsp
->ip6e_rthdr
!= NULL
) {
1781 nextproto
= *mtod(exthdrsp
->ip6e_rthdr
, u_char
*);
1782 *mtod(exthdrsp
->ip6e_rthdr
, u_char
*) = IPPROTO_FRAGMENT
;
1783 } else if (exthdrsp
->ip6e_dest1
!= NULL
) {
1784 nextproto
= *mtod(exthdrsp
->ip6e_dest1
, u_char
*);
1785 *mtod(exthdrsp
->ip6e_dest1
, u_char
*) = IPPROTO_FRAGMENT
;
1786 } else if (exthdrsp
->ip6e_hbh
!= NULL
) {
1787 nextproto
= *mtod(exthdrsp
->ip6e_hbh
, u_char
*);
1788 *mtod(exthdrsp
->ip6e_hbh
, u_char
*) = IPPROTO_FRAGMENT
;
1790 nextproto
= ip6
->ip6_nxt
;
1791 ip6
->ip6_nxt
= IPPROTO_FRAGMENT
;
1794 if (morig
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
1795 in6_delayed_cksum_offset(morig
, 0, optlen
, nxt0
);
1798 * Loop through length of segment after first fragment,
1799 * make new header and copy data of each part and link onto
1802 for (off
= hlen
; off
< tlen
; off
+= len
) {
1803 struct ip6_hdr
*new_mhip6
;
1805 struct mbuf
*m_frgpart
;
1807 MGETHDR(new_m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1808 if (new_m
== NULL
) {
1810 ip6stat
.ip6s_odropped
++;
1813 new_m
->m_pkthdr
.rcvif
= NULL
;
1814 new_m
->m_flags
= morig
->m_flags
& M_COPYFLAGS
;
1816 if (first_mbufp
!= NULL
) {
1817 /* Every pass through loop but first */
1821 /* This is the first element of the fragment chain */
1822 first_mbufp
= new_m
;
1825 mnext
= &new_m
->m_nextpkt
;
1827 new_m
->m_data
+= max_linkhdr
;
1828 new_mhip6
= mtod(new_m
, struct ip6_hdr
*);
1830 new_m
->m_len
= sizeof (*new_mhip6
);
1832 error
= ip6_insertfraghdr(morig
, new_m
, hlen
, &ip6f
);
1834 ip6stat
.ip6s_odropped
++;
1838 ip6f
->ip6f_offlg
= htons((u_short
)((off
- hlen
) & ~7));
1839 if (off
+ len
>= tlen
)
1842 ip6f
->ip6f_offlg
|= IP6F_MORE_FRAG
;
1843 new_mhip6
->ip6_plen
= htons((u_short
)(len
+ hlen
+
1844 sizeof (*ip6f
) - sizeof (struct ip6_hdr
)));
1846 if ((m_frgpart
= m_copy(morig
, off
, len
)) == NULL
) {
1848 ip6stat
.ip6s_odropped
++;
1851 m_cat(new_m
, m_frgpart
);
1852 new_m
->m_pkthdr
.len
= len
+ hlen
+ sizeof (*ip6f
);
1853 new_m
->m_pkthdr
.rcvif
= NULL
;
1855 M_COPY_CLASSIFIER(new_m
, morig
);
1856 M_COPY_PFTAG(new_m
, morig
);
1860 mac_create_fragment(morig
, new_m
);
1861 #endif /* CONFIG_MACF_NET */
1864 ip6f
->ip6f_reserved
= 0;
1865 ip6f
->ip6f_ident
= id
;
1866 ip6f
->ip6f_nxt
= nextproto
;
1867 ip6stat
.ip6s_ofragments
++;
1868 in6_ifstat_inc(ifp
, ifs6_out_fragcreat
);
1872 /* free all the fragments created */
1873 if (first_mbufp
!= NULL
) {
1874 m_freem_list(first_mbufp
);
1879 /* successful fragmenting */
1881 *mptr
= first_mbufp
;
1882 last_mbufp
->m_nextpkt
= NULL
;
1883 ip6stat
.ip6s_fragmented
++;
1884 in6_ifstat_inc(ifp
, ifs6_out_fragok
);
1891 ip6_copyexthdr(struct mbuf
**mp
, caddr_t hdr
, int hlen
)
1895 if (hlen
> MCLBYTES
)
1896 return (ENOBUFS
); /* XXX */
1898 MGET(m
, M_DONTWAIT
, MT_DATA
);
1903 MCLGET(m
, M_DONTWAIT
);
1904 if (!(m
->m_flags
& M_EXT
)) {
1911 bcopy(hdr
, mtod(m
, caddr_t
), hlen
);
1918 ip6_out_cksum_stats(int proto
, u_int32_t len
)
1922 tcp_out6_cksum_stats(len
);
1925 udp_out6_cksum_stats(len
);
1928 /* keep only TCP or UDP stats for now */
1934 * Process a delayed payload checksum calculation (outbound path.)
1936 * hoff is the number of bytes beyond the mbuf data pointer which
1937 * points to the IPv6 header. optlen is the number of bytes, if any,
1938 * between the end of IPv6 header and the beginning of the ULP payload
1939 * header, which represents the extension headers. If optlen is less
1940 * than zero, this routine will bail when it detects extension headers.
1942 * Returns a bitmask representing all the work done in software.
1945 in6_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, int32_t optlen
,
1946 int32_t nxt0
, uint32_t csum_flags
)
1948 unsigned char buf
[sizeof (struct ip6_hdr
)] __attribute__((aligned(8)));
1949 struct ip6_hdr
*ip6
;
1950 uint32_t offset
, mlen
, hlen
, olen
, sw_csum
;
1951 uint16_t csum
, ulpoff
, plen
;
1954 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
1955 VERIFY(m
->m_flags
& M_PKTHDR
);
1957 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
1959 if ((sw_csum
&= CSUM_DELAY_IPV6_DATA
) == 0)
1962 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
1963 hlen
= sizeof (*ip6
); /* IPv6 header len */
1965 /* sanity check (need at least IPv6 header) */
1966 if (mlen
< (hoff
+ hlen
)) {
1967 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr "
1968 "(%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
);
1973 * In case the IPv6 header is not contiguous, or not 32-bit
1974 * aligned, copy it to a local buffer.
1976 if ((hoff
+ hlen
) > m
->m_len
||
1977 !IP6_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
1978 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
1979 ip6
= (struct ip6_hdr
*)(void *)buf
;
1981 ip6
= (struct ip6_hdr
*)(void *)(m
->m_data
+ hoff
);
1985 plen
= ntohs(ip6
->ip6_plen
);
1986 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1987 plen
= OSSwapInt16(plen
);
1988 if (plen
!= (mlen
- (hoff
+ hlen
))) {
1989 /* Don't complain for jumbograms */
1990 if (plen
!= 0 || nxt
!= IPPROTO_HOPOPTS
) {
1991 printf("%s: mbuf 0x%llx proto %d IPv6 "
1992 "plen %d (%x) [swapped %d (%x)] doesn't "
1993 "match actual packet length; %d is used "
1994 "instead\n", __func__
,
1995 (uint64_t)VM_KERNEL_ADDRPERM(m
), nxt
,
1996 ip6
->ip6_plen
, ip6
->ip6_plen
, plen
, plen
,
1997 (mlen
- (hoff
+ hlen
)));
1999 plen
= mlen
- (hoff
+ hlen
);
2004 /* next header isn't TCP/UDP and we don't know optlen, bail */
2005 if (nxt
!= IPPROTO_TCP
&& nxt
!= IPPROTO_UDP
) {
2011 /* caller supplied the original transport number; use it */
2017 offset
= hoff
+ hlen
+ olen
; /* ULP header */
2020 if (mlen
< offset
) {
2021 panic("%s: mbuf %p pkt len (%u) < hoff+ip6_hdr+ext_hdr "
2022 "(%u+%u+%u)\n", __func__
, m
, mlen
, hoff
, hlen
, olen
);
2027 * offset is added to the lower 16-bit value of csum_data,
2028 * which is expected to contain the ULP offset; therefore
2029 * CSUM_PARTIAL offset adjustment must be undone.
2031 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2032 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2034 * Get back the original ULP offset (this will
2035 * undo the CSUM_PARTIAL logic in ip6_output.)
2037 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2038 m
->m_pkthdr
.csum_tx_start
);
2041 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2043 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2044 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2045 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2046 m
, mlen
, nxt
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2050 csum
= inet6_cksum(m
, 0, offset
, plen
- olen
);
2053 ip6_out_cksum_stats(nxt
, plen
- olen
);
2055 /* RFC1122 4.1.3.4 */
2056 if (csum
== 0 && (m
->m_pkthdr
.csum_flags
& CSUM_UDPIPV6
))
2059 /* Insert the checksum in the ULP csum field */
2061 if ((offset
+ sizeof (csum
)) > m
->m_len
) {
2062 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2063 } else if (IP6_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2064 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2066 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2068 m
->m_pkthdr
.csum_flags
&=
2069 ~(CSUM_DELAY_IPV6_DATA
| CSUM_DATA_VALID
| CSUM_PARTIAL
);
2076 * Insert jumbo payload option.
2079 ip6_insert_jumboopt(struct ip6_exthdrs
*exthdrs
, u_int32_t plen
)
2085 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
2088 * If there is no hop-by-hop options header, allocate new one.
2089 * If there is one but it doesn't have enough space to store the
2090 * jumbo payload option, allocate a cluster to store the whole options.
2091 * Otherwise, use it to store the options.
2093 if (exthdrs
->ip6e_hbh
== NULL
) {
2094 MGET(mopt
, M_DONTWAIT
, MT_DATA
);
2097 mopt
->m_len
= JUMBOOPTLEN
;
2098 optbuf
= mtod(mopt
, u_char
*);
2099 optbuf
[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
2100 exthdrs
->ip6e_hbh
= mopt
;
2102 struct ip6_hbh
*hbh
;
2104 mopt
= exthdrs
->ip6e_hbh
;
2105 if (M_TRAILINGSPACE(mopt
) < JUMBOOPTLEN
) {
2108 * - exthdrs->ip6e_hbh is not referenced from places
2109 * other than exthdrs.
2110 * - exthdrs->ip6e_hbh is not an mbuf chain.
2112 u_int32_t oldoptlen
= mopt
->m_len
;
2116 * XXX: give up if the whole (new) hbh header does
2117 * not fit even in an mbuf cluster.
2119 if (oldoptlen
+ JUMBOOPTLEN
> MCLBYTES
)
2123 * As a consequence, we must always prepare a cluster
2126 MGET(n
, M_DONTWAIT
, MT_DATA
);
2128 MCLGET(n
, M_DONTWAIT
);
2129 if (!(n
->m_flags
& M_EXT
)) {
2136 n
->m_len
= oldoptlen
+ JUMBOOPTLEN
;
2137 bcopy(mtod(mopt
, caddr_t
), mtod(n
, caddr_t
),
2139 optbuf
= mtod(n
, u_char
*) + oldoptlen
;
2141 mopt
= exthdrs
->ip6e_hbh
= n
;
2143 optbuf
= mtod(mopt
, u_char
*) + mopt
->m_len
;
2144 mopt
->m_len
+= JUMBOOPTLEN
;
2146 optbuf
[0] = IP6OPT_PADN
;
2150 * Adjust the header length according to the pad and
2151 * the jumbo payload option.
2153 hbh
= mtod(mopt
, struct ip6_hbh
*);
2154 hbh
->ip6h_len
+= (JUMBOOPTLEN
>> 3);
2157 /* fill in the option. */
2158 optbuf
[2] = IP6OPT_JUMBO
;
2160 v
= (u_int32_t
)htonl(plen
+ JUMBOOPTLEN
);
2161 bcopy(&v
, &optbuf
[4], sizeof (u_int32_t
));
2163 /* finally, adjust the packet header length */
2164 exthdrs
->ip6e_ip6
->m_pkthdr
.len
+= JUMBOOPTLEN
;
2171 * Insert fragment header and copy unfragmentable header portions.
2174 ip6_insertfraghdr(struct mbuf
*m0
, struct mbuf
*m
, int hlen
,
2175 struct ip6_frag
**frghdrp
)
2177 struct mbuf
*n
, *mlast
;
2179 if (hlen
> sizeof (struct ip6_hdr
)) {
2180 n
= m_copym(m0
, sizeof (struct ip6_hdr
),
2181 hlen
- sizeof (struct ip6_hdr
), M_DONTWAIT
);
2188 /* Search for the last mbuf of unfragmentable part. */
2189 for (mlast
= n
; mlast
->m_next
; mlast
= mlast
->m_next
)
2192 if (!(mlast
->m_flags
& M_EXT
) &&
2193 M_TRAILINGSPACE(mlast
) >= sizeof (struct ip6_frag
)) {
2194 /* use the trailing space of the last mbuf for the frag hdr */
2195 *frghdrp
= (struct ip6_frag
*)(mtod(mlast
, caddr_t
) +
2197 mlast
->m_len
+= sizeof (struct ip6_frag
);
2198 m
->m_pkthdr
.len
+= sizeof (struct ip6_frag
);
2200 /* allocate a new mbuf for the fragment header */
2203 MGET(mfrg
, M_DONTWAIT
, MT_DATA
);
2206 mfrg
->m_len
= sizeof (struct ip6_frag
);
2207 *frghdrp
= mtod(mfrg
, struct ip6_frag
*);
2208 mlast
->m_next
= mfrg
;
2215 ip6_getpmtu(struct route_in6
*ro_pmtu
, struct route_in6
*ro
,
2216 struct ifnet
*ifp
, struct in6_addr
*dst
, u_int32_t
*mtup
,
2217 boolean_t
*alwaysfragp
)
2220 boolean_t alwaysfrag
= FALSE
;
2223 if (ro_pmtu
!= ro
) {
2224 /* The first hop and the final destination may differ. */
2225 struct sockaddr_in6
*sa6_dst
= SIN6(&ro_pmtu
->ro_dst
);
2226 if (ROUTE_UNUSABLE(ro_pmtu
) ||
2227 !IN6_ARE_ADDR_EQUAL(&sa6_dst
->sin6_addr
, dst
))
2228 ROUTE_RELEASE(ro_pmtu
);
2230 if (ro_pmtu
->ro_rt
== NULL
) {
2231 bzero(sa6_dst
, sizeof (*sa6_dst
));
2232 sa6_dst
->sin6_family
= AF_INET6
;
2233 sa6_dst
->sin6_len
= sizeof (struct sockaddr_in6
);
2234 sa6_dst
->sin6_addr
= *dst
;
2236 rtalloc_scoped((struct route
*)ro_pmtu
,
2237 ifp
!= NULL
? ifp
->if_index
: IFSCOPE_NONE
);
2241 if (ro_pmtu
->ro_rt
!= NULL
) {
2245 ifp
= ro_pmtu
->ro_rt
->rt_ifp
;
2246 /* Access without acquiring nd_ifinfo lock for performance */
2247 ifmtu
= IN6_LINKMTU(ifp
);
2250 * Access rmx_mtu without holding the route entry lock,
2251 * for performance; this isn't something that changes
2252 * often, so optimize.
2254 mtu
= ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
;
2255 if (mtu
> ifmtu
|| mtu
== 0) {
2257 * The MTU on the route is larger than the MTU on
2258 * the interface! This shouldn't happen, unless the
2259 * MTU of the interface has been changed after the
2260 * interface was brought up. Change the MTU in the
2261 * route to match the interface MTU (as long as the
2262 * field isn't locked).
2264 * if MTU on the route is 0, we need to fix the MTU.
2265 * this case happens with path MTU discovery timeouts.
2268 if (!(ro_pmtu
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
))
2269 ro_pmtu
->ro_rt
->rt_rmx
.rmx_mtu
= mtu
; /* XXX */
2270 } else if (mtu
< IPV6_MMTU
) {
2272 * RFC2460 section 5, last paragraph:
2273 * if we record ICMPv6 too big message with
2274 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
2275 * or smaller, with framgent header attached.
2276 * (fragment header is needed regardless from the
2277 * packet size, for translators to identify packets)
2284 /* Don't hold nd_ifinfo lock for performance */
2285 mtu
= IN6_LINKMTU(ifp
);
2287 error
= EHOSTUNREACH
; /* XXX */
2292 if (alwaysfragp
!= NULL
)
2293 *alwaysfragp
= alwaysfrag
;
2298 * IP6 socket option processing.
2301 ip6_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2303 int optdatalen
, uproto
;
2306 struct inpcb
*in6p
= sotoinpcb(so
);
2307 int error
= 0, optval
= 0;
2308 int level
, op
= -1, optname
= 0;
2312 VERIFY(sopt
!= NULL
);
2314 level
= sopt
->sopt_level
;
2315 op
= sopt
->sopt_dir
;
2316 optname
= sopt
->sopt_name
;
2317 optlen
= sopt
->sopt_valsize
;
2319 uproto
= (int)SOCK_PROTO(so
);
2321 privileged
= (proc_suser(p
) == 0);
2323 if (level
== IPPROTO_IPV6
) {
2327 case IPV6_2292PKTOPTIONS
: {
2330 error
= soopt_getm(sopt
, &m
);
2333 error
= soopt_mcopyin(sopt
, m
);
2336 error
= ip6_pcbopts(&in6p
->in6p_outputopts
,
2343 * Use of some Hop-by-Hop options or some
2344 * Destination options, might require special
2345 * privilege. That is, normal applications
2346 * (without special privilege) might be forbidden
2347 * from setting certain options in outgoing packets,
2348 * and might never see certain options in received
2349 * packets. [RFC 2292 Section 6]
2350 * KAME specific note:
2351 * KAME prevents non-privileged users from sending or
2352 * receiving ANY hbh/dst options in order to avoid
2353 * overhead of parsing options in the kernel.
2355 case IPV6_RECVHOPOPTS
:
2356 case IPV6_RECVDSTOPTS
:
2357 case IPV6_RECVRTHDRDSTOPTS
:
2361 case IPV6_UNICAST_HOPS
:
2363 case IPV6_RECVPKTINFO
:
2364 case IPV6_RECVHOPLIMIT
:
2365 case IPV6_RECVRTHDR
:
2366 case IPV6_RECVPATHMTU
:
2367 case IPV6_RECVTCLASS
:
2369 case IPV6_AUTOFLOWLABEL
:
2370 if (optlen
!= sizeof (int)) {
2374 error
= sooptcopyin(sopt
, &optval
,
2375 sizeof (optval
), sizeof (optval
));
2380 case IPV6_UNICAST_HOPS
:
2381 if (optval
< -1 || optval
>= 256) {
2384 /* -1 = kernel default */
2385 in6p
->in6p_hops
= optval
;
2386 if (in6p
->inp_vflag
&
2393 #define OPTSET(bit) do { \
2395 in6p->inp_flags |= (bit); \
2397 in6p->inp_flags &= ~(bit); \
2400 #define OPTSET2292(bit) do { \
2401 in6p->inp_flags |= IN6P_RFC2292; \
2403 in6p->inp_flags |= (bit); \
2405 in6p->inp_flags &= ~(bit); \
2408 #define OPTBIT(bit) (in6p->inp_flags & (bit) ? 1 : 0)
2410 case IPV6_RECVPKTINFO
:
2411 /* cannot mix with RFC2292 */
2412 if (OPTBIT(IN6P_RFC2292
)) {
2416 OPTSET(IN6P_PKTINFO
);
2419 case IPV6_HOPLIMIT
: {
2420 struct ip6_pktopts
**optp
;
2422 /* cannot mix with RFC2292 */
2423 if (OPTBIT(IN6P_RFC2292
)) {
2427 optp
= &in6p
->in6p_outputopts
;
2428 error
= ip6_pcbopt(IPV6_HOPLIMIT
,
2429 (u_char
*)&optval
, sizeof (optval
),
2434 case IPV6_RECVHOPLIMIT
:
2435 /* cannot mix with RFC2292 */
2436 if (OPTBIT(IN6P_RFC2292
)) {
2440 OPTSET(IN6P_HOPLIMIT
);
2443 case IPV6_RECVHOPOPTS
:
2444 /* cannot mix with RFC2292 */
2445 if (OPTBIT(IN6P_RFC2292
)) {
2449 OPTSET(IN6P_HOPOPTS
);
2452 case IPV6_RECVDSTOPTS
:
2453 /* cannot mix with RFC2292 */
2454 if (OPTBIT(IN6P_RFC2292
)) {
2458 OPTSET(IN6P_DSTOPTS
);
2461 case IPV6_RECVRTHDRDSTOPTS
:
2462 /* cannot mix with RFC2292 */
2463 if (OPTBIT(IN6P_RFC2292
)) {
2467 OPTSET(IN6P_RTHDRDSTOPTS
);
2470 case IPV6_RECVRTHDR
:
2471 /* cannot mix with RFC2292 */
2472 if (OPTBIT(IN6P_RFC2292
)) {
2479 case IPV6_RECVPATHMTU
:
2481 * We ignore this option for TCP
2483 * (RFC3542 leaves this case
2486 if (uproto
!= IPPROTO_TCP
)
2492 * make setsockopt(IPV6_V6ONLY)
2493 * available only prior to bind(2).
2494 * see ipng mailing list, Jun 22 2001.
2496 if (in6p
->inp_lport
||
2497 !IN6_IS_ADDR_UNSPECIFIED(
2498 &in6p
->in6p_laddr
)) {
2502 OPTSET(IN6P_IPV6_V6ONLY
);
2504 in6p
->inp_vflag
&= ~INP_IPV4
;
2506 in6p
->inp_vflag
|= INP_IPV4
;
2509 case IPV6_RECVTCLASS
:
2510 /* we can mix with RFC2292 */
2511 OPTSET(IN6P_TCLASS
);
2514 case IPV6_AUTOFLOWLABEL
:
2515 OPTSET(IN6P_AUTOFLOWLABEL
);
2523 case IPV6_USE_MIN_MTU
:
2524 case IPV6_PREFER_TEMPADDR
: {
2525 struct ip6_pktopts
**optp
;
2527 if (optlen
!= sizeof (optval
)) {
2531 error
= sooptcopyin(sopt
, &optval
,
2532 sizeof (optval
), sizeof (optval
));
2536 optp
= &in6p
->in6p_outputopts
;
2537 error
= ip6_pcbopt(optname
, (u_char
*)&optval
,
2538 sizeof (optval
), optp
, uproto
);
2542 case IPV6_2292PKTINFO
:
2543 case IPV6_2292HOPLIMIT
:
2544 case IPV6_2292HOPOPTS
:
2545 case IPV6_2292DSTOPTS
:
2546 case IPV6_2292RTHDR
:
2548 if (optlen
!= sizeof (int)) {
2552 error
= sooptcopyin(sopt
, &optval
,
2553 sizeof (optval
), sizeof (optval
));
2557 case IPV6_2292PKTINFO
:
2558 OPTSET2292(IN6P_PKTINFO
);
2560 case IPV6_2292HOPLIMIT
:
2561 OPTSET2292(IN6P_HOPLIMIT
);
2563 case IPV6_2292HOPOPTS
:
2565 * Check super-user privilege.
2566 * See comments for IPV6_RECVHOPOPTS.
2570 OPTSET2292(IN6P_HOPOPTS
);
2572 case IPV6_2292DSTOPTS
:
2575 OPTSET2292(IN6P_DSTOPTS
|
2576 IN6P_RTHDRDSTOPTS
); /* XXX */
2578 case IPV6_2292RTHDR
:
2579 OPTSET2292(IN6P_RTHDR
);
2584 case IPV6_3542PKTINFO
:
2585 case IPV6_3542HOPOPTS
:
2586 case IPV6_3542RTHDR
:
2587 case IPV6_3542DSTOPTS
:
2588 case IPV6_RTHDRDSTOPTS
:
2589 case IPV6_3542NEXTHOP
: {
2590 struct ip6_pktopts
**optp
;
2591 /* new advanced API (RFC3542) */
2594 /* cannot mix with RFC2292 */
2595 if (OPTBIT(IN6P_RFC2292
)) {
2599 error
= soopt_getm(sopt
, &m
);
2602 error
= soopt_mcopyin(sopt
, m
);
2606 optp
= &in6p
->in6p_outputopts
;
2607 error
= ip6_pcbopt(optname
, mtod(m
, u_char
*),
2608 m
->m_len
, optp
, uproto
);
2613 case IPV6_MULTICAST_IF
:
2614 case IPV6_MULTICAST_HOPS
:
2615 case IPV6_MULTICAST_LOOP
:
2616 case IPV6_JOIN_GROUP
:
2617 case IPV6_LEAVE_GROUP
:
2619 case MCAST_BLOCK_SOURCE
:
2620 case MCAST_UNBLOCK_SOURCE
:
2621 case MCAST_JOIN_GROUP
:
2622 case MCAST_LEAVE_GROUP
:
2623 case MCAST_JOIN_SOURCE_GROUP
:
2624 case MCAST_LEAVE_SOURCE_GROUP
:
2625 error
= ip6_setmoptions(in6p
, sopt
);
2628 case IPV6_PORTRANGE
:
2629 error
= sooptcopyin(sopt
, &optval
,
2630 sizeof (optval
), sizeof (optval
));
2635 case IPV6_PORTRANGE_DEFAULT
:
2636 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2637 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2640 case IPV6_PORTRANGE_HIGH
:
2641 in6p
->inp_flags
&= ~(INP_LOWPORT
);
2642 in6p
->inp_flags
|= INP_HIGHPORT
;
2645 case IPV6_PORTRANGE_LOW
:
2646 in6p
->inp_flags
&= ~(INP_HIGHPORT
);
2647 in6p
->inp_flags
|= INP_LOWPORT
;
2656 case IPV6_IPSEC_POLICY
: {
2661 if ((error
= soopt_getm(sopt
, &m
)) != 0)
2663 if ((error
= soopt_mcopyin(sopt
, m
)) != 0)
2666 req
= mtod(m
, caddr_t
);
2668 error
= ipsec6_set_policy(in6p
, optname
, req
,
2678 case IPV6_FW_ZERO
: {
2679 if (ip6_fw_ctl_ptr
== NULL
)
2681 if (ip6_fw_ctl_ptr
!= NULL
)
2682 error
= (*ip6_fw_ctl_ptr
)(sopt
);
2684 error
= ENOPROTOOPT
;
2687 #endif /* IPFIREWALL */
2689 * IPv6 variant of IP_BOUND_IF; for details see
2690 * comments on IP_BOUND_IF in ip_ctloutput().
2693 /* This option is settable only on IPv6 */
2694 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2699 error
= sooptcopyin(sopt
, &optval
,
2700 sizeof (optval
), sizeof (optval
));
2705 error
= inp_bindif(in6p
, optval
, NULL
);
2708 case IPV6_NO_IFT_CELLULAR
:
2709 /* This option is settable only for IPv6 */
2710 if (!(in6p
->inp_vflag
& INP_IPV6
)) {
2715 error
= sooptcopyin(sopt
, &optval
,
2716 sizeof (optval
), sizeof (optval
));
2721 /* once set, it cannot be unset */
2722 if (!optval
&& INP_NO_CELLULAR(in6p
)) {
2727 error
= so_set_restrictions(so
,
2728 SO_RESTRICT_DENY_CELLULAR
);
2732 /* This option is not settable */
2737 error
= ENOPROTOOPT
;
2745 case IPV6_2292PKTOPTIONS
:
2747 * RFC3542 (effectively) deprecated the
2748 * semantics of the 2292-style pktoptions.
2749 * Since it was not reliable in nature (i.e.,
2750 * applications had to expect the lack of some
2751 * information after all), it would make sense
2752 * to simplify this part by always returning
2755 sopt
->sopt_valsize
= 0;
2758 case IPV6_RECVHOPOPTS
:
2759 case IPV6_RECVDSTOPTS
:
2760 case IPV6_RECVRTHDRDSTOPTS
:
2761 case IPV6_UNICAST_HOPS
:
2762 case IPV6_RECVPKTINFO
:
2763 case IPV6_RECVHOPLIMIT
:
2764 case IPV6_RECVRTHDR
:
2765 case IPV6_RECVPATHMTU
:
2767 case IPV6_PORTRANGE
:
2768 case IPV6_RECVTCLASS
:
2769 case IPV6_AUTOFLOWLABEL
:
2772 case IPV6_RECVHOPOPTS
:
2773 optval
= OPTBIT(IN6P_HOPOPTS
);
2776 case IPV6_RECVDSTOPTS
:
2777 optval
= OPTBIT(IN6P_DSTOPTS
);
2780 case IPV6_RECVRTHDRDSTOPTS
:
2781 optval
= OPTBIT(IN6P_RTHDRDSTOPTS
);
2784 case IPV6_UNICAST_HOPS
:
2785 optval
= in6p
->in6p_hops
;
2788 case IPV6_RECVPKTINFO
:
2789 optval
= OPTBIT(IN6P_PKTINFO
);
2792 case IPV6_RECVHOPLIMIT
:
2793 optval
= OPTBIT(IN6P_HOPLIMIT
);
2796 case IPV6_RECVRTHDR
:
2797 optval
= OPTBIT(IN6P_RTHDR
);
2800 case IPV6_RECVPATHMTU
:
2801 optval
= OPTBIT(IN6P_MTU
);
2805 optval
= OPTBIT(IN6P_IPV6_V6ONLY
);
2808 case IPV6_PORTRANGE
: {
2810 flags
= in6p
->inp_flags
;
2811 if (flags
& INP_HIGHPORT
)
2812 optval
= IPV6_PORTRANGE_HIGH
;
2813 else if (flags
& INP_LOWPORT
)
2814 optval
= IPV6_PORTRANGE_LOW
;
2819 case IPV6_RECVTCLASS
:
2820 optval
= OPTBIT(IN6P_TCLASS
);
2823 case IPV6_AUTOFLOWLABEL
:
2824 optval
= OPTBIT(IN6P_AUTOFLOWLABEL
);
2829 error
= sooptcopyout(sopt
, &optval
,
2833 case IPV6_PATHMTU
: {
2835 struct ip6_mtuinfo mtuinfo
;
2836 struct route_in6 sro
;
2838 bzero(&sro
, sizeof (sro
));
2840 if (!(so
->so_state
& SS_ISCONNECTED
))
2843 * XXX: we dot not consider the case of source
2844 * routing, or optional information to specify
2845 * the outgoing interface.
2847 error
= ip6_getpmtu(&sro
, NULL
, NULL
,
2848 &in6p
->in6p_faddr
, &pmtu
, NULL
);
2849 ROUTE_RELEASE(&sro
);
2852 if (pmtu
> IPV6_MAXPACKET
)
2853 pmtu
= IPV6_MAXPACKET
;
2855 bzero(&mtuinfo
, sizeof (mtuinfo
));
2856 mtuinfo
.ip6m_mtu
= (u_int32_t
)pmtu
;
2857 optdata
= (void *)&mtuinfo
;
2858 optdatalen
= sizeof (mtuinfo
);
2859 error
= sooptcopyout(sopt
, optdata
,
2864 case IPV6_2292PKTINFO
:
2865 case IPV6_2292HOPLIMIT
:
2866 case IPV6_2292HOPOPTS
:
2867 case IPV6_2292RTHDR
:
2868 case IPV6_2292DSTOPTS
:
2870 case IPV6_2292PKTINFO
:
2871 optval
= OPTBIT(IN6P_PKTINFO
);
2873 case IPV6_2292HOPLIMIT
:
2874 optval
= OPTBIT(IN6P_HOPLIMIT
);
2876 case IPV6_2292HOPOPTS
:
2877 optval
= OPTBIT(IN6P_HOPOPTS
);
2879 case IPV6_2292RTHDR
:
2880 optval
= OPTBIT(IN6P_RTHDR
);
2882 case IPV6_2292DSTOPTS
:
2883 optval
= OPTBIT(IN6P_DSTOPTS
|
2887 error
= sooptcopyout(sopt
, &optval
,
2895 case IPV6_RTHDRDSTOPTS
:
2899 case IPV6_USE_MIN_MTU
:
2900 case IPV6_PREFER_TEMPADDR
:
2901 error
= ip6_getpcbopt(in6p
->in6p_outputopts
,
2905 case IPV6_MULTICAST_IF
:
2906 case IPV6_MULTICAST_HOPS
:
2907 case IPV6_MULTICAST_LOOP
:
2909 error
= ip6_getmoptions(in6p
, sopt
);
2912 case IPV6_IPSEC_POLICY
: {
2913 error
= 0; /* This option is no longer supported */
2919 if (ip6_fw_ctl_ptr
== NULL
)
2921 if (ip6_fw_ctl_ptr
!= NULL
)
2922 error
= (*ip6_fw_ctl_ptr
)(sopt
);
2924 error
= ENOPROTOOPT
;
2927 #endif /* IPFIREWALL */
2929 if (in6p
->inp_flags
& INP_BOUND_IF
)
2930 optval
= in6p
->inp_boundifp
->if_index
;
2931 error
= sooptcopyout(sopt
, &optval
,
2935 case IPV6_NO_IFT_CELLULAR
:
2936 optval
= INP_NO_CELLULAR(in6p
) ? 1 : 0;
2937 error
= sooptcopyout(sopt
, &optval
,
2942 optval
= (in6p
->in6p_last_outifp
!= NULL
) ?
2943 in6p
->in6p_last_outifp
->if_index
: 0;
2944 error
= sooptcopyout(sopt
, &optval
,
2949 error
= ENOPROTOOPT
;
2954 } else if (level
== IPPROTO_UDP
) {
2955 error
= udp_ctloutput(so
, sopt
);
2963 ip6_raw_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2965 int error
= 0, optval
, optlen
;
2966 const int icmp6off
= offsetof(struct icmp6_hdr
, icmp6_cksum
);
2967 struct inpcb
*in6p
= sotoinpcb(so
);
2968 int level
, op
, optname
;
2970 level
= sopt
->sopt_level
;
2971 op
= sopt
->sopt_dir
;
2972 optname
= sopt
->sopt_name
;
2973 optlen
= sopt
->sopt_valsize
;
2975 if (level
!= IPPROTO_IPV6
)
2981 * For ICMPv6 sockets, no modification allowed for checksum
2982 * offset, permit "no change" values to help existing apps.
2984 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
2985 * for an ICMPv6 socket will fail."
2986 * The current behavior does not meet RFC3542.
2990 if (optlen
!= sizeof (int)) {
2994 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2998 if ((optval
% 2) != 0) {
2999 /* the API assumes even offset values */
3001 } else if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
) {
3002 if (optval
!= icmp6off
)
3005 in6p
->in6p_cksum
= optval
;
3010 if (SOCK_PROTO(so
) == IPPROTO_ICMPV6
)
3013 optval
= in6p
->in6p_cksum
;
3015 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
3025 error
= ENOPROTOOPT
;
3033 * Set up IP6 options in pcb for insertion in output packets or
3034 * specifying behavior of outgoing packets.
3037 ip6_pcbopts(struct ip6_pktopts
**pktopt
, struct mbuf
*m
, struct socket
*so
,
3038 struct sockopt
*sopt
)
3040 #pragma unused(sopt)
3041 struct ip6_pktopts
*opt
= *pktopt
;
3044 /* turn off any old options. */
3047 if (opt
->ip6po_pktinfo
|| opt
->ip6po_nexthop
||
3048 opt
->ip6po_hbh
|| opt
->ip6po_dest1
|| opt
->ip6po_dest2
||
3049 opt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3050 printf("%s: all specified options are cleared.\n",
3053 ip6_clearpktopts(opt
, -1);
3055 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3061 if (m
== NULL
|| m
->m_len
== 0) {
3063 * Only turning off any previous options, regardless of
3064 * whether the opt is just created or given.
3067 FREE(opt
, M_IP6OPT
);
3071 /* set options specified by user. */
3072 if ((error
= ip6_setpktopts(m
, opt
, NULL
, SOCK_PROTO(so
))) != 0) {
3073 ip6_clearpktopts(opt
, -1); /* XXX: discard all options */
3074 FREE(opt
, M_IP6OPT
);
3082 * initialize ip6_pktopts. beware that there are non-zero default values in
3086 ip6_initpktopts(struct ip6_pktopts
*opt
)
3089 bzero(opt
, sizeof (*opt
));
3090 opt
->ip6po_hlim
= -1; /* -1 means default hop limit */
3091 opt
->ip6po_tclass
= -1; /* -1 means default traffic class */
3092 opt
->ip6po_minmtu
= IP6PO_MINMTU_MCASTONLY
;
3093 opt
->ip6po_prefer_tempaddr
= IP6PO_TEMPADDR_SYSTEM
;
3097 ip6_pcbopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
**pktopt
,
3100 struct ip6_pktopts
*opt
;
3104 opt
= _MALLOC(sizeof (*opt
), M_IP6OPT
, M_WAITOK
);
3107 ip6_initpktopts(opt
);
3111 return (ip6_setpktopt(optname
, buf
, len
, opt
, 1, 0, uproto
));
3115 ip6_getpcbopt(struct ip6_pktopts
*pktopt
, int optname
, struct sockopt
*sopt
)
3117 void *optdata
= NULL
;
3119 struct ip6_ext
*ip6e
;
3120 struct in6_pktinfo null_pktinfo
;
3121 int deftclass
= 0, on
;
3122 int defminmtu
= IP6PO_MINMTU_MCASTONLY
;
3123 int defpreftemp
= IP6PO_TEMPADDR_SYSTEM
;
3128 if (pktopt
&& pktopt
->ip6po_pktinfo
)
3129 optdata
= (void *)pktopt
->ip6po_pktinfo
;
3131 /* XXX: we don't have to do this every time... */
3132 bzero(&null_pktinfo
, sizeof (null_pktinfo
));
3133 optdata
= (void *)&null_pktinfo
;
3135 optdatalen
= sizeof (struct in6_pktinfo
);
3139 if (pktopt
&& pktopt
->ip6po_tclass
>= 0)
3140 optdata
= (void *)&pktopt
->ip6po_tclass
;
3142 optdata
= (void *)&deftclass
;
3143 optdatalen
= sizeof (int);
3147 if (pktopt
&& pktopt
->ip6po_hbh
) {
3148 optdata
= (void *)pktopt
->ip6po_hbh
;
3149 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_hbh
;
3150 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3155 if (pktopt
&& pktopt
->ip6po_rthdr
) {
3156 optdata
= (void *)pktopt
->ip6po_rthdr
;
3157 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_rthdr
;
3158 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3162 case IPV6_RTHDRDSTOPTS
:
3163 if (pktopt
&& pktopt
->ip6po_dest1
) {
3164 optdata
= (void *)pktopt
->ip6po_dest1
;
3165 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest1
;
3166 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3171 if (pktopt
&& pktopt
->ip6po_dest2
) {
3172 optdata
= (void *)pktopt
->ip6po_dest2
;
3173 ip6e
= (struct ip6_ext
*)pktopt
->ip6po_dest2
;
3174 optdatalen
= (ip6e
->ip6e_len
+ 1) << 3;
3179 if (pktopt
&& pktopt
->ip6po_nexthop
) {
3180 optdata
= (void *)pktopt
->ip6po_nexthop
;
3181 optdatalen
= pktopt
->ip6po_nexthop
->sa_len
;
3185 case IPV6_USE_MIN_MTU
:
3187 optdata
= (void *)&pktopt
->ip6po_minmtu
;
3189 optdata
= (void *)&defminmtu
;
3190 optdatalen
= sizeof (int);
3194 if (pktopt
&& ((pktopt
->ip6po_flags
) & IP6PO_DONTFRAG
))
3198 optdata
= (void *)&on
;
3199 optdatalen
= sizeof (on
);
3202 case IPV6_PREFER_TEMPADDR
:
3204 optdata
= (void *)&pktopt
->ip6po_prefer_tempaddr
;
3206 optdata
= (void *)&defpreftemp
;
3207 optdatalen
= sizeof (int);
3210 default: /* should not happen */
3212 panic("ip6_getpcbopt: unexpected option\n");
3214 return (ENOPROTOOPT
);
3217 return (sooptcopyout(sopt
, optdata
, optdatalen
));
3221 ip6_clearpktopts(struct ip6_pktopts
*pktopt
, int optname
)
3226 if (optname
== -1 || optname
== IPV6_PKTINFO
) {
3227 if (pktopt
->ip6po_pktinfo
)
3228 FREE(pktopt
->ip6po_pktinfo
, M_IP6OPT
);
3229 pktopt
->ip6po_pktinfo
= NULL
;
3231 if (optname
== -1 || optname
== IPV6_HOPLIMIT
)
3232 pktopt
->ip6po_hlim
= -1;
3233 if (optname
== -1 || optname
== IPV6_TCLASS
)
3234 pktopt
->ip6po_tclass
= -1;
3235 if (optname
== -1 || optname
== IPV6_NEXTHOP
) {
3236 ROUTE_RELEASE(&pktopt
->ip6po_nextroute
);
3237 if (pktopt
->ip6po_nexthop
)
3238 FREE(pktopt
->ip6po_nexthop
, M_IP6OPT
);
3239 pktopt
->ip6po_nexthop
= NULL
;
3241 if (optname
== -1 || optname
== IPV6_HOPOPTS
) {
3242 if (pktopt
->ip6po_hbh
)
3243 FREE(pktopt
->ip6po_hbh
, M_IP6OPT
);
3244 pktopt
->ip6po_hbh
= NULL
;
3246 if (optname
== -1 || optname
== IPV6_RTHDRDSTOPTS
) {
3247 if (pktopt
->ip6po_dest1
)
3248 FREE(pktopt
->ip6po_dest1
, M_IP6OPT
);
3249 pktopt
->ip6po_dest1
= NULL
;
3251 if (optname
== -1 || optname
== IPV6_RTHDR
) {
3252 if (pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
)
3253 FREE(pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
, M_IP6OPT
);
3254 pktopt
->ip6po_rhinfo
.ip6po_rhi_rthdr
= NULL
;
3255 ROUTE_RELEASE(&pktopt
->ip6po_route
);
3257 if (optname
== -1 || optname
== IPV6_DSTOPTS
) {
3258 if (pktopt
->ip6po_dest2
)
3259 FREE(pktopt
->ip6po_dest2
, M_IP6OPT
);
3260 pktopt
->ip6po_dest2
= NULL
;
3264 #define PKTOPT_EXTHDRCPY(type) do { \
3267 (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3; \
3268 dst->type = _MALLOC(hlen, M_IP6OPT, canwait); \
3269 if (dst->type == NULL && canwait == M_NOWAIT) \
3271 bcopy(src->type, dst->type, hlen); \
3276 copypktopts(struct ip6_pktopts
*dst
, struct ip6_pktopts
*src
, int canwait
)
3278 if (dst
== NULL
|| src
== NULL
) {
3279 printf("copypktopts: invalid argument\n");
3283 dst
->ip6po_hlim
= src
->ip6po_hlim
;
3284 dst
->ip6po_tclass
= src
->ip6po_tclass
;
3285 dst
->ip6po_flags
= src
->ip6po_flags
;
3286 if (src
->ip6po_pktinfo
) {
3287 dst
->ip6po_pktinfo
= _MALLOC(sizeof (*dst
->ip6po_pktinfo
),
3289 if (dst
->ip6po_pktinfo
== NULL
&& canwait
== M_NOWAIT
)
3291 *dst
->ip6po_pktinfo
= *src
->ip6po_pktinfo
;
3293 if (src
->ip6po_nexthop
) {
3294 dst
->ip6po_nexthop
= _MALLOC(src
->ip6po_nexthop
->sa_len
,
3296 if (dst
->ip6po_nexthop
== NULL
&& canwait
== M_NOWAIT
)
3298 bcopy(src
->ip6po_nexthop
, dst
->ip6po_nexthop
,
3299 src
->ip6po_nexthop
->sa_len
);
3301 PKTOPT_EXTHDRCPY(ip6po_hbh
);
3302 PKTOPT_EXTHDRCPY(ip6po_dest1
);
3303 PKTOPT_EXTHDRCPY(ip6po_dest2
);
3304 PKTOPT_EXTHDRCPY(ip6po_rthdr
); /* not copy the cached route */
3308 ip6_clearpktopts(dst
, -1);
3311 #undef PKTOPT_EXTHDRCPY
3313 struct ip6_pktopts
*
3314 ip6_copypktopts(struct ip6_pktopts
*src
, int canwait
)
3317 struct ip6_pktopts
*dst
;
3319 dst
= _MALLOC(sizeof (*dst
), M_IP6OPT
, canwait
);
3322 ip6_initpktopts(dst
);
3324 if ((error
= copypktopts(dst
, src
, canwait
)) != 0) {
3325 FREE(dst
, M_IP6OPT
);
3333 ip6_freepcbopts(struct ip6_pktopts
*pktopt
)
3338 ip6_clearpktopts(pktopt
, -1);
3340 FREE(pktopt
, M_IP6OPT
);
3344 ip6_moptions_init(void)
3346 PE_parse_boot_argn("ifa_debug", &im6o_debug
, sizeof (im6o_debug
));
3348 im6o_size
= (im6o_debug
== 0) ? sizeof (struct ip6_moptions
) :
3349 sizeof (struct ip6_moptions_dbg
);
3351 im6o_zone
= zinit(im6o_size
, IM6O_ZONE_MAX
* im6o_size
, 0,
3353 if (im6o_zone
== NULL
) {
3354 panic("%s: failed allocating %s", __func__
, IM6O_ZONE_NAME
);
3357 zone_change(im6o_zone
, Z_EXPAND
, TRUE
);
3361 im6o_addref(struct ip6_moptions
*im6o
, int locked
)
3366 IM6O_LOCK_ASSERT_HELD(im6o
);
3368 if (++im6o
->im6o_refcnt
== 0) {
3369 panic("%s: im6o %p wraparound refcnt\n", __func__
, im6o
);
3371 } else if (im6o
->im6o_trace
!= NULL
) {
3372 (*im6o
->im6o_trace
)(im6o
, TRUE
);
3380 im6o_remref(struct ip6_moptions
*im6o
)
3385 if (im6o
->im6o_refcnt
== 0) {
3386 panic("%s: im6o %p negative refcnt", __func__
, im6o
);
3388 } else if (im6o
->im6o_trace
!= NULL
) {
3389 (*im6o
->im6o_trace
)(im6o
, FALSE
);
3392 --im6o
->im6o_refcnt
;
3393 if (im6o
->im6o_refcnt
> 0) {
3398 for (i
= 0; i
< im6o
->im6o_num_memberships
; ++i
) {
3399 struct in6_mfilter
*imf
;
3401 imf
= im6o
->im6o_mfilters
? &im6o
->im6o_mfilters
[i
] : NULL
;
3405 (void) in6_mc_leave(im6o
->im6o_membership
[i
], imf
);
3410 IN6M_REMREF(im6o
->im6o_membership
[i
]);
3411 im6o
->im6o_membership
[i
] = NULL
;
3413 im6o
->im6o_num_memberships
= 0;
3414 if (im6o
->im6o_mfilters
!= NULL
) {
3415 FREE(im6o
->im6o_mfilters
, M_IN6MFILTER
);
3416 im6o
->im6o_mfilters
= NULL
;
3418 if (im6o
->im6o_membership
!= NULL
) {
3419 FREE(im6o
->im6o_membership
, M_IP6MOPTS
);
3420 im6o
->im6o_membership
= NULL
;
3424 lck_mtx_destroy(&im6o
->im6o_lock
, ifa_mtx_grp
);
3426 if (!(im6o
->im6o_debug
& IFD_ALLOC
)) {
3427 panic("%s: im6o %p cannot be freed", __func__
, im6o
);
3430 zfree(im6o_zone
, im6o
);
3434 im6o_trace(struct ip6_moptions
*im6o
, int refhold
)
3436 struct ip6_moptions_dbg
*im6o_dbg
= (struct ip6_moptions_dbg
*)im6o
;
3441 if (!(im6o
->im6o_debug
& IFD_DEBUG
)) {
3442 panic("%s: im6o %p has no debug structure", __func__
, im6o
);
3446 cnt
= &im6o_dbg
->im6o_refhold_cnt
;
3447 tr
= im6o_dbg
->im6o_refhold
;
3449 cnt
= &im6o_dbg
->im6o_refrele_cnt
;
3450 tr
= im6o_dbg
->im6o_refrele
;
3453 idx
= atomic_add_16_ov(cnt
, 1) % IM6O_TRACE_HIST_SIZE
;
3454 ctrace_record(&tr
[idx
]);
3457 struct ip6_moptions
*
3458 ip6_allocmoptions(int how
)
3460 struct ip6_moptions
*im6o
;
3462 im6o
= (how
== M_WAITOK
) ?
3463 zalloc(im6o_zone
) : zalloc_noblock(im6o_zone
);
3465 bzero(im6o
, im6o_size
);
3466 lck_mtx_init(&im6o
->im6o_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3467 im6o
->im6o_debug
|= IFD_ALLOC
;
3468 if (im6o_debug
!= 0) {
3469 im6o
->im6o_debug
|= IFD_DEBUG
;
3470 im6o
->im6o_trace
= im6o_trace
;
3479 * Set IPv6 outgoing packet options based on advanced API.
3482 ip6_setpktopts(struct mbuf
*control
, struct ip6_pktopts
*opt
,
3483 struct ip6_pktopts
*stickyopt
, int uproto
)
3485 struct cmsghdr
*cm
= NULL
;
3487 if (control
== NULL
|| opt
== NULL
)
3490 ip6_initpktopts(opt
);
3495 * If stickyopt is provided, make a local copy of the options
3496 * for this particular packet, then override them by ancillary
3498 * XXX: copypktopts() does not copy the cached route to a next
3499 * hop (if any). This is not very good in terms of efficiency,
3500 * but we can allow this since this option should be rarely
3503 if ((error
= copypktopts(opt
, stickyopt
, M_NOWAIT
)) != 0)
3508 * XXX: Currently, we assume all the optional information is stored
3511 if (control
->m_next
)
3514 if (control
->m_len
< CMSG_LEN(0))
3517 for (cm
= M_FIRST_CMSGHDR(control
); cm
!= NULL
;
3518 cm
= M_NXT_CMSGHDR(control
, cm
)) {
3521 if (cm
->cmsg_len
< sizeof (struct cmsghdr
) ||
3522 cm
->cmsg_len
> control
->m_len
)
3524 if (cm
->cmsg_level
!= IPPROTO_IPV6
)
3527 error
= ip6_setpktopt(cm
->cmsg_type
, CMSG_DATA(cm
),
3528 cm
->cmsg_len
- CMSG_LEN(0), opt
, 0, 1, uproto
);
3536 * Set a particular packet option, as a sticky option or an ancillary data
3537 * item. "len" can be 0 only when it's a sticky option.
3538 * We have 4 cases of combination of "sticky" and "cmsg":
3539 * "sticky=0, cmsg=0": impossible
3540 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
3541 * "sticky=1, cmsg=0": RFC3542 socket option
3542 * "sticky=1, cmsg=1": RFC2292 socket option
3545 ip6_setpktopt(int optname
, u_char
*buf
, int len
, struct ip6_pktopts
*opt
,
3546 int sticky
, int cmsg
, int uproto
)
3548 int minmtupolicy
, preftemp
;
3551 if (!sticky
&& !cmsg
) {
3553 printf("ip6_setpktopt: impossible case\n");
3559 * Caller must have ensured that the buffer is at least
3560 * aligned on 32-bit boundary.
3562 VERIFY(IS_P2ALIGNED(buf
, sizeof (u_int32_t
)));
3565 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
3566 * not be specified in the context of RFC3542. Conversely,
3567 * RFC3542 types should not be specified in the context of RFC2292.
3571 case IPV6_2292PKTINFO
:
3572 case IPV6_2292HOPLIMIT
:
3573 case IPV6_2292NEXTHOP
:
3574 case IPV6_2292HOPOPTS
:
3575 case IPV6_2292DSTOPTS
:
3576 case IPV6_2292RTHDR
:
3577 case IPV6_2292PKTOPTIONS
:
3578 return (ENOPROTOOPT
);
3581 if (sticky
&& cmsg
) {
3588 case IPV6_RTHDRDSTOPTS
:
3590 case IPV6_USE_MIN_MTU
:
3593 case IPV6_PREFER_TEMPADDR
: /* XXX: not an RFC3542 option */
3594 return (ENOPROTOOPT
);
3599 case IPV6_2292PKTINFO
:
3600 case IPV6_PKTINFO
: {
3601 struct ifnet
*ifp
= NULL
;
3602 struct in6_pktinfo
*pktinfo
;
3604 if (len
!= sizeof (struct in6_pktinfo
))
3607 pktinfo
= (struct in6_pktinfo
*)(void *)buf
;
3610 * An application can clear any sticky IPV6_PKTINFO option by
3611 * doing a "regular" setsockopt with ipi6_addr being
3612 * in6addr_any and ipi6_ifindex being zero.
3613 * [RFC 3542, Section 6]
3615 if (optname
== IPV6_PKTINFO
&& opt
->ip6po_pktinfo
&&
3616 pktinfo
->ipi6_ifindex
== 0 &&
3617 IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3618 ip6_clearpktopts(opt
, optname
);
3622 if (uproto
== IPPROTO_TCP
&& optname
== IPV6_PKTINFO
&&
3623 sticky
&& !IN6_IS_ADDR_UNSPECIFIED(&pktinfo
->ipi6_addr
)) {
3627 /* validate the interface index if specified. */
3628 ifnet_head_lock_shared();
3630 if (pktinfo
->ipi6_ifindex
> if_index
) {
3635 if (pktinfo
->ipi6_ifindex
) {
3636 ifp
= ifindex2ifnet
[pktinfo
->ipi6_ifindex
];
3646 * We store the address anyway, and let in6_selectsrc()
3647 * validate the specified address. This is because ipi6_addr
3648 * may not have enough information about its scope zone, and
3649 * we may need additional information (such as outgoing
3650 * interface or the scope zone of a destination address) to
3651 * disambiguate the scope.
3652 * XXX: the delay of the validation may confuse the
3653 * application when it is used as a sticky option.
3655 if (opt
->ip6po_pktinfo
== NULL
) {
3656 opt
->ip6po_pktinfo
= _MALLOC(sizeof (*pktinfo
),
3657 M_IP6OPT
, M_NOWAIT
);
3658 if (opt
->ip6po_pktinfo
== NULL
)
3661 bcopy(pktinfo
, opt
->ip6po_pktinfo
, sizeof (*pktinfo
));
3665 case IPV6_2292HOPLIMIT
:
3666 case IPV6_HOPLIMIT
: {
3670 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
3671 * to simplify the ordering among hoplimit options.
3673 if (optname
== IPV6_HOPLIMIT
&& sticky
)
3674 return (ENOPROTOOPT
);
3676 if (len
!= sizeof (int))
3678 hlimp
= (int *)(void *)buf
;
3679 if (*hlimp
< -1 || *hlimp
> 255)
3682 opt
->ip6po_hlim
= *hlimp
;
3689 if (len
!= sizeof (int))
3691 tclass
= *(int *)(void *)buf
;
3692 if (tclass
< -1 || tclass
> 255)
3695 opt
->ip6po_tclass
= tclass
;
3699 case IPV6_2292NEXTHOP
:
3701 error
= suser(kauth_cred_get(), 0);
3705 if (len
== 0) { /* just remove the option */
3706 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3710 /* check if cmsg_len is large enough for sa_len */
3711 if (len
< sizeof (struct sockaddr
) || len
< *buf
)
3714 switch (SA(buf
)->sa_family
) {
3716 struct sockaddr_in6
*sa6
= SIN6(buf
);
3718 if (sa6
->sin6_len
!= sizeof (struct sockaddr_in6
))
3721 if (IN6_IS_ADDR_UNSPECIFIED(&sa6
->sin6_addr
) ||
3722 IN6_IS_ADDR_MULTICAST(&sa6
->sin6_addr
)) {
3725 if ((error
= sa6_embedscope(sa6
, ip6_use_defzone
))
3731 case AF_LINK
: /* should eventually be supported */
3733 return (EAFNOSUPPORT
);
3736 /* turn off the previous option, then set the new option. */
3737 ip6_clearpktopts(opt
, IPV6_NEXTHOP
);
3738 opt
->ip6po_nexthop
= _MALLOC(*buf
, M_IP6OPT
, M_NOWAIT
);
3739 if (opt
->ip6po_nexthop
== NULL
)
3741 bcopy(buf
, opt
->ip6po_nexthop
, *buf
);
3744 case IPV6_2292HOPOPTS
:
3745 case IPV6_HOPOPTS
: {
3746 struct ip6_hbh
*hbh
;
3750 * XXX: We don't allow a non-privileged user to set ANY HbH
3751 * options, since per-option restriction has too much
3754 error
= suser(kauth_cred_get(), 0);
3759 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3760 break; /* just remove the option */
3763 /* message length validation */
3764 if (len
< sizeof (struct ip6_hbh
))
3766 hbh
= (struct ip6_hbh
*)(void *)buf
;
3767 hbhlen
= (hbh
->ip6h_len
+ 1) << 3;
3771 /* turn off the previous option, then set the new option. */
3772 ip6_clearpktopts(opt
, IPV6_HOPOPTS
);
3773 opt
->ip6po_hbh
= _MALLOC(hbhlen
, M_IP6OPT
, M_NOWAIT
);
3774 if (opt
->ip6po_hbh
== NULL
)
3776 bcopy(hbh
, opt
->ip6po_hbh
, hbhlen
);
3781 case IPV6_2292DSTOPTS
:
3783 case IPV6_RTHDRDSTOPTS
: {
3784 struct ip6_dest
*dest
, **newdest
= NULL
;
3787 error
= suser(kauth_cred_get(), 0);
3792 ip6_clearpktopts(opt
, optname
);
3793 break; /* just remove the option */
3796 /* message length validation */
3797 if (len
< sizeof (struct ip6_dest
))
3799 dest
= (struct ip6_dest
*)(void *)buf
;
3800 destlen
= (dest
->ip6d_len
+ 1) << 3;
3805 * Determine the position that the destination options header
3806 * should be inserted; before or after the routing header.
3809 case IPV6_2292DSTOPTS
:
3811 * The old advacned API is ambiguous on this point.
3812 * Our approach is to determine the position based
3813 * according to the existence of a routing header.
3814 * Note, however, that this depends on the order of the
3815 * extension headers in the ancillary data; the 1st
3816 * part of the destination options header must appear
3817 * before the routing header in the ancillary data,
3819 * RFC3542 solved the ambiguity by introducing
3820 * separate ancillary data or option types.
3822 if (opt
->ip6po_rthdr
== NULL
)
3823 newdest
= &opt
->ip6po_dest1
;
3825 newdest
= &opt
->ip6po_dest2
;
3827 case IPV6_RTHDRDSTOPTS
:
3828 newdest
= &opt
->ip6po_dest1
;
3831 newdest
= &opt
->ip6po_dest2
;
3835 /* turn off the previous option, then set the new option. */
3836 ip6_clearpktopts(opt
, optname
);
3837 *newdest
= _MALLOC(destlen
, M_IP6OPT
, M_NOWAIT
);
3838 if (*newdest
== NULL
)
3840 bcopy(dest
, *newdest
, destlen
);
3844 case IPV6_2292RTHDR
:
3846 struct ip6_rthdr
*rth
;
3850 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3851 break; /* just remove the option */
3854 /* message length validation */
3855 if (len
< sizeof (struct ip6_rthdr
))
3857 rth
= (struct ip6_rthdr
*)(void *)buf
;
3858 rthlen
= (rth
->ip6r_len
+ 1) << 3;
3862 switch (rth
->ip6r_type
) {
3863 case IPV6_RTHDR_TYPE_0
:
3864 if (rth
->ip6r_len
== 0) /* must contain one addr */
3866 if (rth
->ip6r_len
% 2) /* length must be even */
3868 if (rth
->ip6r_len
/ 2 != rth
->ip6r_segleft
)
3872 return (EINVAL
); /* not supported */
3875 /* turn off the previous option */
3876 ip6_clearpktopts(opt
, IPV6_RTHDR
);
3877 opt
->ip6po_rthdr
= _MALLOC(rthlen
, M_IP6OPT
, M_NOWAIT
);
3878 if (opt
->ip6po_rthdr
== NULL
)
3880 bcopy(rth
, opt
->ip6po_rthdr
, rthlen
);
3884 case IPV6_USE_MIN_MTU
:
3885 if (len
!= sizeof (int))
3887 minmtupolicy
= *(int *)(void *)buf
;
3888 if (minmtupolicy
!= IP6PO_MINMTU_MCASTONLY
&&
3889 minmtupolicy
!= IP6PO_MINMTU_DISABLE
&&
3890 minmtupolicy
!= IP6PO_MINMTU_ALL
) {
3893 opt
->ip6po_minmtu
= minmtupolicy
;
3897 if (len
!= sizeof (int))
3900 if (uproto
== IPPROTO_TCP
|| *(int *)(void *)buf
== 0) {
3902 * we ignore this option for TCP sockets.
3903 * (RFC3542 leaves this case unspecified.)
3905 opt
->ip6po_flags
&= ~IP6PO_DONTFRAG
;
3907 opt
->ip6po_flags
|= IP6PO_DONTFRAG
;
3911 case IPV6_PREFER_TEMPADDR
:
3912 if (len
!= sizeof (int))
3914 preftemp
= *(int *)(void *)buf
;
3915 if (preftemp
!= IP6PO_TEMPADDR_SYSTEM
&&
3916 preftemp
!= IP6PO_TEMPADDR_NOTPREFER
&&
3917 preftemp
!= IP6PO_TEMPADDR_PREFER
) {
3920 opt
->ip6po_prefer_tempaddr
= preftemp
;
3924 return (ENOPROTOOPT
);
3925 } /* end of switch */
3931 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3932 * packet to the input queue of a specified interface. Note that this
3933 * calls the output routine of the loopback "driver", but with an interface
3934 * pointer that might NOT be &loif -- easier than replicating that code here.
3937 ip6_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3938 struct sockaddr_in6
*dst
, uint32_t optlen
, int32_t nxt0
)
3941 struct ip6_hdr
*ip6
;
3942 struct in6_addr src
;
3948 * Copy the packet header as it's needed for the checksum.
3949 * Make sure to deep-copy IPv6 header portion in case the data
3950 * is in an mbuf cluster, so that we can safely override the IPv6
3951 * header portion later.
3953 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3954 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) ||
3955 copym
->m_len
< sizeof (struct ip6_hdr
)))
3956 copym
= m_pullup(copym
, sizeof (struct ip6_hdr
));
3961 ip6
= mtod(copym
, struct ip6_hdr
*);
3964 * clear embedded scope identifiers if necessary.
3965 * in6_clearscope will touch the addresses only when necessary.
3967 in6_clearscope(&ip6
->ip6_src
);
3968 in6_clearscope(&ip6
->ip6_dst
);
3970 if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_IPV6_DATA
)
3971 in6_delayed_cksum_offset(copym
, 0, optlen
, nxt0
);
3974 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3975 * in ip6_input(); we need the loopback ifp/dl_tag passed as args
3976 * to make the loopback driver compliant with the data link
3979 copym
->m_pkthdr
.rcvif
= origifp
;
3982 * Also record the source interface (which owns the source address).
3983 * This is basically a stripped down version of ifa_foraddr6().
3985 if (srcifp
== NULL
) {
3986 struct in6_ifaddr
*ia
;
3988 lck_rw_lock_shared(&in6_ifaddr_rwlock
);
3989 for (ia
= in6_ifaddrs
; ia
!= NULL
; ia
= ia
->ia_next
) {
3990 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3991 /* compare against src addr with embedded scope */
3992 if (IN6_ARE_ADDR_EQUAL(&ia
->ia_addr
.sin6_addr
, &src
)) {
3993 srcifp
= ia
->ia_ifp
;
3994 IFA_UNLOCK(&ia
->ia_ifa
);
3997 IFA_UNLOCK(&ia
->ia_ifa
);
3999 lck_rw_done(&in6_ifaddr_rwlock
);
4002 ip6_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
4003 ip6_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
4005 dlil_output(lo_ifp
, PF_INET6
, copym
, NULL
, SA(dst
), 0, NULL
);
4009 * Chop IPv6 header off from the payload.
4012 ip6_splithdr(struct mbuf
*m
, struct ip6_exthdrs
*exthdrs
)
4015 struct ip6_hdr
*ip6
;
4017 ip6
= mtod(m
, struct ip6_hdr
*);
4018 if (m
->m_len
> sizeof (*ip6
)) {
4019 MGETHDR(mh
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
4024 M_COPY_PKTHDR(mh
, m
);
4025 MH_ALIGN(mh
, sizeof (*ip6
));
4026 m
->m_flags
&= ~M_PKTHDR
;
4027 m
->m_len
-= sizeof (*ip6
);
4028 m
->m_data
+= sizeof (*ip6
);
4031 m
->m_len
= sizeof (*ip6
);
4032 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
), sizeof (*ip6
));
4034 exthdrs
->ip6e_ip6
= m
;
4039 ip6_output_checksum(struct ifnet
*ifp
, uint32_t mtu
, struct mbuf
*m
,
4040 int nxt0
, uint32_t tlen
, uint32_t optlen
)
4042 uint32_t sw_csum
, hwcap
= ifp
->if_hwassist
;
4043 int tso
= TSO_IPV6_OK(ifp
, m
);
4046 /* do all in software; checksum offload is disabled */
4047 sw_csum
= CSUM_DELAY_IPV6_DATA
& m
->m_pkthdr
.csum_flags
;
4049 /* do in software what the hardware cannot */
4050 sw_csum
= m
->m_pkthdr
.csum_flags
&
4051 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
4055 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4056 m
->m_pkthdr
.csum_flags
);
4057 } else if (!(sw_csum
& CSUM_DELAY_IPV6_DATA
) &&
4058 (hwcap
& CSUM_PARTIAL
)) {
4060 * Partial checksum offload, ere), if no extension
4061 * headers, and TCP only (no UDP support, as the
4062 * hardware may not be able to convert +0 to
4063 * -0 (0xffff) per RFC1122 4.1.3.4.)
4065 if (hwcksum_tx
&& !tso
&&
4066 (m
->m_pkthdr
.csum_flags
& CSUM_TCPIPV6
) &&
4068 uint16_t start
= sizeof (struct ip6_hdr
);
4070 m
->m_pkthdr
.csum_data
& 0xffff;
4071 m
->m_pkthdr
.csum_flags
|=
4072 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
4073 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
4074 m
->m_pkthdr
.csum_tx_start
= start
;
4077 sw_csum
|= (CSUM_DELAY_IPV6_DATA
&
4078 m
->m_pkthdr
.csum_flags
);
4082 if (sw_csum
& CSUM_DELAY_IPV6_DATA
) {
4083 in6_delayed_cksum_offset(m
, 0, optlen
, nxt0
);
4084 sw_csum
&= ~CSUM_DELAY_IPV6_DATA
;
4089 * Drop off bits that aren't supported by hardware;
4090 * also make sure to preserve non-checksum related bits.
4092 m
->m_pkthdr
.csum_flags
=
4093 ((m
->m_pkthdr
.csum_flags
&
4094 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
4095 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
4097 /* drop all bits; checksum offload is disabled */
4098 m
->m_pkthdr
.csum_flags
= 0;
4103 * Compute IPv6 extension header length.
4106 ip6_optlen(struct in6pcb
*in6p
)
4110 if (!in6p
->in6p_outputopts
)
4115 (((struct ip6_ext *)(x)) ? \
4116 (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
4118 len
+= elen(in6p
->in6p_outputopts
->ip6po_hbh
);
4119 if (in6p
->in6p_outputopts
->ip6po_rthdr
) {
4120 /* dest1 is valid with rthdr only */
4121 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest1
);
4123 len
+= elen(in6p
->in6p_outputopts
->ip6po_rthdr
);
4124 len
+= elen(in6p
->in6p_outputopts
->ip6po_dest2
);
4130 sysctl_reset_ip6_output_stats SYSCTL_HANDLER_ARGS
4132 #pragma unused(arg1, arg2)
4135 i
= ip6_output_measure
;
4136 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
4137 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4140 if (i
< 0 || i
> 1) {
4144 if (ip6_output_measure
!= i
&& i
== 1) {
4145 net_perf_initialize(&net_perf
, ip6_output_measure_bins
);
4147 ip6_output_measure
= i
;
4153 sysctl_ip6_output_measure_bins SYSCTL_HANDLER_ARGS
4155 #pragma unused(arg1, arg2)
4159 i
= ip6_output_measure_bins
;
4160 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
4161 if (error
|| req
->newptr
== USER_ADDR_NULL
)
4164 if (!net_perf_validate_bins(i
)) {
4168 ip6_output_measure_bins
= i
;
4174 sysctl_ip6_output_getperf SYSCTL_HANDLER_ARGS
4176 #pragma unused(oidp, arg1, arg2)
4177 if (req
->oldptr
== USER_ADDR_NULL
)
4178 req
->oldlen
= (size_t)sizeof (struct ipstat
);
4180 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));